| /* |
| * Single-precision 2^x function. |
| * |
| * Copyright (c) 2017-2018, Arm Limited. |
| * SPDX-License-Identifier: MIT |
| */ |
| |
| #include <math.h> |
| #include <stdint.h> |
| #include "libm.h" |
| #include "exp2f_data.h" |
| |
| /* |
| EXP2F_TABLE_BITS = 5 |
| EXP2F_POLY_ORDER = 3 |
| |
| ULP error: 0.502 (nearest rounding.) |
| Relative error: 1.69 * 2^-34 in [-1/64, 1/64] (before rounding.) |
| Wrong count: 168353 (all nearest rounding wrong results with fma.) |
| Non-nearest ULP error: 1 (rounded ULP error) |
| */ |
| |
| #define N (1 << EXP2F_TABLE_BITS) |
| #define T __exp2f_data.tab |
| #define C __exp2f_data.poly |
| #define SHIFT __exp2f_data.shift_scaled |
| |
| static inline uint32_t top12(float x) |
| { |
| return asuint(x) >> 20; |
| } |
| |
| float exp2f(float x) |
| { |
| uint32_t abstop; |
| uint64_t ki, t; |
| double_t kd, xd, z, r, r2, y, s; |
| |
| xd = (double_t)x; |
| abstop = top12(x) & 0x7ff; |
| if (predict_false(abstop >= top12(128.0f))) { |
| /* |x| >= 128 or x is nan. */ |
| if (asuint(x) == asuint(-INFINITY)) |
| return 0.0f; |
| if (abstop >= top12(INFINITY)) |
| return x + x; |
| if (x > 0.0f) |
| return __math_oflowf(0); |
| if (x <= -150.0f) |
| return __math_uflowf(0); |
| } |
| |
| /* x = k/N + r with r in [-1/(2N), 1/(2N)] and int k. */ |
| kd = eval_as_double(xd + SHIFT); |
| ki = asuint64(kd); |
| kd -= SHIFT; /* k/N for int k. */ |
| r = xd - kd; |
| |
| /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */ |
| t = T[ki % N]; |
| t += ki << (52 - EXP2F_TABLE_BITS); |
| s = asdouble(t); |
| z = C[0] * r + C[1]; |
| r2 = r * r; |
| y = C[2] * r + 1; |
| y = z * r2 + y; |
| y = y * s; |
| return eval_as_float(y); |
| } |