| /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expl.c */ |
| /* |
| * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| * |
| * Permission to use, copy, modify, and distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| /* |
| * Exponential function, long double precision |
| * |
| * |
| * SYNOPSIS: |
| * |
| * long double x, y, expl(); |
| * |
| * y = expl( x ); |
| * |
| * |
| * DESCRIPTION: |
| * |
| * Returns e (2.71828...) raised to the x power. |
| * |
| * Range reduction is accomplished by separating the argument |
| * into an integer k and fraction f such that |
| * |
| * x k f |
| * e = 2 e. |
| * |
| * A Pade' form of degree 5/6 is used to approximate exp(f) - 1 |
| * in the basic range [-0.5 ln 2, 0.5 ln 2]. |
| * |
| * |
| * ACCURACY: |
| * |
| * Relative error: |
| * arithmetic domain # trials peak rms |
| * IEEE +-10000 50000 1.12e-19 2.81e-20 |
| * |
| * |
| * Error amplification in the exponential function can be |
| * a serious matter. The error propagation involves |
| * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), |
| * which shows that a 1 lsb error in representing X produces |
| * a relative error of X times 1 lsb in the function. |
| * While the routine gives an accurate result for arguments |
| * that are exactly represented by a long double precision |
| * computer number, the result contains amplified roundoff |
| * error for large arguments not exactly represented. |
| * |
| * |
| * ERROR MESSAGES: |
| * |
| * message condition value returned |
| * exp underflow x < MINLOG 0.0 |
| * exp overflow x > MAXLOG MAXNUM |
| * |
| */ |
| |
| #include "libm.h" |
| |
| #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| long double expl(long double x) |
| { |
| return exp(x); |
| } |
| #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
| |
| static const long double P[3] = { |
| 1.2617719307481059087798E-4L, |
| 3.0299440770744196129956E-2L, |
| 9.9999999999999999991025E-1L, |
| }; |
| static const long double Q[4] = { |
| 3.0019850513866445504159E-6L, |
| 2.5244834034968410419224E-3L, |
| 2.2726554820815502876593E-1L, |
| 2.0000000000000000000897E0L, |
| }; |
| static const long double |
| LN2HI = 6.9314575195312500000000E-1L, |
| LN2LO = 1.4286068203094172321215E-6L, |
| LOG2E = 1.4426950408889634073599E0L; |
| |
| long double expl(long double x) |
| { |
| long double px, xx; |
| int k; |
| |
| if (isnan(x)) |
| return x; |
| if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */ |
| return x * 0x1p16383L; |
| if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */ |
| return -0x1p-16445L/x; |
| |
| /* Express e**x = e**f 2**k |
| * = e**(f + k ln(2)) |
| */ |
| px = floorl(LOG2E * x + 0.5); |
| k = px; |
| x -= px * LN2HI; |
| x -= px * LN2LO; |
| |
| /* rational approximation of the fractional part: |
| * e**x = 1 + 2x P(x**2)/(Q(x**2) - x P(x**2)) |
| */ |
| xx = x * x; |
| px = x * __polevll(xx, P, 2); |
| x = px/(__polevll(xx, Q, 3) - px); |
| x = 1.0 + 2.0 * x; |
| return scalbnl(x, k); |
| } |
| #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
| // TODO: broken implementation to make things compile |
| long double expl(long double x) |
| { |
| return exp(x); |
| } |
| #endif |