| /* origin: FreeBSD /usr/src/lib/msun/src/e_j0f.c */ |
| /* |
| * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
| */ |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| #define _GNU_SOURCE |
| #include "libm.h" |
| |
| static float pzerof(float), qzerof(float); |
| |
| static const float |
| invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */ |
| tpi = 6.3661974669e-01; /* 0x3f22f983 */ |
| |
| static float common(uint32_t ix, float x, int y0) |
| { |
| float z,s,c,ss,cc; |
| /* |
| * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) |
| * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) |
| */ |
| s = sinf(x); |
| c = cosf(x); |
| if (y0) |
| c = -c; |
| cc = s+c; |
| if (ix < 0x7f000000) { |
| ss = s-c; |
| z = -cosf(2*x); |
| if (s*c < 0) |
| cc = z/ss; |
| else |
| ss = z/cc; |
| if (ix < 0x58800000) { |
| if (y0) |
| ss = -ss; |
| cc = pzerof(x)*cc-qzerof(x)*ss; |
| } |
| } |
| return invsqrtpi*cc/sqrtf(x); |
| } |
| |
| /* R0/S0 on [0, 2.00] */ |
| static const float |
| R02 = 1.5625000000e-02, /* 0x3c800000 */ |
| R03 = -1.8997929874e-04, /* 0xb947352e */ |
| R04 = 1.8295404516e-06, /* 0x35f58e88 */ |
| R05 = -4.6183270541e-09, /* 0xb19eaf3c */ |
| S01 = 1.5619102865e-02, /* 0x3c7fe744 */ |
| S02 = 1.1692678527e-04, /* 0x38f53697 */ |
| S03 = 5.1354652442e-07, /* 0x3509daa6 */ |
| S04 = 1.1661400734e-09; /* 0x30a045e8 */ |
| |
| float j0f(float x) |
| { |
| float z,r,s; |
| uint32_t ix; |
| |
| GET_FLOAT_WORD(ix, x); |
| ix &= 0x7fffffff; |
| if (ix >= 0x7f800000) |
| return 1/(x*x); |
| x = fabsf(x); |
| |
| if (ix >= 0x40000000) { /* |x| >= 2 */ |
| /* large ulp error near zeros */ |
| return common(ix, x, 0); |
| } |
| if (ix >= 0x3a000000) { /* |x| >= 2**-11 */ |
| /* up to 4ulp error near 2 */ |
| z = x*x; |
| r = z*(R02+z*(R03+z*(R04+z*R05))); |
| s = 1+z*(S01+z*(S02+z*(S03+z*S04))); |
| return (1+x/2)*(1-x/2) + z*(r/s); |
| } |
| if (ix >= 0x21800000) /* |x| >= 2**-60 */ |
| x = 0.25f*x*x; |
| return 1 - x; |
| } |
| |
| static const float |
| u00 = -7.3804296553e-02, /* 0xbd9726b5 */ |
| u01 = 1.7666645348e-01, /* 0x3e34e80d */ |
| u02 = -1.3818567619e-02, /* 0xbc626746 */ |
| u03 = 3.4745343146e-04, /* 0x39b62a69 */ |
| u04 = -3.8140706238e-06, /* 0xb67ff53c */ |
| u05 = 1.9559013964e-08, /* 0x32a802ba */ |
| u06 = -3.9820518410e-11, /* 0xae2f21eb */ |
| v01 = 1.2730483897e-02, /* 0x3c509385 */ |
| v02 = 7.6006865129e-05, /* 0x389f65e0 */ |
| v03 = 2.5915085189e-07, /* 0x348b216c */ |
| v04 = 4.4111031494e-10; /* 0x2ff280c2 */ |
| |
| float y0f(float x) |
| { |
| float z,u,v; |
| uint32_t ix; |
| |
| GET_FLOAT_WORD(ix, x); |
| if ((ix & 0x7fffffff) == 0) |
| return -1/0.0f; |
| if (ix>>31) |
| return 0/0.0f; |
| if (ix >= 0x7f800000) |
| return 1/x; |
| if (ix >= 0x40000000) { /* |x| >= 2.0 */ |
| /* large ulp error near zeros */ |
| return common(ix,x,1); |
| } |
| if (ix >= 0x39000000) { /* x >= 2**-13 */ |
| /* large ulp error at x ~= 0.89 */ |
| z = x*x; |
| u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); |
| v = 1+z*(v01+z*(v02+z*(v03+z*v04))); |
| return u/v + tpi*(j0f(x)*logf(x)); |
| } |
| return u00 + tpi*logf(x); |
| } |
| |
| /* The asymptotic expansions of pzero is |
| * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. |
| * For x >= 2, We approximate pzero by |
| * pzero(x) = 1 + (R/S) |
| * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 |
| * S = 1 + pS0*s^2 + ... + pS4*s^10 |
| * and |
| * | pzero(x)-1-R/S | <= 2 ** ( -60.26) |
| */ |
| static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
| 0.0000000000e+00, /* 0x00000000 */ |
| -7.0312500000e-02, /* 0xbd900000 */ |
| -8.0816707611e+00, /* 0xc1014e86 */ |
| -2.5706311035e+02, /* 0xc3808814 */ |
| -2.4852163086e+03, /* 0xc51b5376 */ |
| -5.2530439453e+03, /* 0xc5a4285a */ |
| }; |
| static const float pS8[5] = { |
| 1.1653436279e+02, /* 0x42e91198 */ |
| 3.8337448730e+03, /* 0x456f9beb */ |
| 4.0597855469e+04, /* 0x471e95db */ |
| 1.1675296875e+05, /* 0x47e4087c */ |
| 4.7627726562e+04, /* 0x473a0bba */ |
| }; |
| static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
| -1.1412546255e-11, /* 0xad48c58a */ |
| -7.0312492549e-02, /* 0xbd8fffff */ |
| -4.1596107483e+00, /* 0xc0851b88 */ |
| -6.7674766541e+01, /* 0xc287597b */ |
| -3.3123129272e+02, /* 0xc3a59d9b */ |
| -3.4643338013e+02, /* 0xc3ad3779 */ |
| }; |
| static const float pS5[5] = { |
| 6.0753936768e+01, /* 0x42730408 */ |
| 1.0512523193e+03, /* 0x44836813 */ |
| 5.9789707031e+03, /* 0x45bad7c4 */ |
| 9.6254453125e+03, /* 0x461665c8 */ |
| 2.4060581055e+03, /* 0x451660ee */ |
| }; |
| |
| static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
| -2.5470459075e-09, /* 0xb12f081b */ |
| -7.0311963558e-02, /* 0xbd8fffb8 */ |
| -2.4090321064e+00, /* 0xc01a2d95 */ |
| -2.1965976715e+01, /* 0xc1afba52 */ |
| -5.8079170227e+01, /* 0xc2685112 */ |
| -3.1447946548e+01, /* 0xc1fb9565 */ |
| }; |
| static const float pS3[5] = { |
| 3.5856033325e+01, /* 0x420f6c94 */ |
| 3.6151397705e+02, /* 0x43b4c1ca */ |
| 1.1936077881e+03, /* 0x44953373 */ |
| 1.1279968262e+03, /* 0x448cffe6 */ |
| 1.7358093262e+02, /* 0x432d94b8 */ |
| }; |
| |
| static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
| -8.8753431271e-08, /* 0xb3be98b7 */ |
| -7.0303097367e-02, /* 0xbd8ffb12 */ |
| -1.4507384300e+00, /* 0xbfb9b1cc */ |
| -7.6356959343e+00, /* 0xc0f4579f */ |
| -1.1193166733e+01, /* 0xc1331736 */ |
| -3.2336456776e+00, /* 0xc04ef40d */ |
| }; |
| static const float pS2[5] = { |
| 2.2220300674e+01, /* 0x41b1c32d */ |
| 1.3620678711e+02, /* 0x430834f0 */ |
| 2.7047027588e+02, /* 0x43873c32 */ |
| 1.5387539673e+02, /* 0x4319e01a */ |
| 1.4657617569e+01, /* 0x416a859a */ |
| }; |
| |
| static float pzerof(float x) |
| { |
| const float *p,*q; |
| float_t z,r,s; |
| uint32_t ix; |
| |
| GET_FLOAT_WORD(ix, x); |
| ix &= 0x7fffffff; |
| if (ix >= 0x41000000){p = pR8; q = pS8;} |
| else if (ix >= 0x409173eb){p = pR5; q = pS5;} |
| else if (ix >= 0x4036d917){p = pR3; q = pS3;} |
| else /*ix >= 0x40000000*/ {p = pR2; q = pS2;} |
| z = 1.0f/(x*x); |
| r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
| s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); |
| return 1.0f + r/s; |
| } |
| |
| |
| /* For x >= 8, the asymptotic expansions of qzero is |
| * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. |
| * We approximate pzero by |
| * qzero(x) = s*(-1.25 + (R/S)) |
| * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 |
| * S = 1 + qS0*s^2 + ... + qS5*s^12 |
| * and |
| * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) |
| */ |
| static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
| 0.0000000000e+00, /* 0x00000000 */ |
| 7.3242187500e-02, /* 0x3d960000 */ |
| 1.1768206596e+01, /* 0x413c4a93 */ |
| 5.5767340088e+02, /* 0x440b6b19 */ |
| 8.8591972656e+03, /* 0x460a6cca */ |
| 3.7014625000e+04, /* 0x471096a0 */ |
| }; |
| static const float qS8[6] = { |
| 1.6377603149e+02, /* 0x4323c6aa */ |
| 8.0983447266e+03, /* 0x45fd12c2 */ |
| 1.4253829688e+05, /* 0x480b3293 */ |
| 8.0330925000e+05, /* 0x49441ed4 */ |
| 8.4050156250e+05, /* 0x494d3359 */ |
| -3.4389928125e+05, /* 0xc8a7eb69 */ |
| }; |
| |
| static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
| 1.8408595828e-11, /* 0x2da1ec79 */ |
| 7.3242180049e-02, /* 0x3d95ffff */ |
| 5.8356351852e+00, /* 0x40babd86 */ |
| 1.3511157227e+02, /* 0x43071c90 */ |
| 1.0272437744e+03, /* 0x448067cd */ |
| 1.9899779053e+03, /* 0x44f8bf4b */ |
| }; |
| static const float qS5[6] = { |
| 8.2776611328e+01, /* 0x42a58da0 */ |
| 2.0778142090e+03, /* 0x4501dd07 */ |
| 1.8847289062e+04, /* 0x46933e94 */ |
| 5.6751113281e+04, /* 0x475daf1d */ |
| 3.5976753906e+04, /* 0x470c88c1 */ |
| -5.3543427734e+03, /* 0xc5a752be */ |
| }; |
| |
| static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
| 4.3774099900e-09, /* 0x3196681b */ |
| 7.3241114616e-02, /* 0x3d95ff70 */ |
| 3.3442313671e+00, /* 0x405607e3 */ |
| 4.2621845245e+01, /* 0x422a7cc5 */ |
| 1.7080809021e+02, /* 0x432acedf */ |
| 1.6673394775e+02, /* 0x4326bbe4 */ |
| }; |
| static const float qS3[6] = { |
| 4.8758872986e+01, /* 0x42430916 */ |
| 7.0968920898e+02, /* 0x44316c1c */ |
| 3.7041481934e+03, /* 0x4567825f */ |
| 6.4604252930e+03, /* 0x45c9e367 */ |
| 2.5163337402e+03, /* 0x451d4557 */ |
| -1.4924745178e+02, /* 0xc3153f59 */ |
| }; |
| |
| static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
| 1.5044444979e-07, /* 0x342189db */ |
| 7.3223426938e-02, /* 0x3d95f62a */ |
| 1.9981917143e+00, /* 0x3fffc4bf */ |
| 1.4495602608e+01, /* 0x4167edfd */ |
| 3.1666231155e+01, /* 0x41fd5471 */ |
| 1.6252708435e+01, /* 0x4182058c */ |
| }; |
| static const float qS2[6] = { |
| 3.0365585327e+01, /* 0x41f2ecb8 */ |
| 2.6934811401e+02, /* 0x4386ac8f */ |
| 8.4478375244e+02, /* 0x44533229 */ |
| 8.8293585205e+02, /* 0x445cbbe5 */ |
| 2.1266638184e+02, /* 0x4354aa98 */ |
| -5.3109550476e+00, /* 0xc0a9f358 */ |
| }; |
| |
| static float qzerof(float x) |
| { |
| const float *p,*q; |
| float_t s,r,z; |
| uint32_t ix; |
| |
| GET_FLOAT_WORD(ix, x); |
| ix &= 0x7fffffff; |
| if (ix >= 0x41000000){p = qR8; q = qS8;} |
| else if (ix >= 0x409173eb){p = qR5; q = qS5;} |
| else if (ix >= 0x4036d917){p = qR3; q = qS3;} |
| else /*ix >= 0x40000000*/ {p = qR2; q = qS2;} |
| z = 1.0f/(x*x); |
| r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
| s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |
| return (-.125f + r/s)/x; |
| } |