| /* |
| * Double-precision log2(x) function. |
| * |
| * Copyright (c) 2018, Arm Limited. |
| * SPDX-License-Identifier: MIT |
| */ |
| |
| #include <math.h> |
| #include <stdint.h> |
| #include "libm.h" |
| #include "log2_data.h" |
| |
| #define T __log2_data.tab |
| #define T2 __log2_data.tab2 |
| #define B __log2_data.poly1 |
| #define A __log2_data.poly |
| #define InvLn2hi __log2_data.invln2hi |
| #define InvLn2lo __log2_data.invln2lo |
| #define N (1 << LOG2_TABLE_BITS) |
| #define OFF 0x3fe6000000000000 |
| |
| /* Top 16 bits of a double. */ |
| static inline uint32_t top16(double x) |
| { |
| return asuint64(x) >> 48; |
| } |
| |
| double log2(double x) |
| { |
| double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p; |
| uint64_t ix, iz, tmp; |
| uint32_t top; |
| int k, i; |
| |
| ix = asuint64(x); |
| top = top16(x); |
| #define LO asuint64(1.0 - 0x1.5b51p-5) |
| #define HI asuint64(1.0 + 0x1.6ab2p-5) |
| if (predict_false(ix - LO < HI - LO)) { |
| /* Handle close to 1.0 inputs separately. */ |
| /* Fix sign of zero with downward rounding when x==1. */ |
| if (WANT_ROUNDING && predict_false(ix == asuint64(1.0))) |
| return 0; |
| r = x - 1.0; |
| #if __FP_FAST_FMA |
| hi = r * InvLn2hi; |
| lo = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -hi); |
| #else |
| double_t rhi, rlo; |
| rhi = asdouble(asuint64(r) & -1ULL << 32); |
| rlo = r - rhi; |
| hi = rhi * InvLn2hi; |
| lo = rlo * InvLn2hi + r * InvLn2lo; |
| #endif |
| r2 = r * r; /* rounding error: 0x1p-62. */ |
| r4 = r2 * r2; |
| /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */ |
| p = r2 * (B[0] + r * B[1]); |
| y = hi + p; |
| lo += hi - y + p; |
| lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) + |
| r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9]))); |
| y += lo; |
| return eval_as_double(y); |
| } |
| if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) { |
| /* x < 0x1p-1022 or inf or nan. */ |
| if (ix * 2 == 0) |
| return __math_divzero(1); |
| if (ix == asuint64(INFINITY)) /* log(inf) == inf. */ |
| return x; |
| if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0) |
| return __math_invalid(x); |
| /* x is subnormal, normalize it. */ |
| ix = asuint64(x * 0x1p52); |
| ix -= 52ULL << 52; |
| } |
| |
| /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. |
| The range is split into N subintervals. |
| The ith subinterval contains z and c is near its center. */ |
| tmp = ix - OFF; |
| i = (tmp >> (52 - LOG2_TABLE_BITS)) % N; |
| k = (int64_t)tmp >> 52; /* arithmetic shift */ |
| iz = ix - (tmp & 0xfffULL << 52); |
| invc = T[i].invc; |
| logc = T[i].logc; |
| z = asdouble(iz); |
| kd = (double_t)k; |
| |
| /* log2(x) = log2(z/c) + log2(c) + k. */ |
| /* r ~= z/c - 1, |r| < 1/(2*N). */ |
| #if __FP_FAST_FMA |
| /* rounding error: 0x1p-55/N. */ |
| r = __builtin_fma(z, invc, -1.0); |
| t1 = r * InvLn2hi; |
| t2 = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -t1); |
| #else |
| double_t rhi, rlo; |
| /* rounding error: 0x1p-55/N + 0x1p-65. */ |
| r = (z - T2[i].chi - T2[i].clo) * invc; |
| rhi = asdouble(asuint64(r) & -1ULL << 32); |
| rlo = r - rhi; |
| t1 = rhi * InvLn2hi; |
| t2 = rlo * InvLn2hi + r * InvLn2lo; |
| #endif |
| |
| /* hi + lo = r/ln2 + log2(c) + k. */ |
| t3 = kd + logc; |
| hi = t3 + t1; |
| lo = t3 - hi + t1 + t2; |
| |
| /* log2(r+1) = r/ln2 + r^2*poly(r). */ |
| /* Evaluation is optimized assuming superscalar pipelined execution. */ |
| r2 = r * r; /* rounding error: 0x1p-54/N^2. */ |
| r4 = r2 * r2; |
| /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma). |
| ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */ |
| p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]); |
| y = lo + r2 * p + hi; |
| return eval_as_double(y); |
| } |