| /* |
| * Copyright (c) 2017-2018, Arm Limited. |
| * SPDX-License-Identifier: MIT |
| */ |
| |
| #include <math.h> |
| #include <stdint.h> |
| #include "libm.h" |
| #include "exp2f_data.h" |
| #include "powf_data.h" |
| |
| /* |
| POWF_LOG2_POLY_ORDER = 5 |
| EXP2F_TABLE_BITS = 5 |
| |
| ULP error: 0.82 (~ 0.5 + relerr*2^24) |
| relerr: 1.27 * 2^-26 (Relative error ~= 128*Ln2*relerr_log2 + relerr_exp2) |
| relerr_log2: 1.83 * 2^-33 (Relative error of logx.) |
| relerr_exp2: 1.69 * 2^-34 (Relative error of exp2(ylogx).) |
| */ |
| |
| #define N (1 << POWF_LOG2_TABLE_BITS) |
| #define T __powf_log2_data.tab |
| #define A __powf_log2_data.poly |
| #define OFF 0x3f330000 |
| |
| /* Subnormal input is normalized so ix has negative biased exponent. |
| Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set. */ |
| static inline double_t log2_inline(uint32_t ix) |
| { |
| double_t z, r, r2, r4, p, q, y, y0, invc, logc; |
| uint32_t iz, top, tmp; |
| int k, i; |
| |
| /* x = 2^k z; where z is in range [OFF,2*OFF] and exact. |
| The range is split into N subintervals. |
| The ith subinterval contains z and c is near its center. */ |
| tmp = ix - OFF; |
| i = (tmp >> (23 - POWF_LOG2_TABLE_BITS)) % N; |
| top = tmp & 0xff800000; |
| iz = ix - top; |
| k = (int32_t)top >> (23 - POWF_SCALE_BITS); /* arithmetic shift */ |
| invc = T[i].invc; |
| logc = T[i].logc; |
| z = (double_t)asfloat(iz); |
| |
| /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */ |
| r = z * invc - 1; |
| y0 = logc + (double_t)k; |
| |
| /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */ |
| r2 = r * r; |
| y = A[0] * r + A[1]; |
| p = A[2] * r + A[3]; |
| r4 = r2 * r2; |
| q = A[4] * r + y0; |
| q = p * r2 + q; |
| y = y * r4 + q; |
| return y; |
| } |
| |
| #undef N |
| #undef T |
| #define N (1 << EXP2F_TABLE_BITS) |
| #define T __exp2f_data.tab |
| #define SIGN_BIAS (1 << (EXP2F_TABLE_BITS + 11)) |
| |
| /* The output of log2 and thus the input of exp2 is either scaled by N |
| (in case of fast toint intrinsics) or not. The unscaled xd must be |
| in [-1021,1023], sign_bias sets the sign of the result. */ |
| static inline float exp2_inline(double_t xd, uint32_t sign_bias) |
| { |
| uint64_t ki, ski, t; |
| double_t kd, z, r, r2, y, s; |
| |
| #if TOINT_INTRINSICS |
| #define C __exp2f_data.poly_scaled |
| /* N*x = k + r with r in [-1/2, 1/2] */ |
| kd = roundtoint(xd); /* k */ |
| ki = converttoint(xd); |
| #else |
| #define C __exp2f_data.poly |
| #define SHIFT __exp2f_data.shift_scaled |
| /* x = k/N + r with r in [-1/(2N), 1/(2N)] */ |
| kd = eval_as_double(xd + SHIFT); |
| ki = asuint64(kd); |
| kd -= SHIFT; /* k/N */ |
| #endif |
| r = xd - kd; |
| |
| /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */ |
| t = T[ki % N]; |
| ski = ki + sign_bias; |
| t += ski << (52 - EXP2F_TABLE_BITS); |
| s = asdouble(t); |
| z = C[0] * r + C[1]; |
| r2 = r * r; |
| y = C[2] * r + 1; |
| y = z * r2 + y; |
| y = y * s; |
| return eval_as_float(y); |
| } |
| |
| /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is |
| the bit representation of a non-zero finite floating-point value. */ |
| static inline int checkint(uint32_t iy) |
| { |
| int e = iy >> 23 & 0xff; |
| if (e < 0x7f) |
| return 0; |
| if (e > 0x7f + 23) |
| return 2; |
| if (iy & ((1 << (0x7f + 23 - e)) - 1)) |
| return 0; |
| if (iy & (1 << (0x7f + 23 - e))) |
| return 1; |
| return 2; |
| } |
| |
| static inline int zeroinfnan(uint32_t ix) |
| { |
| return 2 * ix - 1 >= 2u * 0x7f800000 - 1; |
| } |
| |
| float powf(float x, float y) |
| { |
| uint32_t sign_bias = 0; |
| uint32_t ix, iy; |
| |
| ix = asuint(x); |
| iy = asuint(y); |
| if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000 || |
| zeroinfnan(iy))) { |
| /* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan). */ |
| if (predict_false(zeroinfnan(iy))) { |
| if (2 * iy == 0) |
| return issignalingf_inline(x) ? x + y : 1.0f; |
| if (ix == 0x3f800000) |
| return issignalingf_inline(y) ? x + y : 1.0f; |
| if (2 * ix > 2u * 0x7f800000 || |
| 2 * iy > 2u * 0x7f800000) |
| return x + y; |
| if (2 * ix == 2 * 0x3f800000) |
| return 1.0f; |
| if ((2 * ix < 2 * 0x3f800000) == !(iy & 0x80000000)) |
| return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf. */ |
| return y * y; |
| } |
| if (predict_false(zeroinfnan(ix))) { |
| float_t x2 = x * x; |
| if (ix & 0x80000000 && checkint(iy) == 1) |
| x2 = -x2; |
| /* Without the barrier some versions of clang hoist the 1/x2 and |
| thus division by zero exception can be signaled spuriously. */ |
| return iy & 0x80000000 ? fp_barrierf(1 / x2) : x2; |
| } |
| /* x and y are non-zero finite. */ |
| if (ix & 0x80000000) { |
| /* Finite x < 0. */ |
| int yint = checkint(iy); |
| if (yint == 0) |
| return __math_invalidf(x); |
| if (yint == 1) |
| sign_bias = SIGN_BIAS; |
| ix &= 0x7fffffff; |
| } |
| if (ix < 0x00800000) { |
| /* Normalize subnormal x so exponent becomes negative. */ |
| ix = asuint(x * 0x1p23f); |
| ix &= 0x7fffffff; |
| ix -= 23 << 23; |
| } |
| } |
| double_t logx = log2_inline(ix); |
| double_t ylogx = y * logx; /* cannot overflow, y is single prec. */ |
| if (predict_false((asuint64(ylogx) >> 47 & 0xffff) >= |
| asuint64(126.0 * POWF_SCALE) >> 47)) { |
| /* |y*log(x)| >= 126. */ |
| if (ylogx > 0x1.fffffffd1d571p+6 * POWF_SCALE) |
| return __math_oflowf(sign_bias); |
| if (ylogx <= -150.0 * POWF_SCALE) |
| return __math_uflowf(sign_bias); |
| } |
| return exp2_inline(ylogx, sign_bias); |
| } |