| /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_tgammal.c */ |
| /* |
| * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| * |
| * Permission to use, copy, modify, and distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| /* |
| * Gamma function |
| * |
| * |
| * SYNOPSIS: |
| * |
| * long double x, y, tgammal(); |
| * |
| * y = tgammal( x ); |
| * |
| * |
| * DESCRIPTION: |
| * |
| * Returns gamma function of the argument. The result is |
| * correctly signed. |
| * |
| * Arguments |x| <= 13 are reduced by recurrence and the function |
| * approximated by a rational function of degree 7/8 in the |
| * interval (2,3). Large arguments are handled by Stirling's |
| * formula. Large negative arguments are made positive using |
| * a reflection formula. |
| * |
| * |
| * ACCURACY: |
| * |
| * Relative error: |
| * arithmetic domain # trials peak rms |
| * IEEE -40,+40 10000 3.6e-19 7.9e-20 |
| * IEEE -1755,+1755 10000 4.8e-18 6.5e-19 |
| * |
| * Accuracy for large arguments is dominated by error in powl(). |
| * |
| */ |
| |
| #include "libm.h" |
| |
| #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| long double tgammal(long double x) |
| { |
| return tgamma(x); |
| } |
| #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
| /* |
| tgamma(x+2) = tgamma(x+2) P(x)/Q(x) |
| 0 <= x <= 1 |
| Relative error |
| n=7, d=8 |
| Peak error = 1.83e-20 |
| Relative error spread = 8.4e-23 |
| */ |
| static const long double P[8] = { |
| 4.212760487471622013093E-5L, |
| 4.542931960608009155600E-4L, |
| 4.092666828394035500949E-3L, |
| 2.385363243461108252554E-2L, |
| 1.113062816019361559013E-1L, |
| 3.629515436640239168939E-1L, |
| 8.378004301573126728826E-1L, |
| 1.000000000000000000009E0L, |
| }; |
| static const long double Q[9] = { |
| -1.397148517476170440917E-5L, |
| 2.346584059160635244282E-4L, |
| -1.237799246653152231188E-3L, |
| -7.955933682494738320586E-4L, |
| 2.773706565840072979165E-2L, |
| -4.633887671244534213831E-2L, |
| -2.243510905670329164562E-1L, |
| 4.150160950588455434583E-1L, |
| 9.999999999999999999908E-1L, |
| }; |
| |
| /* |
| static const long double P[] = { |
| -3.01525602666895735709e0L, |
| -3.25157411956062339893e1L, |
| -2.92929976820724030353e2L, |
| -1.70730828800510297666e3L, |
| -7.96667499622741999770e3L, |
| -2.59780216007146401957e4L, |
| -5.99650230220855581642e4L, |
| -7.15743521530849602425e4L |
| }; |
| static const long double Q[] = { |
| 1.00000000000000000000e0L, |
| -1.67955233807178858919e1L, |
| 8.85946791747759881659e1L, |
| 5.69440799097468430177e1L, |
| -1.98526250512761318471e3L, |
| 3.31667508019495079814e3L, |
| 1.60577839621734713377e4L, |
| -2.97045081369399940529e4L, |
| -7.15743521530849602412e4L |
| }; |
| */ |
| #define MAXGAML 1755.455L |
| /*static const long double LOGPI = 1.14472988584940017414L;*/ |
| |
| /* Stirling's formula for the gamma function |
| tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x)) |
| z(x) = x |
| 13 <= x <= 1024 |
| Relative error |
| n=8, d=0 |
| Peak error = 9.44e-21 |
| Relative error spread = 8.8e-4 |
| */ |
| static const long double STIR[9] = { |
| 7.147391378143610789273E-4L, |
| -2.363848809501759061727E-5L, |
| -5.950237554056330156018E-4L, |
| 6.989332260623193171870E-5L, |
| 7.840334842744753003862E-4L, |
| -2.294719747873185405699E-4L, |
| -2.681327161876304418288E-3L, |
| 3.472222222230075327854E-3L, |
| 8.333333333333331800504E-2L, |
| }; |
| |
| #define MAXSTIR 1024.0L |
| static const long double SQTPI = 2.50662827463100050242E0L; |
| |
| /* 1/tgamma(x) = z P(z) |
| * z(x) = 1/x |
| * 0 < x < 0.03125 |
| * Peak relative error 4.2e-23 |
| */ |
| static const long double S[9] = { |
| -1.193945051381510095614E-3L, |
| 7.220599478036909672331E-3L, |
| -9.622023360406271645744E-3L, |
| -4.219773360705915470089E-2L, |
| 1.665386113720805206758E-1L, |
| -4.200263503403344054473E-2L, |
| -6.558780715202540684668E-1L, |
| 5.772156649015328608253E-1L, |
| 1.000000000000000000000E0L, |
| }; |
| |
| /* 1/tgamma(-x) = z P(z) |
| * z(x) = 1/x |
| * 0 < x < 0.03125 |
| * Peak relative error 5.16e-23 |
| * Relative error spread = 2.5e-24 |
| */ |
| static const long double SN[9] = { |
| 1.133374167243894382010E-3L, |
| 7.220837261893170325704E-3L, |
| 9.621911155035976733706E-3L, |
| -4.219773343731191721664E-2L, |
| -1.665386113944413519335E-1L, |
| -4.200263503402112910504E-2L, |
| 6.558780715202536547116E-1L, |
| 5.772156649015328608727E-1L, |
| -1.000000000000000000000E0L, |
| }; |
| |
| static const long double PIL = 3.1415926535897932384626L; |
| |
| /* Gamma function computed by Stirling's formula. |
| */ |
| static long double stirf(long double x) |
| { |
| long double y, w, v; |
| |
| w = 1.0/x; |
| /* For large x, use rational coefficients from the analytical expansion. */ |
| if (x > 1024.0) |
| w = (((((6.97281375836585777429E-5L * w |
| + 7.84039221720066627474E-4L) * w |
| - 2.29472093621399176955E-4L) * w |
| - 2.68132716049382716049E-3L) * w |
| + 3.47222222222222222222E-3L) * w |
| + 8.33333333333333333333E-2L) * w |
| + 1.0; |
| else |
| w = 1.0 + w * __polevll(w, STIR, 8); |
| y = expl(x); |
| if (x > MAXSTIR) { /* Avoid overflow in pow() */ |
| v = powl(x, 0.5L * x - 0.25L); |
| y = v * (v / y); |
| } else { |
| y = powl(x, x - 0.5L) / y; |
| } |
| y = SQTPI * y * w; |
| return y; |
| } |
| |
| long double tgammal(long double x) |
| { |
| long double p, q, z; |
| |
| if (!isfinite(x)) |
| return x + INFINITY; |
| |
| q = fabsl(x); |
| if (q > 13.0) { |
| if (x < 0.0) { |
| p = floorl(q); |
| z = q - p; |
| if (z == 0) |
| return 0 / z; |
| if (q > MAXGAML) { |
| z = 0; |
| } else { |
| if (z > 0.5) { |
| p += 1.0; |
| z = q - p; |
| } |
| z = q * sinl(PIL * z); |
| z = fabsl(z) * stirf(q); |
| z = PIL/z; |
| } |
| if (0.5 * p == floorl(q * 0.5)) |
| z = -z; |
| } else if (x > MAXGAML) { |
| z = x * 0x1p16383L; |
| } else { |
| z = stirf(x); |
| } |
| return z; |
| } |
| |
| z = 1.0; |
| while (x >= 3.0) { |
| x -= 1.0; |
| z *= x; |
| } |
| while (x < -0.03125L) { |
| z /= x; |
| x += 1.0; |
| } |
| if (x <= 0.03125L) |
| goto small; |
| while (x < 2.0) { |
| z /= x; |
| x += 1.0; |
| } |
| if (x == 2.0) |
| return z; |
| |
| x -= 2.0; |
| p = __polevll(x, P, 7); |
| q = __polevll(x, Q, 8); |
| z = z * p / q; |
| return z; |
| |
| small: |
| /* z==1 if x was originally +-0 */ |
| if (x == 0 && z != 1) |
| return x / x; |
| if (x < 0.0) { |
| x = -x; |
| q = z / (x * __polevll(x, SN, 8)); |
| } else |
| q = z / (x * __polevll(x, S, 8)); |
| return q; |
| } |
| #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
| // TODO: broken implementation to make things compile |
| long double tgammal(long double x) |
| { |
| return tgamma(x); |
| } |
| #endif |