| #!/usr/bin/python | 
 |  | 
 | from __future__ import print_function | 
 |  | 
 | from keras.models import Sequential | 
 | from keras.layers import Dense | 
 | from keras.layers import LSTM | 
 | from keras.layers import GRU | 
 | from keras.models import load_model | 
 | from keras import backend as K | 
 |  | 
 | import numpy as np | 
 |  | 
 | def printVector(f, vector, name): | 
 |     v = np.reshape(vector, (-1)); | 
 |     #print('static const float ', name, '[', len(v), '] = \n', file=f) | 
 |     f.write('static const opus_int16 {}[{}] = {{\n   '.format(name, len(v))) | 
 |     for i in range(0, len(v)): | 
 |         f.write('{}'.format(int(round(8192*v[i])))) | 
 |         if (i!=len(v)-1): | 
 |             f.write(',') | 
 |         else: | 
 |             break; | 
 |         if (i%8==7): | 
 |             f.write("\n   ") | 
 |         else: | 
 |             f.write(" ") | 
 |     #print(v, file=f) | 
 |     f.write('\n};\n\n') | 
 |     return; | 
 |  | 
 | def binary_crossentrop2(y_true, y_pred): | 
 |         return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1) | 
 |  | 
 |  | 
 | model = load_model("weights.hdf5", custom_objects={'binary_crossentrop2': binary_crossentrop2}) | 
 |  | 
 | weights = model.get_weights() | 
 |  | 
 | f = open('rnn_weights.c', 'w') | 
 |  | 
 | f.write('/*This file is automatically generated from a Keras model*/\n\n') | 
 | f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "mlp.h"\n\n') | 
 |  | 
 | printVector(f, weights[0], 'layer0_weights') | 
 | printVector(f, weights[1], 'layer0_bias') | 
 | printVector(f, weights[2], 'layer1_weights') | 
 | printVector(f, weights[3], 'layer1_recur_weights') | 
 | printVector(f, weights[4], 'layer1_bias') | 
 | printVector(f, weights[5], 'layer2_weights') | 
 | printVector(f, weights[6], 'layer2_bias') | 
 |  | 
 | f.write('const DenseLayer layer0 = {\n   layer0_bias,\n   layer0_weights,\n   25, 16, 0\n};\n\n') | 
 | f.write('const GRULayer layer1 = {\n   layer1_bias,\n   layer1_weights,\n   layer1_recur_weights,\n   16, 12\n};\n\n') | 
 | f.write('const DenseLayer layer2 = {\n   layer2_bias,\n   layer2_weights,\n   12, 2, 1\n};\n\n') | 
 |  | 
 | f.close() |