blob: 23c17d183df4c6ebd8cc9311d21f758e4fd511aa [file] [log] [blame]
// Copyright (c) 2010-2017 The OTS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// A parser for the Type 2 Charstring Format.
// http://www.adobe.com/devnet/font/pdfs/5177.Type2.pdf
#include "cff_charstring.h"
#include <climits>
#include <cstdio>
#include <cstring>
#include <stack>
#include <string>
#include <utility>
#define TABLE_NAME "CFF"
namespace {
// Type 2 Charstring Implementation Limits. See Appendix. B in Adobe Technical
// Note #5177.
const int32_t kMaxSubrsCount = 65536;
const size_t kMaxCharStringLength = 65535;
const size_t kMaxNumberOfStemHints = 96;
const size_t kMaxSubrNesting = 10;
// |dummy_result| should be a huge positive integer so callsubr and callgsubr
// will fail with the dummy value.
const int32_t dummy_result = INT_MAX;
bool ExecuteCharString(ots::OpenTypeCFF& cff,
size_t call_depth,
const ots::CFFIndex& global_subrs_index,
const ots::CFFIndex& local_subrs_index,
ots::Buffer *cff_table,
ots::Buffer *char_string,
std::stack<int32_t> *argument_stack,
bool *out_found_endchar,
bool *out_found_width,
size_t *in_out_num_stems,
bool cff2);
bool ArgumentStackOverflows(std::stack<int32_t> *argument_stack, bool cff2) {
if ((cff2 && argument_stack->size() > ots::kMaxCFF2ArgumentStack) ||
(!cff2 && argument_stack->size() > ots::kMaxCFF1ArgumentStack)) {
return true;
}
return false;
}
#ifdef DUMP_T2CHARSTRING
// Converts |op| to a string and returns it.
const char *CharStringOperatorToString(ots::CharStringOperator op) {
switch (op) {
case ots::kHStem:
return "hstem";
case ots::kVStem:
return "vstem";
case ots::kVMoveTo:
return "vmoveto";
case ots::kRLineTo:
return "rlineto";
case ots::kHLineTo:
return "hlineto";
case ots::kVLineTo:
return "vlineto";
case ots::kRRCurveTo:
return "rrcurveto";
case ots::kCallSubr:
return "callsubr";
case ots::kReturn:
return "return";
case ots::kEndChar:
return "endchar";
case ots::kVSIndex:
return "vsindex";
case ots::kBlend:
return "blend";
case ots::kHStemHm:
return "hstemhm";
case ots::kHintMask:
return "hintmask";
case ots::kCntrMask:
return "cntrmask";
case ots::kRMoveTo:
return "rmoveto";
case ots::kHMoveTo:
return "hmoveto";
case ots::kVStemHm:
return "vstemhm";
case ots::kRCurveLine:
return "rcurveline";
case ots::kRLineCurve:
return "rlinecurve";
case ots::kVVCurveTo:
return "VVCurveTo";
case ots::kHHCurveTo:
return "hhcurveto";
case ots::kCallGSubr:
return "callgsubr";
case ots::kVHCurveTo:
return "vhcurveto";
case ots::kHVCurveTo:
return "HVCurveTo";
case ots::kDotSection:
return "dotsection";
case ots::kAnd:
return "and";
case ots::kOr:
return "or";
case ots::kNot:
return "not";
case ots::kAbs:
return "abs";
case ots::kAdd:
return "add";
case ots::kSub:
return "sub";
case ots::kDiv:
return "div";
case ots::kNeg:
return "neg";
case ots::kEq:
return "eq";
case ots::kDrop:
return "drop";
case ots::kPut:
return "put";
case ots::kGet:
return "get";
case ots::kIfElse:
return "ifelse";
case ots::kRandom:
return "random";
case ots::kMul:
return "mul";
case ots::kSqrt:
return "sqrt";
case ots::kDup:
return "dup";
case ots::kExch:
return "exch";
case ots::kIndex:
return "index";
case ots::kRoll:
return "roll";
case ots::kHFlex:
return "hflex";
case ots::kFlex:
return "flex";
case ots::kHFlex1:
return "hflex1";
case ots::kFlex1:
return "flex1";
}
return "UNKNOWN";
}
#endif
// Read one or more bytes from the |char_string| buffer and stores the number
// read on |out_number|. If the number read is an operator (ex 'vstem'), sets
// true on |out_is_operator|. Returns true if the function read a number.
bool ReadNextNumberFromCharString(ots::Buffer *char_string,
int32_t *out_number,
bool *out_is_operator) {
uint8_t v = 0;
if (!char_string->ReadU8(&v)) {
return OTS_FAILURE();
}
*out_is_operator = false;
// The conversion algorithm is described in Adobe Technical Note #5177, page
// 13, Table 1.
if (v <= 11) {
*out_number = v;
*out_is_operator = true;
} else if (v == 12) {
uint16_t result = (v << 8);
if (!char_string->ReadU8(&v)) {
return OTS_FAILURE();
}
result += v;
*out_number = result;
*out_is_operator = true;
} else if (v <= 27) {
// Special handling for v==19 and v==20 are implemented in
// ExecuteCharStringOperator().
*out_number = v;
*out_is_operator = true;
} else if (v == 28) {
if (!char_string->ReadU8(&v)) {
return OTS_FAILURE();
}
uint16_t result = (v << 8);
if (!char_string->ReadU8(&v)) {
return OTS_FAILURE();
}
result += v;
*out_number = result;
} else if (v <= 31) {
*out_number = v;
*out_is_operator = true;
} else if (v <= 246) {
*out_number = static_cast<int32_t>(v) - 139;
} else if (v <= 250) {
uint8_t w = 0;
if (!char_string->ReadU8(&w)) {
return OTS_FAILURE();
}
*out_number = ((static_cast<int32_t>(v) - 247) * 256) +
static_cast<int32_t>(w) + 108;
} else if (v <= 254) {
uint8_t w = 0;
if (!char_string->ReadU8(&w)) {
return OTS_FAILURE();
}
*out_number = -((static_cast<int32_t>(v) - 251) * 256) -
static_cast<int32_t>(w) - 108;
} else if (v == 255) {
// TODO(yusukes): We should not skip the 4 bytes. Note that when v is 255,
// we should treat the following 4-bytes as a 16.16 fixed-point number
// rather than 32bit signed int.
if (!char_string->Skip(4)) {
return OTS_FAILURE();
}
*out_number = dummy_result;
} else {
return OTS_FAILURE();
}
return true;
}
bool ValidCFF2Operator(int32_t op) {
switch (op) {
case ots::kReturn:
case ots::kEndChar:
case ots::kAbs:
case ots::kAdd:
case ots::kSub:
case ots::kDiv:
case ots::kNeg:
case ots::kRandom:
case ots::kMul:
case ots::kSqrt:
case ots::kDrop:
case ots::kExch:
case ots::kIndex:
case ots::kRoll:
case ots::kDup:
case ots::kPut:
case ots::kGet:
case ots::kDotSection:
case ots::kAnd:
case ots::kOr:
case ots::kNot:
case ots::kEq:
case ots::kIfElse:
return false;
}
return true;
}
// Executes |op| and updates |argument_stack|. Returns true if the execution
// succeeds. If the |op| is kCallSubr or kCallGSubr, the function recursively
// calls ExecuteCharString() function. The arguments other than |op| and
// |argument_stack| are passed for that reason.
bool ExecuteCharStringOperator(ots::OpenTypeCFF& cff,
int32_t op,
size_t call_depth,
const ots::CFFIndex& global_subrs_index,
const ots::CFFIndex& local_subrs_index,
ots::Buffer *cff_table,
ots::Buffer *char_string,
std::stack<int32_t> *argument_stack,
bool *out_found_endchar,
bool *in_out_found_width,
size_t *in_out_num_stems,
bool *in_out_have_blend,
bool *in_out_have_visindex,
int32_t *in_out_vsindex,
bool cff2) {
ots::Font* font = cff.GetFont();
const size_t stack_size = argument_stack->size();
if (cff2 && !ValidCFF2Operator(op)) {
return OTS_FAILURE();
}
switch (op) {
case ots::kCallSubr:
case ots::kCallGSubr: {
const ots::CFFIndex& subrs_index =
(op == ots::kCallSubr ? local_subrs_index : global_subrs_index);
if (stack_size < 1) {
return OTS_FAILURE();
}
int32_t subr_number = argument_stack->top();
argument_stack->pop();
if (subr_number == dummy_result) {
// For safety, we allow subr calls only with immediate subr numbers for
// now. For example, we allow "123 callgsubr", but does not allow "100 12
// add callgsubr". Please note that arithmetic and conditional operators
// always push the |dummy_result| in this implementation.
return OTS_FAILURE();
}
// See Adobe Technical Note #5176 (CFF), "16. Local/GlobalSubrs INDEXes."
int32_t bias = 32768;
if (subrs_index.count < 1240) {
bias = 107;
} else if (subrs_index.count < 33900) {
bias = 1131;
}
subr_number += bias;
// Sanity checks of |subr_number|.
if (subr_number < 0) {
return OTS_FAILURE();
}
if (subr_number >= kMaxSubrsCount) {
return OTS_FAILURE();
}
if (subrs_index.offsets.size() <= static_cast<size_t>(subr_number + 1)) {
return OTS_FAILURE(); // The number is out-of-bounds.
}
// Prepare ots::Buffer where we're going to jump.
const size_t length =
subrs_index.offsets[subr_number + 1] - subrs_index.offsets[subr_number];
if (length > kMaxCharStringLength) {
return OTS_FAILURE();
}
const size_t offset = subrs_index.offsets[subr_number];
cff_table->set_offset(offset);
if (!cff_table->Skip(length)) {
return OTS_FAILURE();
}
ots::Buffer char_string_to_jump(cff_table->buffer() + offset, length);
return ExecuteCharString(cff,
call_depth + 1,
global_subrs_index,
local_subrs_index,
cff_table,
&char_string_to_jump,
argument_stack,
out_found_endchar,
in_out_found_width,
in_out_num_stems,
cff2);
}
case ots::kReturn:
return true;
case ots::kEndChar:
*out_found_endchar = true;
*in_out_found_width = true; // just in case.
return true;
case ots::kVSIndex: {
if (!cff2) {
return OTS_FAILURE();
}
if (stack_size != 1) {
return OTS_FAILURE();
}
if (*in_out_have_blend || *in_out_have_visindex) {
return OTS_FAILURE();
}
if (argument_stack->top() >= cff.region_index_count.size()) {
return OTS_FAILURE();
}
*in_out_have_visindex = true;
*in_out_vsindex = argument_stack->top();
while (!argument_stack->empty())
argument_stack->pop();
return true;
}
case ots::kBlend: {
if (!cff2) {
return OTS_FAILURE();
}
if (stack_size < 1) {
return OTS_FAILURE();
}
if (*in_out_vsindex >= cff.region_index_count.size()) {
return OTS_FAILURE();
}
uint16_t k = cff.region_index_count.at(*in_out_vsindex);
uint16_t n = argument_stack->top();
if (stack_size < n * (k + 1) + 1) {
return OTS_FAILURE();
}
// Keep the 1st n operands on the stack for the next operator to use and
// pop the rest. There can be multiple consecutive blend operator, so this
// makes sure the operands of all of them are kept on the stack.
while (argument_stack->size() > stack_size - ((n * k) + 1))
argument_stack->pop();
*in_out_have_blend = true;
return true;
}
case ots::kHStem:
case ots::kVStem:
case ots::kHStemHm:
case ots::kVStemHm: {
bool successful = false;
if (stack_size < 2) {
return OTS_FAILURE();
}
if ((stack_size % 2) == 0) {
successful = true;
} else if ((!(*in_out_found_width)) && (((stack_size - 1) % 2) == 0)) {
// The -1 is for "width" argument. For details, see Adobe Technical Note
// #5177, page 16, note 4.
successful = true;
}
(*in_out_num_stems) += (stack_size / 2);
if ((*in_out_num_stems) > kMaxNumberOfStemHints) {
return OTS_FAILURE();
}
while (!argument_stack->empty())
argument_stack->pop();
*in_out_found_width = true; // always set true since "w" might be 0 byte.
return successful ? true : OTS_FAILURE();
}
case ots::kRMoveTo: {
bool successful = false;
if (stack_size == 2) {
successful = true;
} else if ((!(*in_out_found_width)) && (stack_size - 1 == 2)) {
successful = true;
}
while (!argument_stack->empty())
argument_stack->pop();
*in_out_found_width = true;
return successful ? true : OTS_FAILURE();
}
case ots::kVMoveTo:
case ots::kHMoveTo: {
bool successful = false;
if (stack_size == 1) {
successful = true;
} else if ((!(*in_out_found_width)) && (stack_size - 1 == 1)) {
successful = true;
}
while (!argument_stack->empty())
argument_stack->pop();
*in_out_found_width = true;
return successful ? true : OTS_FAILURE();
}
case ots::kHintMask:
case ots::kCntrMask: {
bool successful = false;
if (stack_size == 0) {
successful = true;
} else if ((!(*in_out_found_width)) && (stack_size == 1)) {
// A number for "width" is found.
successful = true;
} else if ((!(*in_out_found_width)) || // in this case, any sizes are ok.
((stack_size % 2) == 0)) {
// The numbers are vstem definition.
// See Adobe Technical Note #5177, page 24, hintmask.
(*in_out_num_stems) += (stack_size / 2);
if ((*in_out_num_stems) > kMaxNumberOfStemHints) {
return OTS_FAILURE();
}
successful = true;
}
if (!successful) {
return OTS_FAILURE();
}
if ((*in_out_num_stems) == 0) {
return OTS_FAILURE();
}
const size_t mask_bytes = (*in_out_num_stems + 7) / 8;
if (!char_string->Skip(mask_bytes)) {
return OTS_FAILURE();
}
while (!argument_stack->empty())
argument_stack->pop();
*in_out_found_width = true;
return true;
}
case ots::kRLineTo:
if (!(*in_out_found_width)) {
// The first stack-clearing operator should be one of hstem, hstemhm,
// vstem, vstemhm, cntrmask, hintmask, hmoveto, vmoveto, rmoveto, or
// endchar. For details, see Adobe Technical Note #5177, page 16, note 4.
return OTS_FAILURE();
}
if (stack_size < 2) {
return OTS_FAILURE();
}
if ((stack_size % 2) != 0) {
return OTS_FAILURE();
}
while (!argument_stack->empty())
argument_stack->pop();
return true;
case ots::kHLineTo:
case ots::kVLineTo:
if (!(*in_out_found_width)) {
return OTS_FAILURE();
}
if (stack_size < 1) {
return OTS_FAILURE();
}
while (!argument_stack->empty())
argument_stack->pop();
return true;
case ots::kRRCurveTo:
if (!(*in_out_found_width)) {
return OTS_FAILURE();
}
if (stack_size < 6) {
return OTS_FAILURE();
}
if ((stack_size % 6) != 0) {
return OTS_FAILURE();
}
while (!argument_stack->empty())
argument_stack->pop();
return true;
case ots::kRCurveLine:
if (!(*in_out_found_width)) {
return OTS_FAILURE();
}
if (stack_size < 8) {
return OTS_FAILURE();
}
if (((stack_size - 2) % 6) != 0) {
return OTS_FAILURE();
}
while (!argument_stack->empty())
argument_stack->pop();
return true;
case ots::kRLineCurve:
if (!(*in_out_found_width)) {
return OTS_FAILURE();
}
if (stack_size < 8) {
return OTS_FAILURE();
}
if (((stack_size - 6) % 2) != 0) {
return OTS_FAILURE();
}
while (!argument_stack->empty())
argument_stack->pop();
return true;
case ots::kVVCurveTo:
if (!(*in_out_found_width)) {
return OTS_FAILURE();
}
if (stack_size < 4) {
return OTS_FAILURE();
}
if (((stack_size % 4) != 0) &&
(((stack_size - 1) % 4) != 0)) {
return OTS_FAILURE();
}
while (!argument_stack->empty())
argument_stack->pop();
return true;
case ots::kHHCurveTo: {
bool successful = false;
if (!(*in_out_found_width)) {
return OTS_FAILURE();
}
if (stack_size < 4) {
return OTS_FAILURE();
}
if ((stack_size % 4) == 0) {
// {dxa dxb dyb dxc}+
successful = true;
} else if (((stack_size - 1) % 4) == 0) {
// dy1? {dxa dxb dyb dxc}+
successful = true;
}
while (!argument_stack->empty())
argument_stack->pop();
return successful ? true : OTS_FAILURE();
}
case ots::kVHCurveTo:
case ots::kHVCurveTo: {
bool successful = false;
if (!(*in_out_found_width)) {
return OTS_FAILURE();
}
if (stack_size < 4) {
return OTS_FAILURE();
}
if (((stack_size - 4) % 8) == 0) {
// dx1 dx2 dy2 dy3 {dya dxb dyb dxc dxd dxe dye dyf}*
successful = true;
} else if ((stack_size >= 5) &&
((stack_size - 5) % 8) == 0) {
// dx1 dx2 dy2 dy3 {dya dxb dyb dxc dxd dxe dye dyf}* dxf
successful = true;
} else if ((stack_size >= 8) &&
((stack_size - 8) % 8) == 0) {
// {dxa dxb dyb dyc dyd dxe dye dxf}+
successful = true;
} else if ((stack_size >= 9) &&
((stack_size - 9) % 8) == 0) {
// {dxa dxb dyb dyc dyd dxe dye dxf}+ dyf?
successful = true;
}
while (!argument_stack->empty())
argument_stack->pop();
return successful ? true : OTS_FAILURE();
}
case ots::kDotSection:
// Deprecated operator but harmless, we probably should drop it some how.
if (stack_size != 0) {
return OTS_FAILURE();
}
return true;
case ots::kAnd:
case ots::kOr:
case ots::kEq:
case ots::kAdd:
case ots::kSub:
if (stack_size < 2) {
return OTS_FAILURE();
}
argument_stack->pop();
argument_stack->pop();
argument_stack->push(dummy_result);
// TODO(yusukes): Implement this. We should push a real value for all
// arithmetic and conditional operations.
return true;
case ots::kNot:
case ots::kAbs:
case ots::kNeg:
if (stack_size < 1) {
return OTS_FAILURE();
}
argument_stack->pop();
argument_stack->push(dummy_result);
// TODO(yusukes): Implement this. We should push a real value for all
// arithmetic and conditional operations.
return true;
case ots::kDiv:
// TODO(yusukes): Should detect div-by-zero errors.
if (stack_size < 2) {
return OTS_FAILURE();
}
argument_stack->pop();
argument_stack->pop();
argument_stack->push(dummy_result);
// TODO(yusukes): Implement this. We should push a real value for all
// arithmetic and conditional operations.
return true;
case ots::kDrop:
if (stack_size < 1) {
return OTS_FAILURE();
}
argument_stack->pop();
return true;
case ots::kPut:
case ots::kGet:
case ots::kIndex:
// For now, just call OTS_FAILURE since there is no way to check whether the
// index argument, |i|, is out-of-bounds or not. Fortunately, no OpenType
// fonts I have (except malicious ones!) use the operators.
// TODO(yusukes): Implement them in a secure way.
return OTS_FAILURE();
case ots::kRoll:
// Likewise, just call OTS_FAILURE for kRoll since there is no way to check
// whether |N| is smaller than the current stack depth or not.
// TODO(yusukes): Implement them in a secure way.
return OTS_FAILURE();
case ots::kRandom:
// For now, we don't handle the 'random' operator since the operator makes
// it hard to analyze hinting code statically.
return OTS_FAILURE();
case ots::kIfElse:
if (stack_size < 4) {
return OTS_FAILURE();
}
argument_stack->pop();
argument_stack->pop();
argument_stack->pop();
argument_stack->pop();
argument_stack->push(dummy_result);
// TODO(yusukes): Implement this. We should push a real value for all
// arithmetic and conditional operations.
return true;
case ots::kMul:
// TODO(yusukes): Should detect overflows.
if (stack_size < 2) {
return OTS_FAILURE();
}
argument_stack->pop();
argument_stack->pop();
argument_stack->push(dummy_result);
// TODO(yusukes): Implement this. We should push a real value for all
// arithmetic and conditional operations.
return true;
case ots::kSqrt:
// TODO(yusukes): Should check if the argument is negative.
if (stack_size < 1) {
return OTS_FAILURE();
}
argument_stack->pop();
argument_stack->push(dummy_result);
// TODO(yusukes): Implement this. We should push a real value for all
// arithmetic and conditional operations.
return true;
case ots::kDup:
if (stack_size < 1) {
return OTS_FAILURE();
}
argument_stack->pop();
argument_stack->push(dummy_result);
argument_stack->push(dummy_result);
if (ArgumentStackOverflows(argument_stack, cff2)) {
return OTS_FAILURE();
}
// TODO(yusukes): Implement this. We should push a real value for all
// arithmetic and conditional operations.
return true;
case ots::kExch:
if (stack_size < 2) {
return OTS_FAILURE();
}
argument_stack->pop();
argument_stack->pop();
argument_stack->push(dummy_result);
argument_stack->push(dummy_result);
// TODO(yusukes): Implement this. We should push a real value for all
// arithmetic and conditional operations.
return true;
case ots::kHFlex:
if (!(*in_out_found_width)) {
return OTS_FAILURE();
}
if (stack_size != 7) {
return OTS_FAILURE();
}
while (!argument_stack->empty())
argument_stack->pop();
return true;
case ots::kFlex:
if (!(*in_out_found_width)) {
return OTS_FAILURE();
}
if (stack_size != 13) {
return OTS_FAILURE();
}
while (!argument_stack->empty())
argument_stack->pop();
return true;
case ots::kHFlex1:
if (!(*in_out_found_width)) {
return OTS_FAILURE();
}
if (stack_size != 9) {
return OTS_FAILURE();
}
while (!argument_stack->empty())
argument_stack->pop();
return true;
case ots::kFlex1:
if (!(*in_out_found_width)) {
return OTS_FAILURE();
}
if (stack_size != 11) {
return OTS_FAILURE();
}
while (!argument_stack->empty())
argument_stack->pop();
return true;
}
return OTS_FAILURE_MSG("Undefined operator: %d (0x%x)", op, op);
}
// Executes |char_string| and updates |argument_stack|.
//
// call_depth: The current call depth. Initial value is zero.
// global_subrs_index: Global subroutines.
// local_subrs_index: Local subroutines for the current glyph.
// cff_table: A whole CFF table which contains all global and local subroutines.
// char_string: A charstring we'll execute. |char_string| can be a main routine
// in CharString INDEX, or a subroutine in GlobalSubr/LocalSubr.
// argument_stack: The stack which an operator in |char_string| operates.
// out_found_endchar: true is set if |char_string| contains 'endchar'.
// in_out_found_width: true is set if |char_string| contains 'width' byte (which
// is 0 or 1 byte.)
// in_out_num_stems: total number of hstems and vstems processed so far.
bool ExecuteCharString(ots::OpenTypeCFF& cff,
size_t call_depth,
const ots::CFFIndex& global_subrs_index,
const ots::CFFIndex& local_subrs_index,
ots::Buffer *cff_table,
ots::Buffer *char_string,
std::stack<int32_t> *argument_stack,
bool *out_found_endchar,
bool *in_out_found_width,
size_t *in_out_num_stems,
bool cff2) {
if (call_depth > kMaxSubrNesting) {
return OTS_FAILURE();
}
*out_found_endchar = false;
bool in_out_have_blend = false, in_out_have_visindex = false;
int32_t in_out_vsindex = 0;
const size_t length = char_string->length();
while (char_string->offset() < length) {
int32_t operator_or_operand = 0;
bool is_operator = false;
if (!ReadNextNumberFromCharString(char_string,
&operator_or_operand,
&is_operator)) {
return OTS_FAILURE();
}
#ifdef DUMP_T2CHARSTRING
/*
You can dump all operators and operands (except mask bytes for hintmask
and cntrmask) by the following code:
*/
if (!is_operator) {
std::fprintf(stderr, "%d ", operator_or_operand);
} else {
std::fprintf(stderr, "%s\n",
CharStringOperatorToString(
ots::CharStringOperator(operator_or_operand))
);
}
#endif
if (!is_operator) {
argument_stack->push(operator_or_operand);
if (ArgumentStackOverflows(argument_stack, cff2)) {
return OTS_FAILURE();
}
continue;
}
// An operator is found. Execute it.
if (!ExecuteCharStringOperator(cff,
operator_or_operand,
call_depth,
global_subrs_index,
local_subrs_index,
cff_table,
char_string,
argument_stack,
out_found_endchar,
in_out_found_width,
in_out_num_stems,
&in_out_have_blend,
&in_out_have_visindex,
&in_out_vsindex,
cff2)) {
return OTS_FAILURE();
}
if (*out_found_endchar) {
return true;
}
if (operator_or_operand == ots::kReturn) {
return true;
}
}
// No endchar operator is found.
if (cff2)
return true;
return OTS_FAILURE();
}
// Selects a set of subroutings for |glyph_index| from |cff| and sets it on
// |out_local_subrs_to_use|. Returns true on success.
bool SelectLocalSubr(const ots::OpenTypeCFF& cff,
uint16_t glyph_index, // 0-origin
const ots::CFFIndex **out_local_subrs_to_use) {
bool cff2 = (cff.major == 2);
*out_local_subrs_to_use = NULL;
// First, find local subrs from |local_subrs_per_font|.
if ((cff.fd_select.size() > 0) &&
(!cff.local_subrs_per_font.empty())) {
// Look up FDArray index for the glyph.
const auto& iter = cff.fd_select.find(glyph_index);
if (iter == cff.fd_select.end()) {
return OTS_FAILURE();
}
const auto fd_index = iter->second;
if (fd_index >= cff.local_subrs_per_font.size()) {
return OTS_FAILURE();
}
*out_local_subrs_to_use = cff.local_subrs_per_font.at(fd_index);
} else if (cff.local_subrs) {
// Second, try to use |local_subrs|. Most Latin fonts don't have FDSelect
// entries. If The font has a local subrs index associated with the Top
// DICT (not FDArrays), use it.
*out_local_subrs_to_use = cff.local_subrs;
} else if (cff2 && cff.local_subrs_per_font.size() == 1) {
*out_local_subrs_to_use = cff.local_subrs_per_font.at(0);
} else {
// Just return NULL.
*out_local_subrs_to_use = NULL;
}
return true;
}
} // namespace
namespace ots {
bool ValidateCFFCharStrings(
ots::OpenTypeCFF& cff,
const CFFIndex& global_subrs_index,
Buffer* cff_table) {
const CFFIndex& char_strings_index = *(cff.charstrings_index);
if (char_strings_index.offsets.size() == 0) {
return OTS_FAILURE(); // no charstring.
}
bool cff2 = (cff.major == 2);
// For each glyph, validate the corresponding charstring.
for (unsigned i = 1; i < char_strings_index.offsets.size(); ++i) {
// Prepare a Buffer object, |char_string|, which contains the charstring
// for the |i|-th glyph.
const size_t length =
char_strings_index.offsets[i] - char_strings_index.offsets[i - 1];
if (length > kMaxCharStringLength) {
return OTS_FAILURE();
}
const size_t offset = char_strings_index.offsets[i - 1];
cff_table->set_offset(offset);
if (!cff_table->Skip(length)) {
return OTS_FAILURE();
}
Buffer char_string(cff_table->buffer() + offset, length);
// Get a local subrs for the glyph.
const unsigned glyph_index = i - 1; // index in the map is 0-origin.
const CFFIndex *local_subrs_to_use = NULL;
if (!SelectLocalSubr(cff,
glyph_index,
&local_subrs_to_use)) {
return OTS_FAILURE();
}
// If |local_subrs_to_use| is still NULL, use an empty one.
CFFIndex default_empty_subrs;
if (!local_subrs_to_use){
local_subrs_to_use = &default_empty_subrs;
}
// Check a charstring for the |i|-th glyph.
std::stack<int32_t> argument_stack;
bool found_endchar = false;
// CFF2 CharString has no value for width, so we start with true here to
// error out if width is found.
bool found_width = cff2;
size_t num_stems = 0;
if (!ExecuteCharString(cff,
0 /* initial call_depth is zero */,
global_subrs_index, *local_subrs_to_use,
cff_table, &char_string, &argument_stack,
&found_endchar, &found_width, &num_stems,
cff2)) {
return OTS_FAILURE();
}
if (!cff2 && !found_endchar) {
return OTS_FAILURE();
}
}
return true;
}
} // namespace ots
#undef TABLE_NAME