| /* quirc -- QR-code recognition library | 
 |  * Copyright (C) 2010-2012 Daniel Beer <dlbeer@gmail.com> | 
 |  * | 
 |  * Permission to use, copy, modify, and/or distribute this software for any | 
 |  * purpose with or without fee is hereby granted, provided that the above | 
 |  * copyright notice and this permission notice appear in all copies. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
 |  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
 |  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | 
 |  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
 |  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | 
 |  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | 
 |  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
 |  */ | 
 |  | 
 | #include "quirc_internal.h" | 
 |  | 
 | #include <string.h> | 
 | #include <stdlib.h> | 
 |  | 
 | #define MAX_POLY       64 | 
 |  | 
 | /************************************************************************ | 
 |  * Galois fields | 
 |  */ | 
 |  | 
 | struct galois_field { | 
 | 	int p; | 
 | 	const uint8_t *log; | 
 | 	const uint8_t *exp; | 
 | }; | 
 |  | 
 | static const uint8_t gf16_exp[16] = { | 
 | 	0x01, 0x02, 0x04, 0x08, 0x03, 0x06, 0x0c, 0x0b, | 
 | 	0x05, 0x0a, 0x07, 0x0e, 0x0f, 0x0d, 0x09, 0x01 | 
 | }; | 
 |  | 
 | static const uint8_t gf16_log[16] = { | 
 | 	0x00, 0x0f, 0x01, 0x04, 0x02, 0x08, 0x05, 0x0a, | 
 | 	0x03, 0x0e, 0x09, 0x07, 0x06, 0x0d, 0x0b, 0x0c | 
 | }; | 
 |  | 
 | static const struct galois_field gf16 = { | 
 | 	.p = 15, | 
 | 	.log = gf16_log, | 
 | 	.exp = gf16_exp | 
 | }; | 
 |  | 
 | static const uint8_t gf256_exp[256] = { | 
 | 	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, | 
 | 	0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26, | 
 | 	0x4c, 0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9, | 
 | 	0x8f, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0, | 
 | 	0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35, | 
 | 	0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23, | 
 | 	0x46, 0x8c, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0, | 
 | 	0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1, | 
 | 	0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc, | 
 | 	0x65, 0xca, 0x89, 0x0f, 0x1e, 0x3c, 0x78, 0xf0, | 
 | 	0xfd, 0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f, | 
 | 	0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2, | 
 | 	0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88, | 
 | 	0x0d, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce, | 
 | 	0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93, | 
 | 	0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc, | 
 | 	0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9, | 
 | 	0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54, | 
 | 	0xa8, 0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa, | 
 | 	0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73, | 
 | 	0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e, | 
 | 	0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff, | 
 | 	0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4, | 
 | 	0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41, | 
 | 	0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x07, 0x0e, | 
 | 	0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6, | 
 | 	0x51, 0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef, | 
 | 	0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x09, | 
 | 	0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5, | 
 | 	0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0x0b, 0x16, | 
 | 	0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83, | 
 | 	0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x01 | 
 | }; | 
 |  | 
 | static const uint8_t gf256_log[256] = { | 
 | 	0x00, 0xff, 0x01, 0x19, 0x02, 0x32, 0x1a, 0xc6, | 
 | 	0x03, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b, | 
 | 	0x04, 0x64, 0xe0, 0x0e, 0x34, 0x8d, 0xef, 0x81, | 
 | 	0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x08, 0x4c, 0x71, | 
 | 	0x05, 0x8a, 0x65, 0x2f, 0xe1, 0x24, 0x0f, 0x21, | 
 | 	0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45, | 
 | 	0x1d, 0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9, | 
 | 	0xc9, 0x9a, 0x09, 0x78, 0x4d, 0xe4, 0x72, 0xa6, | 
 | 	0x06, 0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd, | 
 | 	0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88, | 
 | 	0x36, 0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd, | 
 | 	0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40, | 
 | 	0x1e, 0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e, | 
 | 	0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d, | 
 | 	0xca, 0x5e, 0x9b, 0x9f, 0x0a, 0x15, 0x79, 0x2b, | 
 | 	0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57, | 
 | 	0x07, 0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0x0d, | 
 | 	0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18, | 
 | 	0xe3, 0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c, | 
 | 	0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e, | 
 | 	0x37, 0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd, | 
 | 	0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61, | 
 | 	0xf2, 0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e, | 
 | 	0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2, | 
 | 	0x1f, 0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76, | 
 | 	0xc4, 0x17, 0x49, 0xec, 0x7f, 0x0c, 0x6f, 0xf6, | 
 | 	0x6c, 0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa, | 
 | 	0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a, | 
 | 	0xcb, 0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51, | 
 | 	0x0b, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7, | 
 | 	0x4f, 0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8, | 
 | 	0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf | 
 | }; | 
 |  | 
 | static const struct galois_field gf256 = { | 
 | 	.p = 255, | 
 | 	.log = gf256_log, | 
 | 	.exp = gf256_exp | 
 | }; | 
 |  | 
 | /************************************************************************ | 
 |  * Polynomial operations | 
 |  */ | 
 |  | 
 | static void poly_add(uint8_t *dst, const uint8_t *src, uint8_t c, | 
 | 		     int shift, const struct galois_field *gf) | 
 | { | 
 | 	int i; | 
 | 	int log_c = gf->log[c]; | 
 |  | 
 | 	if (!c) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < MAX_POLY; i++) { | 
 | 		int p = i + shift; | 
 | 		uint8_t v = src[i]; | 
 |  | 
 | 		if (p < 0 || p >= MAX_POLY) | 
 | 			continue; | 
 | 		if (!v) | 
 | 			continue; | 
 |  | 
 | 		dst[p] ^= gf->exp[(gf->log[v] + log_c) % gf->p]; | 
 | 	} | 
 | } | 
 |  | 
 | static uint8_t poly_eval(const uint8_t *s, uint8_t x, | 
 | 			 const struct galois_field *gf) | 
 | { | 
 | 	int i; | 
 | 	uint8_t sum = 0; | 
 | 	uint8_t log_x = gf->log[x]; | 
 |  | 
 | 	if (!x) | 
 | 		return s[0]; | 
 |  | 
 | 	for (i = 0; i < MAX_POLY; i++) { | 
 | 		uint8_t c = s[i]; | 
 |  | 
 | 		if (!c) | 
 | 			continue; | 
 |  | 
 | 		sum ^= gf->exp[(gf->log[c] + log_x * i) % gf->p]; | 
 | 	} | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | /************************************************************************ | 
 |  * Berlekamp-Massey algorithm for finding error locator polynomials. | 
 |  */ | 
 |  | 
 | static void berlekamp_massey(const uint8_t *s, int N, | 
 | 			     const struct galois_field *gf, | 
 | 			     uint8_t *sigma) | 
 | { | 
 | 	uint8_t C[MAX_POLY]; | 
 | 	uint8_t B[MAX_POLY]; | 
 | 	int L = 0; | 
 | 	int m = 1; | 
 | 	uint8_t b = 1; | 
 | 	int n; | 
 |  | 
 | 	memset(B, 0, sizeof(B)); | 
 | 	memset(C, 0, sizeof(C)); | 
 | 	B[0] = 1; | 
 | 	C[0] = 1; | 
 |  | 
 | 	for (n = 0; n < N; n++) { | 
 | 		uint8_t d = s[n]; | 
 | 		uint8_t mult; | 
 | 		int i; | 
 |  | 
 | 		for (i = 1; i <= L; i++) { | 
 | 			if (!(C[i] && s[n - i])) | 
 | 				continue; | 
 |  | 
 | 			d ^= gf->exp[(gf->log[C[i]] + | 
 | 				      gf->log[s[n - i]]) % | 
 | 				     gf->p]; | 
 | 		} | 
 |  | 
 | 		mult = gf->exp[(gf->p - gf->log[b] + gf->log[d]) % gf->p]; | 
 |  | 
 | 		if (!d) { | 
 | 			m++; | 
 | 		} else if (L * 2 <= n) { | 
 | 			uint8_t T[MAX_POLY]; | 
 |  | 
 | 			memcpy(T, C, sizeof(T)); | 
 | 			poly_add(C, B, mult, m, gf); | 
 | 			memcpy(B, T, sizeof(B)); | 
 | 			L = n + 1 - L; | 
 | 			b = d; | 
 | 			m = 1; | 
 | 		} else { | 
 | 			poly_add(C, B, mult, m, gf); | 
 | 			m++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	memcpy(sigma, C, MAX_POLY); | 
 | } | 
 |  | 
 | /************************************************************************ | 
 |  * Code stream error correction | 
 |  * | 
 |  * Generator polynomial for GF(2^8) is x^8 + x^4 + x^3 + x^2 + 1 | 
 |  */ | 
 |  | 
 | static int block_syndromes(const uint8_t *data, int bs, int npar, uint8_t *s) | 
 | { | 
 | 	int nonzero = 0; | 
 | 	int i; | 
 |  | 
 | 	memset(s, 0, MAX_POLY); | 
 |  | 
 | 	for (i = 0; i < npar; i++) { | 
 | 		int j; | 
 |  | 
 | 		for (j = 0; j < bs; j++) { | 
 | 			uint8_t c = data[bs - j - 1]; | 
 |  | 
 | 			if (!c) | 
 | 				continue; | 
 |  | 
 | 			s[i] ^= gf256_exp[((int)gf256_log[c] + | 
 | 				    i * j) % 255]; | 
 | 		} | 
 |  | 
 | 		if (s[i]) | 
 | 			nonzero = 1; | 
 | 	} | 
 |  | 
 | 	return nonzero; | 
 | } | 
 |  | 
 | static void eloc_poly(uint8_t *omega, | 
 | 		      const uint8_t *s, const uint8_t *sigma, | 
 | 		      int npar) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	memset(omega, 0, MAX_POLY); | 
 |  | 
 | 	for (i = 0; i < npar; i++) { | 
 | 		const uint8_t a = sigma[i]; | 
 | 		const uint8_t log_a = gf256_log[a]; | 
 | 		int j; | 
 |  | 
 | 		if (!a) | 
 | 			continue; | 
 |  | 
 | 		for (j = 0; j + 1 < MAX_POLY; j++) { | 
 | 			const uint8_t b = s[j + 1]; | 
 |  | 
 | 			if (i + j >= npar) | 
 | 				break; | 
 |  | 
 | 			if (!b) | 
 | 				continue; | 
 |  | 
 | 			omega[i + j] ^= | 
 | 			    gf256_exp[(log_a + gf256_log[b]) % 255]; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static quirc_decode_error_t correct_block(uint8_t *data, | 
 | 					  const struct quirc_rs_params *ecc) | 
 | { | 
 | 	int npar = ecc->bs - ecc->dw; | 
 | 	uint8_t s[MAX_POLY]; | 
 | 	uint8_t sigma[MAX_POLY]; | 
 | 	uint8_t sigma_deriv[MAX_POLY]; | 
 | 	uint8_t omega[MAX_POLY]; | 
 | 	int i; | 
 |  | 
 | 	/* Compute syndrome vector */ | 
 | 	if (!block_syndromes(data, ecc->bs, npar, s)) | 
 | 		return QUIRC_SUCCESS; | 
 |  | 
 | 	berlekamp_massey(s, npar, &gf256, sigma); | 
 |  | 
 | 	/* Compute derivative of sigma */ | 
 | 	memset(sigma_deriv, 0, MAX_POLY); | 
 | 	for (i = 0; i + 1 < MAX_POLY; i += 2) | 
 | 		sigma_deriv[i] = sigma[i + 1]; | 
 |  | 
 | 	/* Compute error evaluator polynomial */ | 
 | 	eloc_poly(omega, s, sigma, npar - 1); | 
 |  | 
 | 	/* Find error locations and magnitudes */ | 
 | 	for (i = 0; i < ecc->bs; i++) { | 
 | 		uint8_t xinv = gf256_exp[255 - i]; | 
 |  | 
 | 		if (!poly_eval(sigma, xinv, &gf256)) { | 
 | 			uint8_t sd_x = poly_eval(sigma_deriv, xinv, &gf256); | 
 | 			uint8_t omega_x = poly_eval(omega, xinv, &gf256); | 
 | 			uint8_t error = gf256_exp[(255 - gf256_log[sd_x] + | 
 | 						   gf256_log[omega_x]) % 255]; | 
 |  | 
 | 			data[ecc->bs - i - 1] ^= error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (block_syndromes(data, ecc->bs, npar, s)) | 
 | 		return QUIRC_ERROR_DATA_ECC; | 
 |  | 
 | 	return QUIRC_SUCCESS; | 
 | } | 
 |  | 
 | /************************************************************************ | 
 |  * Format value error correction | 
 |  * | 
 |  * Generator polynomial for GF(2^4) is x^4 + x + 1 | 
 |  */ | 
 |  | 
 | #define FORMAT_MAX_ERROR        3 | 
 | #define FORMAT_SYNDROMES        (FORMAT_MAX_ERROR * 2) | 
 | #define FORMAT_BITS             15 | 
 |  | 
 | static int format_syndromes(uint16_t u, uint8_t *s) | 
 | { | 
 | 	int i; | 
 | 	int nonzero = 0; | 
 |  | 
 | 	memset(s, 0, MAX_POLY); | 
 |  | 
 | 	for (i = 0; i < FORMAT_SYNDROMES; i++) { | 
 | 		int j; | 
 |  | 
 | 		s[i] = 0; | 
 | 		for (j = 0; j < FORMAT_BITS; j++) | 
 | 			if (u & (1 << j)) | 
 | 				s[i] ^= gf16_exp[((i + 1) * j) % 15]; | 
 |  | 
 | 		if (s[i]) | 
 | 			nonzero = 1; | 
 | 	} | 
 |  | 
 | 	return nonzero; | 
 | } | 
 |  | 
 | static quirc_decode_error_t correct_format(uint16_t *f_ret) | 
 | { | 
 | 	uint16_t u = *f_ret; | 
 | 	int i; | 
 | 	uint8_t s[MAX_POLY]; | 
 | 	uint8_t sigma[MAX_POLY]; | 
 |  | 
 | 	/* Evaluate U (received codeword) at each of alpha_1 .. alpha_6 | 
 | 	 * to get S_1 .. S_6 (but we index them from 0). | 
 | 	 */ | 
 | 	if (!format_syndromes(u, s)) | 
 | 		return QUIRC_SUCCESS; | 
 |  | 
 | 	berlekamp_massey(s, FORMAT_SYNDROMES, &gf16, sigma); | 
 |  | 
 | 	/* Now, find the roots of the polynomial */ | 
 | 	for (i = 0; i < 15; i++) | 
 | 		if (!poly_eval(sigma, gf16_exp[15 - i], &gf16)) | 
 | 			u ^= (1 << i); | 
 |  | 
 | 	if (format_syndromes(u, s)) | 
 | 		return QUIRC_ERROR_FORMAT_ECC; | 
 |  | 
 | 	*f_ret = u; | 
 | 	return QUIRC_SUCCESS; | 
 | } | 
 |  | 
 | /************************************************************************ | 
 |  * Decoder algorithm | 
 |  */ | 
 |  | 
 | struct datastream { | 
 | 	uint8_t		raw[QUIRC_MAX_PAYLOAD]; | 
 | 	int		data_bits; | 
 | 	int		ptr; | 
 |  | 
 | 	uint8_t         data[QUIRC_MAX_PAYLOAD]; | 
 | }; | 
 |  | 
 | static inline int grid_bit(const struct quirc_code *code, int x, int y) | 
 | { | 
 | 	int p = y * code->size + x; | 
 |  | 
 | 	return (code->cell_bitmap[p >> 3] >> (p & 7)) & 1; | 
 | } | 
 |  | 
 | static quirc_decode_error_t read_format(const struct quirc_code *code, | 
 | 					struct quirc_data *data, int which) | 
 | { | 
 | 	int i; | 
 | 	uint16_t format = 0; | 
 | 	uint16_t fdata; | 
 | 	quirc_decode_error_t err; | 
 |  | 
 | 	if (which) { | 
 | 		for (i = 0; i < 7; i++) | 
 | 			format = (format << 1) | | 
 | 				grid_bit(code, 8, code->size - 1 - i); | 
 | 		for (i = 0; i < 8; i++) | 
 | 			format = (format << 1) | | 
 | 				grid_bit(code, code->size - 8 + i, 8); | 
 | 	} else { | 
 | 		static const int xs[15] = { | 
 | 			8, 8, 8, 8, 8, 8, 8, 8, 7, 5, 4, 3, 2, 1, 0 | 
 | 		}; | 
 | 		static const int ys[15] = { | 
 | 			0, 1, 2, 3, 4, 5, 7, 8, 8, 8, 8, 8, 8, 8, 8 | 
 | 		}; | 
 |  | 
 | 		for (i = 14; i >= 0; i--) | 
 | 			format = (format << 1) | grid_bit(code, xs[i], ys[i]); | 
 | 	} | 
 |  | 
 | 	format ^= 0x5412; | 
 |  | 
 | 	err = correct_format(&format); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	fdata = format >> 10; | 
 | 	data->ecc_level = fdata >> 3; | 
 | 	data->mask = fdata & 7; | 
 |  | 
 | 	return QUIRC_SUCCESS; | 
 | } | 
 |  | 
 | static int mask_bit(int mask, int i, int j) | 
 | { | 
 | 	switch (mask) { | 
 | 	case 0: return !((i + j) % 2); | 
 | 	case 1: return !(i % 2); | 
 | 	case 2: return !(j % 3); | 
 | 	case 3: return !((i + j) % 3); | 
 | 	case 4: return !(((i / 2) + (j / 3)) % 2); | 
 | 	case 5: return !((i * j) % 2 + (i * j) % 3); | 
 | 	case 6: return !(((i * j) % 2 + (i * j) % 3) % 2); | 
 | 	case 7: return !(((i * j) % 3 + (i + j) % 2) % 2); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int reserved_cell(int version, int i, int j) | 
 | { | 
 | 	const struct quirc_version_info *ver = &quirc_version_db[version]; | 
 | 	int size = version * 4 + 17; | 
 | 	int ai = -1, aj = -1, a; | 
 |  | 
 | 	/* Finder + format: top left */ | 
 | 	if (i < 9 && j < 9) | 
 | 		return 1; | 
 |  | 
 | 	/* Finder + format: bottom left */ | 
 | 	if (i + 8 >= size && j < 9) | 
 | 		return 1; | 
 |  | 
 | 	/* Finder + format: top right */ | 
 | 	if (i < 9 && j + 8 >= size) | 
 | 		return 1; | 
 |  | 
 | 	/* Exclude timing patterns */ | 
 | 	if (i == 6 || j == 6) | 
 | 		return 1; | 
 |  | 
 | 	/* Exclude version info, if it exists. Version info sits adjacent to | 
 | 	 * the top-right and bottom-left finders in three rows, bounded by | 
 | 	 * the timing pattern. | 
 | 	 */ | 
 | 	if (version >= 7) { | 
 | 		if (i < 6 && j + 11 >= size) | 
 | 			return 1; | 
 | 		if (i + 11 >= size && j < 6) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	/* Exclude alignment patterns */ | 
 | 	for (a = 0; a < QUIRC_MAX_ALIGNMENT && ver->apat[a]; a++) { | 
 | 		int p = ver->apat[a]; | 
 |  | 
 | 		if (abs(p - i) < 3) | 
 | 			ai = a; | 
 | 		if (abs(p - j) < 3) | 
 | 			aj = a; | 
 | 	} | 
 |  | 
 | 	if (ai >= 0 && aj >= 0) { | 
 | 		a--; | 
 | 		if (ai > 0 && ai < a) | 
 | 			return 1; | 
 | 		if (aj > 0 && aj < a) | 
 | 			return 1; | 
 | 		if (aj == a && ai == a) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void read_bit(const struct quirc_code *code, | 
 | 		     struct quirc_data *data, | 
 | 		     struct datastream *ds, int i, int j) | 
 | { | 
 | 	int bitpos = ds->data_bits & 7; | 
 | 	int bytepos = ds->data_bits >> 3; | 
 | 	int v = grid_bit(code, j, i); | 
 |  | 
 | 	if (mask_bit(data->mask, i, j)) | 
 | 		v ^= 1; | 
 |  | 
 | 	if (v) | 
 | 		ds->raw[bytepos] |= (0x80 >> bitpos); | 
 |  | 
 | 	ds->data_bits++; | 
 | } | 
 |  | 
 | static void read_data(const struct quirc_code *code, | 
 | 		      struct quirc_data *data, | 
 | 		      struct datastream *ds) | 
 | { | 
 | 	int y = code->size - 1; | 
 | 	int x = code->size - 1; | 
 | 	int dir = -1; | 
 |  | 
 | 	while (x > 0) { | 
 | 		if (x == 6) | 
 | 			x--; | 
 |  | 
 | 		if (!reserved_cell(data->version, y, x)) | 
 | 			read_bit(code, data, ds, y, x); | 
 |  | 
 | 		if (!reserved_cell(data->version, y, x - 1)) | 
 | 			read_bit(code, data, ds, y, x - 1); | 
 |  | 
 | 		y += dir; | 
 | 		if (y < 0 || y >= code->size) { | 
 | 			dir = -dir; | 
 | 			x -= 2; | 
 | 			y += dir; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static quirc_decode_error_t codestream_ecc(struct quirc_data *data, | 
 | 					   struct datastream *ds) | 
 | { | 
 | 	const struct quirc_version_info *ver = | 
 | 		&quirc_version_db[data->version]; | 
 | 	const struct quirc_rs_params *sb_ecc = &ver->ecc[data->ecc_level]; | 
 | 	struct quirc_rs_params lb_ecc; | 
 | 	const int lb_count = | 
 | 	    (ver->data_bytes - sb_ecc->bs * sb_ecc->ns) / (sb_ecc->bs + 1); | 
 | 	const int bc = lb_count + sb_ecc->ns; | 
 | 	const int ecc_offset = sb_ecc->dw * bc + lb_count; | 
 | 	int dst_offset = 0; | 
 | 	int i; | 
 |  | 
 | 	memcpy(&lb_ecc, sb_ecc, sizeof(lb_ecc)); | 
 | 	lb_ecc.dw++; | 
 | 	lb_ecc.bs++; | 
 |  | 
 | 	for (i = 0; i < bc; i++) { | 
 | 		uint8_t *dst = ds->data + dst_offset; | 
 | 		const struct quirc_rs_params *ecc = | 
 | 		    (i < sb_ecc->ns) ? sb_ecc : &lb_ecc; | 
 | 		const int num_ec = ecc->bs - ecc->dw; | 
 | 		quirc_decode_error_t err; | 
 | 		int j; | 
 |  | 
 | 		for (j = 0; j < ecc->dw; j++) | 
 | 			dst[j] = ds->raw[j * bc + i]; | 
 | 		for (j = 0; j < num_ec; j++) | 
 | 			dst[ecc->dw + j] = ds->raw[ecc_offset + j * bc + i]; | 
 |  | 
 | 		err = correct_block(dst, ecc); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		dst_offset += ecc->dw; | 
 | 	} | 
 |  | 
 | 	ds->data_bits = dst_offset * 8; | 
 |  | 
 | 	return QUIRC_SUCCESS; | 
 | } | 
 |  | 
 | static inline int bits_remaining(const struct datastream *ds) | 
 | { | 
 | 	return ds->data_bits - ds->ptr; | 
 | } | 
 |  | 
 | static int take_bits(struct datastream *ds, int len) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	while (len && (ds->ptr < ds->data_bits)) { | 
 | 		uint8_t b = ds->data[ds->ptr >> 3]; | 
 | 		int bitpos = ds->ptr & 7; | 
 |  | 
 | 		ret <<= 1; | 
 | 		if ((b << bitpos) & 0x80) | 
 | 			ret |= 1; | 
 |  | 
 | 		ds->ptr++; | 
 | 		len--; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int numeric_tuple(struct quirc_data *data, | 
 | 			 struct datastream *ds, | 
 | 			 int bits, int digits) | 
 | { | 
 | 	int tuple; | 
 | 	int i; | 
 |  | 
 | 	if (bits_remaining(ds) < bits) | 
 | 		return -1; | 
 |  | 
 | 	tuple = take_bits(ds, bits); | 
 |  | 
 | 	for (i = digits - 1; i >= 0; i--) { | 
 | 		data->payload[data->payload_len + i] = tuple % 10 + '0'; | 
 | 		tuple /= 10; | 
 | 	} | 
 |  | 
 | 	data->payload_len += digits; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static quirc_decode_error_t decode_numeric(struct quirc_data *data, | 
 | 					   struct datastream *ds) | 
 | { | 
 | 	int bits = 14; | 
 | 	int count; | 
 |  | 
 | 	if (data->version < 10) | 
 | 		bits = 10; | 
 | 	else if (data->version < 27) | 
 | 		bits = 12; | 
 |  | 
 | 	count = take_bits(ds, bits); | 
 | 	if (data->payload_len + count + 1 > QUIRC_MAX_PAYLOAD) | 
 | 		return QUIRC_ERROR_DATA_OVERFLOW; | 
 |  | 
 | 	while (count >= 3) { | 
 | 		if (numeric_tuple(data, ds, 10, 3) < 0) | 
 | 			return QUIRC_ERROR_DATA_UNDERFLOW; | 
 | 		count -= 3; | 
 | 	} | 
 |  | 
 | 	if (count >= 2) { | 
 | 		if (numeric_tuple(data, ds, 7, 2) < 0) | 
 | 			return QUIRC_ERROR_DATA_UNDERFLOW; | 
 | 		count -= 2; | 
 | 	} | 
 |  | 
 | 	if (count) { | 
 | 		if (numeric_tuple(data, ds, 4, 1) < 0) | 
 | 			return QUIRC_ERROR_DATA_UNDERFLOW; | 
 | 		count--; | 
 | 	} | 
 |  | 
 | 	return QUIRC_SUCCESS; | 
 | } | 
 |  | 
 | static int alpha_tuple(struct quirc_data *data, | 
 | 		       struct datastream *ds, | 
 | 		       int bits, int digits) | 
 | { | 
 | 	int tuple; | 
 | 	int i; | 
 |  | 
 | 	if (bits_remaining(ds) < bits) | 
 | 		return -1; | 
 |  | 
 | 	tuple = take_bits(ds, bits); | 
 |  | 
 | 	for (i = 0; i < digits; i++) { | 
 | 		static const char *alpha_map = | 
 | 			"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:"; | 
 |  | 
 | 		data->payload[data->payload_len + digits - i - 1] = | 
 | 			alpha_map[tuple % 45]; | 
 | 		tuple /= 45; | 
 | 	} | 
 |  | 
 | 	data->payload_len += digits; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static quirc_decode_error_t decode_alpha(struct quirc_data *data, | 
 | 					 struct datastream *ds) | 
 | { | 
 | 	int bits = 13; | 
 | 	int count; | 
 |  | 
 | 	if (data->version < 10) | 
 | 		bits = 9; | 
 | 	else if (data->version < 27) | 
 | 		bits = 11; | 
 |  | 
 | 	count = take_bits(ds, bits); | 
 | 	if (data->payload_len + count + 1 > QUIRC_MAX_PAYLOAD) | 
 | 		return QUIRC_ERROR_DATA_OVERFLOW; | 
 |  | 
 | 	while (count >= 2) { | 
 | 		if (alpha_tuple(data, ds, 11, 2) < 0) | 
 | 			return QUIRC_ERROR_DATA_UNDERFLOW; | 
 | 		count -= 2; | 
 | 	} | 
 |  | 
 | 	if (count) { | 
 | 		if (alpha_tuple(data, ds, 6, 1) < 0) | 
 | 			return QUIRC_ERROR_DATA_UNDERFLOW; | 
 | 		count--; | 
 | 	} | 
 |  | 
 | 	return QUIRC_SUCCESS; | 
 | } | 
 |  | 
 | static quirc_decode_error_t decode_byte(struct quirc_data *data, | 
 | 					struct datastream *ds) | 
 | { | 
 | 	int bits = 16; | 
 | 	int count; | 
 | 	int i; | 
 |  | 
 | 	if (data->version < 10) | 
 | 		bits = 8; | 
 |  | 
 | 	count = take_bits(ds, bits); | 
 | 	if (data->payload_len + count + 1 > QUIRC_MAX_PAYLOAD) | 
 | 		return QUIRC_ERROR_DATA_OVERFLOW; | 
 | 	if (bits_remaining(ds) < count * 8) | 
 | 		return QUIRC_ERROR_DATA_UNDERFLOW; | 
 |  | 
 | 	for (i = 0; i < count; i++) | 
 | 		data->payload[data->payload_len++] = take_bits(ds, 8); | 
 |  | 
 | 	return QUIRC_SUCCESS; | 
 | } | 
 |  | 
 | static quirc_decode_error_t decode_kanji(struct quirc_data *data, | 
 | 					 struct datastream *ds) | 
 | { | 
 | 	int bits = 12; | 
 | 	int count; | 
 | 	int i; | 
 |  | 
 | 	if (data->version < 10) | 
 | 		bits = 8; | 
 | 	else if (data->version < 27) | 
 | 		bits = 10; | 
 |  | 
 | 	count = take_bits(ds, bits); | 
 | 	if (data->payload_len + count * 2 + 1 > QUIRC_MAX_PAYLOAD) | 
 | 		return QUIRC_ERROR_DATA_OVERFLOW; | 
 | 	if (bits_remaining(ds) < count * 13) | 
 | 		return QUIRC_ERROR_DATA_UNDERFLOW; | 
 |  | 
 | 	for (i = 0; i < count; i++) { | 
 | 		int d = take_bits(ds, 13); | 
 | 		int msB = d / 0xc0; | 
 | 		int lsB = d % 0xc0; | 
 | 		int intermediate = (msB << 8) | lsB; | 
 | 		uint16_t sjw; | 
 |  | 
 | 		if (intermediate + 0x8140 <= 0x9ffc) { | 
 | 			/* bytes are in the range 0x8140 to 0x9FFC */ | 
 | 			sjw = intermediate + 0x8140; | 
 | 		} else { | 
 | 			/* bytes are in the range 0xE040 to 0xEBBF */ | 
 | 			sjw = intermediate + 0xc140; | 
 | 		} | 
 |  | 
 | 		data->payload[data->payload_len++] = sjw >> 8; | 
 | 		data->payload[data->payload_len++] = sjw & 0xff; | 
 | 	} | 
 |  | 
 | 	return QUIRC_SUCCESS; | 
 | } | 
 |  | 
 | static quirc_decode_error_t decode_eci(struct quirc_data *data, | 
 | 				       struct datastream *ds) | 
 | { | 
 | 	if (bits_remaining(ds) < 8) | 
 | 		return QUIRC_ERROR_DATA_UNDERFLOW; | 
 |  | 
 | 	data->eci = take_bits(ds, 8); | 
 |  | 
 | 	if ((data->eci & 0xc0) == 0x80) { | 
 | 		if (bits_remaining(ds) < 8) | 
 | 			return QUIRC_ERROR_DATA_UNDERFLOW; | 
 |  | 
 | 		data->eci = (data->eci << 8) | take_bits(ds, 8); | 
 | 	} else if ((data->eci & 0xe0) == 0xc0) { | 
 | 		if (bits_remaining(ds) < 16) | 
 | 			return QUIRC_ERROR_DATA_UNDERFLOW; | 
 |  | 
 | 		data->eci = (data->eci << 16) | take_bits(ds, 16); | 
 | 	} | 
 |  | 
 | 	return QUIRC_SUCCESS; | 
 | } | 
 |  | 
 | static quirc_decode_error_t decode_payload(struct quirc_data *data, | 
 | 					   struct datastream *ds) | 
 | { | 
 | 	while (bits_remaining(ds) >= 4) { | 
 | 		quirc_decode_error_t err = QUIRC_SUCCESS; | 
 | 		int type = take_bits(ds, 4); | 
 |  | 
 | 		switch (type) { | 
 | 		case QUIRC_DATA_TYPE_NUMERIC: | 
 | 			err = decode_numeric(data, ds); | 
 | 			break; | 
 |  | 
 | 		case QUIRC_DATA_TYPE_ALPHA: | 
 | 			err = decode_alpha(data, ds); | 
 | 			break; | 
 |  | 
 | 		case QUIRC_DATA_TYPE_BYTE: | 
 | 			err = decode_byte(data, ds); | 
 | 			break; | 
 |  | 
 | 		case QUIRC_DATA_TYPE_KANJI: | 
 | 			err = decode_kanji(data, ds); | 
 | 			break; | 
 |  | 
 | 		case 7: | 
 | 			err = decode_eci(data, ds); | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			goto done; | 
 | 		} | 
 |  | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		if (!(type & (type - 1)) && (type > data->data_type)) | 
 | 			data->data_type = type; | 
 | 	} | 
 | done: | 
 |  | 
 | 	/* Add nul terminator to all payloads */ | 
 | 	if (data->payload_len >= sizeof(data->payload)) | 
 | 		data->payload_len--; | 
 | 	data->payload[data->payload_len] = 0; | 
 |  | 
 | 	return QUIRC_SUCCESS; | 
 | } | 
 |  | 
 | quirc_decode_error_t quirc_decode(const struct quirc_code *code, | 
 | 				  struct quirc_data *data) | 
 | { | 
 | 	quirc_decode_error_t err; | 
 | 	struct datastream ds; | 
 |  | 
 | 	if ((code->size - 17) % 4) | 
 | 		return QUIRC_ERROR_INVALID_GRID_SIZE; | 
 |  | 
 | 	memset(data, 0, sizeof(*data)); | 
 | 	memset(&ds, 0, sizeof(ds)); | 
 |  | 
 | 	data->version = (code->size - 17) / 4; | 
 |  | 
 | 	if (data->version < 1 || | 
 | 	    data->version > QUIRC_MAX_VERSION) | 
 | 		return QUIRC_ERROR_INVALID_VERSION; | 
 |  | 
 | 	/* Read format information -- try both locations */ | 
 | 	err = read_format(code, data, 0); | 
 | 	if (err) | 
 | 		err = read_format(code, data, 1); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	read_data(code, data, &ds); | 
 | 	err = codestream_ecc(data, &ds); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = decode_payload(data, &ds); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return QUIRC_SUCCESS; | 
 | } |