| /* |
| * Copyright 2019 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "bench/Benchmark.h" |
| #include "bench/ResultsWriter.h" |
| #include "bench/SkSLBench.h" |
| #include "include/core/SkCanvas.h" |
| #include "src/gpu/GrCaps.h" |
| #include "src/gpu/GrRecordingContextPriv.h" |
| #include "src/gpu/mock/GrMockCaps.h" |
| #include "src/sksl/SkSLCompiler.h" |
| #include "src/sksl/SkSLDSLParser.h" |
| |
| class SkSLCompilerStartupBench : public Benchmark { |
| protected: |
| const char* onGetName() override { |
| return "sksl_compiler_startup"; |
| } |
| |
| bool isSuitableFor(Backend backend) override { |
| return backend == kNonRendering_Backend; |
| } |
| |
| void onDraw(int loops, SkCanvas*) override { |
| GrShaderCaps caps; |
| for (int i = 0; i < loops; i++) { |
| SkSL::Compiler compiler(&caps); |
| } |
| } |
| }; |
| |
| DEF_BENCH(return new SkSLCompilerStartupBench();) |
| |
| enum class Output { |
| kNone, |
| kGLSL, |
| kMetal, |
| kSPIRV |
| }; |
| |
| class SkSLCompileBench : public Benchmark { |
| public: |
| static const char* output_string(Output output) { |
| switch (output) { |
| case Output::kNone: return ""; |
| case Output::kGLSL: return "glsl_"; |
| case Output::kMetal: return "metal_"; |
| case Output::kSPIRV: return "spirv_"; |
| } |
| SkUNREACHABLE; |
| } |
| |
| SkSLCompileBench(std::string name, const char* src, bool optimize, Output output) |
| : fName(std::string("sksl_") + (optimize ? "" : "unoptimized_") + output_string(output) + |
| name) |
| , fSrc(src) |
| , fCaps(GrContextOptions(), GrMockOptions()) |
| , fCompiler(fCaps.shaderCaps()) |
| , fOutput(output) { |
| fSettings.fOptimize = optimize; |
| fSettings.fDSLMangling = false; |
| // The test programs we compile don't follow Vulkan rules and thus produce invalid |
| // SPIR-V. This is harmless, so long as we don't try to validate them. |
| fSettings.fValidateSPIRV = false; |
| } |
| |
| protected: |
| const char* onGetName() override { |
| return fName.c_str(); |
| } |
| |
| bool isSuitableFor(Backend backend) override { |
| return backend == kNonRendering_Backend; |
| } |
| |
| void onDraw(int loops, SkCanvas* canvas) override { |
| for (int i = 0; i < loops; i++) { |
| std::unique_ptr<SkSL::Program> program = SkSL::DSLParser(&fCompiler, |
| fSettings, |
| SkSL::ProgramKind::kFragment, |
| fSrc).program(); |
| if (fCompiler.errorCount()) { |
| SK_ABORT("shader compilation failed: %s\n", fCompiler.errorText().c_str()); |
| } |
| std::string result; |
| switch (fOutput) { |
| case Output::kNone: break; |
| case Output::kGLSL: SkAssertResult(fCompiler.toGLSL(*program, &result)); break; |
| case Output::kMetal: SkAssertResult(fCompiler.toMetal(*program, &result)); break; |
| case Output::kSPIRV: SkAssertResult(fCompiler.toSPIRV(*program, &result)); break; |
| } |
| } |
| } |
| |
| private: |
| std::string fName; |
| std::string fSrc; |
| GrMockCaps fCaps; |
| SkSL::Compiler fCompiler; |
| SkSL::Program::Settings fSettings; |
| Output fOutput; |
| |
| using INHERITED = Benchmark; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #define COMPILER_BENCH(name, text) \ |
| static constexpr char name ## _SRC[] = text; \ |
| DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/false, Output::kNone);) \ |
| DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kNone);) \ |
| DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kGLSL);) \ |
| DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kMetal);) \ |
| DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kSPIRV);) |
| |
| // This fragment shader is from the third tile on the top row of GM_gradients_2pt_conical_outside. |
| COMPILER_BENCH(large, R"( |
| uniform float3x3 umatrix_S1_c0; |
| uniform half4 uthresholds_S1_c1_c0_c0[1]; |
| uniform float4 uscale_S1_c1_c0_c0[4]; |
| uniform float4 ubias_S1_c1_c0_c0[4]; |
| uniform half uinvR1_S1_c1_c0_c1_c0; |
| uniform half ufx_S1_c1_c0_c1_c0; |
| uniform float3x3 umatrix_S1_c1_c0_c1; |
| uniform half4 uleftBorderColor_S1_c1_c0; |
| uniform half4 urightBorderColor_S1_c1_c0; |
| uniform half urange_S1; |
| uniform sampler2D uTextureSampler_0_S1; |
| flat in half4 vcolor_S0; |
| noperspective in float2 vTransformedCoords_8_S0; |
| out half4 sk_FragColor; |
| half4 TextureEffect_S1_c0_c0(half4 _input, float2 _coords) |
| { |
| return sample(uTextureSampler_0_S1, _coords).000r; |
| } |
| half4 MatrixEffect_S1_c0(half4 _input, float2 _coords) |
| { |
| return TextureEffect_S1_c0_c0(_input, float3x2(umatrix_S1_c0) * _coords.xy1); |
| } |
| half4 LoopingBinaryColorizer_S1_c1_c0_c0(half4 _input, float2 _coords) |
| { |
| half4 _tmp_0_inColor = _input; |
| float2 _tmp_1_coords = _coords; |
| half t = half(_tmp_1_coords.x); |
| ; |
| ; |
| int chunk = 0; |
| ; |
| int pos; |
| if (t < uthresholds_S1_c1_c0_c0[chunk].y) |
| { |
| pos = int(t < uthresholds_S1_c1_c0_c0[chunk].x ? 0 : 1); |
| } |
| else |
| { |
| pos = int(t < uthresholds_S1_c1_c0_c0[chunk].z ? 2 : 3); |
| } |
| ; |
| return half4(half4(float(t) * uscale_S1_c1_c0_c0[pos] + ubias_S1_c1_c0_c0[pos])); |
| } |
| half4 TwoPointConicalFocalLayout_S1_c1_c0_c1_c0(half4 _input) |
| { |
| half4 _tmp_2_inColor = _input; |
| float2 _tmp_3_coords = vTransformedCoords_8_S0; |
| float t = -1.0; |
| half v = 1.0; |
| float x_t = -1.0; |
| if (bool(int(0))) |
| { |
| x_t = dot(_tmp_3_coords, _tmp_3_coords) / _tmp_3_coords.x; |
| } |
| else if (bool(int(0))) |
| { |
| x_t = length(_tmp_3_coords) - _tmp_3_coords.x * float(uinvR1_S1_c1_c0_c1_c0); |
| } |
| else |
| { |
| float temp = _tmp_3_coords.x * _tmp_3_coords.x - _tmp_3_coords.y * _tmp_3_coords.y; |
| if (temp >= 0.0) |
| { |
| if (bool(int(0)) || !bool(int(1))) |
| { |
| x_t = -sqrt(temp) - _tmp_3_coords.x * float(uinvR1_S1_c1_c0_c1_c0); |
| } |
| else |
| { |
| x_t = sqrt(temp) - _tmp_3_coords.x * float(uinvR1_S1_c1_c0_c1_c0); |
| } |
| } |
| } |
| if (!bool(int(0))) |
| { |
| if (x_t <= 0.0) |
| { |
| v = -1.0; |
| } |
| } |
| if (bool(int(1))) |
| { |
| if (bool(int(0))) |
| { |
| t = x_t; |
| } |
| else |
| { |
| t = x_t + float(ufx_S1_c1_c0_c1_c0); |
| } |
| } |
| else |
| { |
| if (bool(int(0))) |
| { |
| t = -x_t; |
| } |
| else |
| { |
| t = -x_t + float(ufx_S1_c1_c0_c1_c0); |
| } |
| } |
| if (bool(int(0))) |
| { |
| t = 1.0 - t; |
| } |
| return half4(half4(half(t), v, 0.0, 0.0)); |
| } |
| half4 MatrixEffect_S1_c1_c0_c1(half4 _input) |
| { |
| return TwoPointConicalFocalLayout_S1_c1_c0_c1_c0(_input); |
| } |
| half4 ClampedGradient_S1_c1_c0(half4 _input) |
| { |
| half4 _tmp_4_inColor = _input; |
| half4 t = MatrixEffect_S1_c1_c0_c1(_tmp_4_inColor); |
| half4 outColor; |
| if (!bool(int(0)) && t.y < 0.0) |
| { |
| outColor = half4(0.0); |
| } |
| else if (t.x < 0.0) |
| { |
| outColor = uleftBorderColor_S1_c1_c0; |
| } |
| else if (t.x > 1.0) |
| { |
| outColor = urightBorderColor_S1_c1_c0; |
| } |
| else |
| { |
| outColor = LoopingBinaryColorizer_S1_c1_c0_c0(_tmp_4_inColor, float2(half2(t.x, 0.0))); |
| } |
| if (bool(int(0))) |
| { |
| outColor.xyz *= outColor.w; |
| } |
| return half4(outColor); |
| } |
| half4 DisableCoverageAsAlpha_S1_c1(half4 _input) |
| { |
| _input = ClampedGradient_S1_c1_c0(_input); |
| half4 _tmp_5_inColor = _input; |
| return half4(_input); |
| } |
| half4 Dither_S1(half4 _input) |
| { |
| _input = DisableCoverageAsAlpha_S1_c1(_input); |
| half4 _tmp_6_inColor = _input; |
| half value = MatrixEffect_S1_c0(_tmp_6_inColor, sk_FragCoord.xy).w - 0.5; |
| return half4(half4(clamp(_input.xyz + value * urange_S1, 0.0, _input.w), _input.w)); |
| } |
| void main() |
| { |
| // Stage 0, QuadPerEdgeAAGeometryProcessor |
| half4 outputColor_S0; |
| outputColor_S0 = vcolor_S0; |
| const half4 outputCoverage_S0 = half4(1); |
| half4 output_S1; |
| output_S1 = Dither_S1(outputColor_S0); |
| { |
| // Xfer Processor: Porter Duff |
| sk_FragColor = output_S1 * outputCoverage_S0; |
| } |
| } |
| )"); |
| |
| // This fragment shader is taken from GM_BlurDrawImage. |
| COMPILER_BENCH(medium, R"( |
| uniform float3x3 umatrix_S1_c0; |
| uniform float3x3 umatrix_S2_c0_c0; |
| uniform float4 urect_S2_c0; |
| uniform sampler2D uTextureSampler_0_S1; |
| uniform sampler2D uTextureSampler_0_S2; |
| flat in half4 vcolor_S0; |
| noperspective in float2 vTransformedCoords_3_S0; |
| out half4 sk_FragColor; |
| half4 TextureEffect_S1_c0_c0(half4 _input) |
| { |
| return sample(uTextureSampler_0_S1, vTransformedCoords_3_S0); |
| } |
| half4 MatrixEffect_S1_c0(half4 _input) |
| { |
| return TextureEffect_S1_c0_c0(_input); |
| } |
| half4 DisableCoverageAsAlpha_S1(half4 _input) |
| { |
| _input = MatrixEffect_S1_c0(_input); |
| half4 _tmp_0_inColor = _input; |
| return half4(_input); |
| } |
| half4 TextureEffect_S2_c0_c0_c0(half4 _input, float2 _coords) |
| { |
| return sample(uTextureSampler_0_S2, _coords).000r; |
| } |
| half4 MatrixEffect_S2_c0_c0(half4 _input, float2 _coords) |
| { |
| return TextureEffect_S2_c0_c0_c0(_input, float3x2(umatrix_S2_c0_c0) * _coords.xy1); |
| } |
| half4 RectBlur_S2_c0(half4 _input, float2 _coords) |
| { |
| half4 _tmp_1_inColor = _input; |
| float2 _tmp_2_coords = _coords; |
| half xCoverage; |
| half yCoverage; |
| if (bool(int(1))) |
| { |
| half2 xy = max(half2(urect_S2_c0.xy - _tmp_2_coords), half2(_tmp_2_coords - urect_S2_c0.zw)); |
| xCoverage = MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(xy.x, 0.5))).w; |
| yCoverage = MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(xy.y, 0.5))).w; |
| } |
| else |
| { |
| half4 rect = half4(half2(urect_S2_c0.xy - _tmp_2_coords), half2(_tmp_2_coords - urect_S2_c0.zw)); |
| xCoverage = (1.0 - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.x, 0.5))).w) - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.z, 0.5))).w; |
| yCoverage = (1.0 - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.y, 0.5))).w) - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.w, 0.5))).w; |
| } |
| return half4((_input * xCoverage) * yCoverage); |
| } |
| half4 DeviceSpace_S2(half4 _input) |
| { |
| return RectBlur_S2_c0(_input, sk_FragCoord.xy); |
| } |
| void main() |
| { |
| // Stage 0, QuadPerEdgeAAGeometryProcessor |
| half4 outputColor_S0; |
| outputColor_S0 = vcolor_S0; |
| const half4 outputCoverage_S0 = half4(1); |
| half4 output_S1; |
| output_S1 = DisableCoverageAsAlpha_S1(outputColor_S0); |
| half4 output_S2; |
| output_S2 = DeviceSpace_S2(outputCoverage_S0); |
| { |
| // Xfer Processor: Porter Duff |
| sk_FragColor = output_S1 * output_S2; |
| } |
| } |
| )"); |
| |
| // This is the fragment shader used to blit the Viewer window when running the software rasterizer. |
| COMPILER_BENCH(small, R"( |
| uniform float3x3 umatrix_S1_c0; |
| uniform sampler2D uTextureSampler_0_S1; |
| flat in half4 vcolor_S0; |
| noperspective in float2 vTransformedCoords_3_S0; |
| out half4 sk_FragColor; |
| half4 TextureEffect_S1_c0_c0(half4 _input) |
| { |
| return sample(uTextureSampler_0_S1, vTransformedCoords_3_S0); |
| } |
| half4 MatrixEffect_S1_c0(half4 _input) |
| { |
| return TextureEffect_S1_c0_c0(_input); |
| } |
| half4 DisableCoverageAsAlpha_S1(half4 _input) |
| { |
| _input = MatrixEffect_S1_c0(_input); |
| half4 _tmp_0_inColor = _input; |
| return half4(_input); |
| } |
| void main() |
| { |
| // Stage 0, QuadPerEdgeAAGeometryProcessor |
| half4 outputColor_S0; |
| outputColor_S0 = vcolor_S0; |
| const half4 outputCoverage_S0 = half4(1); |
| half4 output_S1; |
| output_S1 = DisableCoverageAsAlpha_S1(outputColor_S0); |
| { |
| // Xfer Processor: Porter Duff |
| sk_FragColor = output_S1 * outputCoverage_S0; |
| } |
| } |
| )"); |
| |
| COMPILER_BENCH(tiny, "void main() { sk_FragColor = half4(1); }"); |
| |
| #if defined(SK_BUILD_FOR_UNIX) |
| |
| #include <malloc.h> |
| |
| // These benchmarks aren't timed, they produce memory usage statistics. They run standalone, and |
| // directly add their results to the nanobench log. |
| void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter* log) { |
| auto heap_bytes_used = []() { return mallinfo().uordblks; }; |
| auto bench = [log](const char* name, int bytes) { |
| log->beginObject(name); // test |
| log->beginObject("meta"); // config |
| log->appendS32("bytes", bytes); // sub_result |
| log->endObject(); // config |
| log->endObject(); // test |
| }; |
| |
| // Heap used by a default compiler (with no modules loaded) |
| { |
| int before = heap_bytes_used(); |
| GrShaderCaps caps; |
| SkSL::Compiler compiler(&caps); |
| int after = heap_bytes_used(); |
| bench("sksl_compiler_baseline", after - before); |
| } |
| |
| // Heap used by a compiler with the two main GPU modules (fragment + vertex) loaded |
| { |
| int before = heap_bytes_used(); |
| GrShaderCaps caps; |
| SkSL::Compiler compiler(&caps); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kVertex); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kFragment); |
| int after = heap_bytes_used(); |
| bench("sksl_compiler_gpu", after - before); |
| } |
| |
| // Heap used by a compiler with the runtime shader, color filter and blending modules loaded |
| { |
| int before = heap_bytes_used(); |
| GrShaderCaps caps; |
| SkSL::Compiler compiler(&caps); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeColorFilter); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeShader); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeBlender); |
| int after = heap_bytes_used(); |
| bench("sksl_compiler_runtimeeffect", after - before); |
| } |
| } |
| |
| #else |
| |
| void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter*) {} |
| |
| #endif |