| /* |
| * Copyright 2019 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "gm/gm.h" |
| #include "include/core/SkCanvas.h" |
| #include "include/core/SkData.h" |
| #include "include/core/SkPaint.h" |
| #include "include/core/SkRRect.h" |
| #include "include/core/SkSize.h" |
| #include "include/core/SkString.h" |
| #include "include/core/SkSurface.h" |
| #include "include/effects/SkGradientShader.h" |
| #include "include/effects/SkImageFilters.h" |
| #include "include/effects/SkRuntimeEffect.h" |
| #include "include/utils/SkRandom.h" |
| #include "src/core/SkColorSpacePriv.h" |
| #include "tools/Resources.h" |
| |
| enum RT_Flags { |
| kAnimate_RTFlag = 0x1, |
| kBench_RTFlag = 0x2, |
| kColorFilter_RTFlag = 0x4, |
| }; |
| |
| class RuntimeShaderGM : public skiagm::GM { |
| public: |
| RuntimeShaderGM(const char* name, SkISize size, const char* sksl, uint32_t flags = 0) |
| : fName(name), fSize(size), fFlags(flags), fSkSL(sksl) {} |
| |
| void onOnceBeforeDraw() override { |
| auto [effect, error] = (fFlags & kColorFilter_RTFlag) |
| ? SkRuntimeEffect::MakeForColorFilter(fSkSL) |
| : SkRuntimeEffect::MakeForShader(fSkSL); |
| if (!effect) { |
| SkDebugf("RuntimeShader error: %s\n", error.c_str()); |
| } |
| fEffect = std::move(effect); |
| } |
| |
| bool runAsBench() const override { return SkToBool(fFlags & kBench_RTFlag); } |
| SkString onShortName() override { return fName; } |
| SkISize onISize() override { return fSize; } |
| |
| bool onAnimate(double nanos) override { |
| fSecs = nanos / (1000 * 1000 * 1000); |
| return SkToBool(fFlags & kAnimate_RTFlag); |
| } |
| |
| protected: |
| SkString fName; |
| SkISize fSize; |
| uint32_t fFlags; |
| float fSecs = 0.0f; |
| |
| SkString fSkSL; |
| sk_sp<SkRuntimeEffect> fEffect; |
| }; |
| |
| class SimpleRT : public RuntimeShaderGM { |
| public: |
| SimpleRT() : RuntimeShaderGM("runtime_shader", {512, 256}, R"( |
| uniform half4 gColor; |
| |
| half4 main(float2 p) { |
| return half4(p*(1.0/255), gColor.b, 1); |
| } |
| )", kBench_RTFlag) {} |
| |
| void onDraw(SkCanvas* canvas) override { |
| SkRuntimeShaderBuilder builder(fEffect); |
| |
| SkMatrix localM; |
| localM.setRotate(90, 128, 128); |
| builder.uniform("gColor") = SkColor4f{1, 0, 0, 1}; |
| |
| SkPaint p; |
| p.setShader(builder.makeShader(&localM)); |
| canvas->drawRect({0, 0, 256, 256}, p); |
| } |
| }; |
| DEF_GM(return new SimpleRT;) |
| |
| static sk_sp<SkShader> make_shader(sk_sp<SkImage> img, SkISize size) { |
| SkMatrix scale = SkMatrix::Scale(size.width() / (float)img->width(), |
| size.height() / (float)img->height()); |
| return img->makeShader(SkSamplingOptions(), scale); |
| } |
| |
| static sk_sp<SkShader> make_threshold(SkISize size) { |
| auto info = SkImageInfo::Make(size.width(), size.height(), kAlpha_8_SkColorType, |
| kPremul_SkAlphaType); |
| auto surf = SkSurface::MakeRaster(info); |
| auto canvas = surf->getCanvas(); |
| |
| const SkScalar rad = 50; |
| SkColor colors[] = {SK_ColorBLACK, 0}; |
| SkPaint paint; |
| paint.setAntiAlias(true); |
| paint.setShader(SkGradientShader::MakeRadial({0,0}, rad, colors, nullptr, 2, SkTileMode::kClamp)); |
| |
| SkPaint layerPaint; |
| const SkScalar sigma = 16.0f; |
| layerPaint.setImageFilter(SkImageFilters::Blur(sigma, sigma, nullptr)); |
| canvas->saveLayer(nullptr, &layerPaint); |
| |
| SkRandom rand; |
| for (int i = 0; i < 25; ++i) { |
| SkScalar x = rand.nextF() * size.width(); |
| SkScalar y = rand.nextF() * size.height(); |
| canvas->save(); |
| canvas->translate(x, y); |
| canvas->drawCircle(0, 0, rad, paint); |
| canvas->restore(); |
| } |
| |
| canvas->restore(); // apply the blur |
| |
| return surf->makeImageSnapshot()->makeShader(SkSamplingOptions()); |
| } |
| |
| class ThresholdRT : public RuntimeShaderGM { |
| public: |
| ThresholdRT() : RuntimeShaderGM("threshold_rt", {256, 256}, R"( |
| uniform shader before_map; |
| uniform shader after_map; |
| uniform shader threshold_map; |
| |
| uniform float cutoff; |
| uniform float slope; |
| |
| float smooth_cutoff(float x) { |
| x = x * slope + (0.5 - slope * cutoff); |
| return clamp(x, 0, 1); |
| } |
| |
| half4 main(float2 xy) { |
| half4 before = before_map.eval(xy); |
| half4 after = after_map.eval(xy); |
| |
| float m = smooth_cutoff(threshold_map.eval(xy).a); |
| return mix(before, after, m); |
| } |
| )", kAnimate_RTFlag | kBench_RTFlag) {} |
| |
| sk_sp<SkShader> fBefore, fAfter, fThreshold; |
| |
| void onOnceBeforeDraw() override { |
| const SkISize size = {256, 256}; |
| fThreshold = make_threshold(size); |
| fBefore = make_shader(GetResourceAsImage("images/mandrill_256.png"), size); |
| fAfter = make_shader(GetResourceAsImage("images/dog.jpg"), size); |
| |
| this->RuntimeShaderGM::onOnceBeforeDraw(); |
| } |
| |
| void onDraw(SkCanvas* canvas) override { |
| SkRuntimeShaderBuilder builder(fEffect); |
| |
| builder.uniform("cutoff") = sin(fSecs) * 0.55f + 0.5f; |
| builder.uniform("slope") = 10.0f; |
| |
| builder.child("before_map") = fBefore; |
| builder.child("after_map") = fAfter; |
| builder.child("threshold_map") = fThreshold; |
| |
| SkPaint paint; |
| paint.setShader(builder.makeShader()); |
| canvas->drawRect({0, 0, 256, 256}, paint); |
| |
| auto draw = [&](SkScalar x, SkScalar y, sk_sp<SkShader> shader) { |
| paint.setShader(shader); |
| canvas->save(); |
| canvas->translate(x, y); |
| canvas->drawRect({0, 0, 256, 256}, paint); |
| canvas->restore(); |
| }; |
| draw(256, 0, fThreshold); |
| draw( 0, 256, fBefore); |
| draw(256, 256, fAfter); |
| } |
| }; |
| DEF_GM(return new ThresholdRT;) |
| |
| class SpiralRT : public RuntimeShaderGM { |
| public: |
| SpiralRT() : RuntimeShaderGM("spiral_rt", {512, 512}, R"( |
| uniform float rad_scale; |
| uniform float2 in_center; |
| layout(color) uniform float4 in_colors0; |
| layout(color) uniform float4 in_colors1; |
| |
| half4 main(float2 p) { |
| float2 pp = p - in_center; |
| float radius = length(pp); |
| radius = sqrt(radius); |
| float angle = atan(pp.y / pp.x); |
| float t = (angle + 3.1415926/2) / (3.1415926); |
| t += radius * rad_scale; |
| t = fract(t); |
| return in_colors0 * (1-t) + in_colors1 * t; |
| } |
| )", kAnimate_RTFlag | kBench_RTFlag) {} |
| |
| void onDraw(SkCanvas* canvas) override { |
| SkRuntimeShaderBuilder builder(fEffect); |
| |
| builder.uniform("rad_scale") = std::sin(fSecs * 0.5f + 2.0f) / 5; |
| builder.uniform("in_center") = SkV2{256, 256}; |
| builder.uniform("in_colors0") = SkColors::kRed; |
| builder.uniform("in_colors1") = SkColors::kGreen; |
| |
| SkPaint paint; |
| paint.setShader(builder.makeShader()); |
| canvas->drawRect({0, 0, 512, 512}, paint); |
| } |
| }; |
| DEF_GM(return new SpiralRT;) |
| |
| // Test case for sampling with both unmodified input coordinates, and explicit coordinates. |
| // The first version of skbug.com/11869 suffered a bug where all samples of a child were treated |
| // as pass-through if *at least one* used the unmodified coordinates. This was detected & tracked |
| // in b/181092919. This GM is similar, and demonstrates the bug before the fix was applied. |
| class UnsharpRT : public RuntimeShaderGM { |
| public: |
| UnsharpRT() : RuntimeShaderGM("unsharp_rt", {512, 256}, R"( |
| uniform shader child; |
| half4 main(float2 xy) { |
| half4 c = child.eval(xy) * 5; |
| c -= child.eval(xy + float2( 1, 0)); |
| c -= child.eval(xy + float2(-1, 0)); |
| c -= child.eval(xy + float2( 0, 1)); |
| c -= child.eval(xy + float2( 0, -1)); |
| return c; |
| } |
| )") {} |
| |
| sk_sp<SkImage> fMandrill; |
| |
| void onOnceBeforeDraw() override { |
| fMandrill = GetResourceAsImage("images/mandrill_256.png"); |
| this->RuntimeShaderGM::onOnceBeforeDraw(); |
| } |
| |
| void onDraw(SkCanvas* canvas) override { |
| // First we draw the unmodified image |
| canvas->drawImage(fMandrill, 0, 0); |
| |
| // Now draw the image with our unsharp mask applied |
| SkRuntimeShaderBuilder builder(fEffect); |
| const SkSamplingOptions sampling(SkFilterMode::kNearest); |
| builder.child("child") = fMandrill->makeShader(sampling); |
| |
| SkPaint paint; |
| paint.setShader(builder.makeShader()); |
| canvas->translate(256, 0); |
| canvas->drawRect({ 0, 0, 256, 256 }, paint); |
| } |
| }; |
| DEF_GM(return new UnsharpRT;) |
| |
| class ColorCubeRT : public RuntimeShaderGM { |
| public: |
| ColorCubeRT() : RuntimeShaderGM("color_cube_rt", {512, 512}, R"( |
| uniform shader child; |
| uniform shader color_cube; |
| |
| uniform float rg_scale; |
| uniform float rg_bias; |
| uniform float b_scale; |
| uniform float inv_size; |
| |
| half4 main(float2 xy) { |
| float4 c = unpremul(child.eval(xy)); |
| |
| // Map to cube coords: |
| float3 cubeCoords = float3(c.rg * rg_scale + rg_bias, c.b * b_scale); |
| |
| // Compute slice coordinate |
| float2 coords1 = float2((floor(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g); |
| float2 coords2 = float2(( ceil(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g); |
| |
| // Two bilinear fetches, plus a manual lerp for the third axis: |
| half4 color = mix(color_cube.eval(coords1), color_cube.eval(coords2), |
| fract(cubeCoords.b)); |
| |
| // Premul again |
| color.rgb *= color.a; |
| |
| return color; |
| } |
| )") {} |
| |
| sk_sp<SkImage> fMandrill, fMandrillSepia, fIdentityCube, fSepiaCube; |
| |
| void onOnceBeforeDraw() override { |
| fMandrill = GetResourceAsImage("images/mandrill_256.png"); |
| fMandrillSepia = GetResourceAsImage("images/mandrill_sepia.png"); |
| fIdentityCube = GetResourceAsImage("images/lut_identity.png"); |
| fSepiaCube = GetResourceAsImage("images/lut_sepia.png"); |
| |
| this->RuntimeShaderGM::onOnceBeforeDraw(); |
| } |
| |
| void onDraw(SkCanvas* canvas) override { |
| SkRuntimeShaderBuilder builder(fEffect); |
| |
| // First we draw the unmodified image, and a copy that was sepia-toned in Photoshop: |
| canvas->drawImage(fMandrill, 0, 0); |
| canvas->drawImage(fMandrillSepia, 0, 256); |
| |
| // LUT dimensions should be (kSize^2, kSize) |
| constexpr float kSize = 16.0f; |
| |
| const SkSamplingOptions sampling(SkFilterMode::kLinear); |
| |
| builder.uniform("rg_scale") = (kSize - 1) / kSize; |
| builder.uniform("rg_bias") = 0.5f / kSize; |
| builder.uniform("b_scale") = kSize - 1; |
| builder.uniform("inv_size") = 1.0f / kSize; |
| |
| builder.child("child") = fMandrill->makeShader(sampling); |
| |
| SkPaint paint; |
| |
| // TODO: Should we add SkImage::makeNormalizedShader() to handle this automatically? |
| SkMatrix normalize = SkMatrix::Scale(1.0f / (kSize * kSize), 1.0f / kSize); |
| |
| // Now draw the image with an identity color cube - it should look like the original |
| builder.child("color_cube") = fIdentityCube->makeShader(sampling, normalize); |
| paint.setShader(builder.makeShader()); |
| canvas->translate(256, 0); |
| canvas->drawRect({ 0, 0, 256, 256 }, paint); |
| |
| // ... and with a sepia-tone color cube. This should match the sepia-toned image. |
| builder.child("color_cube") = fSepiaCube->makeShader(sampling, normalize); |
| paint.setShader(builder.makeShader()); |
| canvas->translate(0, 256); |
| canvas->drawRect({ 0, 0, 256, 256 }, paint); |
| } |
| }; |
| DEF_GM(return new ColorCubeRT;) |
| |
| // Same as above, but demonstrating how to implement this as a runtime color filter (that samples |
| // a shader child for the LUT). |
| class ColorCubeColorFilterRT : public RuntimeShaderGM { |
| public: |
| ColorCubeColorFilterRT() : RuntimeShaderGM("color_cube_cf_rt", {512, 512}, R"( |
| uniform shader color_cube; |
| |
| uniform float rg_scale; |
| uniform float rg_bias; |
| uniform float b_scale; |
| uniform float inv_size; |
| |
| half4 main(half4 inColor) { |
| float4 c = unpremul(inColor); |
| |
| // Map to cube coords: |
| float3 cubeCoords = float3(c.rg * rg_scale + rg_bias, c.b * b_scale); |
| |
| // Compute slice coordinate |
| float2 coords1 = float2((floor(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g); |
| float2 coords2 = float2(( ceil(cubeCoords.b) + cubeCoords.r) * inv_size, cubeCoords.g); |
| |
| // Two bilinear fetches, plus a manual lerp for the third axis: |
| half4 color = mix(color_cube.eval(coords1), color_cube.eval(coords2), |
| fract(cubeCoords.b)); |
| |
| // Premul again |
| color.rgb *= color.a; |
| |
| return color; |
| } |
| )", kColorFilter_RTFlag) {} |
| |
| sk_sp<SkImage> fMandrill, fMandrillSepia, fIdentityCube, fSepiaCube; |
| |
| void onOnceBeforeDraw() override { |
| fMandrill = GetResourceAsImage("images/mandrill_256.png"); |
| fMandrillSepia = GetResourceAsImage("images/mandrill_sepia.png"); |
| fIdentityCube = GetResourceAsImage("images/lut_identity.png"); |
| fSepiaCube = GetResourceAsImage("images/lut_sepia.png"); |
| |
| this->RuntimeShaderGM::onOnceBeforeDraw(); |
| } |
| |
| void onDraw(SkCanvas* canvas) override { |
| // First we draw the unmodified image, and a copy that was sepia-toned in Photoshop: |
| canvas->drawImage(fMandrill, 0, 0); |
| canvas->drawImage(fMandrillSepia, 0, 256); |
| |
| // LUT dimensions should be (kSize^2, kSize) |
| constexpr float kSize = 16.0f; |
| |
| const SkSamplingOptions sampling(SkFilterMode::kLinear); |
| |
| float uniforms[] = { |
| (kSize - 1) / kSize, // rg_scale |
| 0.5f / kSize, // rg_bias |
| kSize - 1, // b_scale |
| 1.0f / kSize, // inv_size |
| }; |
| |
| SkPaint paint; |
| |
| // TODO: Should we add SkImage::makeNormalizedShader() to handle this automatically? |
| SkMatrix normalize = SkMatrix::Scale(1.0f / (kSize * kSize), 1.0f / kSize); |
| |
| // Now draw the image with an identity color cube - it should look like the original |
| SkRuntimeEffect::ChildPtr children[] = {fIdentityCube->makeShader(sampling, normalize)}; |
| paint.setColorFilter(fEffect->makeColorFilter( |
| SkData::MakeWithCopy(uniforms, sizeof(uniforms)), SkMakeSpan(children))); |
| canvas->drawImage(fMandrill, 256, 0, sampling, &paint); |
| |
| // ... and with a sepia-tone color cube. This should match the sepia-toned image. |
| children[0] = fSepiaCube->makeShader(sampling, normalize); |
| paint.setColorFilter(fEffect->makeColorFilter( |
| SkData::MakeWithCopy(uniforms, sizeof(uniforms)), SkMakeSpan(children))); |
| canvas->drawImage(fMandrill, 256, 256, sampling, &paint); |
| } |
| }; |
| DEF_GM(return new ColorCubeColorFilterRT;) |
| |
| class DefaultColorRT : public RuntimeShaderGM { |
| public: |
| DefaultColorRT() : RuntimeShaderGM("default_color_rt", {512, 256}, R"( |
| uniform shader child; |
| half4 main(float2 xy) { |
| return child.eval(xy); |
| } |
| )") {} |
| |
| sk_sp<SkImage> fMandrill; |
| |
| void onOnceBeforeDraw() override { |
| fMandrill = GetResourceAsImage("images/mandrill_256.png"); |
| this->RuntimeShaderGM::onOnceBeforeDraw(); |
| } |
| |
| void onDraw(SkCanvas* canvas) override { |
| SkRuntimeShaderBuilder builder(fEffect); |
| |
| // First, we leave the child as null, so sampling it returns the default (paint) color |
| SkPaint paint; |
| paint.setColor4f({ 0.25f, 0.75f, 0.75f, 1.0f }); |
| paint.setShader(builder.makeShader()); |
| canvas->drawRect({ 0, 0, 256, 256 }, paint); |
| |
| // Now we bind an image shader as the child. This (by convention) scales by the paint alpha |
| builder.child("child") = fMandrill->makeShader(SkSamplingOptions()); |
| paint.setColor4f({ 1.0f, 1.0f, 1.0f, 0.5f }); |
| paint.setShader(builder.makeShader()); |
| canvas->translate(256, 0); |
| canvas->drawRect({ 0, 0, 256, 256 }, paint); |
| |
| } |
| }; |
| DEF_GM(return new DefaultColorRT;) |
| |
| // Emits coverage for a rounded rectangle whose corners are superellipses defined by the boundary: |
| // |
| // x^n + y^n == 1 |
| // |
| // Where x and y are normalized, clamped coordinates ranging from 0..1 inside the nearest corner's |
| // bounding box. |
| // |
| // See: https://en.wikipedia.org/wiki/Superellipse |
| class ClipSuperRRect : public RuntimeShaderGM { |
| public: |
| ClipSuperRRect(const char* name, float power) : RuntimeShaderGM(name, {500, 500}, R"( |
| uniform float power_minus1; |
| uniform float2 stretch_factor; |
| uniform float2x2 derivatives; |
| half4 main(float2 xy) { |
| xy = max(abs(xy) + stretch_factor, 0); |
| float2 exp_minus1 = pow(xy, power_minus1.xx); // If power == 3.5: xy * xy * sqrt(xy) |
| float f = dot(exp_minus1, xy) - 1; // f = x^n + y^n - 1 |
| float2 grad = exp_minus1 * derivatives; |
| float fwidth = abs(grad.x) + abs(grad.y) + 1e-12; // 1e-12 to avoid a divide by zero. |
| return half4(saturate(.5 - f/fwidth)); // Approx coverage by riding the gradient to f=0. |
| } |
| )"), fPower(power) {} |
| |
| void drawSuperRRect(SkCanvas* canvas, const SkRect& superRRect, float radX, float radY, |
| SkColor color) { |
| SkPaint paint; |
| paint.setColor(color); |
| |
| if (fPower == 2) { |
| // Draw a normal round rect for the sake of testing. |
| SkRRect rrect = SkRRect::MakeRectXY(superRRect, radX, radY); |
| paint.setAntiAlias(true); |
| canvas->drawRRect(rrect, paint); |
| return; |
| } |
| |
| SkRuntimeShaderBuilder builder(fEffect); |
| builder.uniform("power_minus1") = fPower - 1; |
| |
| // Size the corners such that the "apex" of our "super" rounded corner is in the same |
| // location that the apex of a circular rounded corner would be with the given radii. We |
| // define the apex as the point on the rounded corner that is 45 degrees between the |
| // horizontal and vertical edges. |
| float scale = (1 - SK_ScalarRoot2Over2) / (1 - exp2f(-1/fPower)); |
| float cornerWidth = radX * scale; |
| float cornerHeight = radY * scale; |
| cornerWidth = std::min(cornerWidth, superRRect.width() * .5f); |
| cornerHeight = std::min(cornerHeight, superRRect.height() * .5f); |
| // The stretch factor controls how long the flat edge should be between rounded corners. |
| builder.uniform("stretch_factor") = SkV2{1 - superRRect.width()*.5f / cornerWidth, |
| 1 - superRRect.height()*.5f / cornerHeight}; |
| |
| // Calculate a 2x2 "derivatives" matrix that the shader will use to find the gradient. |
| // |
| // f = s^n + t^n - 1 [s,t are "super" rounded corner coords in normalized 0..1 space] |
| // |
| // gradient = [df/dx df/dy] = [ns^(n-1) nt^(n-1)] * |ds/dx ds/dy| |
| // |dt/dx dt/dy| |
| // |
| // = [s^(n-1) t^(n-1)] * |n 0| * |ds/dx ds/dy| |
| // |0 n| |dt/dx dt/dy| |
| // |
| // = [s^(n-1) t^(n-1)] * |2n/cornerWidth 0| * mat2x2(canvasMatrix)^-1 |
| // |0 2n/cornerHeight| |
| // |
| // = [s^(n-1) t^(n-1)] * "derivatives" |
| // |
| const SkMatrix& M = canvas->getTotalMatrix(); |
| float a=M.getScaleX(), b=M.getSkewX(), c=M.getSkewY(), d=M.getScaleY(); |
| float determinant = a*d - b*c; |
| float dx = fPower / (cornerWidth * determinant); |
| float dy = fPower / (cornerHeight * determinant); |
| builder.uniform("derivatives") = SkV4{d*dx, -c*dy, -b*dx, a*dy}; |
| |
| // This matrix will be inverted by the effect system, giving a matrix that converts local |
| // coordinates to (almost) coner coordinates. To get the rest of the way to the nearest |
| // corner's space, the shader will have to take the absolute value, add the stretch_factor, |
| // then clamp above zero. |
| SkMatrix cornerToLocal; |
| cornerToLocal.setScaleTranslate(cornerWidth, cornerHeight, superRRect.centerX(), |
| superRRect.centerY()); |
| canvas->clipShader(builder.makeShader(&cornerToLocal)); |
| |
| // Bloat the outer edges of the rect we will draw so it contains all the antialiased pixels. |
| // Bloat by a full pixel instead of half in case Skia is in a mode that draws this rect with |
| // unexpected AA of its own. |
| float inverseDet = 1 / fabsf(determinant); |
| float bloatX = (fabsf(d) + fabsf(c)) * inverseDet; |
| float bloatY = (fabsf(b) + fabsf(a)) * inverseDet; |
| canvas->drawRect(superRRect.makeOutset(bloatX, bloatY), paint); |
| } |
| |
| void onDraw(SkCanvas* canvas) override { |
| SkRandom rand(2); |
| |
| canvas->save(); |
| canvas->translate(canvas->imageInfo().width() / 2.f, canvas->imageInfo().height() / 2.f); |
| |
| canvas->save(); |
| canvas->rotate(21); |
| this->drawSuperRRect(canvas, SkRect::MakeXYWH(-5, 25, 175, 100), 50, 30, |
| rand.nextU() | 0xff808080); |
| canvas->restore(); |
| |
| canvas->save(); |
| canvas->rotate(94); |
| this->drawSuperRRect(canvas, SkRect::MakeXYWH(95, 75, 125, 100), 30, 30, |
| rand.nextU() | 0xff808080); |
| canvas->restore(); |
| |
| canvas->save(); |
| canvas->rotate(132); |
| this->drawSuperRRect(canvas, SkRect::MakeXYWH(0, 75, 150, 100), 40, 30, |
| rand.nextU() | 0xff808080); |
| canvas->restore(); |
| |
| canvas->save(); |
| canvas->rotate(282); |
| this->drawSuperRRect(canvas, SkRect::MakeXYWH(15, -20, 100, 100), 20, 20, |
| rand.nextU() | 0xff808080); |
| canvas->restore(); |
| |
| canvas->save(); |
| canvas->rotate(0); |
| this->drawSuperRRect(canvas, SkRect::MakeXYWH(140, -50, 90, 110), 25, 25, |
| rand.nextU() | 0xff808080); |
| canvas->restore(); |
| |
| canvas->save(); |
| canvas->rotate(-35); |
| this->drawSuperRRect(canvas, SkRect::MakeXYWH(160, -60, 60, 90), 18, 18, |
| rand.nextU() | 0xff808080); |
| canvas->restore(); |
| |
| canvas->save(); |
| canvas->rotate(65); |
| this->drawSuperRRect(canvas, SkRect::MakeXYWH(220, -120, 60, 90), 18, 18, |
| rand.nextU() | 0xff808080); |
| canvas->restore(); |
| |
| canvas->save(); |
| canvas->rotate(265); |
| this->drawSuperRRect(canvas, SkRect::MakeXYWH(150, -129, 80, 160), 24, 39, |
| rand.nextU() | 0xff808080); |
| canvas->restore(); |
| |
| canvas->restore(); |
| } |
| |
| private: |
| const float fPower; |
| }; |
| DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow2", 2);) |
| // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow3", 3);) |
| DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow3.5", 3.5);) |
| // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow4", 4);) |
| // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow4.5", 4.5);) |
| // DEF_GM(return new ClipSuperRRect("clip_super_rrect_pow5", 5);) |
| |
| class LinearGradientRT : public RuntimeShaderGM { |
| public: |
| LinearGradientRT() : RuntimeShaderGM("linear_gradient_rt", {256 + 10, 128 + 15}, R"( |
| layout(color) uniform vec4 in_colors0; |
| layout(color) uniform vec4 in_colors1; |
| |
| vec4 main(vec2 p) { |
| float t = p.x / 256; |
| if (p.y < 32) { |
| return mix(in_colors0, in_colors1, t); |
| } else { |
| vec3 linColor0 = toLinearSrgb(in_colors0.rgb); |
| vec3 linColor1 = toLinearSrgb(in_colors1.rgb); |
| vec3 linColor = mix(linColor0, linColor1, t); |
| return fromLinearSrgb(linColor).rgb1; |
| } |
| } |
| )") {} |
| |
| void onDraw(SkCanvas* canvas) override { |
| // Colors chosen to use values other than 0 and 1 - so that it's obvious if the conversion |
| // intrinsics are doing anything. (Most transfer functions map 0 -> 0 and 1 -> 1). |
| SkRuntimeShaderBuilder builder(fEffect); |
| builder.uniform("in_colors0") = SkColor4f{0.75f, 0.25f, 0.0f, 1.0f}; |
| builder.uniform("in_colors1") = SkColor4f{0.0f, 0.75f, 0.25f, 1.0f}; |
| SkPaint paint; |
| paint.setShader(builder.makeShader()); |
| |
| canvas->save(); |
| canvas->clear(SK_ColorWHITE); |
| canvas->translate(5, 5); |
| |
| // We draw everything twice. First to a surface with no color management, where the |
| // intrinsics should do nothing (eg, the top bar should look the same in the top and bottom |
| // halves). Then to an sRGB surface, where they should produce linearly interpolated |
| // gradients (the bottom half of the second bar should be brighter than the top half). |
| for (auto cs : {static_cast<SkColorSpace*>(nullptr), sk_srgb_singleton()}) { |
| SkImageInfo info = SkImageInfo::Make( |
| 256, 64, kN32_SkColorType, kPremul_SkAlphaType, sk_ref_sp(cs)); |
| auto surface = canvas->makeSurface(info); |
| if (!surface) { |
| surface = SkSurface::MakeRaster(info); |
| } |
| |
| surface->getCanvas()->drawRect({0, 0, 256, 64}, paint); |
| canvas->drawImage(surface->makeImageSnapshot(), 0, 0); |
| canvas->translate(0, 64 + 5); |
| } |
| |
| canvas->restore(); |
| } |
| }; |
| DEF_GM(return new LinearGradientRT;) |
| |
| DEF_SIMPLE_GM(child_sampling_rt, canvas, 256,256) { |
| static constexpr char scale[] = |
| "uniform shader child;" |
| "half4 main(float2 xy) {" |
| " return child.eval(xy*0.1);" |
| "}"; |
| |
| SkPaint p; |
| p.setColor(SK_ColorRED); |
| p.setAntiAlias(true); |
| p.setStyle(SkPaint::kStroke_Style); |
| p.setStrokeWidth(1); |
| |
| auto surf = SkSurface::MakeRasterN32Premul(100,100); |
| surf->getCanvas()->drawLine(0, 0, 100, 100, p); |
| auto shader = surf->makeImageSnapshot()->makeShader(SkSamplingOptions(SkFilterMode::kLinear)); |
| |
| SkRuntimeShaderBuilder builder(SkRuntimeEffect::MakeForShader(SkString(scale)).effect); |
| builder.child("child") = shader; |
| p.setShader(builder.makeShader()); |
| |
| canvas->drawPaint(p); |
| } |
| |
| static sk_sp<SkShader> normal_map_shader() { |
| // Produces a hemispherical normal: |
| static const char* kSrc = R"( |
| half4 main(vec2 p) { |
| p = (p / 256) * 2 - 1; |
| float p2 = dot(p, p); |
| vec3 v = (p2 > 1) ? vec3(0, 0, 1) : vec3(p, sqrt(1 - p2)); |
| return (v * 0.5 + 0.5).xyz1; |
| } |
| )"; |
| auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect; |
| return effect->makeShader(nullptr, {}); |
| } |
| |
| static sk_sp<SkImage> normal_map_image() { |
| // Above, baked into an image: |
| auto info = SkImageInfo::Make(256, 256, kN32_SkColorType, kPremul_SkAlphaType); |
| auto surface = SkSurface::MakeRaster(info); |
| SkPaint p; |
| p.setShader(normal_map_shader()); |
| surface->getCanvas()->drawPaint(p); |
| return surface->makeImageSnapshot(); |
| } |
| |
| static sk_sp<SkShader> normal_map_image_shader() { |
| return normal_map_image()->makeShader(SkSamplingOptions{}); |
| } |
| |
| static sk_sp<SkShader> normal_map_raw_image_shader() { |
| return normal_map_image()->makeRawShader(SkSamplingOptions{}); |
| } |
| |
| static sk_sp<SkImage> normal_map_unpremul_image() { |
| auto image = normal_map_image(); |
| SkPixmap pm; |
| SkAssertResult(image->peekPixels(&pm)); |
| SkBitmap bmp; |
| bmp.allocPixels(image->imageInfo().makeAlphaType(kUnpremul_SkAlphaType)); |
| // Copy all pixels over, but set alpha to 0 |
| for (int y = 0; y < pm.height(); y++) { |
| for (int x = 0; x < pm.width(); x++) { |
| *bmp.getAddr32(x, y) = *pm.addr32(x, y) & 0x00FFFFFF; |
| } |
| } |
| return bmp.asImage(); |
| } |
| |
| static sk_sp<SkShader> normal_map_unpremul_image_shader() { |
| return normal_map_unpremul_image()->makeShader(SkSamplingOptions{}); |
| } |
| |
| static sk_sp<SkShader> normal_map_raw_unpremul_image_shader() { |
| return normal_map_unpremul_image()->makeRawShader(SkSamplingOptions{}); |
| } |
| |
| static sk_sp<SkShader> lit_shader(sk_sp<SkShader> normals) { |
| // Simple N-dot-L against a fixed, directional light: |
| static const char* kSrc = R"( |
| uniform shader normals; |
| half4 main(vec2 p) { |
| vec3 n = normalize(normals.eval(p).xyz * 2 - 1); |
| vec3 l = normalize(vec3(1, -1, 1)); |
| return saturate(dot(n, l)).xxx1; |
| } |
| )"; |
| auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect; |
| return effect->makeShader(nullptr, &normals, 1); |
| } |
| |
| static sk_sp<SkShader> lit_shader_linear(sk_sp<SkShader> normals) { |
| // Simple N-dot-L against a fixed, directional light, done in linear space: |
| static const char* kSrc = R"( |
| uniform shader normals; |
| half4 main(vec2 p) { |
| vec3 n = normalize(normals.eval(p).xyz * 2 - 1); |
| vec3 l = normalize(vec3(1, -1, 1)); |
| return fromLinearSrgb(saturate(dot(n, l)).xxx).xxx1; |
| } |
| )"; |
| auto effect = SkRuntimeEffect::MakeForShader(SkString(kSrc)).effect; |
| return effect->makeShader(nullptr, &normals, 1); |
| } |
| |
| DEF_SIMPLE_GM(paint_alpha_normals_rt, canvas, 512,512) { |
| // Various draws, with non-opaque paint alpha. This demonstrates several issues around how |
| // paint alpha is applied differently on CPU (globally, after all shaders) and GPU (per shader, |
| // inconsistently). See: skbug.com/11942 |
| // |
| // When this works, it will be a demo of applying paint alpha to fade out a complex effect. |
| auto draw_shader = [=](int x, int y, sk_sp<SkShader> shader) { |
| SkPaint p; |
| p.setAlpha(164); |
| p.setShader(shader); |
| |
| canvas->save(); |
| canvas->translate(x, y); |
| canvas->clipRect({0, 0, 256, 256}); |
| canvas->drawPaint(p); |
| canvas->restore(); |
| }; |
| |
| draw_shader(0, 0, normal_map_shader()); |
| draw_shader(0, 256, normal_map_image_shader()); |
| |
| draw_shader(256, 0, lit_shader(normal_map_shader())); |
| draw_shader(256, 256, lit_shader(normal_map_image_shader())); |
| } |
| |
| DEF_SIMPLE_GM(raw_image_shader_normals_rt, canvas, 768, 512) { |
| // Demonstrates the utility of SkImage::makeRawShader, for non-color child shaders. |
| |
| // First, make an offscreen surface, so we can control the destination color space: |
| auto surfInfo = SkImageInfo::Make(512, 512, |
| kN32_SkColorType, |
| kPremul_SkAlphaType, |
| SkColorSpace::MakeSRGB()->makeColorSpin()); |
| auto surface = canvas->makeSurface(surfInfo); |
| if (!surface) { |
| surface = SkSurface::MakeRaster(surfInfo); |
| } |
| |
| auto draw_shader = [](int x, int y, sk_sp<SkShader> shader, SkCanvas* canvas) { |
| SkPaint p; |
| p.setShader(shader); |
| |
| canvas->save(); |
| canvas->translate(x, y); |
| canvas->clipRect({0, 0, 256, 256}); |
| canvas->drawPaint(p); |
| canvas->restore(); |
| }; |
| |
| sk_sp<SkShader> colorNormals = normal_map_image_shader(), |
| rawNormals = normal_map_raw_image_shader(); |
| |
| // Draw our normal map as colors (will be color-rotated), and raw (untransformed) |
| draw_shader(0, 0, colorNormals, surface->getCanvas()); |
| draw_shader(0, 256, rawNormals, surface->getCanvas()); |
| |
| // Now draw our lighting shader using the normal and raw versions of the normals as children. |
| // The top image will have the normals rotated (incorrectly), so the lighting is very dark. |
| draw_shader(256, 0, lit_shader(colorNormals), surface->getCanvas()); |
| draw_shader(256, 256, lit_shader(rawNormals), surface->getCanvas()); |
| |
| // Now draw the offscreen surface back to our original canvas. If we do this naively, the image |
| // will be un-transformed back to the canvas' color space. That will have the effect of undoing |
| // the color spin on the upper-left, and APPLYING a color-spin on the bottom left. To preserve |
| // the intent of this GM (and make it draw consistently whether or not the original surface has |
| // a color space attached), we reinterpret the offscreen image as being in sRGB: |
| canvas->drawImage( |
| surface->makeImageSnapshot()->reinterpretColorSpace(SkColorSpace::MakeSRGB()), 0, 0); |
| |
| // Finally, to demonstrate that raw unpremul image shaders don't premul, draw lighting two more |
| // times, with an unpremul normal map (containing ZERO in the alpha channel). THe top will |
| // premultiply the normals, resulting in totally dark lighting. The bottom will retain the RGB |
| // encoded normals, even with zero alpha: |
| draw_shader(512, 0, lit_shader(normal_map_unpremul_image_shader()), canvas); |
| draw_shader(512, 256, lit_shader(normal_map_raw_unpremul_image_shader()), canvas); |
| } |
| |
| DEF_SIMPLE_GM(lit_shader_linear_rt, canvas, 512, 256) { |
| // First, make an offscreen surface, so we can control the destination color space: |
| auto surfInfo = SkImageInfo::Make(512, 256, |
| kN32_SkColorType, |
| kPremul_SkAlphaType, |
| SkColorSpace::MakeSRGB()); |
| auto surface = canvas->makeSurface(surfInfo); |
| if (!surface) { |
| surface = SkSurface::MakeRaster(surfInfo); |
| } |
| |
| auto draw_shader = [](int x, int y, sk_sp<SkShader> shader, SkCanvas* canvas) { |
| SkPaint p; |
| p.setShader(shader); |
| |
| canvas->save(); |
| canvas->translate(x, y); |
| canvas->clipRect({0, 0, 256, 256}); |
| canvas->drawPaint(p); |
| canvas->restore(); |
| }; |
| |
| // We draw two lit spheres - one does math in the working space (so gamma-encoded). The second |
| // works in linear space, then converts to sRGB. This produces (more accurate) sharp falloff: |
| draw_shader(0, 0, lit_shader(normal_map_shader()), surface->getCanvas()); |
| draw_shader(256, 0, lit_shader_linear(normal_map_shader()), surface->getCanvas()); |
| |
| // Now draw the offscreen surface back to our original canvas: |
| canvas->drawImage(surface->makeImageSnapshot(), 0, 0); |
| } |