blob: d6ed1cf34c7b3732769737b54ae3365eaa366e14 [file] [log] [blame]
/*
* Copyright 2017 ARM Ltd.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/core/SkDistanceFieldGen.h"
#include "src/gpu/GrDistanceFieldGenFromVector.h"
#include "include/core/SkMatrix.h"
#include "include/gpu/GrConfig.h"
#include "include/private/SkTPin.h"
#include "src/core/SkAutoMalloc.h"
#include "src/core/SkGeometry.h"
#include "src/core/SkPointPriv.h"
#include "src/core/SkRectPriv.h"
#include "src/gpu/geometry/GrPathUtils.h"
namespace {
// TODO: should we make this real (i.e. src/core) and distinguish it from
// pathops SkDPoint?
struct DPoint {
double fX, fY;
double distanceSquared(DPoint p) const {
double dx = fX - p.fX;
double dy = fY - p.fY;
return dx*dx + dy*dy;
}
double distance(DPoint p) const { return sqrt(this->distanceSquared(p)); }
};
}
/**
* If a scanline (a row of texel) cross from the kRight_SegSide
* of a segment to the kLeft_SegSide, the winding score should
* add 1.
* And winding score should subtract 1 if the scanline cross
* from kLeft_SegSide to kRight_SegSide.
* Always return kNA_SegSide if the scanline does not cross over
* the segment. Winding score should be zero in this case.
* You can get the winding number for each texel of the scanline
* by adding the winding score from left to right.
* Assuming we always start from outside, so the winding number
* should always start from zero.
* ________ ________
* | | | |
* ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment
* |+1 |-1 |-1 |+1 <= Winding score
* 0 | 1 ^ 0 ^ -1 |0 <= Winding number
* |________| |________|
*
* .......NA................NA..........
* 0 0
*/
enum SegSide {
kLeft_SegSide = -1,
kOn_SegSide = 0,
kRight_SegSide = 1,
kNA_SegSide = 2,
};
struct DFData {
float fDistSq; // distance squared to nearest (so far) edge
int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment
};
///////////////////////////////////////////////////////////////////////////////
/*
* Type definition for double precision DAffineMatrix
*/
// Matrix with double precision for affine transformation.
// We don't store row 3 because its always (0, 0, 1).
class DAffineMatrix {
public:
double operator[](int index) const {
SkASSERT((unsigned)index < 6);
return fMat[index];
}
double& operator[](int index) {
SkASSERT((unsigned)index < 6);
return fMat[index];
}
void setAffine(double m11, double m12, double m13,
double m21, double m22, double m23) {
fMat[0] = m11;
fMat[1] = m12;
fMat[2] = m13;
fMat[3] = m21;
fMat[4] = m22;
fMat[5] = m23;
}
/** Set the matrix to identity
*/
void reset() {
fMat[0] = fMat[4] = 1.0;
fMat[1] = fMat[3] =
fMat[2] = fMat[5] = 0.0;
}
// alias for reset()
void setIdentity() { this->reset(); }
DPoint mapPoint(const SkPoint& src) const {
DPoint pt = {src.fX, src.fY};
return this->mapPoint(pt);
}
DPoint mapPoint(const DPoint& src) const {
return { fMat[0] * src.fX + fMat[1] * src.fY + fMat[2],
fMat[3] * src.fX + fMat[4] * src.fY + fMat[5] };
}
private:
double fMat[6];
};
///////////////////////////////////////////////////////////////////////////////
static const double kClose = (SK_Scalar1 / 16.0);
static const double kCloseSqd = kClose * kClose;
static const double kNearlyZero = (SK_Scalar1 / (1 << 18));
static const double kTangentTolerance = (SK_Scalar1 / (1 << 11));
static const float kConicTolerance = 0.25f;
// returns true if a >= min(b,c) && a < max(b,c)
static inline bool between_closed_open(double a, double b, double c,
double tolerance = 0.0,
bool xformToleranceToX = false) {
SkASSERT(tolerance >= 0.0);
double tolB = tolerance;
double tolC = tolerance;
if (xformToleranceToX) {
// Canonical space is y = x^2 and the derivative of x^2 is 2x.
// So the slope of the tangent line at point (x, x^2) is 2x.
//
// /|
// sqrt(2x * 2x + 1 * 1) / | 2x
// /__|
// 1
tolB = tolerance / sqrt(4.0 * b * b + 1.0);
tolC = tolerance / sqrt(4.0 * c * c + 1.0);
}
return b < c ? (a >= b - tolB && a < c - tolC) :
(a >= c - tolC && a < b - tolB);
}
// returns true if a >= min(b,c) && a <= max(b,c)
static inline bool between_closed(double a, double b, double c,
double tolerance = 0.0,
bool xformToleranceToX = false) {
SkASSERT(tolerance >= 0.0);
double tolB = tolerance;
double tolC = tolerance;
if (xformToleranceToX) {
tolB = tolerance / sqrt(4.0 * b * b + 1.0);
tolC = tolerance / sqrt(4.0 * c * c + 1.0);
}
return b < c ? (a >= b - tolB && a <= c + tolC) :
(a >= c - tolC && a <= b + tolB);
}
static inline bool nearly_zero(double x, double tolerance = kNearlyZero) {
SkASSERT(tolerance >= 0.0);
return fabs(x) <= tolerance;
}
static inline bool nearly_equal(double x, double y,
double tolerance = kNearlyZero,
bool xformToleranceToX = false) {
SkASSERT(tolerance >= 0.0);
if (xformToleranceToX) {
tolerance = tolerance / sqrt(4.0 * y * y + 1.0);
}
return fabs(x - y) <= tolerance;
}
static inline double sign_of(const double &val) {
return std::copysign(1, val);
}
static bool is_colinear(const SkPoint pts[3]) {
return nearly_zero((pts[1].fY - pts[0].fY) * (pts[1].fX - pts[2].fX) -
(pts[1].fY - pts[2].fY) * (pts[1].fX - pts[0].fX), kCloseSqd);
}
class PathSegment {
public:
enum {
// These enum values are assumed in member functions below.
kLine = 0,
kQuad = 1,
} fType;
// line uses 2 pts, quad uses 3 pts
SkPoint fPts[3];
DPoint fP0T, fP2T;
DAffineMatrix fXformMatrix; // transforms the segment into canonical space
double fScalingFactor;
double fScalingFactorSqd;
double fNearlyZeroScaled;
double fTangentTolScaledSqd;
SkRect fBoundingBox;
void init();
int countPoints() {
static_assert(0 == kLine && 1 == kQuad);
return fType + 2;
}
const SkPoint& endPt() const {
static_assert(0 == kLine && 1 == kQuad);
return fPts[fType + 1];
}
};
typedef SkTArray<PathSegment, true> PathSegmentArray;
void PathSegment::init() {
const DPoint p0 = { fPts[0].fX, fPts[0].fY };
const DPoint p2 = { this->endPt().fX, this->endPt().fY };
const double p0x = p0.fX;
const double p0y = p0.fY;
const double p2x = p2.fX;
const double p2y = p2.fY;
fBoundingBox.set(fPts[0], this->endPt());
if (fType == PathSegment::kLine) {
fScalingFactorSqd = fScalingFactor = 1.0;
double hypotenuse = p0.distance(p2);
if (SkTAbs(hypotenuse) < 1.0e-100) {
fXformMatrix.reset();
} else {
const double cosTheta = (p2x - p0x) / hypotenuse;
const double sinTheta = (p2y - p0y) / hypotenuse;
// rotates the segment to the x-axis, with p0 at the origin
fXformMatrix.setAffine(
cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y),
-sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y)
);
}
} else {
SkASSERT(fType == PathSegment::kQuad);
// Calculate bounding box
const SkPoint _P1mP0 = fPts[1] - fPts[0];
SkPoint t = _P1mP0 - fPts[2] + fPts[1];
t.fX = _P1mP0.fX / t.fX;
t.fY = _P1mP0.fY / t.fY;
t.fX = SkTPin(t.fX, 0.0f, 1.0f);
t.fY = SkTPin(t.fY, 0.0f, 1.0f);
t.fX = _P1mP0.fX * t.fX;
t.fY = _P1mP0.fY * t.fY;
const SkPoint m = fPts[0] + t;
SkRectPriv::GrowToInclude(&fBoundingBox, m);
const double p1x = fPts[1].fX;
const double p1y = fPts[1].fY;
const double p0xSqd = p0x * p0x;
const double p0ySqd = p0y * p0y;
const double p2xSqd = p2x * p2x;
const double p2ySqd = p2y * p2y;
const double p1xSqd = p1x * p1x;
const double p1ySqd = p1y * p1y;
const double p01xProd = p0x * p1x;
const double p02xProd = p0x * p2x;
const double b12xProd = p1x * p2x;
const double p01yProd = p0y * p1y;
const double p02yProd = p0y * p2y;
const double b12yProd = p1y * p2y;
// calculate quadratic params
const double sqrtA = p0y - (2.0 * p1y) + p2y;
const double a = sqrtA * sqrtA;
const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x);
const double sqrtB = p0x - (2.0 * p1x) + p2x;
const double b = sqrtB * sqrtB;
const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd)
- (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd)
+ (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd)
+ (p2xSqd * p0ySqd);
const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd)
+ (2.0 * p0x * b12yProd) - (p0x * p2ySqd)
+ (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd)
+ (2.0 * p1x * b12yProd) - (p2x * p0ySqd)
+ (2.0 * p2x * p01yProd) + (p2x * p02yProd)
- (2.0 * p2x * p1ySqd);
const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y)
- (2.0 * p01xProd * p2y) - (p02xProd * p0y)
+ (4.0 * p02xProd * p1y) - (p02xProd * p2y)
+ (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y)
- (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y)
+ (p2xSqd * p0y));
const double cosTheta = sqrt(a / (a + b));
const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b));
const double gDef = cosTheta * g - sinTheta * f;
const double fDef = sinTheta * g + cosTheta * f;
const double x0 = gDef / (a + b);
const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b)));
const double lambda = -1.0 * ((a + b) / (2.0 * fDef));
fScalingFactor = fabs(1.0 / lambda);
fScalingFactorSqd = fScalingFactor * fScalingFactor;
const double lambda_cosTheta = lambda * cosTheta;
const double lambda_sinTheta = lambda * sinTheta;
// transforms to lie on a canonical y = x^2 parabola
fXformMatrix.setAffine(
lambda_cosTheta, -lambda_sinTheta, lambda * x0,
lambda_sinTheta, lambda_cosTheta, lambda * y0
);
}
fNearlyZeroScaled = kNearlyZero / fScalingFactor;
fTangentTolScaledSqd = kTangentTolerance * kTangentTolerance / fScalingFactorSqd;
fP0T = fXformMatrix.mapPoint(p0);
fP2T = fXformMatrix.mapPoint(p2);
}
static void init_distances(DFData* data, int size) {
DFData* currData = data;
for (int i = 0; i < size; ++i) {
// init distance to "far away"
currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude;
currData->fDeltaWindingScore = 0;
++currData;
}
}
static inline void add_line(const SkPoint pts[2], PathSegmentArray* segments) {
segments->push_back();
segments->back().fType = PathSegment::kLine;
segments->back().fPts[0] = pts[0];
segments->back().fPts[1] = pts[1];
segments->back().init();
}
static inline void add_quad(const SkPoint pts[3], PathSegmentArray* segments) {
if (SkPointPriv::DistanceToSqd(pts[0], pts[1]) < kCloseSqd ||
SkPointPriv::DistanceToSqd(pts[1], pts[2]) < kCloseSqd ||
is_colinear(pts)) {
if (pts[0] != pts[2]) {
SkPoint line_pts[2];
line_pts[0] = pts[0];
line_pts[1] = pts[2];
add_line(line_pts, segments);
}
} else {
segments->push_back();
segments->back().fType = PathSegment::kQuad;
segments->back().fPts[0] = pts[0];
segments->back().fPts[1] = pts[1];
segments->back().fPts[2] = pts[2];
segments->back().init();
}
}
static inline void add_cubic(const SkPoint pts[4],
PathSegmentArray* segments) {
SkSTArray<15, SkPoint, true> quads;
GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads);
int count = quads.count();
for (int q = 0; q < count; q += 3) {
add_quad(&quads[q], segments);
}
}
static float calculate_nearest_point_for_quad(
const PathSegment& segment,
const DPoint &xFormPt) {
static const float kThird = 0.33333333333f;
static const float kTwentySeventh = 0.037037037f;
const float a = 0.5f - (float)xFormPt.fY;
const float b = -0.5f * (float)xFormPt.fX;
const float a3 = a * a * a;
const float b2 = b * b;
const float c = (b2 * 0.25f) + (a3 * kTwentySeventh);
if (c >= 0.f) {
const float sqrtC = sqrt(c);
const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC);
return result;
} else {
const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f);
const float phi = (float)acos(cosPhi);
float result;
if (xFormPt.fX > 0.f) {
result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
if (!between_closed(result, segment.fP0T.fX, segment.fP2T.fX)) {
result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
}
} else {
result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
if (!between_closed(result, segment.fP0T.fX, segment.fP2T.fX)) {
result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
}
}
return result;
}
}
// This structure contains some intermediate values shared by the same row.
// It is used to calculate segment side of a quadratic bezier.
struct RowData {
// The intersection type of a scanline and y = x * x parabola in canonical space.
enum IntersectionType {
kNoIntersection,
kVerticalLine,
kTangentLine,
kTwoPointsIntersect
} fIntersectionType;
// The direction of the quadratic segment/scanline in the canonical space.
// 1: The quadratic segment/scanline going from negative x-axis to positive x-axis.
// 0: The scanline is a vertical line in the canonical space.
// -1: The quadratic segment/scanline going from positive x-axis to negative x-axis.
int fQuadXDirection;
int fScanlineXDirection;
// The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type.
double fYAtIntersection;
// The x-value for two intersection points.
double fXAtIntersection1;
double fXAtIntersection2;
};
void precomputation_for_row(RowData *rowData, const PathSegment& segment,
const SkPoint& pointLeft, const SkPoint& pointRight) {
if (segment.fType != PathSegment::kQuad) {
return;
}
const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft);
const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);
rowData->fQuadXDirection = (int)sign_of(segment.fP2T.fX - segment.fP0T.fX);
rowData->fScanlineXDirection = (int)sign_of(xFormPtRight.fX - xFormPtLeft.fX);
const double x1 = xFormPtLeft.fX;
const double y1 = xFormPtLeft.fY;
const double x2 = xFormPtRight.fX;
const double y2 = xFormPtRight.fY;
if (nearly_equal(x1, x2, segment.fNearlyZeroScaled, true)) {
rowData->fIntersectionType = RowData::kVerticalLine;
rowData->fYAtIntersection = x1 * x1;
rowData->fScanlineXDirection = 0;
return;
}
// Line y = mx + b
const double m = (y2 - y1) / (x2 - x1);
const double b = -m * x1 + y1;
const double m2 = m * m;
const double c = m2 + 4.0 * b;
const double tol = 4.0 * segment.fTangentTolScaledSqd / (m2 + 1.0);
// Check if the scanline is the tangent line of the curve,
// and the curve start or end at the same y-coordinate of the scanline
if ((rowData->fScanlineXDirection == 1 &&
(segment.fPts[0].fY == pointLeft.fY ||
segment.fPts[2].fY == pointLeft.fY)) &&
nearly_zero(c, tol)) {
rowData->fIntersectionType = RowData::kTangentLine;
rowData->fXAtIntersection1 = m / 2.0;
rowData->fXAtIntersection2 = m / 2.0;
} else if (c <= 0.0) {
rowData->fIntersectionType = RowData::kNoIntersection;
return;
} else {
rowData->fIntersectionType = RowData::kTwoPointsIntersect;
const double d = sqrt(c);
rowData->fXAtIntersection1 = (m + d) / 2.0;
rowData->fXAtIntersection2 = (m - d) / 2.0;
}
}
SegSide calculate_side_of_quad(
const PathSegment& segment,
const SkPoint& point,
const DPoint& xFormPt,
const RowData& rowData) {
SegSide side = kNA_SegSide;
if (RowData::kVerticalLine == rowData.fIntersectionType) {
side = (SegSide)(int)(sign_of(xFormPt.fY - rowData.fYAtIntersection) * rowData.fQuadXDirection);
}
else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType) {
const double p1 = rowData.fXAtIntersection1;
const double p2 = rowData.fXAtIntersection2;
int signP1 = (int)sign_of(p1 - xFormPt.fX);
bool includeP1 = true;
bool includeP2 = true;
if (rowData.fScanlineXDirection == 1) {
if ((rowData.fQuadXDirection == -1 && segment.fPts[0].fY <= point.fY &&
nearly_equal(segment.fP0T.fX, p1, segment.fNearlyZeroScaled, true)) ||
(rowData.fQuadXDirection == 1 && segment.fPts[2].fY <= point.fY &&
nearly_equal(segment.fP2T.fX, p1, segment.fNearlyZeroScaled, true))) {
includeP1 = false;
}
if ((rowData.fQuadXDirection == -1 && segment.fPts[2].fY <= point.fY &&
nearly_equal(segment.fP2T.fX, p2, segment.fNearlyZeroScaled, true)) ||
(rowData.fQuadXDirection == 1 && segment.fPts[0].fY <= point.fY &&
nearly_equal(segment.fP0T.fX, p2, segment.fNearlyZeroScaled, true))) {
includeP2 = false;
}
}
if (includeP1 && between_closed(p1, segment.fP0T.fX, segment.fP2T.fX,
segment.fNearlyZeroScaled, true)) {
side = (SegSide)(signP1 * rowData.fQuadXDirection);
}
if (includeP2 && between_closed(p2, segment.fP0T.fX, segment.fP2T.fX,
segment.fNearlyZeroScaled, true)) {
int signP2 = (int)sign_of(p2 - xFormPt.fX);
if (side == kNA_SegSide || signP2 == 1) {
side = (SegSide)(-signP2 * rowData.fQuadXDirection);
}
}
} else if (RowData::kTangentLine == rowData.fIntersectionType) {
// The scanline is the tangent line of current quadratic segment.
const double p = rowData.fXAtIntersection1;
int signP = (int)sign_of(p - xFormPt.fX);
if (rowData.fScanlineXDirection == 1) {
// The path start or end at the tangent point.
if (segment.fPts[0].fY == point.fY) {
side = (SegSide)(signP);
} else if (segment.fPts[2].fY == point.fY) {
side = (SegSide)(-signP);
}
}
}
return side;
}
static float distance_to_segment(const SkPoint& point,
const PathSegment& segment,
const RowData& rowData,
SegSide* side) {
SkASSERT(side);
const DPoint xformPt = segment.fXformMatrix.mapPoint(point);
if (segment.fType == PathSegment::kLine) {
float result = SK_DistanceFieldPad * SK_DistanceFieldPad;
if (between_closed(xformPt.fX, segment.fP0T.fX, segment.fP2T.fX)) {
result = (float)(xformPt.fY * xformPt.fY);
} else if (xformPt.fX < segment.fP0T.fX) {
result = (float)(xformPt.fX * xformPt.fX + xformPt.fY * xformPt.fY);
} else {
result = (float)((xformPt.fX - segment.fP2T.fX) * (xformPt.fX - segment.fP2T.fX)
+ xformPt.fY * xformPt.fY);
}
if (between_closed_open(point.fY, segment.fBoundingBox.fTop,
segment.fBoundingBox.fBottom)) {
*side = (SegSide)(int)sign_of(xformPt.fY);
} else {
*side = kNA_SegSide;
}
return result;
} else {
SkASSERT(segment.fType == PathSegment::kQuad);
const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt);
float dist;
if (between_closed(nearestPoint, segment.fP0T.fX, segment.fP2T.fX)) {
DPoint x = { nearestPoint, nearestPoint * nearestPoint };
dist = (float)xformPt.distanceSquared(x);
} else {
const float distToB0T = (float)xformPt.distanceSquared(segment.fP0T);
const float distToB2T = (float)xformPt.distanceSquared(segment.fP2T);
if (distToB0T < distToB2T) {
dist = distToB0T;
} else {
dist = distToB2T;
}
}
if (between_closed_open(point.fY, segment.fBoundingBox.fTop,
segment.fBoundingBox.fBottom)) {
*side = calculate_side_of_quad(segment, point, xformPt, rowData);
} else {
*side = kNA_SegSide;
}
return (float)(dist * segment.fScalingFactorSqd);
}
}
static void calculate_distance_field_data(PathSegmentArray* segments,
DFData* dataPtr,
int width, int height) {
int count = segments->count();
// for each segment
for (int a = 0; a < count; ++a) {
PathSegment& segment = (*segments)[a];
const SkRect& segBB = segment.fBoundingBox;
// get the bounding box, outset by distance field pad, and clip to total bounds
const SkRect& paddedBB = segBB.makeOutset(SK_DistanceFieldPad, SK_DistanceFieldPad);
int startColumn = (int)paddedBB.fLeft;
int endColumn = SkScalarCeilToInt(paddedBB.fRight);
int startRow = (int)paddedBB.fTop;
int endRow = SkScalarCeilToInt(paddedBB.fBottom);
SkASSERT((startColumn >= 0) && "StartColumn < 0!");
SkASSERT((endColumn <= width) && "endColumn > width!");
SkASSERT((startRow >= 0) && "StartRow < 0!");
SkASSERT((endRow <= height) && "EndRow > height!");
// Clip inside the distance field to avoid overflow
startColumn = std::max(startColumn, 0);
endColumn = std::min(endColumn, width);
startRow = std::max(startRow, 0);
endRow = std::min(endRow, height);
// for each row in the padded bounding box
for (int row = startRow; row < endRow; ++row) {
SegSide prevSide = kNA_SegSide; // track side for winding count
const float pY = row + 0.5f; // offset by 1/2? why?
RowData rowData;
const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY);
const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY);
// if this is a row inside the original segment bounding box
if (between_closed_open(pY, segBB.fTop, segBB.fBottom)) {
// compute intersections with the row
precomputation_for_row(&rowData, segment, pointLeft, pointRight);
}
// adjust distances and windings in each column based on the row calculation
for (int col = startColumn; col < endColumn; ++col) {
int idx = (row * width) + col;
const float pX = col + 0.5f;
const SkPoint point = SkPoint::Make(pX, pY);
const float distSq = dataPtr[idx].fDistSq;
// Optimization for not calculating some points.
int dilation = distSq < 1.5f * 1.5f ? 1 :
distSq < 2.5f * 2.5f ? 2 :
distSq < 3.5f * 3.5f ? 3 : SK_DistanceFieldPad;
if (dilation < SK_DistanceFieldPad &&
!segBB.roundOut().makeOutset(dilation, dilation).contains(col, row)) {
continue;
}
SegSide side = kNA_SegSide;
int deltaWindingScore = 0;
float currDistSq = distance_to_segment(point, segment, rowData, &side);
if (prevSide == kLeft_SegSide && side == kRight_SegSide) {
deltaWindingScore = -1;
} else if (prevSide == kRight_SegSide && side == kLeft_SegSide) {
deltaWindingScore = 1;
}
prevSide = side;
if (currDistSq < distSq) {
dataPtr[idx].fDistSq = currDistSq;
}
dataPtr[idx].fDeltaWindingScore += deltaWindingScore;
}
}
}
}
template <int distanceMagnitude>
static unsigned char pack_distance_field_val(float dist) {
// The distance field is constructed as unsigned char values, so that the zero value is at 128,
// Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255].
// So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow.
dist = SkTPin<float>(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f);
// Scale into the positive range for unsigned distance.
dist += distanceMagnitude;
// Scale into unsigned char range.
// Round to place negative and positive values as equally as possible around 128
// (which represents zero).
return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f);
}
bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField,
const SkPath& path, const SkMatrix& drawMatrix,
int width, int height, size_t rowBytes) {
SkASSERT(distanceField);
// transform to device space, then:
// translate path to offset (SK_DistanceFieldPad, SK_DistanceFieldPad)
SkMatrix dfMatrix(drawMatrix);
dfMatrix.postTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad);
#ifdef SK_DEBUG
SkPath xformPath;
path.transform(dfMatrix, &xformPath);
SkIRect pathBounds = xformPath.getBounds().roundOut();
SkIRect expectPathBounds = SkIRect::MakeWH(width, height);
#endif
SkASSERT(expectPathBounds.isEmpty() ||
expectPathBounds.contains(pathBounds.fLeft, pathBounds.fTop));
SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() ||
expectPathBounds.contains(pathBounds));
// TODO: restore when Simplify() is working correctly
// see https://bugs.chromium.org/p/skia/issues/detail?id=9732
// SkPath simplifiedPath;
SkPath workingPath;
// if (Simplify(path, &simplifiedPath)) {
// workingPath = simplifiedPath;
// } else {
workingPath = path;
// }
// only even-odd and inverse even-odd supported
if (!IsDistanceFieldSupportedFillType(workingPath.getFillType())) {
return false;
}
// transform to device space + SDF offset
// TODO: remove degenerate segments while doing this?
workingPath.transform(dfMatrix);
SkDEBUGCODE(pathBounds = workingPath.getBounds().roundOut());
SkASSERT(expectPathBounds.isEmpty() ||
expectPathBounds.contains(pathBounds.fLeft, pathBounds.fTop));
SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() ||
expectPathBounds.contains(pathBounds));
// create temp data
size_t dataSize = width * height * sizeof(DFData);
SkAutoSMalloc<1024> dfStorage(dataSize);
DFData* dataPtr = (DFData*) dfStorage.get();
// create initial distance data (init to "far away")
init_distances(dataPtr, width * height);
// polygonize path into line and quad segments
SkPathEdgeIter iter(workingPath);
SkSTArray<15, PathSegment, true> segments;
while (auto e = iter.next()) {
switch (e.fEdge) {
case SkPathEdgeIter::Edge::kLine: {
add_line(e.fPts, &segments);
break;
}
case SkPathEdgeIter::Edge::kQuad:
add_quad(e.fPts, &segments);
break;
case SkPathEdgeIter::Edge::kConic: {
SkScalar weight = iter.conicWeight();
SkAutoConicToQuads converter;
const SkPoint* quadPts = converter.computeQuads(e.fPts, weight, kConicTolerance);
for (int i = 0; i < converter.countQuads(); ++i) {
add_quad(quadPts + 2*i, &segments);
}
break;
}
case SkPathEdgeIter::Edge::kCubic: {
add_cubic(e.fPts, &segments);
break;
}
}
}
// do all the work
calculate_distance_field_data(&segments, dataPtr, width, height);
// adjust distance based on winding
for (int row = 0; row < height; ++row) {
enum DFSign {
kInside = -1,
kOutside = 1
};
int windingNumber = 0; // Winding number start from zero for each scanline
for (int col = 0; col < width; ++col) {
int idx = (row * width) + col;
windingNumber += dataPtr[idx].fDeltaWindingScore;
DFSign dfSign;
switch (workingPath.getFillType()) {
case SkPathFillType::kWinding:
dfSign = windingNumber ? kInside : kOutside;
break;
case SkPathFillType::kInverseWinding:
dfSign = windingNumber ? kOutside : kInside;
break;
case SkPathFillType::kEvenOdd:
dfSign = (windingNumber % 2) ? kInside : kOutside;
break;
case SkPathFillType::kInverseEvenOdd:
dfSign = (windingNumber % 2) ? kOutside : kInside;
break;
}
const float miniDist = sqrt(dataPtr[idx].fDistSq);
const float dist = dfSign * miniDist;
unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist);
distanceField[(row * rowBytes) + col] = pixelVal;
}
// The winding number at the end of a scanline should be zero.
if (windingNumber != 0) {
SkDEBUGFAIL("Winding number should be zero at the end of a scan line.");
// Fallback to use SkPath::contains to determine the sign of pixel in release build.
for (int col = 0; col < width; ++col) {
int idx = (row * width) + col;
DFSign dfSign = workingPath.contains(col + 0.5, row + 0.5) ? kInside : kOutside;
const float miniDist = sqrt(dataPtr[idx].fDistSq);
const float dist = dfSign * miniDist;
unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist);
distanceField[(row * rowBytes) + col] = pixelVal;
}
continue;
}
}
return true;
}