blob: 20663fea368e1f26b268b48d1cb651518122b8b6 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/GrDrawingManager.h"
#include <algorithm>
#include <memory>
#include "include/core/SkDeferredDisplayList.h"
#include "include/gpu/GrBackendSemaphore.h"
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/GrRecordingContext.h"
#include "src/core/SkDeferredDisplayListPriv.h"
#include "src/core/SkTInternalLList.h"
#include "src/gpu/GrClientMappedBufferManager.h"
#include "src/gpu/GrCopyRenderTask.h"
#include "src/gpu/GrDDLTask.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrOnFlushResourceProvider.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrRenderTargetProxy.h"
#include "src/gpu/GrRenderTask.h"
#include "src/gpu/GrRenderTaskCluster.h"
#include "src/gpu/GrResourceAllocator.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/GrSurfaceProxyPriv.h"
#include "src/gpu/GrTTopoSort.h"
#include "src/gpu/GrTexture.h"
#include "src/gpu/GrTextureProxy.h"
#include "src/gpu/GrTextureProxyPriv.h"
#include "src/gpu/GrTextureResolveRenderTask.h"
#include "src/gpu/GrTracing.h"
#include "src/gpu/GrTransferFromRenderTask.h"
#include "src/gpu/GrWaitRenderTask.h"
#include "src/gpu/GrWritePixelsRenderTask.h"
#include "src/gpu/text/GrSDFTControl.h"
#include "src/image/SkSurface_Gpu.h"
#if SK_GPU_V1
#include "src/gpu/ops/OpsTask.h"
#include "src/gpu/ops/SoftwarePathRenderer.h"
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_GPU_V1
GrDrawingManager::GrDrawingManager(GrRecordingContext* rContext,
const PathRendererChain::Options& optionsForPathRendererChain,
bool reduceOpsTaskSplitting)
: fContext(rContext)
, fOptionsForPathRendererChain(optionsForPathRendererChain)
, fPathRendererChain(nullptr)
, fSoftwarePathRenderer(nullptr)
, fReduceOpsTaskSplitting(reduceOpsTaskSplitting) {
}
#else
GrDrawingManager::GrDrawingManager(GrRecordingContext* rContext, bool reduceOpsTaskSplitting)
: fContext(rContext)
, fReduceOpsTaskSplitting(reduceOpsTaskSplitting) {
}
#endif
GrDrawingManager::~GrDrawingManager() {
this->closeAllTasks();
this->removeRenderTasks();
}
bool GrDrawingManager::wasAbandoned() const {
return fContext->abandoned();
}
void GrDrawingManager::freeGpuResources() {
for (int i = fOnFlushCBObjects.count() - 1; i >= 0; --i) {
if (!fOnFlushCBObjects[i]->retainOnFreeGpuResources()) {
// it's safe to just do this because we're iterating in reverse
fOnFlushCBObjects.removeShuffle(i);
}
}
#if SK_GPU_V1
// a path renderer may be holding onto resources
fPathRendererChain = nullptr;
fSoftwarePathRenderer = nullptr;
#endif
}
// MDB TODO: make use of the 'proxies' parameter.
bool GrDrawingManager::flush(
SkSpan<GrSurfaceProxy*> proxies,
SkSurface::BackendSurfaceAccess access,
const GrFlushInfo& info,
const GrBackendSurfaceMutableState* newState) {
GR_CREATE_TRACE_MARKER_CONTEXT("GrDrawingManager", "flush", fContext);
if (fFlushing || this->wasAbandoned()) {
if (info.fSubmittedProc) {
info.fSubmittedProc(info.fSubmittedContext, false);
}
if (info.fFinishedProc) {
info.fFinishedProc(info.fFinishedContext);
}
return false;
}
SkDEBUGCODE(this->validate());
// As of now we only short-circuit if we got an explicit list of surfaces to flush.
if (!proxies.empty() && !info.fNumSemaphores && !info.fFinishedProc &&
access == SkSurface::BackendSurfaceAccess::kNoAccess && !newState) {
bool allUnused = std::all_of(proxies.begin(), proxies.end(), [&](GrSurfaceProxy* proxy) {
bool used = std::any_of(fDAG.begin(), fDAG.end(), [&](auto& task) {
return task && task->isUsed(proxy);
});
return !used;
});
if (allUnused) {
if (info.fSubmittedProc) {
info.fSubmittedProc(info.fSubmittedContext, true);
}
return false;
}
}
auto dContext = fContext->asDirectContext();
SkASSERT(dContext);
dContext->priv().clientMappedBufferManager()->process();
GrGpu* gpu = dContext->priv().getGpu();
// We have a non abandoned and direct GrContext. It must have a GrGpu.
SkASSERT(gpu);
fFlushing = true;
auto resourceProvider = dContext->priv().resourceProvider();
auto resourceCache = dContext->priv().getResourceCache();
// Semi-usually the GrRenderTasks are already closed at this point, but sometimes Ganesh needs
// to flush mid-draw. In that case, the SkGpuDevice's opsTasks won't be closed but need to be
// flushed anyway. Closing such opsTasks here will mean new ones will be created to replace them
// if the SkGpuDevice(s) write to them again.
this->closeAllTasks();
fActiveOpsTask = nullptr;
this->sortTasks();
if (!fCpuBufferCache) {
// We cache more buffers when the backend is using client side arrays. Otherwise, we
// expect each pool will use a CPU buffer as a staging buffer before uploading to a GPU
// buffer object. Each pool only requires one staging buffer at a time.
int maxCachedBuffers = fContext->priv().caps()->preferClientSideDynamicBuffers() ? 2 : 6;
fCpuBufferCache = GrBufferAllocPool::CpuBufferCache::Make(maxCachedBuffers);
}
GrOpFlushState flushState(gpu, resourceProvider, &fTokenTracker, fCpuBufferCache);
GrOnFlushResourceProvider onFlushProvider(this);
// Prepare any onFlush op lists (e.g. atlases).
if (!fOnFlushCBObjects.empty()) {
fFlushingRenderTaskIDs.reserve_back(fDAG.count());
for (const auto& task : fDAG) {
if (task) {
task->gatherIDs(&fFlushingRenderTaskIDs);
}
}
for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) {
onFlushCBObject->preFlush(&onFlushProvider, SkMakeSpan(fFlushingRenderTaskIDs));
}
for (const auto& onFlushRenderTask : fOnFlushRenderTasks) {
onFlushRenderTask->makeClosed(fContext);
#ifdef SK_DEBUG
// OnFlush callbacks are invoked during flush, and are therefore expected to handle
// resource allocation & usage on their own. (No deferred or lazy proxies!)
onFlushRenderTask->visitTargetAndSrcProxies_debugOnly(
[](GrSurfaceProxy* p, GrMipmapped mipMapped) {
SkASSERT(!p->asTextureProxy() || !p->asTextureProxy()->texPriv().isDeferred());
SkASSERT(!p->isLazy());
if (p->requiresManualMSAAResolve()) {
// The onFlush callback is responsible for ensuring MSAA gets resolved.
SkASSERT(p->asRenderTargetProxy() && !p->asRenderTargetProxy()->isMSAADirty());
}
if (GrMipmapped::kYes == mipMapped) {
// The onFlush callback is responsible for regenerating mips if needed.
SkASSERT(p->asTextureProxy() && !p->asTextureProxy()->mipmapsAreDirty());
}
});
#endif
onFlushRenderTask->prepare(&flushState);
}
}
bool usingReorderedDAG = false;
GrResourceAllocator resourceAllocator(dContext);
if (fReduceOpsTaskSplitting) {
usingReorderedDAG = this->reorderTasks(&resourceAllocator);
if (!usingReorderedDAG) {
resourceAllocator.reset();
}
}
#if 0
// Enable this to print out verbose GrOp information
SkDEBUGCODE(SkDebugf("onFlush renderTasks (%d):\n", fOnFlushRenderTasks.count()));
for (const auto& onFlushRenderTask : fOnFlushRenderTasks) {
SkDEBUGCODE(onFlushRenderTask->dump(/* printDependencies */ true);)
}
SkDEBUGCODE(SkDebugf("Normal renderTasks (%d):\n", fDAG.count()));
for (const auto& task : fDAG) {
SkDEBUGCODE(task->dump(/* printDependencies */ true);)
}
#endif
if (!resourceAllocator.failedInstantiation()) {
if (!usingReorderedDAG) {
for (const auto& task : fDAG) {
SkASSERT(task);
task->gatherProxyIntervals(&resourceAllocator);
}
resourceAllocator.planAssignment();
}
resourceAllocator.assign();
}
bool flushed = !resourceAllocator.failedInstantiation() &&
this->executeRenderTasks(&flushState);
this->removeRenderTasks();
gpu->executeFlushInfo(proxies, access, info, newState);
// Give the cache a chance to purge resources that become purgeable due to flushing.
if (flushed) {
resourceCache->purgeAsNeeded();
flushed = false;
}
for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) {
onFlushCBObject->postFlush(fTokenTracker.nextTokenToFlush(),
SkMakeSpan(fFlushingRenderTaskIDs));
flushed = true;
}
if (flushed) {
resourceCache->purgeAsNeeded();
}
fFlushingRenderTaskIDs.reset();
fFlushing = false;
return true;
}
bool GrDrawingManager::submitToGpu(bool syncToCpu) {
if (fFlushing || this->wasAbandoned()) {
return false;
}
auto direct = fContext->asDirectContext();
if (!direct) {
return false; // Can't submit while DDL recording
}
GrGpu* gpu = direct->priv().getGpu();
return gpu->submitToGpu(syncToCpu);
}
bool GrDrawingManager::executeRenderTasks(GrOpFlushState* flushState) {
#if GR_FLUSH_TIME_OP_SPEW
SkDebugf("Flushing %d opsTasks\n", fDAG.count());
for (int i = 0; i < fDAG.count(); ++i) {
if (fDAG[i]) {
SkString label;
label.printf("task %d/%d", i, fDAG.count());
fDAG[i]->dump(label, {}, true, true);
}
}
#endif
bool anyRenderTasksExecuted = false;
for (const auto& renderTask : fDAG) {
if (!renderTask || !renderTask->isInstantiated()) {
continue;
}
SkASSERT(renderTask->deferredProxiesAreInstantiated());
renderTask->prepare(flushState);
}
// Upload all data to the GPU
flushState->preExecuteDraws();
// For Vulkan, if we have too many oplists to be flushed we end up allocating a lot of resources
// for each command buffer associated with the oplists. If this gets too large we can cause the
// devices to go OOM. In practice we usually only hit this case in our tests, but to be safe we
// put a cap on the number of oplists we will execute before flushing to the GPU to relieve some
// memory pressure.
static constexpr int kMaxRenderTasksBeforeFlush = 100;
int numRenderTasksExecuted = 0;
// Execute the onFlush renderTasks first, if any.
for (sk_sp<GrRenderTask>& onFlushRenderTask : fOnFlushRenderTasks) {
if (!onFlushRenderTask->execute(flushState)) {
SkDebugf("WARNING: onFlushRenderTask failed to execute.\n");
}
SkASSERT(onFlushRenderTask->unique());
onFlushRenderTask->disown(this);
onFlushRenderTask = nullptr;
if (++numRenderTasksExecuted >= kMaxRenderTasksBeforeFlush) {
flushState->gpu()->submitToGpu(false);
numRenderTasksExecuted = 0;
}
}
fOnFlushRenderTasks.reset();
// Execute the normal op lists.
for (const auto& renderTask : fDAG) {
SkASSERT(renderTask);
if (!renderTask->isInstantiated()) {
continue;
}
if (renderTask->execute(flushState)) {
anyRenderTasksExecuted = true;
}
if (++numRenderTasksExecuted >= kMaxRenderTasksBeforeFlush) {
flushState->gpu()->submitToGpu(false);
numRenderTasksExecuted = 0;
}
}
SkASSERT(!flushState->opsRenderPass());
SkASSERT(fTokenTracker.nextDrawToken() == fTokenTracker.nextTokenToFlush());
// We reset the flush state before the RenderTasks so that the last resources to be freed are
// those that are written to in the RenderTasks. This helps to make sure the most recently used
// resources are the last to be purged by the resource cache.
flushState->reset();
return anyRenderTasksExecuted;
}
void GrDrawingManager::removeRenderTasks() {
for (const auto& task : fDAG) {
SkASSERT(task);
if (!task->unique() || task->requiresExplicitCleanup()) {
// TODO: Eventually uniqueness should be guaranteed: http://skbug.com/7111.
// DDLs, however, will always require an explicit notification for when they
// can clean up resources.
task->endFlush(this);
}
task->disown(this);
}
fDAG.reset();
fLastRenderTasks.reset();
for (const sk_sp<GrRenderTask>& onFlushRenderTask : fOnFlushRenderTasks) {
onFlushRenderTask->disown(this);
}
fOnFlushRenderTasks.reset();
}
void GrDrawingManager::sortTasks() {
if (!GrTTopoSort<GrRenderTask, GrRenderTask::TopoSortTraits>(&fDAG)) {
SkDEBUGFAIL("Render task topo sort failed.");
return;
}
#if SK_GPU_V1 && defined(SK_DEBUG)
// This block checks for any unnecessary splits in the opsTasks. If two sequential opsTasks
// could have merged it means the opsTask was artificially split.
if (!fDAG.empty()) {
auto prevOpsTask = fDAG[0]->asOpsTask();
for (int i = 1; i < fDAG.count(); ++i) {
auto curOpsTask = fDAG[i]->asOpsTask();
if (prevOpsTask && curOpsTask) {
SkASSERT(!prevOpsTask->canMerge(curOpsTask));
}
prevOpsTask = curOpsTask;
}
}
#endif
}
// Reorder the array to match the llist without reffing & unreffing sk_sp's.
// Both args must contain the same objects.
// This is basically a shim because clustering uses LList but the rest of drawmgr uses array.
template <typename T>
static void reorder_array_by_llist(const SkTInternalLList<T>& llist, SkTArray<sk_sp<T>>* array) {
int i = 0;
for (T* t : llist) {
// Release the pointer that used to live here so it doesn't get unreffed.
[[maybe_unused]] T* old = array->at(i).release();
array->at(i++).reset(t);
}
SkASSERT(i == array->count());
}
bool GrDrawingManager::reorderTasks(GrResourceAllocator* resourceAllocator) {
SkASSERT(fReduceOpsTaskSplitting);
SkTInternalLList<GrRenderTask> llist;
bool clustered = GrClusterRenderTasks(SkMakeSpan(fDAG), &llist);
if (!clustered) {
return false;
}
for (GrRenderTask* task : llist) {
task->gatherProxyIntervals(resourceAllocator);
}
if (!resourceAllocator->planAssignment()) {
return false;
}
if (!resourceAllocator->makeBudgetHeadroom()) {
auto dContext = fContext->asDirectContext();
SkASSERT(dContext);
dContext->priv().getGpu()->stats()->incNumReorderedDAGsOverBudget();
return false;
}
reorder_array_by_llist(llist, &fDAG);
int newCount = 0;
for (int i = 0; i < fDAG.count(); i++) {
sk_sp<GrRenderTask>& task = fDAG[i];
#if SK_GPU_V1
if (auto opsTask = task->asOpsTask()) {
size_t remaining = fDAG.size() - i - 1;
SkSpan<sk_sp<GrRenderTask>> nextTasks{fDAG.end() - remaining, remaining};
int removeCount = opsTask->mergeFrom(nextTasks);
for (const auto& removed : nextTasks.first(removeCount)) {
removed->disown(this);
}
i += removeCount;
}
#endif
fDAG[newCount++] = std::move(task);
}
fDAG.resize_back(newCount);
return true;
}
void GrDrawingManager::closeAllTasks() {
for (auto& task : fDAG) {
if (task) {
task->makeClosed(fContext);
}
}
}
GrRenderTask* GrDrawingManager::insertTaskBeforeLast(sk_sp<GrRenderTask> task) {
if (!task) {
return nullptr;
}
if (fDAG.empty()) {
return fDAG.push_back(std::move(task)).get();
}
// Release 'fDAG.back()' and grab the raw pointer, in case the SkTArray grows
// and reallocates during emplace_back.
// TODO: Either use std::vector that can do this for us, or use SkSTArray to get the
// perf win.
fDAG.emplace_back(fDAG.back().release());
return (fDAG[fDAG.count() - 2] = std::move(task)).get();
}
GrRenderTask* GrDrawingManager::appendTask(sk_sp<GrRenderTask> task) {
if (!task) {
return nullptr;
}
return fDAG.push_back(std::move(task)).get();
}
static void resolve_and_mipmap(GrGpu* gpu, GrSurfaceProxy* proxy) {
if (!proxy->isInstantiated()) {
return;
}
// In the flushSurfaces case, we need to resolve MSAA immediately after flush. This is
// because clients expect the flushed surface's backing texture to be fully resolved
// upon return.
if (proxy->requiresManualMSAAResolve()) {
auto* rtProxy = proxy->asRenderTargetProxy();
SkASSERT(rtProxy);
if (rtProxy->isMSAADirty()) {
SkASSERT(rtProxy->peekRenderTarget());
gpu->resolveRenderTarget(rtProxy->peekRenderTarget(), rtProxy->msaaDirtyRect());
gpu->submitToGpu(false);
rtProxy->markMSAAResolved();
}
}
// If, after a flush, any of the proxies of interest have dirty mipmaps, regenerate them in
// case their backend textures are being stolen.
// (This special case is exercised by the ReimportImageTextureWithMipLevels test.)
// FIXME: It may be more ideal to plumb down a "we're going to steal the backends" flag.
if (auto* textureProxy = proxy->asTextureProxy()) {
if (textureProxy->mipmapsAreDirty()) {
SkASSERT(textureProxy->peekTexture());
gpu->regenerateMipMapLevels(textureProxy->peekTexture());
textureProxy->markMipmapsClean();
}
}
}
GrSemaphoresSubmitted GrDrawingManager::flushSurfaces(
SkSpan<GrSurfaceProxy*> proxies,
SkSurface::BackendSurfaceAccess access,
const GrFlushInfo& info,
const GrBackendSurfaceMutableState* newState) {
if (this->wasAbandoned()) {
if (info.fSubmittedProc) {
info.fSubmittedProc(info.fSubmittedContext, false);
}
if (info.fFinishedProc) {
info.fFinishedProc(info.fFinishedContext);
}
return GrSemaphoresSubmitted::kNo;
}
SkDEBUGCODE(this->validate());
auto direct = fContext->asDirectContext();
SkASSERT(direct);
GrGpu* gpu = direct->priv().getGpu();
// We have a non abandoned and direct GrContext. It must have a GrGpu.
SkASSERT(gpu);
// TODO: It is important to upgrade the drawingmanager to just flushing the
// portion of the DAG required by 'proxies' in order to restore some of the
// semantics of this method.
bool didFlush = this->flush(proxies, access, info, newState);
for (GrSurfaceProxy* proxy : proxies) {
resolve_and_mipmap(gpu, proxy);
}
SkDEBUGCODE(this->validate());
if (!didFlush || (!direct->priv().caps()->semaphoreSupport() && info.fNumSemaphores)) {
return GrSemaphoresSubmitted::kNo;
}
return GrSemaphoresSubmitted::kYes;
}
void GrDrawingManager::addOnFlushCallbackObject(GrOnFlushCallbackObject* onFlushCBObject) {
fOnFlushCBObjects.push_back(onFlushCBObject);
}
#if GR_TEST_UTILS
void GrDrawingManager::testingOnly_removeOnFlushCallbackObject(GrOnFlushCallbackObject* cb) {
int n = std::find(fOnFlushCBObjects.begin(), fOnFlushCBObjects.end(), cb) -
fOnFlushCBObjects.begin();
SkASSERT(n < fOnFlushCBObjects.count());
fOnFlushCBObjects.removeShuffle(n);
}
#endif
void GrDrawingManager::setLastRenderTask(const GrSurfaceProxy* proxy, GrRenderTask* task) {
#ifdef SK_DEBUG
if (auto prior = this->getLastRenderTask(proxy)) {
SkASSERT(prior->isClosed() || prior == task);
}
#endif
uint32_t key = proxy->uniqueID().asUInt();
if (task) {
fLastRenderTasks.set(key, task);
} else if (fLastRenderTasks.find(key)) {
fLastRenderTasks.remove(key);
}
}
GrRenderTask* GrDrawingManager::getLastRenderTask(const GrSurfaceProxy* proxy) const {
auto entry = fLastRenderTasks.find(proxy->uniqueID().asUInt());
return entry ? *entry : nullptr;
}
skgpu::v1::OpsTask* GrDrawingManager::getLastOpsTask(const GrSurfaceProxy* proxy) const {
GrRenderTask* task = this->getLastRenderTask(proxy);
return task ? task->asOpsTask() : nullptr;
}
void GrDrawingManager::moveRenderTasksToDDL(SkDeferredDisplayList* ddl) {
SkDEBUGCODE(this->validate());
// no renderTask should receive a new command after this
this->closeAllTasks();
fActiveOpsTask = nullptr;
this->sortTasks();
fDAG.swap(ddl->fRenderTasks);
SkASSERT(fDAG.empty());
for (auto& renderTask : ddl->fRenderTasks) {
renderTask->disown(this);
renderTask->prePrepare(fContext);
}
ddl->fArenas = std::move(fContext->priv().detachArenas());
fContext->priv().detachProgramData(&ddl->fProgramData);
SkDEBUGCODE(this->validate());
}
void GrDrawingManager::createDDLTask(sk_sp<const SkDeferredDisplayList> ddl,
sk_sp<GrRenderTargetProxy> newDest,
SkIPoint offset) {
SkDEBUGCODE(this->validate());
#if SK_GPU_V1
if (fActiveOpsTask) {
// This is a temporary fix for the partial-MDB world. In that world we're not
// reordering so ops that (in the single opsTask world) would've just glommed onto the
// end of the single opsTask but referred to a far earlier RT need to appear in their
// own opsTask.
fActiveOpsTask->makeClosed(fContext);
fActiveOpsTask = nullptr;
}
#endif
// Propagate the DDL proxy's state information to the replay target.
if (ddl->priv().targetProxy()->isMSAADirty()) {
auto nativeRect = GrNativeRect::MakeIRectRelativeTo(
ddl->characterization().origin(),
ddl->priv().targetProxy()->backingStoreDimensions().height(),
ddl->priv().targetProxy()->msaaDirtyRect());
newDest->markMSAADirty(nativeRect);
}
GrTextureProxy* newTextureProxy = newDest->asTextureProxy();
if (newTextureProxy && GrMipmapped::kYes == newTextureProxy->mipmapped()) {
newTextureProxy->markMipmapsDirty();
}
// Here we jam the proxy that backs the current replay SkSurface into the LazyProxyData.
// The lazy proxy that references it (in the DDL opsTasks) will then steal its GrTexture.
ddl->fLazyProxyData->fReplayDest = newDest.get();
// Add a task to handle drawing and lifetime management of the DDL.
SkDEBUGCODE(auto ddlTask =) this->appendTask(sk_make_sp<GrDDLTask>(this,
std::move(newDest),
std::move(ddl),
offset));
SkASSERT(ddlTask->isClosed());
SkDEBUGCODE(this->validate());
}
#ifdef SK_DEBUG
void GrDrawingManager::validate() const {
#if SK_GPU_V1
if (fActiveOpsTask) {
SkASSERT(!fDAG.empty());
SkASSERT(!fActiveOpsTask->isClosed());
SkASSERT(fActiveOpsTask == fDAG.back().get());
}
for (int i = 0; i < fDAG.count(); ++i) {
if (fActiveOpsTask != fDAG[i].get()) {
// The resolveTask associated with the activeTask remains open for as long as the
// activeTask does.
bool isActiveResolveTask =
fActiveOpsTask && fActiveOpsTask->fTextureResolveTask == fDAG[i].get();
bool isAtlas = fDAG[i]->isSetFlag(GrRenderTask::kAtlas_Flag);
SkASSERT(isActiveResolveTask || isAtlas || fDAG[i]->isClosed());
}
}
// The active opsTask, if any, should always be at the back of the DAG.
if (!fDAG.empty()) {
if (fDAG.back()->isSetFlag(GrRenderTask::kAtlas_Flag)) {
SkASSERT(fActiveOpsTask == nullptr);
SkASSERT(!fDAG.back()->isClosed());
} else if (fDAG.back()->isClosed()) {
SkASSERT(fActiveOpsTask == nullptr);
} else {
SkASSERT(fActiveOpsTask == fDAG.back().get());
}
} else {
SkASSERT(fActiveOpsTask == nullptr);
}
#endif // SK_GPU_V1
}
#endif // SK_DEBUG
void GrDrawingManager::closeActiveOpsTask() {
#if SK_GPU_V1
if (fActiveOpsTask) {
// This is a temporary fix for the partial-MDB world. In that world we're not
// reordering so ops that (in the single opsTask world) would've just glommed onto the
// end of the single opsTask but referred to a far earlier RT need to appear in their
// own opsTask.
fActiveOpsTask->makeClosed(fContext);
fActiveOpsTask = nullptr;
}
#endif
}
#if SK_GPU_V1
sk_sp<skgpu::v1::OpsTask> GrDrawingManager::newOpsTask(GrSurfaceProxyView surfaceView,
sk_sp<GrArenas> arenas,
bool flushTimeOpsTask) {
SkDEBUGCODE(this->validate());
SkASSERT(fContext);
this->closeActiveOpsTask();
sk_sp<skgpu::v1::OpsTask> opsTask(new skgpu::v1::OpsTask(this,
std::move(surfaceView),
fContext->priv().auditTrail(),
std::move(arenas)));
SkASSERT(this->getLastRenderTask(opsTask->target(0)) == opsTask.get());
if (flushTimeOpsTask) {
fOnFlushRenderTasks.push_back(opsTask);
} else {
this->appendTask(opsTask);
fActiveOpsTask = opsTask.get();
}
SkDEBUGCODE(this->validate());
return opsTask;
}
void GrDrawingManager::addAtlasTask(sk_sp<GrRenderTask> atlasTask,
GrRenderTask* previousAtlasTask) {
SkDEBUGCODE(this->validate());
SkASSERT(fContext);
if (previousAtlasTask) {
previousAtlasTask->makeClosed(fContext);
for (GrRenderTask* previousAtlasUser : previousAtlasTask->dependents()) {
// Make the new atlas depend on everybody who used the old atlas, and close their tasks.
// This guarantees that the previous atlas is totally out of service before we render
// the next one, meaning there is only ever one atlas active at a time and that they can
// all share the same texture.
atlasTask->addDependency(previousAtlasUser);
previousAtlasUser->makeClosed(fContext);
if (previousAtlasUser == fActiveOpsTask) {
fActiveOpsTask = nullptr;
}
}
}
atlasTask->setFlag(GrRenderTask::kAtlas_Flag);
this->insertTaskBeforeLast(std::move(atlasTask));
SkDEBUGCODE(this->validate());
}
#endif // SK_GPU_V1
GrTextureResolveRenderTask* GrDrawingManager::newTextureResolveRenderTaskBefore(
const GrCaps& caps) {
// Unlike in the "new opsTask" case, we do not want to close the active opsTask, nor (if we are
// in sorting and opsTask reduction mode) the render tasks that depend on any proxy's current
// state. This is because those opsTasks can still receive new ops and because if they refer to
// the mipmapped version of 'proxy', they will then come to depend on the render task being
// created here.
//
// Add the new textureResolveTask before the fActiveOpsTask (if not in
// sorting/opsTask-splitting-reduction mode) because it will depend upon this resolve task.
// NOTE: Putting it here will also reduce the amount of work required by the topological sort.
GrRenderTask* task = this->insertTaskBeforeLast(sk_make_sp<GrTextureResolveRenderTask>());
return static_cast<GrTextureResolveRenderTask*>(task);
}
void GrDrawingManager::newTextureResolveRenderTask(sk_sp<GrSurfaceProxy> proxy,
GrSurfaceProxy::ResolveFlags flags,
const GrCaps& caps) {
SkDEBUGCODE(this->validate());
SkASSERT(fContext);
if (!proxy->requiresManualMSAAResolve()) {
SkDEBUGCODE(this->validate());
return;
}
GrRenderTask* lastTask = this->getLastRenderTask(proxy.get());
if (!proxy->asRenderTargetProxy()->isMSAADirty() && (!lastTask || lastTask->isClosed())) {
SkDEBUGCODE(this->validate());
return;
}
this->closeActiveOpsTask();
auto resolveTask = sk_make_sp<GrTextureResolveRenderTask>();
// Add proxy also adds all the needed dependencies we need
resolveTask->addProxy(this, std::move(proxy), flags, caps);
auto task = this->appendTask(std::move(resolveTask));
task->makeClosed(fContext);
// We have closed the previous active oplist but since a new oplist isn't being added there
// shouldn't be an active one.
SkASSERT(!fActiveOpsTask);
SkDEBUGCODE(this->validate());
}
void GrDrawingManager::newWaitRenderTask(sk_sp<GrSurfaceProxy> proxy,
std::unique_ptr<std::unique_ptr<GrSemaphore>[]> semaphores,
int numSemaphores) {
SkDEBUGCODE(this->validate());
SkASSERT(fContext);
sk_sp<GrWaitRenderTask> waitTask = sk_make_sp<GrWaitRenderTask>(GrSurfaceProxyView(proxy),
std::move(semaphores),
numSemaphores);
#if SK_GPU_V1
if (fActiveOpsTask && (fActiveOpsTask->target(0) == proxy.get())) {
SkASSERT(this->getLastRenderTask(proxy.get()) == fActiveOpsTask);
this->insertTaskBeforeLast(waitTask);
// In this case we keep the current renderTask open but just insert the new waitTask
// before it in the list. The waitTask will never need to trigger any resolves or mip
// map generation which is the main advantage of going through the proxy version.
// Additionally we would've had to temporarily set the wait task as the lastRenderTask
// on the proxy, add the dependency, and then reset the lastRenderTask to
// fActiveOpsTask. Additionally we make the waitTask depend on all of fActiveOpsTask
// dependencies so that we don't unnecessarily reorder the waitTask before them.
// Note: Any previous Ops already in fActiveOpsTask will get blocked by the wait
// semaphore even though they don't need to be for correctness.
// Make sure we add the dependencies of fActiveOpsTask to waitTask first or else we'll
// get a circular self dependency of waitTask on waitTask.
waitTask->addDependenciesFromOtherTask(fActiveOpsTask);
fActiveOpsTask->addDependency(waitTask.get());
} else
#endif
{
// In this case we just close the previous RenderTask and start and append the waitTask
// to the DAG. Since it is the last task now we call setLastRenderTask on the proxy. If
// there is a lastTask on the proxy we make waitTask depend on that task. This
// dependency isn't strictly needed but it does keep the DAG from reordering the
// waitTask earlier and blocking more tasks.
if (GrRenderTask* lastTask = this->getLastRenderTask(proxy.get())) {
waitTask->addDependency(lastTask);
}
this->setLastRenderTask(proxy.get(), waitTask.get());
this->closeActiveOpsTask();
this->appendTask(waitTask);
}
waitTask->makeClosed(fContext);
SkDEBUGCODE(this->validate());
}
void GrDrawingManager::newTransferFromRenderTask(sk_sp<GrSurfaceProxy> srcProxy,
const SkIRect& srcRect,
GrColorType surfaceColorType,
GrColorType dstColorType,
sk_sp<GrGpuBuffer> dstBuffer,
size_t dstOffset) {
SkDEBUGCODE(this->validate());
SkASSERT(fContext);
this->closeActiveOpsTask();
GrRenderTask* task = this->appendTask(sk_make_sp<GrTransferFromRenderTask>(
srcProxy, srcRect, surfaceColorType, dstColorType,
std::move(dstBuffer), dstOffset));
const GrCaps& caps = *fContext->priv().caps();
// We always say GrMipmapped::kNo here since we are always just copying from the base layer. We
// don't need to make sure the whole mip map chain is valid.
task->addDependency(this, srcProxy.get(), GrMipmapped::kNo,
GrTextureResolveManager(this), caps);
task->makeClosed(fContext);
// We have closed the previous active oplist but since a new oplist isn't being added there
// shouldn't be an active one.
SkASSERT(!fActiveOpsTask);
SkDEBUGCODE(this->validate());
}
sk_sp<GrRenderTask> GrDrawingManager::newCopyRenderTask(sk_sp<GrSurfaceProxy> src,
SkIRect srcRect,
sk_sp<GrSurfaceProxy> dst,
SkIPoint dstPoint,
GrSurfaceOrigin origin) {
SkDEBUGCODE(this->validate());
SkASSERT(fContext);
// It'd be nicer to check this in GrCopyRenderTask::Make. This gets complicated because of
// "active ops task" tracking. dst will be the target of our copy task but it might also be the
// target of the active ops task. We currently require the active ops task to be closed before
// making a new task that targets the same proxy. However, if we first close the active ops
// task, then fail to make a copy task, the next active ops task may target the same proxy. This
// will trip an assert related to unnecessary ops task splitting.
if (src->framebufferOnly()) {
return nullptr;
}
this->closeActiveOpsTask();
sk_sp<GrRenderTask> task = GrCopyRenderTask::Make(this,
src,
srcRect,
std::move(dst),
dstPoint,
origin);
if (!task) {
return nullptr;
}
this->appendTask(task);
const GrCaps& caps = *fContext->priv().caps();
// We always say GrMipmapped::kNo here since we are always just copying from the base layer to
// another base layer. We don't need to make sure the whole mip map chain is valid.
task->addDependency(this, src.get(), GrMipmapped::kNo, GrTextureResolveManager(this), caps);
task->makeClosed(fContext);
// We have closed the previous active oplist but since a new oplist isn't being added there
// shouldn't be an active one.
SkASSERT(!fActiveOpsTask);
SkDEBUGCODE(this->validate());
return task;
}
bool GrDrawingManager::newWritePixelsTask(sk_sp<GrSurfaceProxy> dst,
SkIRect rect,
GrColorType srcColorType,
GrColorType dstColorType,
const GrMipLevel levels[],
int levelCount) {
SkDEBUGCODE(this->validate());
SkASSERT(fContext);
this->closeActiveOpsTask();
const GrCaps& caps = *fContext->priv().caps();
// On platforms that prefer flushes over VRAM use (i.e., ANGLE) we're better off forcing a
// complete flush here.
if (!caps.preferVRAMUseOverFlushes()) {
this->flushSurfaces(SkSpan<GrSurfaceProxy*>{},
SkSurface::BackendSurfaceAccess::kNoAccess,
GrFlushInfo{},
nullptr);
}
GrRenderTask* task = this->appendTask(GrWritePixelsTask::Make(this,
std::move(dst),
rect,
srcColorType,
dstColorType,
levels,
levelCount));
if (!task) {
return false;
}
task->makeClosed(fContext);
// We have closed the previous active oplist but since a new oplist isn't being added there
// shouldn't be an active one.
SkASSERT(!fActiveOpsTask);
SkDEBUGCODE(this->validate());
return true;
}
#if SK_GPU_V1
/*
* This method finds a path renderer that can draw the specified path on
* the provided target.
* Due to its expense, the software path renderer has split out so it can
* can be individually allowed/disallowed via the "allowSW" boolean.
*/
skgpu::v1::PathRenderer* GrDrawingManager::getPathRenderer(
const PathRenderer::CanDrawPathArgs& args,
bool allowSW,
PathRendererChain::DrawType drawType,
PathRenderer::StencilSupport* stencilSupport) {
if (!fPathRendererChain) {
fPathRendererChain =
std::make_unique<PathRendererChain>(fContext, fOptionsForPathRendererChain);
}
auto pr = fPathRendererChain->getPathRenderer(args, drawType, stencilSupport);
if (!pr && allowSW) {
auto swPR = this->getSoftwarePathRenderer();
if (PathRenderer::CanDrawPath::kNo != swPR->canDrawPath(args)) {
pr = swPR;
}
}
#if GR_PATH_RENDERER_SPEW
if (pr) {
SkDebugf("getPathRenderer: %s\n", pr->name());
}
#endif
return pr;
}
skgpu::v1::PathRenderer* GrDrawingManager::getSoftwarePathRenderer() {
if (!fSoftwarePathRenderer) {
fSoftwarePathRenderer.reset(new skgpu::v1::SoftwarePathRenderer(
fContext->priv().proxyProvider(), fOptionsForPathRendererChain.fAllowPathMaskCaching));
}
return fSoftwarePathRenderer.get();
}
skgpu::v1::AtlasPathRenderer* GrDrawingManager::getAtlasPathRenderer() {
if (!fPathRendererChain) {
fPathRendererChain = std::make_unique<PathRendererChain>(fContext,
fOptionsForPathRendererChain);
}
return fPathRendererChain->getAtlasPathRenderer();
}
skgpu::v1::PathRenderer* GrDrawingManager::getTessellationPathRenderer() {
if (!fPathRendererChain) {
fPathRendererChain = std::make_unique<PathRendererChain>(fContext,
fOptionsForPathRendererChain);
}
return fPathRendererChain->getTessellationPathRenderer();
}
#endif // SK_GPU_V1
void GrDrawingManager::flushIfNecessary() {
auto direct = fContext->asDirectContext();
if (!direct) {
return;
}
auto resourceCache = direct->priv().getResourceCache();
if (resourceCache && resourceCache->requestsFlush()) {
if (this->flush({}, SkSurface::BackendSurfaceAccess::kNoAccess, GrFlushInfo(), nullptr)) {
this->submitToGpu(false);
}
resourceCache->purgeAsNeeded();
}
}