| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef GrGeometryProcessor_DEFINED |
| #define GrGeometryProcessor_DEFINED |
| |
| #include "src/gpu/GrColor.h" |
| #include "src/gpu/GrFragmentProcessor.h" |
| #include "src/gpu/GrProcessor.h" |
| #include "src/gpu/GrShaderCaps.h" |
| #include "src/gpu/GrShaderVar.h" |
| #include "src/gpu/Swizzle.h" |
| #include "src/gpu/glsl/GrGLSLProgramDataManager.h" |
| #include "src/gpu/glsl/GrGLSLUniformHandler.h" |
| #include "src/gpu/glsl/GrGLSLVarying.h" |
| |
| #include <unordered_map> |
| |
| class GrGLSLFPFragmentBuilder; |
| class GrGLSLVaryingHandler; |
| class GrGLSLUniformHandler; |
| class GrGLSLVertexBuilder; |
| |
| /** |
| * The GrGeometryProcessor represents some kind of geometric primitive. This includes the shape |
| * of the primitive and the inherent color of the primitive. The GrGeometryProcessor is |
| * responsible for providing a color and coverage input into the Ganesh rendering pipeline. Through |
| * optimization, Ganesh may decide a different color, no color, and / or no coverage are required |
| * from the GrGeometryProcessor, so the GrGeometryProcessor must be able to support this |
| * functionality. |
| * |
| * There are two feedback loops between the GrFragmentProcessors, the GrXferProcessor, and the |
| * GrGeometryProcessor. These loops run on the CPU and to determine known properties of the final |
| * color and coverage inputs to the GrXferProcessor in order to perform optimizations that preserve |
| * correctness. The GrDrawOp seeds these loops with initial color and coverage, in its |
| * getProcessorAnalysisInputs implementation. These seed values are processed by the |
| * subsequent stages of the rendering pipeline and the output is then fed back into the GrDrawOp |
| * in the applyPipelineOptimizations call, where the op can use the information to inform |
| * decisions about GrGeometryProcessor creation. |
| * |
| * Note that all derived classes should hide their constructors and provide a Make factory |
| * function that takes an arena (except for Tesselation-specific classes). This is because |
| * geometry processors can be created in either the record-time or flush-time arenas which |
| * define their lifetimes (i.e., a DDLs life time in the first case and a single flush in |
| * the second case). |
| */ |
| class GrGeometryProcessor : public GrProcessor { |
| public: |
| /** |
| * Every GrGeometryProcessor must be capable of creating a subclass of ProgramImpl. The |
| * ProgramImpl emits the shader code that implements the GrGeometryProcessor, is attached to the |
| * generated backend API pipeline/program and used to extract uniform data from |
| * GrGeometryProcessor instances. |
| */ |
| class ProgramImpl; |
| |
| class TextureSampler; |
| |
| /** Describes a vertex or instance attribute. */ |
| class Attribute { |
| public: |
| static constexpr size_t AlignOffset(size_t offset) { return SkAlign4(offset); } |
| |
| constexpr Attribute() = default; |
| /** |
| * Makes an attribute whose offset will be implicitly determined by the types and ordering |
| * of an array attributes. |
| */ |
| constexpr Attribute(const char* name, |
| GrVertexAttribType cpuType, |
| SkSLType gpuType) |
| : fName(name), fCPUType(cpuType), fGPUType(gpuType) { |
| SkASSERT(name && gpuType != SkSLType::kVoid); |
| } |
| /** |
| * Makes an attribute with an explicit offset. |
| */ |
| constexpr Attribute(const char* name, |
| GrVertexAttribType cpuType, |
| SkSLType gpuType, |
| size_t offset) |
| : fName(name), fCPUType(cpuType), fGPUType(gpuType), fOffset(SkToU32(offset)) { |
| SkASSERT(AlignOffset(offset) == offset); |
| SkASSERT(name && gpuType != SkSLType::kVoid); |
| } |
| constexpr Attribute(const Attribute&) = default; |
| |
| Attribute& operator=(const Attribute&) = default; |
| |
| constexpr bool isInitialized() const { return fGPUType != SkSLType::kVoid; } |
| |
| constexpr const char* name() const { return fName; } |
| constexpr GrVertexAttribType cpuType() const { return fCPUType; } |
| constexpr SkSLType gpuType() const { return fGPUType; } |
| /** |
| * Returns the offset if attributes were specified with explicit offsets. Otherwise, |
| * offsets (and total vertex stride) are implicitly determined from attribute order and |
| * types. |
| */ |
| std::optional<size_t> offset() const { |
| if (fOffset != kImplicitOffset) { |
| SkASSERT(AlignOffset(fOffset) == fOffset); |
| return {fOffset}; |
| } |
| return std::nullopt; |
| } |
| |
| inline constexpr size_t size() const; |
| |
| GrShaderVar asShaderVar() const { |
| return {fName, fGPUType, GrShaderVar::TypeModifier::In}; |
| } |
| |
| private: |
| static constexpr uint32_t kImplicitOffset = 1; // 1 is not valid because it isn't aligned. |
| |
| const char* fName = nullptr; |
| GrVertexAttribType fCPUType = kFloat_GrVertexAttribType; |
| SkSLType fGPUType = SkSLType::kVoid; |
| uint32_t fOffset = kImplicitOffset; |
| }; |
| |
| /** |
| * A set of attributes that can iterated. The iterator handles hides two pieces of complexity: |
| * 1) It skips uninitialized attributes. |
| * 2) It always returns an attribute with a known offset. |
| */ |
| class AttributeSet { |
| class Iter { |
| public: |
| Iter() = default; |
| Iter(const Iter& iter) = default; |
| Iter& operator=(const Iter& iter) = default; |
| |
| Iter(const Attribute* attrs, int count) : fCurr(attrs), fRemaining(count) { |
| this->skipUninitialized(); |
| } |
| |
| bool operator!=(const Iter& that) const { return fCurr != that.fCurr; } |
| Attribute operator*() const; |
| void operator++(); |
| |
| private: |
| void skipUninitialized(); |
| |
| const Attribute* fCurr = nullptr; |
| int fRemaining = 0; |
| size_t fImplicitOffset = 0; |
| }; |
| |
| public: |
| Iter begin() const; |
| Iter end() const; |
| |
| int count() const { return fCount; } |
| size_t stride() const { return fStride; } |
| |
| // Init with implicit offsets and stride. No attributes can have a predetermined stride. |
| void initImplicit(const Attribute* attrs, int count); |
| // Init with explicit offsets and stride. All attributes must be initialized and have |
| // an explicit offset aligned to 4 bytes and with no attribute crossing stride boundaries. |
| void initExplicit(const Attribute* attrs, int count, size_t stride); |
| |
| void addToKey(skgpu::KeyBuilder* b) const; |
| |
| private: |
| const Attribute* fAttributes = nullptr; |
| int fRawCount = 0; |
| int fCount = 0; |
| size_t fStride = 0; |
| }; |
| |
| GrGeometryProcessor(ClassID); |
| |
| int numTextureSamplers() const { return fTextureSamplerCnt; } |
| const TextureSampler& textureSampler(int index) const; |
| int numVertexAttributes() const { return fVertexAttributes.count(); } |
| const AttributeSet& vertexAttributes() const { return fVertexAttributes; } |
| int numInstanceAttributes() const { return fInstanceAttributes.count(); } |
| const AttributeSet& instanceAttributes() const { return fInstanceAttributes; } |
| |
| bool hasVertexAttributes() const { return SkToBool(fVertexAttributes.count()); } |
| bool hasInstanceAttributes() const { return SkToBool(fInstanceAttributes.count()); } |
| |
| /** |
| * A common practice is to populate the the vertex/instance's memory using an implicit array of |
| * structs. In this case, it is best to assert that: |
| * stride == sizeof(struct) |
| */ |
| size_t vertexStride() const { return fVertexAttributes.stride(); } |
| size_t instanceStride() const { return fInstanceAttributes.stride(); } |
| |
| bool willUseTessellationShaders() const { |
| return fShaders & (kTessControl_GrShaderFlag | kTessEvaluation_GrShaderFlag); |
| } |
| |
| /** |
| * Computes a key for the transforms owned by an FP based on the shader code that will be |
| * emitted by the primitive processor to implement them. |
| */ |
| static uint32_t ComputeCoordTransformsKey(const GrFragmentProcessor& fp); |
| |
| inline static constexpr int kCoordTransformKeyBits = 4; |
| |
| /** |
| * Adds a key on the skgpu::KeyBuilder that reflects any variety in the code that the |
| * geometry processor subclass can emit. |
| */ |
| virtual void addToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const = 0; |
| |
| void getAttributeKey(skgpu::KeyBuilder* b) const; |
| |
| /** |
| * Returns a new instance of the appropriate implementation class for the given |
| * GrGeometryProcessor. |
| */ |
| virtual std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const = 0; |
| |
| protected: |
| // GPs that need to use either float or ubyte colors can just call this to get a correctly |
| // configured Attribute struct |
| static Attribute MakeColorAttribute(const char* name, bool wideColor) { |
| return { name, |
| wideColor ? kFloat4_GrVertexAttribType : kUByte4_norm_GrVertexAttribType, |
| SkSLType::kHalf4 }; |
| } |
| void setVertexAttributes(const Attribute* attrs, int attrCount, size_t stride) { |
| fVertexAttributes.initExplicit(attrs, attrCount, stride); |
| } |
| void setInstanceAttributes(const Attribute* attrs, int attrCount, size_t stride) { |
| SkASSERT(attrCount >= 0); |
| fInstanceAttributes.initExplicit(attrs, attrCount, stride); |
| } |
| |
| void setVertexAttributesWithImplicitOffsets(const Attribute* attrs, int attrCount) { |
| fVertexAttributes.initImplicit(attrs, attrCount); |
| } |
| void setInstanceAttributesWithImplicitOffsets(const Attribute* attrs, int attrCount) { |
| SkASSERT(attrCount >= 0); |
| fInstanceAttributes.initImplicit(attrs, attrCount); |
| } |
| void setWillUseTessellationShaders() { |
| fShaders |= kTessControl_GrShaderFlag | kTessEvaluation_GrShaderFlag; |
| } |
| void setTextureSamplerCnt(int cnt) { |
| SkASSERT(cnt >= 0); |
| fTextureSamplerCnt = cnt; |
| } |
| |
| /** |
| * Helper for implementing onTextureSampler(). E.g.: |
| * return IthTexureSampler(i, fMyFirstSampler, fMySecondSampler, fMyThirdSampler); |
| */ |
| template <typename... Args> |
| static const TextureSampler& IthTextureSampler(int i, const TextureSampler& samp0, |
| const Args&... samps) { |
| return (0 == i) ? samp0 : IthTextureSampler(i - 1, samps...); |
| } |
| inline static const TextureSampler& IthTextureSampler(int i); |
| |
| private: |
| virtual const TextureSampler& onTextureSampler(int) const { return IthTextureSampler(0); } |
| |
| GrShaderFlags fShaders = kVertex_GrShaderFlag | kFragment_GrShaderFlag; |
| |
| AttributeSet fVertexAttributes; |
| AttributeSet fInstanceAttributes; |
| |
| int fTextureSamplerCnt = 0; |
| using INHERITED = GrProcessor; |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class GrGeometryProcessor::ProgramImpl { |
| public: |
| using UniformHandle = GrGLSLProgramDataManager::UniformHandle; |
| using SamplerHandle = GrGLSLUniformHandler::SamplerHandle; |
| /** |
| * Struct of optional varying that replaces the input coords and bool indicating whether the FP |
| * should take a coord param as an argument. The latter may be false if the coords are simply |
| * unused or if the GP has lifted their computation to a varying emitted by the VS. |
| */ |
| struct FPCoords {GrShaderVar coordsVarying; bool hasCoordsParam;}; |
| using FPCoordsMap = std::unordered_map<const GrFragmentProcessor*, FPCoords>; |
| |
| virtual ~ProgramImpl() = default; |
| |
| struct EmitArgs { |
| EmitArgs(GrGLSLVertexBuilder* vertBuilder, |
| GrGLSLFPFragmentBuilder* fragBuilder, |
| GrGLSLVaryingHandler* varyingHandler, |
| GrGLSLUniformHandler* uniformHandler, |
| const GrShaderCaps* caps, |
| const GrGeometryProcessor& geomProc, |
| const char* outputColor, |
| const char* outputCoverage, |
| const SamplerHandle* texSamplers) |
| : fVertBuilder(vertBuilder) |
| , fFragBuilder(fragBuilder) |
| , fVaryingHandler(varyingHandler) |
| , fUniformHandler(uniformHandler) |
| , fShaderCaps(caps) |
| , fGeomProc(geomProc) |
| , fOutputColor(outputColor) |
| , fOutputCoverage(outputCoverage) |
| , fTexSamplers(texSamplers) {} |
| GrGLSLVertexBuilder* fVertBuilder; |
| GrGLSLFPFragmentBuilder* fFragBuilder; |
| GrGLSLVaryingHandler* fVaryingHandler; |
| GrGLSLUniformHandler* fUniformHandler; |
| const GrShaderCaps* fShaderCaps; |
| const GrGeometryProcessor& fGeomProc; |
| const char* fOutputColor; |
| const char* fOutputCoverage; |
| const SamplerHandle* fTexSamplers; |
| }; |
| |
| /** |
| * Emits the code from this geometry processor into the shaders. For any FP in the pipeline that |
| * has its input coords implemented by the GP as a varying, the varying will be accessible in |
| * the returned map and should be used when the FP code is emitted. The FS variable containing |
| * the GP's output local coords is also returned. |
| **/ |
| std::tuple<FPCoordsMap, GrShaderVar> emitCode(EmitArgs&, const GrPipeline& pipeline); |
| |
| /** |
| * Called after all effect emitCode() functions, to give the processor a chance to write out |
| * additional transformation code now that all uniforms have been emitted. |
| * It generates the final code for assigning transformed coordinates to the varyings recorded |
| * in the call to collectTransforms(). This must happen after FP code emission so that it has |
| * access to any uniforms the FPs registered for uniform sample matrix invocations. |
| */ |
| void emitTransformCode(GrGLSLVertexBuilder* vb, GrGLSLUniformHandler* uniformHandler); |
| |
| /** |
| * A ProgramImpl instance can be reused with any GrGeometryProcessor that produces the same key. |
| * This function reads data from a GrGeometryProcessor and updates any uniform variables |
| * required by the shaders created in emitCode(). The GrGeometryProcessor parameter is |
| * guaranteed to be of the same type and to have an identical processor key as the |
| * GrGeometryProcessor that created this ProgramImpl. |
| */ |
| virtual void setData(const GrGLSLProgramDataManager&, |
| const GrShaderCaps&, |
| const GrGeometryProcessor&) = 0; |
| |
| // We use these methods as a temporary back door to inject OpenGL tessellation code. Once |
| // tessellation is supported by SkSL we can remove these. |
| virtual SkString getTessControlShaderGLSL(const GrGeometryProcessor&, |
| const char* versionAndExtensionDecls, |
| const GrGLSLUniformHandler&, |
| const GrShaderCaps&) const { |
| SK_ABORT("Not implemented."); |
| } |
| virtual SkString getTessEvaluationShaderGLSL(const GrGeometryProcessor&, |
| const char* versionAndExtensionDecls, |
| const GrGLSLUniformHandler&, |
| const GrShaderCaps&) const { |
| SK_ABORT("Not implemented."); |
| } |
| |
| // GPs that use writeOutputPosition and/or writeLocalCoord must incorporate the matrix type |
| // into their key, and should use this function or one of the other related helpers. |
| static uint32_t ComputeMatrixKey(const GrShaderCaps& caps, const SkMatrix& mat) { |
| if (!caps.reducedShaderMode()) { |
| if (mat.isIdentity()) { |
| return 0b00; |
| } |
| if (mat.isScaleTranslate()) { |
| return 0b01; |
| } |
| } |
| if (!mat.hasPerspective()) { |
| return 0b10; |
| } |
| return 0b11; |
| } |
| |
| static uint32_t ComputeMatrixKeys(const GrShaderCaps& shaderCaps, |
| const SkMatrix& viewMatrix, |
| const SkMatrix& localMatrix) { |
| return (ComputeMatrixKey(shaderCaps, viewMatrix) << kMatrixKeyBits) | |
| ComputeMatrixKey(shaderCaps, localMatrix); |
| } |
| |
| static uint32_t AddMatrixKeys(const GrShaderCaps& shaderCaps, |
| uint32_t flags, |
| const SkMatrix& viewMatrix, |
| const SkMatrix& localMatrix) { |
| // Shifting to make room for the matrix keys shouldn't lose bits |
| SkASSERT(((flags << (2 * kMatrixKeyBits)) >> (2 * kMatrixKeyBits)) == flags); |
| return (flags << (2 * kMatrixKeyBits)) | |
| ComputeMatrixKeys(shaderCaps, viewMatrix, localMatrix); |
| } |
| inline static constexpr int kMatrixKeyBits = 2; |
| |
| protected: |
| void setupUniformColor(GrGLSLFPFragmentBuilder* fragBuilder, |
| GrGLSLUniformHandler* uniformHandler, |
| const char* outputName, |
| UniformHandle* colorUniform); |
| |
| // A helper for setting the matrix on a uniform handle initialized through |
| // writeOutputPosition or writeLocalCoord. Automatically handles elided uniforms, |
| // scale+translate matrices, and state tracking (if provided state pointer is non-null). |
| static void SetTransform(const GrGLSLProgramDataManager&, |
| const GrShaderCaps&, |
| const UniformHandle& uniform, |
| const SkMatrix& matrix, |
| SkMatrix* state = nullptr); |
| |
| struct GrGPArgs { |
| // Used to specify the output variable used by the GP to store its device position. It can |
| // either be a float2 or a float3 (in order to handle perspective). The subclass sets this |
| // in its onEmitCode(). |
| GrShaderVar fPositionVar; |
| // Used to specify the variable storing the draw's local coordinates. It can be either a |
| // float2, float3, or void. It can only be void when no FP needs local coordinates. This |
| // variable can be an attribute or local variable, but should not itself be a varying. |
| // ProgramImpl automatically determines if this must be passed to a FS. |
| GrShaderVar fLocalCoordVar; |
| // The GP can specify the local coord var either in the VS or FS. When either is possible |
| // the VS is preferable. It may allow derived coordinates to be interpolated from the VS |
| // instead of computed in the FS per pixel. |
| GrShaderType fLocalCoordShader = kVertex_GrShaderType; |
| }; |
| |
| // Helpers for adding code to write the transformed vertex position. The first simple version |
| // just writes a variable named by 'posName' into the position output variable with the |
| // assumption that the position is 2D. The second version transforms the input position by a |
| // view matrix and the output variable is 2D or 3D depending on whether the view matrix is |
| // perspective. Both versions declare the output position variable and will set |
| // GrGPArgs::fPositionVar. |
| static void WriteOutputPosition(GrGLSLVertexBuilder*, GrGPArgs*, const char* posName); |
| static void WriteOutputPosition(GrGLSLVertexBuilder*, |
| GrGLSLUniformHandler*, |
| const GrShaderCaps&, |
| GrGPArgs*, |
| const char* posName, |
| const SkMatrix& viewMatrix, |
| UniformHandle* viewMatrixUniform); |
| |
| // Helper to transform an existing variable by a given local matrix (e.g. the inverse view |
| // matrix). It will declare the transformed local coord variable and will set |
| // GrGPArgs::fLocalCoordVar. |
| static void WriteLocalCoord(GrGLSLVertexBuilder*, |
| GrGLSLUniformHandler*, |
| const GrShaderCaps&, |
| GrGPArgs*, |
| GrShaderVar localVar, |
| const SkMatrix& localMatrix, |
| UniformHandle* localMatrixUniform); |
| |
| private: |
| virtual void onEmitCode(EmitArgs&, GrGPArgs*) = 0; |
| |
| // Iterates over the FPs beginning with the passed iter to register additional varyings and |
| // uniforms to support VS-promoted local coord evaluation for the FPs. |
| // |
| // This must happen before FP code emission so that the FPs can find the appropriate varying |
| // handles they use in place of explicit coord sampling; it is automatically called after |
| // onEmitCode() returns using the value stored in GpArgs::fLocalCoordVar and |
| // GpArgs::fPositionVar. |
| FPCoordsMap collectTransforms(GrGLSLVertexBuilder* vb, |
| GrGLSLVaryingHandler* varyingHandler, |
| GrGLSLUniformHandler* uniformHandler, |
| GrShaderType localCoordsShader, |
| const GrShaderVar& localCoordsVar, |
| const GrShaderVar& positionVar, |
| const GrPipeline& pipeline); |
| struct TransformInfo { |
| // The varying that conveys the coordinates to one or more FPs in the FS. |
| GrGLSLVarying varying; |
| // The coordinate to be transformed. varying is computed from this. |
| GrShaderVar inputCoords; |
| // Used to sort so that ancestor FP varyings are initialized before descendant FP varyings. |
| int traversalOrder; |
| }; |
| // Populated by collectTransforms() for use in emitTransformCode(). When we lift the computation |
| // of a FP's input coord to a varying we propagate that varying up the FP tree to the highest |
| // node that shares the same coordinates. This allows multiple FPs in a subtree to share a |
| // varying. |
| std::unordered_map<const GrFragmentProcessor*, TransformInfo> fTransformVaryingsMap; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Used to capture the properties of the GrTextureProxies required/expected by a primitiveProcessor |
| * along with an associated GrSamplerState. The actual proxies used are stored in either the |
| * fixed or dynamic state arrays. TextureSamplers don't perform any coord manipulation to account |
| * for texture origin. |
| */ |
| class GrGeometryProcessor::TextureSampler { |
| public: |
| TextureSampler() = default; |
| |
| TextureSampler(GrSamplerState, const GrBackendFormat&, const skgpu::Swizzle&); |
| |
| TextureSampler(const TextureSampler&) = delete; |
| TextureSampler& operator=(const TextureSampler&) = delete; |
| |
| void reset(GrSamplerState, const GrBackendFormat&, const skgpu::Swizzle&); |
| |
| const GrBackendFormat& backendFormat() const { return fBackendFormat; } |
| GrTextureType textureType() const { return fBackendFormat.textureType(); } |
| |
| GrSamplerState samplerState() const { return fSamplerState; } |
| const skgpu::Swizzle& swizzle() const { return fSwizzle; } |
| |
| bool isInitialized() const { return fIsInitialized; } |
| |
| private: |
| GrSamplerState fSamplerState; |
| GrBackendFormat fBackendFormat; |
| skgpu::Swizzle fSwizzle; |
| bool fIsInitialized = false; |
| }; |
| |
| const GrGeometryProcessor::TextureSampler& GrGeometryProcessor::IthTextureSampler(int i) { |
| SK_ABORT("Illegal texture sampler index"); |
| static const TextureSampler kBogus; |
| return kBogus; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Returns the size of the attrib type in bytes. |
| * This was moved from include/private/GrTypesPriv.h in service of Skia dependents that build |
| * with C++11. |
| */ |
| static constexpr inline size_t GrVertexAttribTypeSize(GrVertexAttribType type) { |
| switch (type) { |
| case kFloat_GrVertexAttribType: |
| return sizeof(float); |
| case kFloat2_GrVertexAttribType: |
| return 2 * sizeof(float); |
| case kFloat3_GrVertexAttribType: |
| return 3 * sizeof(float); |
| case kFloat4_GrVertexAttribType: |
| return 4 * sizeof(float); |
| case kHalf_GrVertexAttribType: |
| return sizeof(uint16_t); |
| case kHalf2_GrVertexAttribType: |
| return 2 * sizeof(uint16_t); |
| case kHalf4_GrVertexAttribType: |
| return 4 * sizeof(uint16_t); |
| case kInt2_GrVertexAttribType: |
| return 2 * sizeof(int32_t); |
| case kInt3_GrVertexAttribType: |
| return 3 * sizeof(int32_t); |
| case kInt4_GrVertexAttribType: |
| return 4 * sizeof(int32_t); |
| case kByte_GrVertexAttribType: |
| return 1 * sizeof(char); |
| case kByte2_GrVertexAttribType: |
| return 2 * sizeof(char); |
| case kByte4_GrVertexAttribType: |
| return 4 * sizeof(char); |
| case kUByte_GrVertexAttribType: |
| return 1 * sizeof(char); |
| case kUByte2_GrVertexAttribType: |
| return 2 * sizeof(char); |
| case kUByte4_GrVertexAttribType: |
| return 4 * sizeof(char); |
| case kUByte_norm_GrVertexAttribType: |
| return 1 * sizeof(char); |
| case kUByte4_norm_GrVertexAttribType: |
| return 4 * sizeof(char); |
| case kShort2_GrVertexAttribType: |
| return 2 * sizeof(int16_t); |
| case kShort4_GrVertexAttribType: |
| return 4 * sizeof(int16_t); |
| case kUShort2_GrVertexAttribType: // fall through |
| case kUShort2_norm_GrVertexAttribType: |
| return 2 * sizeof(uint16_t); |
| case kInt_GrVertexAttribType: |
| return sizeof(int32_t); |
| case kUInt_GrVertexAttribType: |
| return sizeof(uint32_t); |
| case kUShort_norm_GrVertexAttribType: |
| return sizeof(uint16_t); |
| case kUShort4_norm_GrVertexAttribType: |
| return 4 * sizeof(uint16_t); |
| } |
| // GCC fails because SK_ABORT evaluates to non constexpr. clang and cl.exe think this is |
| // unreachable and don't complain. |
| #if defined(__clang__) || !defined(__GNUC__) |
| SK_ABORT("Unsupported type conversion"); |
| #endif |
| return 0; |
| } |
| |
| constexpr size_t GrGeometryProcessor::Attribute::size() const { |
| return GrVertexAttribTypeSize(fCPUType); |
| } |
| |
| #endif |