| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/glsl/GrGLSLProgramBuilder.h" |
| |
| #include <memory> |
| |
| #include "src/gpu/GrCaps.h" |
| #include "src/gpu/GrFragmentProcessor.h" |
| #include "src/gpu/GrGeometryProcessor.h" |
| #include "src/gpu/GrPipeline.h" |
| #include "src/gpu/GrRenderTarget.h" |
| #include "src/gpu/GrShaderCaps.h" |
| #include "src/gpu/GrTexture.h" |
| #include "src/gpu/GrXferProcessor.h" |
| #include "src/gpu/effects/GrTextureEffect.h" |
| #include "src/gpu/glsl/GrGLSLVarying.h" |
| #include "src/sksl/SkSLCompiler.h" |
| #include "src/sksl/dsl/priv/DSLFPs.h" |
| |
| const int GrGLSLProgramBuilder::kVarsPerBlock = 8; |
| |
| GrGLSLProgramBuilder::GrGLSLProgramBuilder(const GrProgramDesc& desc, |
| const GrProgramInfo& programInfo) |
| : fVS(this) |
| , fFS(this) |
| , fDesc(desc) |
| , fProgramInfo(programInfo) |
| , fNumFragmentSamplers(0) {} |
| |
| GrGLSLProgramBuilder::~GrGLSLProgramBuilder() = default; |
| |
| void GrGLSLProgramBuilder::addFeature(GrShaderFlags shaders, |
| uint32_t featureBit, |
| const char* extensionName) { |
| if (shaders & kVertex_GrShaderFlag) { |
| fVS.addFeature(featureBit, extensionName); |
| } |
| if (shaders & kFragment_GrShaderFlag) { |
| fFS.addFeature(featureBit, extensionName); |
| } |
| } |
| |
| bool GrGLSLProgramBuilder::emitAndInstallProcs() { |
| // First we loop over all of the installed processors and collect coord transforms. These will |
| // be sent to the ProgramImpl in its emitCode function |
| SkSL::dsl::Start(this->shaderCompiler()); |
| SkString inputColor; |
| SkString inputCoverage; |
| if (!this->emitAndInstallPrimProc(&inputColor, &inputCoverage)) { |
| return false; |
| } |
| if (!this->emitAndInstallDstTexture()) { |
| return false; |
| } |
| if (!this->emitAndInstallFragProcs(&inputColor, &inputCoverage)) { |
| return false; |
| } |
| if (!this->emitAndInstallXferProc(inputColor, inputCoverage)) { |
| return false; |
| } |
| fGPImpl->emitTransformCode(&fVS, this->uniformHandler()); |
| SkSL::dsl::End(); |
| |
| return this->checkSamplerCounts(); |
| } |
| |
| bool GrGLSLProgramBuilder::emitAndInstallPrimProc(SkString* outputColor, SkString* outputCoverage) { |
| const GrGeometryProcessor& geomProc = this->geometryProcessor(); |
| |
| // Program builders have a bit of state we need to clear with each effect |
| this->advanceStage(); |
| this->nameExpression(outputColor, "outputColor"); |
| this->nameExpression(outputCoverage, "outputCoverage"); |
| |
| SkASSERT(!fUniformHandles.fRTAdjustmentUni.isValid()); |
| GrShaderFlags rtAdjustVisibility; |
| if (geomProc.willUseTessellationShaders()) { |
| rtAdjustVisibility = kTessEvaluation_GrShaderFlag; |
| } else { |
| rtAdjustVisibility = kVertex_GrShaderFlag; |
| } |
| fUniformHandles.fRTAdjustmentUni = this->uniformHandler()->addUniform( |
| nullptr, rtAdjustVisibility, SkSLType::kFloat4, SkSL::Compiler::RTADJUST_NAME); |
| |
| fFS.codeAppendf("// Stage %d, %s\n", fStageIndex, geomProc.name()); |
| fVS.codeAppendf("// Primitive Processor %s\n", geomProc.name()); |
| |
| SkASSERT(!fGPImpl); |
| fGPImpl = geomProc.makeProgramImpl(*this->shaderCaps()); |
| |
| SkAutoSTArray<4, SamplerHandle> texSamplers(geomProc.numTextureSamplers()); |
| for (int i = 0; i < geomProc.numTextureSamplers(); ++i) { |
| SkString name; |
| name.printf("TextureSampler_%d", i); |
| const auto& sampler = geomProc.textureSampler(i); |
| texSamplers[i] = this->emitSampler(geomProc.textureSampler(i).backendFormat(), |
| sampler.samplerState(), |
| sampler.swizzle(), |
| name.c_str()); |
| if (!texSamplers[i].isValid()) { |
| return false; |
| } |
| } |
| |
| GrGeometryProcessor::ProgramImpl::EmitArgs args(&fVS, |
| &fFS, |
| this->varyingHandler(), |
| this->uniformHandler(), |
| this->shaderCaps(), |
| geomProc, |
| outputColor->c_str(), |
| outputCoverage->c_str(), |
| texSamplers.get()); |
| std::tie(fFPCoordsMap, fLocalCoordsVar) = fGPImpl->emitCode(args, this->pipeline()); |
| |
| // We have to check that effects and the code they emit are consistent, ie if an effect |
| // asks for dst color, then the emit code needs to follow suit |
| SkDEBUGCODE(verify(geomProc);) |
| |
| return true; |
| } |
| |
| bool GrGLSLProgramBuilder::emitAndInstallFragProcs(SkString* color, SkString* coverage) { |
| int fpCount = this->pipeline().numFragmentProcessors(); |
| SkASSERT(fFPImpls.empty()); |
| fFPImpls.reserve(fpCount); |
| for (int i = 0; i < fpCount; ++i) { |
| SkString* inOut = this->pipeline().isColorFragmentProcessor(i) ? color : coverage; |
| SkString output; |
| const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i); |
| fFPImpls.push_back(fp.makeProgramImpl()); |
| output = this->emitRootFragProc(fp, *fFPImpls.back(), *inOut, output); |
| if (output.isEmpty()) { |
| return false; |
| } |
| *inOut = std::move(output); |
| } |
| return true; |
| } |
| |
| SkString GrGLSLProgramBuilder::emitRootFragProc(const GrFragmentProcessor& fp, |
| GrFragmentProcessor::ProgramImpl& impl, |
| const SkString& input, |
| SkString output) { |
| SkASSERT(input.size()); |
| |
| // Program builders have a bit of state we need to clear with each effect |
| this->advanceStage(); |
| this->nameExpression(&output, "output"); |
| fFS.codeAppendf("half4 %s;", output.c_str()); |
| bool ok = true; |
| fp.visitWithImpls([&, samplerIdx = 0](const GrFragmentProcessor& fp, |
| GrFragmentProcessor::ProgramImpl& impl) mutable { |
| if (auto* te = fp.asTextureEffect()) { |
| SkString name; |
| name.printf("TextureSampler_%d", samplerIdx++); |
| |
| GrSamplerState samplerState = te->samplerState(); |
| const GrBackendFormat& format = te->view().proxy()->backendFormat(); |
| skgpu::Swizzle swizzle = te->view().swizzle(); |
| SamplerHandle handle = this->emitSampler(format, samplerState, swizzle, name.c_str()); |
| if (!handle.isValid()) { |
| ok = false; |
| return; |
| } |
| static_cast<GrTextureEffect::Impl&>(impl).setSamplerHandle(handle); |
| } |
| }, impl); |
| if (!ok) { |
| return {}; |
| } |
| |
| this->writeFPFunction(fp, impl); |
| |
| if (fp.isBlendFunction()) { |
| if (this->fragmentProcessorHasCoordsParam(&fp)) { |
| fFS.codeAppendf("%s = %s(%s, half4(1), %s);", |
| output.c_str(), |
| impl.functionName(), |
| input.c_str(), |
| fLocalCoordsVar.c_str()); |
| } else { |
| fFS.codeAppendf("%s = %s(%s, half4(1));", |
| output.c_str(), |
| impl.functionName(), |
| input.c_str()); |
| } |
| } else { |
| if (this->fragmentProcessorHasCoordsParam(&fp)) { |
| fFS.codeAppendf("%s = %s(%s, %s);", |
| output.c_str(), |
| impl.functionName(), |
| input.c_str(), |
| fLocalCoordsVar.c_str()); |
| } else { |
| fFS.codeAppendf("%s = %s(%s);", output.c_str(), impl.functionName(), input.c_str()); |
| } |
| } |
| |
| // We have to check that effects and the code they emit are consistent, ie if an effect asks |
| // for dst color, then the emit code needs to follow suit |
| SkDEBUGCODE(verify(fp);) |
| |
| return output; |
| } |
| |
| void GrGLSLProgramBuilder::writeChildFPFunctions(const GrFragmentProcessor& fp, |
| GrFragmentProcessor::ProgramImpl& impl) { |
| fSubstageIndices.push_back(0); |
| for (int i = 0; i < impl.numChildProcessors(); ++i) { |
| GrFragmentProcessor::ProgramImpl* childImpl = impl.childProcessor(i); |
| if (!childImpl) { |
| continue; |
| } |
| |
| const GrFragmentProcessor* childFP = fp.childProcessor(i); |
| SkASSERT(childFP); |
| |
| this->writeFPFunction(*childFP, *childImpl); |
| ++fSubstageIndices.back(); |
| } |
| fSubstageIndices.pop_back(); |
| } |
| |
| void GrGLSLProgramBuilder::writeFPFunction(const GrFragmentProcessor& fp, |
| GrFragmentProcessor::ProgramImpl& impl) { |
| constexpr const char* kDstColor = "_dst"; |
| const char* const inputColor = fp.isBlendFunction() ? "_src" : "_input"; |
| const char* sampleCoords = "_coords"; |
| fFS.nextStage(); |
| // Conceptually, an FP is always sampled at a particular coordinate. However, if it is only |
| // sampled by a chain of uniform matrix expressions (or legacy coord transforms), the value that |
| // would have been passed to _coords is lifted to the vertex shader and |
| // varying. In that case it uses that variable and we do not pass a second argument for _coords. |
| GrShaderVar params[3]; |
| int numParams = 0; |
| |
| params[numParams++] = GrShaderVar(inputColor, SkSLType::kHalf4); |
| |
| if (fp.isBlendFunction()) { |
| // Blend functions take a dest color as input. |
| params[numParams++] = GrShaderVar(kDstColor, SkSLType::kHalf4); |
| } |
| |
| if (this->fragmentProcessorHasCoordsParam(&fp)) { |
| params[numParams++] = GrShaderVar(sampleCoords, SkSLType::kFloat2); |
| } else { |
| // Either doesn't use coords at all or sampled through a chain of passthrough/matrix |
| // samples usages. In the latter case the coords are emitted in the vertex shader as a |
| // varying, so this only has to access it. Add a float2 _coords variable that maps to the |
| // associated varying and replaces the absent 2nd argument to the fp's function. |
| GrShaderVar varying = fFPCoordsMap[&fp].coordsVarying; |
| |
| switch (varying.getType()) { |
| case SkSLType::kVoid: |
| SkASSERT(!fp.usesSampleCoordsDirectly()); |
| break; |
| case SkSLType::kFloat2: |
| // Just point the local coords to the varying |
| sampleCoords = varying.getName().c_str(); |
| break; |
| case SkSLType::kFloat3: |
| // Must perform the perspective divide in the frag shader based on the |
| // varying, and since we won't actually have a function parameter for local |
| // coords, add it as a local variable. |
| fFS.codeAppendf("float2 %s = %s.xy / %s.z;\n", |
| sampleCoords, |
| varying.getName().c_str(), |
| varying.getName().c_str()); |
| break; |
| default: |
| SkDEBUGFAILF("Unexpected varying type for coord: %s %d\n", |
| varying.getName().c_str(), |
| (int)varying.getType()); |
| break; |
| } |
| } |
| |
| SkASSERT(numParams <= (int)SK_ARRAY_COUNT(params)); |
| |
| // First, emit every child's function. This needs to happen (even for children that aren't |
| // sampled), so that all of the expected uniforms are registered. |
| this->writeChildFPFunctions(fp, impl); |
| GrFragmentProcessor::ProgramImpl::EmitArgs args(&fFS, |
| this->uniformHandler(), |
| this->shaderCaps(), |
| fp, |
| inputColor, |
| kDstColor, |
| sampleCoords); |
| |
| impl.emitCode(args); |
| impl.setFunctionName(fFS.getMangledFunctionName(args.fFp.name())); |
| |
| fFS.emitFunction(SkSLType::kHalf4, |
| impl.functionName(), |
| SkMakeSpan(params, numParams), |
| fFS.code().c_str()); |
| fFS.deleteStage(); |
| } |
| |
| bool GrGLSLProgramBuilder::emitAndInstallDstTexture() { |
| fDstTextureOrigin = kTopLeft_GrSurfaceOrigin; |
| |
| const GrSurfaceProxyView& dstView = this->pipeline().dstProxyView(); |
| if (this->pipeline().usesDstTexture()) { |
| // Set up a sampler handle for the destination texture. |
| GrTextureProxy* dstTextureProxy = dstView.asTextureProxy(); |
| SkASSERT(dstTextureProxy); |
| const skgpu::Swizzle& swizzle = dstView.swizzle(); |
| fDstTextureSamplerHandle = this->emitSampler(dstTextureProxy->backendFormat(), |
| GrSamplerState(), swizzle, "DstTextureSampler"); |
| if (!fDstTextureSamplerHandle.isValid()) { |
| return false; |
| } |
| fDstTextureOrigin = dstView.origin(); |
| SkASSERT(dstTextureProxy->textureType() != GrTextureType::kExternal); |
| |
| // Declare a _dstColor global variable which samples from the dest-texture sampler at the |
| // top of the fragment shader. |
| const char* dstTextureCoordsName; |
| fUniformHandles.fDstTextureCoordsUni = this->uniformHandler()->addUniform( |
| /*owner=*/nullptr, |
| kFragment_GrShaderFlag, |
| SkSLType::kHalf4, |
| "DstTextureCoords", |
| &dstTextureCoordsName); |
| fFS.codeAppend("// Read color from copy of the destination\n"); |
| fFS.codeAppendf("half2 _dstTexCoord = (half2(sk_FragCoord.xy) - %s.xy) * %s.zw;\n", |
| dstTextureCoordsName, dstTextureCoordsName); |
| if (fDstTextureOrigin == kBottomLeft_GrSurfaceOrigin) { |
| fFS.codeAppend("_dstTexCoord.y = 1.0 - _dstTexCoord.y;\n"); |
| } |
| const char* dstColor = fFS.dstColor(); |
| SkString dstColorDecl = SkStringPrintf("half4 %s;", dstColor); |
| fFS.definitionAppend(dstColorDecl.c_str()); |
| fFS.codeAppendf("%s = ", dstColor); |
| fFS.appendTextureLookup(fDstTextureSamplerHandle, "_dstTexCoord"); |
| fFS.codeAppend(";\n"); |
| } else if (this->pipeline().usesDstInputAttachment()) { |
| // Set up an input attachment for the destination texture. |
| const skgpu::Swizzle& swizzle = dstView.swizzle(); |
| fDstTextureSamplerHandle = this->emitInputSampler(swizzle, "DstTextureInput"); |
| if (!fDstTextureSamplerHandle.isValid()) { |
| return false; |
| } |
| |
| // Populate the _dstColor variable by loading from the input attachment at the top of the |
| // fragment shader. |
| fFS.codeAppend("// Read color from input attachment\n"); |
| const char* dstColor = fFS.dstColor(); |
| SkString dstColorDecl = SkStringPrintf("half4 %s;", dstColor); |
| fFS.definitionAppend(dstColorDecl.c_str()); |
| fFS.codeAppendf("%s = ", dstColor); |
| fFS.appendInputLoad(fDstTextureSamplerHandle); |
| fFS.codeAppend(";\n"); |
| } |
| |
| return true; |
| } |
| |
| bool GrGLSLProgramBuilder::emitAndInstallXferProc(const SkString& colorIn, |
| const SkString& coverageIn) { |
| // Program builders have a bit of state we need to clear with each effect |
| this->advanceStage(); |
| |
| SkASSERT(!fXPImpl); |
| const GrXferProcessor& xp = this->pipeline().getXferProcessor(); |
| fXPImpl = xp.makeProgramImpl(); |
| |
| // Enable dual source secondary output if we have one |
| if (xp.hasSecondaryOutput()) { |
| fFS.enableSecondaryOutput(); |
| } |
| |
| if (this->shaderCaps()->mustDeclareFragmentShaderOutput()) { |
| fFS.enableCustomOutput(); |
| } |
| |
| SkString openBrace; |
| openBrace.printf("{ // Xfer Processor: %s\n", xp.name()); |
| fFS.codeAppend(openBrace.c_str()); |
| |
| SkString finalInColor = colorIn.size() ? colorIn : SkString("float4(1)"); |
| |
| GrXferProcessor::ProgramImpl::EmitArgs args( |
| &fFS, |
| this->uniformHandler(), |
| this->shaderCaps(), |
| xp, |
| finalInColor.c_str(), |
| coverageIn.size() ? coverageIn.c_str() : "float4(1)", |
| fFS.getPrimaryColorOutputName(), |
| fFS.getSecondaryColorOutputName(), |
| fDstTextureSamplerHandle, |
| fDstTextureOrigin, |
| this->pipeline().writeSwizzle()); |
| fXPImpl->emitCode(args); |
| |
| // We have to check that effects and the code they emit are consistent, ie if an effect |
| // asks for dst color, then the emit code needs to follow suit |
| SkDEBUGCODE(verify(xp);) |
| fFS.codeAppend("}"); |
| return true; |
| } |
| |
| GrGLSLProgramBuilder::SamplerHandle GrGLSLProgramBuilder::emitSampler( |
| const GrBackendFormat& backendFormat, GrSamplerState state, const skgpu::Swizzle& swizzle, |
| const char* name) { |
| ++fNumFragmentSamplers; |
| return this->uniformHandler()->addSampler(backendFormat, state, swizzle, name, |
| this->shaderCaps()); |
| } |
| |
| GrGLSLProgramBuilder::SamplerHandle GrGLSLProgramBuilder::emitInputSampler( |
| const skgpu::Swizzle& swizzle, const char* name) { |
| return this->uniformHandler()->addInputSampler(swizzle, name); |
| } |
| |
| bool GrGLSLProgramBuilder::checkSamplerCounts() { |
| const GrShaderCaps& shaderCaps = *this->shaderCaps(); |
| if (fNumFragmentSamplers > shaderCaps.maxFragmentSamplers()) { |
| GrCapsDebugf(this->caps(), "Program would use too many fragment samplers\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| #ifdef SK_DEBUG |
| void GrGLSLProgramBuilder::verify(const GrGeometryProcessor& geomProc) { |
| SkASSERT(!fFS.fHasReadDstColorThisStage_DebugOnly); |
| } |
| |
| void GrGLSLProgramBuilder::verify(const GrFragmentProcessor& fp) { |
| SkASSERT(fp.willReadDstColor() == fFS.fHasReadDstColorThisStage_DebugOnly); |
| } |
| |
| void GrGLSLProgramBuilder::verify(const GrXferProcessor& xp) { |
| SkASSERT(xp.willReadDstColor() == fFS.fHasReadDstColorThisStage_DebugOnly); |
| } |
| #endif |
| |
| SkString GrGLSLProgramBuilder::getMangleSuffix() const { |
| SkASSERT(fStageIndex >= 0); |
| SkString suffix; |
| suffix.printf("_S%d", fStageIndex); |
| for (auto c : fSubstageIndices) { |
| suffix.appendf("_c%d", c); |
| } |
| return suffix; |
| } |
| |
| SkString GrGLSLProgramBuilder::nameVariable(char prefix, const char* name, bool mangle) { |
| SkString out; |
| if ('\0' == prefix) { |
| out = name; |
| } else { |
| out.printf("%c%s", prefix, name); |
| } |
| if (mangle) { |
| SkString suffix = this->getMangleSuffix(); |
| // Names containing "__" are reserved; add "x" if needed to avoid consecutive underscores. |
| const char *underscoreSplitter = out.endsWith('_') ? "x" : ""; |
| out.appendf("%s%s", underscoreSplitter, suffix.c_str()); |
| } |
| return out; |
| } |
| |
| void GrGLSLProgramBuilder::nameExpression(SkString* output, const char* baseName) { |
| // Name a variable to hold stage result. If we already have a valid output name, use that as-is; |
| // otherwise, create a new mangled one. |
| if (output->isEmpty()) { |
| *output = this->nameVariable(/*prefix=*/'\0', baseName); |
| } |
| } |
| |
| void GrGLSLProgramBuilder::appendUniformDecls(GrShaderFlags visibility, SkString* out) const { |
| this->uniformHandler()->appendUniformDecls(visibility, out); |
| } |
| |
| void GrGLSLProgramBuilder::addRTFlipUniform(const char* name) { |
| SkASSERT(!fUniformHandles.fRTFlipUni.isValid()); |
| GrGLSLUniformHandler* uniformHandler = this->uniformHandler(); |
| fUniformHandles.fRTFlipUni = |
| uniformHandler->internalAddUniformArray(nullptr, |
| kFragment_GrShaderFlag, |
| SkSLType::kFloat2, |
| name, |
| false, |
| 0, |
| nullptr); |
| } |
| |
| bool GrGLSLProgramBuilder::fragmentProcessorHasCoordsParam(const GrFragmentProcessor* fp) { |
| return fFPCoordsMap[fp].hasCoordsParam; |
| } |
| |
| void GrGLSLProgramBuilder::finalizeShaders() { |
| this->varyingHandler()->finalize(); |
| fVS.finalize(kVertex_GrShaderFlag); |
| fFS.finalize(kFragment_GrShaderFlag); |
| } |