| /* |
| * Copyright 2021 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/sksl/SkSLErrorReporter.h" |
| #include "src/sksl/SkSLAnalysis.h" |
| #include "src/sksl/SkSLConstantFolder.h" |
| #include "src/sksl/SkSLProgramSettings.h" |
| #include "src/sksl/ir/SkSLBinaryExpression.h" |
| #include "src/sksl/ir/SkSLIndexExpression.h" |
| #include "src/sksl/ir/SkSLLiteral.h" |
| #include "src/sksl/ir/SkSLSetting.h" |
| #include "src/sksl/ir/SkSLSwizzle.h" |
| #include "src/sksl/ir/SkSLTernaryExpression.h" |
| #include "src/sksl/ir/SkSLType.h" |
| #include "src/sksl/ir/SkSLVariableReference.h" |
| |
| namespace SkSL { |
| |
| static bool is_low_precision_matrix_vector_multiply(const Expression& left, |
| const Operator& op, |
| const Expression& right, |
| const Type& resultType) { |
| return !resultType.highPrecision() && |
| op.kind() == Token::Kind::TK_STAR && |
| left.type().isMatrix() && |
| right.type().isVector() && |
| left.type().rows() == right.type().columns() && |
| Analysis::IsTrivialExpression(left) && |
| Analysis::IsTrivialExpression(right); |
| } |
| |
| static std::unique_ptr<Expression> rewrite_matrix_vector_multiply(const Context& context, |
| const Expression& left, |
| const Operator& op, |
| const Expression& right, |
| const Type& resultType) { |
| // Rewrite m33 * v3 as (m[0] * v[0] + m[1] * v[1] + m[2] * v[2]) |
| std::unique_ptr<Expression> sum; |
| for (int n = 0; n < left.type().rows(); ++n) { |
| // Get mat[N] with an index expression. |
| std::unique_ptr<Expression> matN = IndexExpression::Make( |
| context, left.clone(), Literal::MakeInt(context, left.fLine, n)); |
| // Get vec[N] with a swizzle expression. |
| std::unique_ptr<Expression> vecN = Swizzle::Make( |
| context, right.clone(), ComponentArray{(SkSL::SwizzleComponent::Type)n}); |
| // Multiply them together. |
| const Type* matNType = &matN->type(); |
| std::unique_ptr<Expression> product = |
| BinaryExpression::Make(context, std::move(matN), op, std::move(vecN), matNType); |
| // Sum all the components together. |
| if (!sum) { |
| sum = std::move(product); |
| } else { |
| sum = BinaryExpression::Make(context, |
| std::move(sum), |
| Operator(Token::Kind::TK_PLUS), |
| std::move(product), |
| matNType); |
| } |
| } |
| |
| return sum; |
| } |
| |
| std::unique_ptr<Expression> BinaryExpression::Convert(const Context& context, |
| std::unique_ptr<Expression> left, |
| Operator op, |
| std::unique_ptr<Expression> right) { |
| if (!left || !right) { |
| return nullptr; |
| } |
| const int line = left->fLine; |
| |
| const Type* rawLeftType = (left->isIntLiteral() && right->type().isInteger()) |
| ? &right->type() |
| : &left->type(); |
| const Type* rawRightType = (right->isIntLiteral() && left->type().isInteger()) |
| ? &left->type() |
| : &right->type(); |
| |
| bool isAssignment = op.isAssignment(); |
| if (isAssignment && |
| !Analysis::UpdateVariableRefKind(left.get(), |
| op.kind() != Token::Kind::TK_EQ |
| ? VariableReference::RefKind::kReadWrite |
| : VariableReference::RefKind::kWrite, |
| context.fErrors)) { |
| return nullptr; |
| } |
| |
| const Type* leftType; |
| const Type* rightType; |
| const Type* resultType; |
| if (!op.determineBinaryType(context, *rawLeftType, *rawRightType, |
| &leftType, &rightType, &resultType)) { |
| context.fErrors->error(line, "type mismatch: '" + std::string(op.tightOperatorName()) + |
| "' cannot operate on '" + left->type().displayName() + |
| "', '" + right->type().displayName() + "'"); |
| return nullptr; |
| } |
| |
| if (isAssignment && leftType->componentType().isOpaque()) { |
| context.fErrors->error(line, "assignments to opaque type '" + left->type().displayName() + |
| "' are not permitted"); |
| return nullptr; |
| } |
| if (context.fConfig->strictES2Mode()) { |
| if (!op.isAllowedInStrictES2Mode()) { |
| context.fErrors->error(line, "operator '" + std::string(op.tightOperatorName()) + |
| "' is not allowed"); |
| return nullptr; |
| } |
| if (leftType->isOrContainsArray()) { |
| // Most operators are already rejected on arrays, but GLSL ES 1.0 is very explicit that |
| // the *only* operator allowed on arrays is subscripting (and the rules against |
| // assignment, comparison, and even sequence apply to structs containing arrays as well) |
| context.fErrors->error(line, |
| "operator '" + std::string(op.tightOperatorName()) + |
| "' can not operate on arrays (or structs containing arrays)"); |
| return nullptr; |
| } |
| } |
| |
| left = leftType->coerceExpression(std::move(left), context); |
| right = rightType->coerceExpression(std::move(right), context); |
| if (!left || !right) { |
| return nullptr; |
| } |
| |
| return BinaryExpression::Make(context, std::move(left), op, std::move(right), resultType); |
| } |
| |
| std::unique_ptr<Expression> BinaryExpression::Make(const Context& context, |
| std::unique_ptr<Expression> left, |
| Operator op, |
| std::unique_ptr<Expression> right) { |
| // Determine the result type of the binary expression. |
| const Type* leftType; |
| const Type* rightType; |
| const Type* resultType; |
| SkAssertResult(op.determineBinaryType(context, left->type(), right->type(), |
| &leftType, &rightType, &resultType)); |
| |
| return BinaryExpression::Make(context, std::move(left), op, std::move(right), resultType); |
| } |
| |
| std::unique_ptr<Expression> BinaryExpression::Make(const Context& context, |
| std::unique_ptr<Expression> left, |
| Operator op, |
| std::unique_ptr<Expression> right, |
| const Type* resultType) { |
| // We should have detected non-ES2 compliant behavior in Convert. |
| SkASSERT(!context.fConfig->strictES2Mode() || op.isAllowedInStrictES2Mode()); |
| SkASSERT(!context.fConfig->strictES2Mode() || !left->type().isOrContainsArray()); |
| |
| // We should have detected non-assignable assignment expressions in Convert. |
| SkASSERT(!op.isAssignment() || Analysis::IsAssignable(*left)); |
| SkASSERT(!op.isAssignment() || !left->type().componentType().isOpaque()); |
| |
| // For simple assignments, detect and report out-of-range literal values. |
| if (op.kind() == Token::Kind::TK_EQ) { |
| left->type().checkForOutOfRangeLiteral(context, *right); |
| } |
| |
| // Perform constant-folding on the expression. |
| const int line = left->fLine; |
| if (std::unique_ptr<Expression> result = ConstantFolder::Simplify(context, line, *left, |
| op, *right, *resultType)) { |
| return result; |
| } |
| |
| if (context.fConfig->fSettings.fOptimize) { |
| // When sk_Caps.rewriteMatrixVectorMultiply is set, we rewrite medium-precision |
| // matrix * vector multiplication as: |
| // (sk_Caps.rewriteMatrixVectorMultiply ? (mat[0]*vec[0] + ... + mat[N]*vec[N]) |
| // : mat * vec) |
| if (is_low_precision_matrix_vector_multiply(*left, op, *right, *resultType)) { |
| // Look up `sk_Caps.rewriteMatrixVectorMultiply`. |
| auto caps = Setting::Convert(context, line, "rewriteMatrixVectorMultiply"); |
| |
| bool capsBitIsTrue = caps->isBoolLiteral() && caps->as<Literal>().boolValue(); |
| if (capsBitIsTrue || !caps->isBoolLiteral()) { |
| // Rewrite the multiplication as a sum of vector-scalar products. |
| std::unique_ptr<Expression> rewrite = |
| rewrite_matrix_vector_multiply(context, *left, op, *right, *resultType); |
| |
| // If we know the caps bit is true, return the rewritten expression directly. |
| if (capsBitIsTrue) { |
| return rewrite; |
| } |
| |
| // Return a ternary expression: |
| // sk_Caps.rewriteMatrixVectorMultiply ? (rewrite) : (mat * vec) |
| return TernaryExpression::Make( |
| context, |
| std::move(caps), |
| std::move(rewrite), |
| std::make_unique<BinaryExpression>(line, std::move(left), op, |
| std::move(right), resultType)); |
| } |
| } |
| } |
| |
| return std::make_unique<BinaryExpression>(line, std::move(left), op, |
| std::move(right), resultType); |
| } |
| |
| bool BinaryExpression::CheckRef(const Expression& expr) { |
| switch (expr.kind()) { |
| case Expression::Kind::kFieldAccess: |
| return CheckRef(*expr.as<FieldAccess>().base()); |
| |
| case Expression::Kind::kIndex: |
| return CheckRef(*expr.as<IndexExpression>().base()); |
| |
| case Expression::Kind::kSwizzle: |
| return CheckRef(*expr.as<Swizzle>().base()); |
| |
| case Expression::Kind::kTernary: { |
| const TernaryExpression& t = expr.as<TernaryExpression>(); |
| return CheckRef(*t.ifTrue()) && CheckRef(*t.ifFalse()); |
| } |
| case Expression::Kind::kVariableReference: { |
| const VariableReference& ref = expr.as<VariableReference>(); |
| return ref.refKind() == VariableRefKind::kWrite || |
| ref.refKind() == VariableRefKind::kReadWrite; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| std::unique_ptr<Expression> BinaryExpression::clone() const { |
| return std::make_unique<BinaryExpression>(fLine, |
| this->left()->clone(), |
| this->getOperator(), |
| this->right()->clone(), |
| &this->type()); |
| } |
| |
| std::string BinaryExpression::description() const { |
| return "(" + this->left()->description() + |
| this->getOperator().operatorName() + |
| this->right()->description() + ")"; |
| } |
| |
| } // namespace SkSL |