| // Copyright 2016 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "cobalt/media/base/audio_latency.h" |
| |
| #include <algorithm> |
| |
| #include "base/logging.h" |
| #include "build/build_config.h" |
| #include "starboard/types.h" |
| |
| namespace cobalt { |
| namespace media { |
| |
| namespace { |
| #if !defined(OS_WIN) |
| // Taken from "Bit Twiddling Hacks" |
| // http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 |
| uint32_t RoundUpToPowerOfTwo(uint32_t v) { |
| v--; |
| v |= v >> 1; |
| v |= v >> 2; |
| v |= v >> 4; |
| v |= v >> 8; |
| v |= v >> 16; |
| v++; |
| return v; |
| } |
| #endif |
| } // namespace |
| |
| // static |
| int AudioLatency::GetHighLatencyBufferSize(int sample_rate, |
| int preferred_buffer_size) { |
| // Empirically, we consider 20ms of samples to be high latency. |
| const double twenty_ms_size = 2.0 * sample_rate / 100; |
| |
| #if defined(OS_WIN) |
| preferred_buffer_size = std::max(preferred_buffer_size, 1); |
| |
| // Windows doesn't use power of two buffer sizes, so we should always round up |
| // to the nearest multiple of the output buffer size. |
| const int high_latency_buffer_size = |
| std::ceil(twenty_ms_size / preferred_buffer_size) * preferred_buffer_size; |
| #else |
| // On other platforms use the nearest higher power of two buffer size. For a |
| // given sample rate, this works out to: |
| // |
| // <= 3200 : 64 |
| // <= 6400 : 128 |
| // <= 12800 : 256 |
| // <= 25600 : 512 |
| // <= 51200 : 1024 |
| // <= 102400 : 2048 |
| // <= 204800 : 4096 |
| // |
| // On Linux, the minimum hardware buffer size is 512, so the lower calculated |
| // values are unused. OSX may have a value as low as 128. |
| const int high_latency_buffer_size = RoundUpToPowerOfTwo(twenty_ms_size); |
| #endif // defined(OS_WIN) |
| |
| #if defined(OS_CHROMEOS) |
| return high_latency_buffer_size; // No preference. |
| #else |
| return std::max(preferred_buffer_size, high_latency_buffer_size); |
| #endif // defined(OS_CHROMEOS) |
| } |
| |
| // static |
| int AudioLatency::GetRtcBufferSize(int sample_rate, int hardware_buffer_size) { |
| // Use native hardware buffer size as default. On Windows, we strive to open |
| // up using this native hardware buffer size to achieve best |
| // possible performance and to ensure that no FIFO is needed on the browser |
| // side to match the client request. That is why there is no #if case for |
| // Windows below. |
| int frames_per_buffer = hardware_buffer_size; |
| |
| // No |hardware_buffer_size| is specified, fall back to 10 ms buffer size. |
| if (!frames_per_buffer) { |
| frames_per_buffer = sample_rate / 100; |
| DVLOG(1) << "Using 10 ms sink output buffer size: " << frames_per_buffer; |
| return frames_per_buffer; |
| } |
| |
| #if defined(OS_LINUX) || defined(OS_MACOSX) |
| // On Linux and MacOS, the low level IO implementations on the browser side |
| // supports all buffer size the clients want. We use the native peer |
| // connection buffer size (10ms) to achieve best possible performance. |
| frames_per_buffer = sample_rate / 100; |
| #elif defined(OS_ANDROID) |
| // TODO(olka/henrika): This settings are very old, need to be revisited. |
| int frames_per_10ms = sample_rate / 100; |
| if (frames_per_buffer < 2 * frames_per_10ms) { |
| // Examples of low-latency frame sizes and the resulting |buffer_size|: |
| // Nexus 7 : 240 audio frames => 2*480 = 960 |
| // Nexus 10 : 256 => 2*441 = 882 |
| // Galaxy Nexus: 144 => 2*441 = 882 |
| frames_per_buffer = 2 * frames_per_10ms; |
| DVLOG(1) << "Low-latency output detected on Android"; |
| } |
| #endif |
| |
| DVLOG(1) << "Using sink output buffer size: " << frames_per_buffer; |
| return frames_per_buffer; |
| } |
| |
| // static |
| int AudioLatency::GetInteractiveBufferSize(int hardware_buffer_size) { |
| #if defined(OS_ANDROID) |
| // The optimum low-latency hardware buffer size is usually too small on |
| // Android for WebAudio to render without glitching. So, if it is small, use |
| // a larger size. |
| // |
| // Since WebAudio renders in 128-frame blocks, the small buffer sizes (144 for |
| // a Galaxy Nexus), cause significant processing jitter. Sometimes multiple |
| // blocks will processed, but other times will not be since the WebAudio can't |
| // satisfy the request. By using a larger render buffer size, we smooth out |
| // the jitter. |
| const int kSmallBufferSize = 1024; |
| const int kDefaultCallbackBufferSize = 2048; |
| if (hardware_buffer_size <= kSmallBufferSize) |
| return kDefaultCallbackBufferSize; |
| #endif |
| |
| return hardware_buffer_size; |
| } |
| |
| } // namespace media |
| } // namespace cobalt |