blob: ad39b386b0294fc7b5ca144e51c0005e0160b182 [file] [log] [blame]
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// mathutil_unittest:
// Unit tests for the utils defined in mathutil.h
//
#include "mathutil.h"
#include <gtest/gtest.h>
using namespace gl;
namespace
{
// Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions.
// For floats f1 and f2, unpackSnorm2x16(packSnorm2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackSnorm2x16)
{
const float input[8][2] =
{
{ 0.0f, 0.0f },
{ 1.0f, 1.0f },
{ -1.0f, 1.0f },
{ -1.0f, -1.0f },
{ 0.875f, 0.75f },
{ 0.00392f, -0.99215f },
{ -0.000675f, 0.004954f },
{ -0.6937f, -0.02146f }
};
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
for (size_t i = 0; i < 8; i++)
{
unpackSnorm2x16(packSnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance);
EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance);
}
}
// Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions with infinity values,
// result should be clamped to [-1, 1].
TEST(MathUtilTest, packAndUnpackSnorm2x16Infinity)
{
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
unpackSnorm2x16(packSnorm2x16(std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance);
unpackSnorm2x16(packSnorm2x16(std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance);
unpackSnorm2x16(packSnorm2x16(-std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(-1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance);
}
// Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions.
// For floats f1 and f2, unpackUnorm2x16(packUnorm2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackUnorm2x16)
{
const float input[8][2] =
{
{ 0.0f, 0.0f },
{ 1.0f, 1.0f },
{ -1.0f, 1.0f },
{ -1.0f, -1.0f },
{ 0.875f, 0.75f },
{ 0.00392f, -0.99215f },
{ -0.000675f, 0.004954f },
{ -0.6937f, -0.02146f }
};
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
for (size_t i = 0; i < 8; i++)
{
unpackUnorm2x16(packUnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
float expected = input[i][0] < 0.0f ? 0.0f : input[i][0];
EXPECT_NEAR(expected, outputVal1, floatFaultTolerance);
expected = input[i][1] < 0.0f ? 0.0f : input[i][1];
EXPECT_NEAR(expected, outputVal2, floatFaultTolerance);
}
}
// Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions with infinity values,
// result should be clamped to [0, 1].
TEST(MathUtilTest, packAndUnpackUnorm2x16Infinity)
{
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
unpackUnorm2x16(packUnorm2x16(std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance);
unpackUnorm2x16(packUnorm2x16(std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance);
unpackUnorm2x16(packUnorm2x16(-std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(0.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance);
}
// Test the correctness of packHalf2x16 and unpackHalf2x16 functions.
// For floats f1 and f2, unpackHalf2x16(packHalf2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackHalf2x16)
{
const float input[8][2] =
{
{ 0.0f, 0.0f },
{ 1.0f, 1.0f },
{ -1.0f, 1.0f },
{ -1.0f, -1.0f },
{ 0.875f, 0.75f },
{ 0.00392f, -0.99215f },
{ -0.000675f, 0.004954f },
{ -0.6937f, -0.02146f },
};
const float floatFaultTolerance = 0.0005f;
float outputVal1, outputVal2;
for (size_t i = 0; i < 8; i++)
{
unpackHalf2x16(packHalf2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance);
EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance);
}
}
// Test the correctness of packUnorm4x8 and unpackUnorm4x8 functions.
// For floats f1 to f4, unpackUnorm4x8(packUnorm4x8(f1, f2, f3, f4)) should be same as f1 to f4.
TEST(MathUtilTest, packAndUnpackUnorm4x8)
{
const float input[5][4] = {{0.0f, 0.0f, 0.0f, 0.0f},
{1.0f, 1.0f, 1.0f, 1.0f},
{-1.0f, 1.0f, -1.0f, 1.0f},
{-1.0f, -1.0f, -1.0f, -1.0f},
{64.0f / 255.0f, 128.0f / 255.0f, 32.0f / 255.0f, 16.0f / 255.0f}};
const float floatFaultTolerance = 0.005f;
float outputVals[4];
for (size_t i = 0; i < 5; i++)
{
UnpackUnorm4x8(PackUnorm4x8(input[i][0], input[i][1], input[i][2], input[i][3]),
outputVals);
for (size_t j = 0; j < 4; j++)
{
float expected = input[i][j] < 0.0f ? 0.0f : input[i][j];
EXPECT_NEAR(expected, outputVals[j], floatFaultTolerance);
}
}
}
// Test the correctness of packSnorm4x8 and unpackSnorm4x8 functions.
// For floats f1 to f4, unpackSnorm4x8(packSnorm4x8(f1, f2, f3, f4)) should be same as f1 to f4.
TEST(MathUtilTest, packAndUnpackSnorm4x8)
{
const float input[5][4] = {{0.0f, 0.0f, 0.0f, 0.0f},
{1.0f, 1.0f, 1.0f, 1.0f},
{-1.0f, 1.0f, -1.0f, 1.0f},
{-1.0f, -1.0f, -1.0f, -1.0f},
{64.0f / 127.0f, -8.0f / 127.0f, 32.0f / 127.0f, 16.0f / 127.0f}};
const float floatFaultTolerance = 0.01f;
float outputVals[4];
for (size_t i = 0; i < 5; i++)
{
UnpackSnorm4x8(PackSnorm4x8(input[i][0], input[i][1], input[i][2], input[i][3]),
outputVals);
for (size_t j = 0; j < 4; j++)
{
float expected = input[i][j];
EXPECT_NEAR(expected, outputVals[j], floatFaultTolerance);
}
}
}
// Test the correctness of gl::isNaN function.
TEST(MathUtilTest, isNaN)
{
EXPECT_TRUE(isNaN(bitCast<float>(0xffu << 23 | 1u)));
EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 1u)));
EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 0x400000u)));
EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 0x7fffffu)));
EXPECT_FALSE(isNaN(0.0f));
EXPECT_FALSE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23)));
EXPECT_FALSE(isNaN(bitCast<float>(0xffu << 23)));
}
// Test the correctness of gl::isInf function.
TEST(MathUtilTest, isInf)
{
EXPECT_TRUE(isInf(bitCast<float>(0xffu << 23)));
EXPECT_TRUE(isInf(bitCast<float>(1u << 31 | 0xffu << 23)));
EXPECT_FALSE(isInf(0.0f));
EXPECT_FALSE(isInf(bitCast<float>(0xffu << 23 | 1u)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 1u)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 0x400000u)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 0x7fffffu)));
EXPECT_FALSE(isInf(bitCast<float>(0xfeu << 23 | 0x7fffffu)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xfeu << 23 | 0x7fffffu)));
}
TEST(MathUtilTest, CountLeadingZeros)
{
for (unsigned int i = 0; i < 32u; ++i)
{
uint32_t iLeadingZeros = 1u << (31u - i);
EXPECT_EQ(i, CountLeadingZeros(iLeadingZeros));
}
EXPECT_EQ(32u, CountLeadingZeros(0));
}
// Some basic tests. Tests that rounding up zero produces zero.
TEST(MathUtilTest, BasicRoundUp)
{
EXPECT_EQ(0u, rx::roundUp(0u, 4u));
EXPECT_EQ(4u, rx::roundUp(1u, 4u));
EXPECT_EQ(4u, rx::roundUp(4u, 4u));
}
// Test that rounding up zero produces zero for checked ints.
TEST(MathUtilTest, CheckedRoundUpZero)
{
auto checkedValue = rx::CheckedRoundUp(0u, 4u);
ASSERT_TRUE(checkedValue.IsValid());
ASSERT_EQ(0u, checkedValue.ValueOrDie());
}
// Test out-of-bounds with CheckedRoundUp
TEST(MathUtilTest, CheckedRoundUpInvalid)
{
// The answer to this query is out of bounds.
auto limit = std::numeric_limits<unsigned int>::max();
auto checkedValue = rx::CheckedRoundUp(limit, limit - 1);
ASSERT_FALSE(checkedValue.IsValid());
// Our implementation can't handle this query, despite the parameters being in range.
auto checkedLimit = rx::CheckedRoundUp(limit - 1, limit);
ASSERT_FALSE(checkedLimit.IsValid());
}
// Test BitfieldReverse which reverses the order of the bits in an integer.
TEST(MathUtilTest, BitfieldReverse)
{
EXPECT_EQ(0u, gl::BitfieldReverse(0u));
EXPECT_EQ(0x80000000u, gl::BitfieldReverse(1u));
EXPECT_EQ(0x1u, gl::BitfieldReverse(0x80000000u));
uint32_t bits = (1u << 4u) | (1u << 7u);
uint32_t reversed = (1u << (31u - 4u)) | (1u << (31u - 7u));
EXPECT_EQ(reversed, gl::BitfieldReverse(bits));
}
// Test BitCount, which counts 1 bits in an integer.
TEST(MathUtilTest, BitCount)
{
EXPECT_EQ(0, gl::BitCount(0u));
EXPECT_EQ(32, gl::BitCount(0xFFFFFFFFu));
EXPECT_EQ(10, gl::BitCount(0x17103121u));
#if defined(ANGLE_X64_CPU)
EXPECT_EQ(0, gl::BitCount(0ull));
EXPECT_EQ(32, gl::BitCount(0xFFFFFFFFull));
EXPECT_EQ(10, gl::BitCount(0x17103121ull));
#endif // defined(ANGLE_X64_CPU)
}
// Test ScanForward, which scans for the least significant 1 bit from a non-zero integer.
TEST(MathUtilTest, ScanForward)
{
EXPECT_EQ(0ul, gl::ScanForward(1u));
EXPECT_EQ(16ul, gl::ScanForward(0x80010000u));
EXPECT_EQ(31ul, gl::ScanForward(0x80000000u));
#if defined(ANGLE_X64_CPU)
EXPECT_EQ(0ul, gl::ScanForward(1ull));
EXPECT_EQ(16ul, gl::ScanForward(0x80010000ull));
EXPECT_EQ(31ul, gl::ScanForward(0x80000000ull));
#endif // defined(ANGLE_X64_CPU)
}
// Test ScanReverse, which scans for the most significant 1 bit from a non-zero integer.
TEST(MathUtilTest, ScanReverse)
{
EXPECT_EQ(0ul, gl::ScanReverse(1ul));
EXPECT_EQ(16ul, gl::ScanReverse(0x00010030ul));
EXPECT_EQ(31ul, gl::ScanReverse(0x80000000ul));
}
// Test FindLSB, which finds the least significant 1 bit.
TEST(MathUtilTest, FindLSB)
{
EXPECT_EQ(-1, gl::FindLSB(0u));
EXPECT_EQ(0, gl::FindLSB(1u));
EXPECT_EQ(16, gl::FindLSB(0x80010000u));
EXPECT_EQ(31, gl::FindLSB(0x80000000u));
}
// Test FindMSB, which finds the most significant 1 bit.
TEST(MathUtilTest, FindMSB)
{
EXPECT_EQ(-1, gl::FindMSB(0u));
EXPECT_EQ(0, gl::FindMSB(1u));
EXPECT_EQ(16, gl::FindMSB(0x00010030u));
EXPECT_EQ(31, gl::FindMSB(0x80000000u));
}
// Test Ldexp, which combines mantissa and exponent into a floating-point number.
TEST(MathUtilTest, Ldexp)
{
EXPECT_EQ(2.5f, Ldexp(0.625f, 2));
EXPECT_EQ(-5.0f, Ldexp(-0.625f, 3));
EXPECT_EQ(std::numeric_limits<float>::infinity(), Ldexp(0.625f, 129));
EXPECT_EQ(0.0f, Ldexp(1.0f, -129));
}
} // anonymous namespace