blob: 2680741d146e4fd4cafbcc7c9e2af63fe7b225da [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "libANGLE/Program.h"
#include <algorithm>
#include "common/bitset_utils.h"
#include "common/debug.h"
#include "common/platform.h"
#include "common/utilities.h"
#include "common/version.h"
#include "compiler/translator/blocklayout.h"
#include "libANGLE/Context.h"
#include "libANGLE/ResourceManager.h"
#include "libANGLE/features.h"
#include "libANGLE/renderer/GLImplFactory.h"
#include "libANGLE/renderer/ProgramImpl.h"
#include "libANGLE/VaryingPacking.h"
#include "libANGLE/queryconversions.h"
#include "libANGLE/Uniform.h"
#include "libANGLE/UniformLinker.h"
namespace gl
{
namespace
{
void WriteShaderVar(BinaryOutputStream *stream, const sh::ShaderVariable &var)
{
stream->writeInt(var.type);
stream->writeInt(var.precision);
stream->writeString(var.name);
stream->writeString(var.mappedName);
stream->writeInt(var.arraySize);
stream->writeInt(var.staticUse);
stream->writeString(var.structName);
ASSERT(var.fields.empty());
}
void LoadShaderVar(BinaryInputStream *stream, sh::ShaderVariable *var)
{
var->type = stream->readInt<GLenum>();
var->precision = stream->readInt<GLenum>();
var->name = stream->readString();
var->mappedName = stream->readString();
var->arraySize = stream->readInt<unsigned int>();
var->staticUse = stream->readBool();
var->structName = stream->readString();
}
// This simplified cast function doesn't need to worry about advanced concepts like
// depth range values, or casting to bool.
template <typename DestT, typename SrcT>
DestT UniformStateQueryCast(SrcT value);
// From-Float-To-Integer Casts
template <>
GLint UniformStateQueryCast(GLfloat value)
{
return clampCast<GLint>(roundf(value));
}
template <>
GLuint UniformStateQueryCast(GLfloat value)
{
return clampCast<GLuint>(roundf(value));
}
// From-Integer-to-Integer Casts
template <>
GLint UniformStateQueryCast(GLuint value)
{
return clampCast<GLint>(value);
}
template <>
GLuint UniformStateQueryCast(GLint value)
{
return clampCast<GLuint>(value);
}
// From-Boolean-to-Anything Casts
template <>
GLfloat UniformStateQueryCast(GLboolean value)
{
return (value == GL_TRUE ? 1.0f : 0.0f);
}
template <>
GLint UniformStateQueryCast(GLboolean value)
{
return (value == GL_TRUE ? 1 : 0);
}
template <>
GLuint UniformStateQueryCast(GLboolean value)
{
return (value == GL_TRUE ? 1u : 0u);
}
// Default to static_cast
template <typename DestT, typename SrcT>
DestT UniformStateQueryCast(SrcT value)
{
return static_cast<DestT>(value);
}
template <typename SrcT, typename DestT>
void UniformStateQueryCastLoop(DestT *dataOut, const uint8_t *srcPointer, int components)
{
for (int comp = 0; comp < components; ++comp)
{
// We only work with strides of 4 bytes for uniform components. (GLfloat/GLint)
// Don't use SrcT stride directly since GLboolean has a stride of 1 byte.
size_t offset = comp * 4;
const SrcT *typedSrcPointer = reinterpret_cast<const SrcT *>(&srcPointer[offset]);
dataOut[comp] = UniformStateQueryCast<DestT>(*typedSrcPointer);
}
}
// true if varying x has a higher priority in packing than y
bool ComparePackedVarying(const PackedVarying &x, const PackedVarying &y)
{
// If the PackedVarying 'x' or 'y' to be compared is an array element, this clones an equivalent
// non-array shader variable 'vx' or 'vy' for actual comparison instead.
sh::ShaderVariable vx, vy;
const sh::ShaderVariable *px, *py;
if (x.isArrayElement())
{
vx = *x.varying;
vx.arraySize = 0;
px = &vx;
}
else
{
px = x.varying;
}
if (y.isArrayElement())
{
vy = *y.varying;
vy.arraySize = 0;
py = &vy;
}
else
{
py = y.varying;
}
return gl::CompareShaderVar(*px, *py);
}
template <typename VarT>
GLuint GetResourceIndexFromName(const std::vector<VarT> &list, const std::string &name)
{
size_t subscript = GL_INVALID_INDEX;
std::string baseName = ParseResourceName(name, &subscript);
// The app is not allowed to specify array indices other than 0 for arrays of basic types
if (subscript != 0 && subscript != GL_INVALID_INDEX)
{
return GL_INVALID_INDEX;
}
for (size_t index = 0; index < list.size(); index++)
{
const VarT &resource = list[index];
if (resource.name == baseName)
{
if (resource.isArray() || subscript == GL_INVALID_INDEX)
{
return static_cast<GLuint>(index);
}
}
}
return GL_INVALID_INDEX;
}
void CopyStringToBuffer(GLchar *buffer, const std::string &string, GLsizei bufSize, GLsizei *length)
{
ASSERT(bufSize > 0);
strncpy(buffer, string.c_str(), bufSize);
buffer[bufSize - 1] = '\0';
if (length)
{
*length = static_cast<GLsizei>(strlen(buffer));
}
}
bool IncludeSameArrayElement(const std::set<std::string> &nameSet, const std::string &name)
{
size_t subscript = GL_INVALID_INDEX;
std::string baseName = ParseResourceName(name, &subscript);
for (auto it = nameSet.begin(); it != nameSet.end(); ++it)
{
size_t arrayIndex = GL_INVALID_INDEX;
std::string arrayName = ParseResourceName(*it, &arrayIndex);
if (baseName == arrayName && (subscript == GL_INVALID_INDEX ||
arrayIndex == GL_INVALID_INDEX || subscript == arrayIndex))
{
return true;
}
}
return false;
}
} // anonymous namespace
const char *const g_fakepath = "C:\\fakepath";
InfoLog::InfoLog()
{
}
InfoLog::~InfoLog()
{
}
size_t InfoLog::getLength() const
{
const std::string &logString = mStream.str();
return logString.empty() ? 0 : logString.length() + 1;
}
void InfoLog::getLog(GLsizei bufSize, GLsizei *length, char *infoLog) const
{
size_t index = 0;
if (bufSize > 0)
{
const std::string str(mStream.str());
if (!str.empty())
{
index = std::min(static_cast<size_t>(bufSize) - 1, str.length());
memcpy(infoLog, str.c_str(), index);
}
infoLog[index] = '\0';
}
if (length)
{
*length = static_cast<GLsizei>(index);
}
}
// append a santized message to the program info log.
// The D3D compiler includes a fake file path in some of the warning or error
// messages, so lets remove all occurrences of this fake file path from the log.
void InfoLog::appendSanitized(const char *message)
{
std::string msg(message);
size_t found;
do
{
found = msg.find(g_fakepath);
if (found != std::string::npos)
{
msg.erase(found, strlen(g_fakepath));
}
}
while (found != std::string::npos);
mStream << message << std::endl;
}
void InfoLog::reset()
{
}
VariableLocation::VariableLocation() : name(), element(0), index(0), used(false), ignored(false)
{
}
VariableLocation::VariableLocation(const std::string &name,
unsigned int element,
unsigned int index)
: name(name), element(element), index(index), used(true), ignored(false)
{
}
void Program::Bindings::bindLocation(GLuint index, const std::string &name)
{
mBindings[name] = index;
}
int Program::Bindings::getBinding(const std::string &name) const
{
auto iter = mBindings.find(name);
return (iter != mBindings.end()) ? iter->second : -1;
}
Program::Bindings::const_iterator Program::Bindings::begin() const
{
return mBindings.begin();
}
Program::Bindings::const_iterator Program::Bindings::end() const
{
return mBindings.end();
}
ProgramState::ProgramState()
: mLabel(),
mAttachedFragmentShader(nullptr),
mAttachedVertexShader(nullptr),
mAttachedComputeShader(nullptr),
mTransformFeedbackBufferMode(GL_INTERLEAVED_ATTRIBS),
mSamplerUniformRange(0, 0),
mBinaryRetrieveableHint(false)
{
mComputeShaderLocalSize.fill(1);
}
ProgramState::~ProgramState()
{
ASSERT(!mAttachedVertexShader && !mAttachedFragmentShader && !mAttachedComputeShader);
}
const std::string &ProgramState::getLabel()
{
return mLabel;
}
GLint ProgramState::getUniformLocation(const std::string &name) const
{
size_t subscript = GL_INVALID_INDEX;
std::string baseName = ParseResourceName(name, &subscript);
for (size_t location = 0; location < mUniformLocations.size(); ++location)
{
const VariableLocation &uniformLocation = mUniformLocations[location];
if (!uniformLocation.used)
{
continue;
}
const LinkedUniform &uniform = mUniforms[uniformLocation.index];
if (uniform.name == baseName)
{
if (uniform.isArray())
{
if (uniformLocation.element == subscript ||
(uniformLocation.element == 0 && subscript == GL_INVALID_INDEX))
{
return static_cast<GLint>(location);
}
}
else
{
if (subscript == GL_INVALID_INDEX)
{
return static_cast<GLint>(location);
}
}
}
}
return -1;
}
GLuint ProgramState::getUniformIndexFromName(const std::string &name) const
{
return GetResourceIndexFromName(mUniforms, name);
}
GLuint ProgramState::getUniformIndexFromLocation(GLint location) const
{
ASSERT(location >= 0 && static_cast<size_t>(location) < mUniformLocations.size());
return mUniformLocations[location].index;
}
Optional<GLuint> ProgramState::getSamplerIndex(GLint location) const
{
GLuint index = getUniformIndexFromLocation(location);
if (!isSamplerUniformIndex(index))
{
return Optional<GLuint>::Invalid();
}
return getSamplerIndexFromUniformIndex(index);
}
bool ProgramState::isSamplerUniformIndex(GLuint index) const
{
return index >= mSamplerUniformRange.start && index < mSamplerUniformRange.end;
}
GLuint ProgramState::getSamplerIndexFromUniformIndex(GLuint uniformIndex) const
{
ASSERT(isSamplerUniformIndex(uniformIndex));
return uniformIndex - mSamplerUniformRange.start;
}
Program::Program(rx::GLImplFactory *factory, ShaderProgramManager *manager, GLuint handle)
: mProgram(factory->createProgram(mState)),
mValidated(false),
mLinked(false),
mDeleteStatus(false),
mRefCount(0),
mResourceManager(manager),
mHandle(handle)
{
ASSERT(mProgram);
resetUniformBlockBindings();
unlink();
}
Program::~Program()
{
ASSERT(!mState.mAttachedVertexShader && !mState.mAttachedFragmentShader &&
!mState.mAttachedComputeShader);
SafeDelete(mProgram);
}
void Program::destroy(const Context *context)
{
if (mState.mAttachedVertexShader != nullptr)
{
mState.mAttachedVertexShader->release(context);
mState.mAttachedVertexShader = nullptr;
}
if (mState.mAttachedFragmentShader != nullptr)
{
mState.mAttachedFragmentShader->release(context);
mState.mAttachedFragmentShader = nullptr;
}
if (mState.mAttachedComputeShader != nullptr)
{
mState.mAttachedComputeShader->release(context);
mState.mAttachedComputeShader = nullptr;
}
mProgram->destroy(rx::SafeGetImpl(context));
}
void Program::setLabel(const std::string &label)
{
mState.mLabel = label;
}
const std::string &Program::getLabel() const
{
return mState.mLabel;
}
void Program::attachShader(Shader *shader)
{
switch (shader->getType())
{
case GL_VERTEX_SHADER:
{
ASSERT(!mState.mAttachedVertexShader);
mState.mAttachedVertexShader = shader;
mState.mAttachedVertexShader->addRef();
break;
}
case GL_FRAGMENT_SHADER:
{
ASSERT(!mState.mAttachedFragmentShader);
mState.mAttachedFragmentShader = shader;
mState.mAttachedFragmentShader->addRef();
break;
}
case GL_COMPUTE_SHADER:
{
ASSERT(!mState.mAttachedComputeShader);
mState.mAttachedComputeShader = shader;
mState.mAttachedComputeShader->addRef();
break;
}
default:
UNREACHABLE();
}
}
void Program::detachShader(const Context *context, Shader *shader)
{
switch (shader->getType())
{
case GL_VERTEX_SHADER:
{
ASSERT(mState.mAttachedVertexShader == shader);
shader->release(context);
mState.mAttachedVertexShader = nullptr;
break;
}
case GL_FRAGMENT_SHADER:
{
ASSERT(mState.mAttachedFragmentShader == shader);
shader->release(context);
mState.mAttachedFragmentShader = nullptr;
break;
}
case GL_COMPUTE_SHADER:
{
ASSERT(mState.mAttachedComputeShader == shader);
shader->release(context);
mState.mAttachedComputeShader = nullptr;
break;
}
default:
UNREACHABLE();
}
}
int Program::getAttachedShadersCount() const
{
return (mState.mAttachedVertexShader ? 1 : 0) + (mState.mAttachedFragmentShader ? 1 : 0) +
(mState.mAttachedComputeShader ? 1 : 0);
}
void Program::bindAttributeLocation(GLuint index, const char *name)
{
mAttributeBindings.bindLocation(index, name);
}
void Program::bindUniformLocation(GLuint index, const char *name)
{
// Bind the base uniform name only since array indices other than 0 cannot be bound
mUniformLocationBindings.bindLocation(index, ParseResourceName(name, nullptr));
}
void Program::bindFragmentInputLocation(GLint index, const char *name)
{
mFragmentInputBindings.bindLocation(index, name);
}
BindingInfo Program::getFragmentInputBindingInfo(GLint index) const
{
BindingInfo ret;
ret.type = GL_NONE;
ret.valid = false;
const Shader *fragmentShader = mState.getAttachedFragmentShader();
ASSERT(fragmentShader);
// Find the actual fragment shader varying we're interested in
const std::vector<sh::Varying> &inputs = fragmentShader->getVaryings();
for (const auto &binding : mFragmentInputBindings)
{
if (binding.second != static_cast<GLuint>(index))
continue;
ret.valid = true;
std::string originalName = binding.first;
unsigned int arrayIndex = ParseAndStripArrayIndex(&originalName);
for (const auto &in : inputs)
{
if (in.name == originalName)
{
if (in.isArray())
{
// The client wants to bind either "name" or "name[0]".
// GL ES 3.1 spec refers to active array names with language such as:
// "if the string identifies the base name of an active array, where the
// string would exactly match the name of the variable if the suffix "[0]"
// were appended to the string".
if (arrayIndex == GL_INVALID_INDEX)
arrayIndex = 0;
ret.name = in.mappedName + "[" + ToString(arrayIndex) + "]";
}
else
{
ret.name = in.mappedName;
}
ret.type = in.type;
return ret;
}
}
}
return ret;
}
void Program::pathFragmentInputGen(GLint index,
GLenum genMode,
GLint components,
const GLfloat *coeffs)
{
// If the location is -1 then the command is silently ignored
if (index == -1)
return;
const auto &binding = getFragmentInputBindingInfo(index);
// If the input doesn't exist then then the command is silently ignored
// This could happen through optimization for example, the shader translator
// decides that a variable is not actually being used and optimizes it away.
if (binding.name.empty())
return;
mProgram->setPathFragmentInputGen(binding.name, genMode, components, coeffs);
}
// The attached shaders are checked for linking errors by matching up their variables.
// Uniform, input and output variables get collected.
// The code gets compiled into binaries.
Error Program::link(const gl::Context *context)
{
const auto &data = context->getContextState();
unlink();
mInfoLog.reset();
resetUniformBlockBindings();
const Caps &caps = data.getCaps();
auto vertexShader = mState.mAttachedVertexShader;
auto fragmentShader = mState.mAttachedFragmentShader;
auto computeShader = mState.mAttachedComputeShader;
bool isComputeShaderAttached = (computeShader != nullptr);
bool nonComputeShadersAttached = (vertexShader != nullptr || fragmentShader != nullptr);
// Check whether we both have a compute and non-compute shaders attached.
// If there are of both types attached, then linking should fail.
// OpenGL ES 3.10, 7.3 Program Objects, under LinkProgram
if (isComputeShaderAttached == true && nonComputeShadersAttached == true)
{
mInfoLog << "Both a compute and non-compute shaders are attached to the same program.";
return NoError();
}
if (computeShader)
{
if (!computeShader->isCompiled())
{
mInfoLog << "Attached compute shader is not compiled.";
return NoError();
}
ASSERT(computeShader->getType() == GL_COMPUTE_SHADER);
mState.mComputeShaderLocalSize = computeShader->getWorkGroupSize();
// GLSL ES 3.10, 4.4.1.1 Compute Shader Inputs
// If the work group size is not specified, a link time error should occur.
if (!mState.mComputeShaderLocalSize.isDeclared())
{
mInfoLog << "Work group size is not specified.";
return NoError();
}
if (!linkUniforms(mInfoLog, caps, mUniformLocationBindings))
{
return NoError();
}
if (!linkUniformBlocks(mInfoLog, caps))
{
return NoError();
}
gl::VaryingPacking noPacking(0, PackMode::ANGLE_RELAXED);
ANGLE_TRY_RESULT(mProgram->link(context->getImplementation(), noPacking, mInfoLog),
mLinked);
if (!mLinked)
{
return NoError();
}
}
else
{
if (!fragmentShader || !fragmentShader->isCompiled())
{
return NoError();
}
ASSERT(fragmentShader->getType() == GL_FRAGMENT_SHADER);
if (!vertexShader || !vertexShader->isCompiled())
{
return NoError();
}
ASSERT(vertexShader->getType() == GL_VERTEX_SHADER);
if (fragmentShader->getShaderVersion() != vertexShader->getShaderVersion())
{
mInfoLog << "Fragment shader version does not match vertex shader version.";
return NoError();
}
if (!linkAttributes(data, mInfoLog))
{
return NoError();
}
if (!linkVaryings(mInfoLog))
{
return NoError();
}
if (!linkUniforms(mInfoLog, caps, mUniformLocationBindings))
{
return NoError();
}
if (!linkUniformBlocks(mInfoLog, caps))
{
return NoError();
}
const auto &mergedVaryings = getMergedVaryings();
if (!linkValidateTransformFeedback(context, mInfoLog, mergedVaryings, caps))
{
return NoError();
}
linkOutputVariables();
// Validate we can pack the varyings.
std::vector<PackedVarying> packedVaryings = getPackedVaryings(mergedVaryings);
// Map the varyings to the register file
// In WebGL, we use a slightly different handling for packing variables.
auto packMode = data.getExtensions().webglCompatibility ? PackMode::WEBGL_STRICT
: PackMode::ANGLE_RELAXED;
VaryingPacking varyingPacking(data.getCaps().maxVaryingVectors, packMode);
if (!varyingPacking.packUserVaryings(mInfoLog, packedVaryings,
mState.getTransformFeedbackVaryingNames()))
{
return NoError();
}
ANGLE_TRY_RESULT(mProgram->link(context->getImplementation(), varyingPacking, mInfoLog),
mLinked);
if (!mLinked)
{
return NoError();
}
gatherTransformFeedbackVaryings(mergedVaryings);
}
setUniformValuesFromBindingQualifiers();
gatherInterfaceBlockInfo();
return NoError();
}
// Returns the program object to an unlinked state, before re-linking, or at destruction
void Program::unlink()
{
mState.mAttributes.clear();
mState.mActiveAttribLocationsMask.reset();
mState.mLinkedTransformFeedbackVaryings.clear();
mState.mUniforms.clear();
mState.mUniformLocations.clear();
mState.mUniformBlocks.clear();
mState.mOutputVariables.clear();
mState.mOutputLocations.clear();
mState.mComputeShaderLocalSize.fill(1);
mState.mSamplerBindings.clear();
mValidated = false;
mLinked = false;
}
bool Program::isLinked() const
{
return mLinked;
}
Error Program::loadBinary(const Context *context,
GLenum binaryFormat,
const void *binary,
GLsizei length)
{
unlink();
#if ANGLE_PROGRAM_BINARY_LOAD != ANGLE_ENABLED
return NoError();
#else
ASSERT(binaryFormat == GL_PROGRAM_BINARY_ANGLE);
if (binaryFormat != GL_PROGRAM_BINARY_ANGLE)
{
mInfoLog << "Invalid program binary format.";
return NoError();
}
BinaryInputStream stream(binary, length);
unsigned char commitString[ANGLE_COMMIT_HASH_SIZE];
stream.readBytes(commitString, ANGLE_COMMIT_HASH_SIZE);
if (memcmp(commitString, ANGLE_COMMIT_HASH, sizeof(unsigned char) * ANGLE_COMMIT_HASH_SIZE) !=
0)
{
mInfoLog << "Invalid program binary version.";
return NoError();
}
int majorVersion = stream.readInt<int>();
int minorVersion = stream.readInt<int>();
if (majorVersion != context->getClientMajorVersion() ||
minorVersion != context->getClientMinorVersion())
{
mInfoLog << "Cannot load program binaries across different ES context versions.";
return NoError();
}
mState.mComputeShaderLocalSize[0] = stream.readInt<int>();
mState.mComputeShaderLocalSize[1] = stream.readInt<int>();
mState.mComputeShaderLocalSize[2] = stream.readInt<int>();
static_assert(MAX_VERTEX_ATTRIBS <= sizeof(unsigned long) * 8,
"Too many vertex attribs for mask");
mState.mActiveAttribLocationsMask = stream.readInt<unsigned long>();
unsigned int attribCount = stream.readInt<unsigned int>();
ASSERT(mState.mAttributes.empty());
for (unsigned int attribIndex = 0; attribIndex < attribCount; ++attribIndex)
{
sh::Attribute attrib;
LoadShaderVar(&stream, &attrib);
attrib.location = stream.readInt<int>();
mState.mAttributes.push_back(attrib);
}
unsigned int uniformCount = stream.readInt<unsigned int>();
ASSERT(mState.mUniforms.empty());
for (unsigned int uniformIndex = 0; uniformIndex < uniformCount; ++uniformIndex)
{
LinkedUniform uniform;
LoadShaderVar(&stream, &uniform);
uniform.blockIndex = stream.readInt<int>();
uniform.blockInfo.offset = stream.readInt<int>();
uniform.blockInfo.arrayStride = stream.readInt<int>();
uniform.blockInfo.matrixStride = stream.readInt<int>();
uniform.blockInfo.isRowMajorMatrix = stream.readBool();
mState.mUniforms.push_back(uniform);
}
const unsigned int uniformIndexCount = stream.readInt<unsigned int>();
ASSERT(mState.mUniformLocations.empty());
for (unsigned int uniformIndexIndex = 0; uniformIndexIndex < uniformIndexCount;
uniformIndexIndex++)
{
VariableLocation variable;
stream.readString(&variable.name);
stream.readInt(&variable.element);
stream.readInt(&variable.index);
stream.readBool(&variable.used);
stream.readBool(&variable.ignored);
mState.mUniformLocations.push_back(variable);
}
unsigned int uniformBlockCount = stream.readInt<unsigned int>();
ASSERT(mState.mUniformBlocks.empty());
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < uniformBlockCount;
++uniformBlockIndex)
{
UniformBlock uniformBlock;
stream.readString(&uniformBlock.name);
stream.readBool(&uniformBlock.isArray);
stream.readInt(&uniformBlock.arrayElement);
stream.readInt(&uniformBlock.dataSize);
stream.readBool(&uniformBlock.vertexStaticUse);
stream.readBool(&uniformBlock.fragmentStaticUse);
unsigned int numMembers = stream.readInt<unsigned int>();
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numMembers; blockMemberIndex++)
{
uniformBlock.memberUniformIndexes.push_back(stream.readInt<unsigned int>());
}
mState.mUniformBlocks.push_back(uniformBlock);
}
for (GLuint bindingIndex = 0; bindingIndex < mState.mUniformBlockBindings.size();
++bindingIndex)
{
stream.readInt(&mState.mUniformBlockBindings[bindingIndex]);
mState.mActiveUniformBlockBindings.set(bindingIndex,
mState.mUniformBlockBindings[bindingIndex] != 0);
}
unsigned int transformFeedbackVaryingCount = stream.readInt<unsigned int>();
ASSERT(mState.mLinkedTransformFeedbackVaryings.empty());
for (unsigned int transformFeedbackVaryingIndex = 0;
transformFeedbackVaryingIndex < transformFeedbackVaryingCount;
++transformFeedbackVaryingIndex)
{
sh::Varying varying;
stream.readInt(&varying.arraySize);
stream.readInt(&varying.type);
stream.readString(&varying.name);
GLuint arrayIndex = stream.readInt<GLuint>();
mState.mLinkedTransformFeedbackVaryings.emplace_back(varying, arrayIndex);
}
stream.readInt(&mState.mTransformFeedbackBufferMode);
unsigned int outputCount = stream.readInt<unsigned int>();
ASSERT(mState.mOutputVariables.empty());
for (unsigned int outputIndex = 0; outputIndex < outputCount; ++outputIndex)
{
sh::OutputVariable output;
LoadShaderVar(&stream, &output);
output.location = stream.readInt<int>();
mState.mOutputVariables.push_back(output);
}
unsigned int outputVarCount = stream.readInt<unsigned int>();
for (unsigned int outputIndex = 0; outputIndex < outputVarCount; ++outputIndex)
{
int locationIndex = stream.readInt<int>();
VariableLocation locationData;
stream.readInt(&locationData.element);
stream.readInt(&locationData.index);
stream.readString(&locationData.name);
mState.mOutputLocations[locationIndex] = locationData;
}
stream.readInt(&mState.mSamplerUniformRange.start);
stream.readInt(&mState.mSamplerUniformRange.end);
unsigned int samplerCount = stream.readInt<unsigned int>();
for (unsigned int samplerIndex = 0; samplerIndex < samplerCount; ++samplerIndex)
{
GLenum textureType = stream.readInt<GLenum>();
size_t bindingCount = stream.readInt<size_t>();
mState.mSamplerBindings.emplace_back(SamplerBinding(textureType, bindingCount));
}
ANGLE_TRY_RESULT(mProgram->load(context->getImplementation(), mInfoLog, &stream), mLinked);
return NoError();
#endif // #if ANGLE_PROGRAM_BINARY_LOAD == ANGLE_ENABLED
}
Error Program::saveBinary(const Context *context,
GLenum *binaryFormat,
void *binary,
GLsizei bufSize,
GLsizei *length) const
{
if (binaryFormat)
{
*binaryFormat = GL_PROGRAM_BINARY_ANGLE;
}
BinaryOutputStream stream;
stream.writeBytes(reinterpret_cast<const unsigned char*>(ANGLE_COMMIT_HASH), ANGLE_COMMIT_HASH_SIZE);
// nullptr context is supported when computing binary length.
if (context)
{
stream.writeInt(context->getClientVersion().major);
stream.writeInt(context->getClientVersion().minor);
}
else
{
stream.writeInt(2);
stream.writeInt(0);
}
stream.writeInt(mState.mComputeShaderLocalSize[0]);
stream.writeInt(mState.mComputeShaderLocalSize[1]);
stream.writeInt(mState.mComputeShaderLocalSize[2]);
stream.writeInt(mState.mActiveAttribLocationsMask.to_ulong());
stream.writeInt(mState.mAttributes.size());
for (const sh::Attribute &attrib : mState.mAttributes)
{
WriteShaderVar(&stream, attrib);
stream.writeInt(attrib.location);
}
stream.writeInt(mState.mUniforms.size());
for (const LinkedUniform &uniform : mState.mUniforms)
{
WriteShaderVar(&stream, uniform);
// FIXME: referenced
stream.writeInt(uniform.blockIndex);
stream.writeInt(uniform.blockInfo.offset);
stream.writeInt(uniform.blockInfo.arrayStride);
stream.writeInt(uniform.blockInfo.matrixStride);
stream.writeInt(uniform.blockInfo.isRowMajorMatrix);
}
stream.writeInt(mState.mUniformLocations.size());
for (const auto &variable : mState.mUniformLocations)
{
stream.writeString(variable.name);
stream.writeInt(variable.element);
stream.writeInt(variable.index);
stream.writeInt(variable.used);
stream.writeInt(variable.ignored);
}
stream.writeInt(mState.mUniformBlocks.size());
for (const UniformBlock &uniformBlock : mState.mUniformBlocks)
{
stream.writeString(uniformBlock.name);
stream.writeInt(uniformBlock.isArray);
stream.writeInt(uniformBlock.arrayElement);
stream.writeInt(uniformBlock.dataSize);
stream.writeInt(uniformBlock.vertexStaticUse);
stream.writeInt(uniformBlock.fragmentStaticUse);
stream.writeInt(uniformBlock.memberUniformIndexes.size());
for (unsigned int memberUniformIndex : uniformBlock.memberUniformIndexes)
{
stream.writeInt(memberUniformIndex);
}
}
for (GLuint binding : mState.mUniformBlockBindings)
{
stream.writeInt(binding);
}
stream.writeInt(mState.mLinkedTransformFeedbackVaryings.size());
for (const auto &var : mState.mLinkedTransformFeedbackVaryings)
{
stream.writeInt(var.arraySize);
stream.writeInt(var.type);
stream.writeString(var.name);
stream.writeIntOrNegOne(var.arrayIndex);
}
stream.writeInt(mState.mTransformFeedbackBufferMode);
stream.writeInt(mState.mOutputVariables.size());
for (const sh::OutputVariable &output : mState.mOutputVariables)
{
WriteShaderVar(&stream, output);
stream.writeInt(output.location);
}
stream.writeInt(mState.mOutputLocations.size());
for (const auto &outputPair : mState.mOutputLocations)
{
stream.writeInt(outputPair.first);
stream.writeIntOrNegOne(outputPair.second.element);
stream.writeInt(outputPair.second.index);
stream.writeString(outputPair.second.name);
}
stream.writeInt(mState.mSamplerUniformRange.start);
stream.writeInt(mState.mSamplerUniformRange.end);
stream.writeInt(mState.mSamplerBindings.size());
for (const auto &samplerBinding : mState.mSamplerBindings)
{
stream.writeInt(samplerBinding.textureType);
stream.writeInt(samplerBinding.boundTextureUnits.size());
}
ANGLE_TRY(mProgram->save(&stream));
GLsizei streamLength = static_cast<GLsizei>(stream.length());
const void *streamState = stream.data();
if (streamLength > bufSize)
{
if (length)
{
*length = 0;
}
// TODO: This should be moved to the validation layer but computing the size of the binary before saving
// it causes the save to happen twice. It may be possible to write the binary to a separate buffer, validate
// sizes and then copy it.
return Error(GL_INVALID_OPERATION);
}
if (binary)
{
char *ptr = reinterpret_cast<char*>(binary);
memcpy(ptr, streamState, streamLength);
ptr += streamLength;
ASSERT(ptr - streamLength == binary);
}
if (length)
{
*length = streamLength;
}
return NoError();
}
GLint Program::getBinaryLength() const
{
GLint length;
Error error = saveBinary(nullptr, nullptr, nullptr, std::numeric_limits<GLint>::max(), &length);
if (error.isError())
{
return 0;
}
return length;
}
void Program::setBinaryRetrievableHint(bool retrievable)
{
// TODO(jmadill) : replace with dirty bits
mProgram->setBinaryRetrievableHint(retrievable);
mState.mBinaryRetrieveableHint = retrievable;
}
bool Program::getBinaryRetrievableHint() const
{
return mState.mBinaryRetrieveableHint;
}
void Program::setSeparable(bool separable)
{
// TODO(yunchao) : replace with dirty bits
if (mState.mSeparable != separable)
{
mProgram->setSeparable(separable);
mState.mSeparable = separable;
}
}
bool Program::isSeparable() const
{
return mState.mSeparable;
}
void Program::release(const Context *context)
{
mRefCount--;
if (mRefCount == 0 && mDeleteStatus)
{
mResourceManager->deleteProgram(context, mHandle);
}
}
void Program::addRef()
{
mRefCount++;
}
unsigned int Program::getRefCount() const
{
return mRefCount;
}
int Program::getInfoLogLength() const
{
return static_cast<int>(mInfoLog.getLength());
}
void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog) const
{
return mInfoLog.getLog(bufSize, length, infoLog);
}
void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders) const
{
int total = 0;
if (mState.mAttachedComputeShader)
{
if (total < maxCount)
{
shaders[total] = mState.mAttachedComputeShader->getHandle();
total++;
}
}
if (mState.mAttachedVertexShader)
{
if (total < maxCount)
{
shaders[total] = mState.mAttachedVertexShader->getHandle();
total++;
}
}
if (mState.mAttachedFragmentShader)
{
if (total < maxCount)
{
shaders[total] = mState.mAttachedFragmentShader->getHandle();
total++;
}
}
if (count)
{
*count = total;
}
}
GLuint Program::getAttributeLocation(const std::string &name) const
{
for (const sh::Attribute &attribute : mState.mAttributes)
{
if (attribute.name == name)
{
return attribute.location;
}
}
return static_cast<GLuint>(-1);
}
bool Program::isAttribLocationActive(size_t attribLocation) const
{
ASSERT(attribLocation < mState.mActiveAttribLocationsMask.size());
return mState.mActiveAttribLocationsMask[attribLocation];
}
void Program::getActiveAttribute(GLuint index,
GLsizei bufsize,
GLsizei *length,
GLint *size,
GLenum *type,
GLchar *name) const
{
if (!mLinked)
{
if (bufsize > 0)
{
name[0] = '\0';
}
if (length)
{
*length = 0;
}
*type = GL_NONE;
*size = 1;
return;
}
ASSERT(index < mState.mAttributes.size());
const sh::Attribute &attrib = mState.mAttributes[index];
if (bufsize > 0)
{
CopyStringToBuffer(name, attrib.name, bufsize, length);
}
// Always a single 'type' instance
*size = 1;
*type = attrib.type;
}
GLint Program::getActiveAttributeCount() const
{
if (!mLinked)
{
return 0;
}
return static_cast<GLint>(mState.mAttributes.size());
}
GLint Program::getActiveAttributeMaxLength() const
{
if (!mLinked)
{
return 0;
}
size_t maxLength = 0;
for (const sh::Attribute &attrib : mState.mAttributes)
{
maxLength = std::max(attrib.name.length() + 1, maxLength);
}
return static_cast<GLint>(maxLength);
}
GLuint Program::getInputResourceIndex(const GLchar *name) const
{
for (GLuint attributeIndex = 0; attributeIndex < mState.mAttributes.size(); ++attributeIndex)
{
const sh::Attribute &attribute = mState.mAttributes[attributeIndex];
if (attribute.name == name)
{
return attributeIndex;
}
}
return GL_INVALID_INDEX;
}
GLuint Program::getOutputResourceIndex(const GLchar *name) const
{
return GetResourceIndexFromName(mState.mOutputVariables, std::string(name));
}
size_t Program::getOutputResourceCount() const
{
return (mLinked ? mState.mOutputVariables.size() : 0);
}
void Program::getInputResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
GLint size;
GLenum type;
getActiveAttribute(index, bufSize, length, &size, &type, name);
}
void Program::getOutputResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
if (length)
{
*length = 0;
}
if (!mLinked)
{
if (bufSize > 0)
{
name[0] = '\0';
}
return;
}
ASSERT(index < mState.mOutputVariables.size());
const auto &output = mState.mOutputVariables[index];
if (bufSize > 0)
{
std::string nameWithArray = (output.isArray() ? output.name + "[0]" : output.name);
CopyStringToBuffer(name, nameWithArray, bufSize, length);
}
}
GLint Program::getFragDataLocation(const std::string &name) const
{
std::string baseName(name);
unsigned int arrayIndex = ParseAndStripArrayIndex(&baseName);
for (auto outputPair : mState.mOutputLocations)
{
const VariableLocation &outputVariable = outputPair.second;
if (outputVariable.name == baseName && (arrayIndex == GL_INVALID_INDEX || arrayIndex == outputVariable.element))
{
return static_cast<GLint>(outputPair.first);
}
}
return -1;
}
void Program::getActiveUniform(GLuint index,
GLsizei bufsize,
GLsizei *length,
GLint *size,
GLenum *type,
GLchar *name) const
{
if (mLinked)
{
// index must be smaller than getActiveUniformCount()
ASSERT(index < mState.mUniforms.size());
const LinkedUniform &uniform = mState.mUniforms[index];
if (bufsize > 0)
{
std::string string = uniform.name;
if (uniform.isArray())
{
string += "[0]";
}
CopyStringToBuffer(name, string, bufsize, length);
}
*size = uniform.elementCount();
*type = uniform.type;
}
else
{
if (bufsize > 0)
{
name[0] = '\0';
}
if (length)
{
*length = 0;
}
*size = 0;
*type = GL_NONE;
}
}
GLint Program::getActiveUniformCount() const
{
if (mLinked)
{
return static_cast<GLint>(mState.mUniforms.size());
}
else
{
return 0;
}
}
GLint Program::getActiveUniformMaxLength() const
{
size_t maxLength = 0;
if (mLinked)
{
for (const LinkedUniform &uniform : mState.mUniforms)
{
if (!uniform.name.empty())
{
size_t length = uniform.name.length() + 1u;
if (uniform.isArray())
{
length += 3; // Counting in "[0]".
}
maxLength = std::max(length, maxLength);
}
}
}
return static_cast<GLint>(maxLength);
}
GLint Program::getActiveUniformi(GLuint index, GLenum pname) const
{
ASSERT(static_cast<size_t>(index) < mState.mUniforms.size());
const LinkedUniform &uniform = mState.mUniforms[index];
switch (pname)
{
case GL_UNIFORM_TYPE: return static_cast<GLint>(uniform.type);
case GL_UNIFORM_SIZE: return static_cast<GLint>(uniform.elementCount());
case GL_UNIFORM_NAME_LENGTH: return static_cast<GLint>(uniform.name.size() + 1 + (uniform.isArray() ? 3 : 0));
case GL_UNIFORM_BLOCK_INDEX: return uniform.blockIndex;
case GL_UNIFORM_OFFSET: return uniform.blockInfo.offset;
case GL_UNIFORM_ARRAY_STRIDE: return uniform.blockInfo.arrayStride;
case GL_UNIFORM_MATRIX_STRIDE: return uniform.blockInfo.matrixStride;
case GL_UNIFORM_IS_ROW_MAJOR: return static_cast<GLint>(uniform.blockInfo.isRowMajorMatrix);
default:
UNREACHABLE();
break;
}
return 0;
}
bool Program::isValidUniformLocation(GLint location) const
{
ASSERT(angle::IsValueInRangeForNumericType<GLint>(mState.mUniformLocations.size()));
return (location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size() &&
mState.mUniformLocations[static_cast<size_t>(location)].used);
}
const LinkedUniform &Program::getUniformByLocation(GLint location) const
{
ASSERT(location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size());
return mState.mUniforms[mState.getUniformIndexFromLocation(location)];
}
const VariableLocation &Program::getUniformLocation(GLint location) const
{
ASSERT(location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size());
return mState.mUniformLocations[location];
}
const std::vector<VariableLocation> &Program::getUniformLocations() const
{
return mState.mUniformLocations;
}
const LinkedUniform &Program::getUniformByIndex(GLuint index) const
{
ASSERT(index < static_cast<size_t>(mState.mUniforms.size()));
return mState.mUniforms[index];
}
GLint Program::getUniformLocation(const std::string &name) const
{
return mState.getUniformLocation(name);
}
GLuint Program::getUniformIndex(const std::string &name) const
{
return mState.getUniformIndexFromName(name);
}
void Program::setUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
GLsizei clampedCount = setUniformInternal(location, count, 1, v);
mProgram->setUniform1fv(location, clampedCount, v);
}
void Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
GLsizei clampedCount = setUniformInternal(location, count, 2, v);
mProgram->setUniform2fv(location, clampedCount, v);
}
void Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
GLsizei clampedCount = setUniformInternal(location, count, 3, v);
mProgram->setUniform3fv(location, clampedCount, v);
}
void Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
GLsizei clampedCount = setUniformInternal(location, count, 4, v);
mProgram->setUniform4fv(location, clampedCount, v);
}
void Program::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
GLsizei clampedCount = setUniformInternal(location, count, 1, v);
mProgram->setUniform1iv(location, clampedCount, v);
}
void Program::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
GLsizei clampedCount = setUniformInternal(location, count, 2, v);
mProgram->setUniform2iv(location, clampedCount, v);
}
void Program::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
GLsizei clampedCount = setUniformInternal(location, count, 3, v);
mProgram->setUniform3iv(location, clampedCount, v);
}
void Program::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
GLsizei clampedCount = setUniformInternal(location, count, 4, v);
mProgram->setUniform4iv(location, clampedCount, v);
}
void Program::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
GLsizei clampedCount = setUniformInternal(location, count, 1, v);
mProgram->setUniform1uiv(location, clampedCount, v);
}
void Program::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
GLsizei clampedCount = setUniformInternal(location, count, 2, v);
mProgram->setUniform2uiv(location, clampedCount, v);
}
void Program::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
GLsizei clampedCount = setUniformInternal(location, count, 3, v);
mProgram->setUniform3uiv(location, clampedCount, v);
}
void Program::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
GLsizei clampedCount = setUniformInternal(location, count, 4, v);
mProgram->setUniform4uiv(location, clampedCount, v);
}
void Program::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = setMatrixUniformInternal<2, 2>(location, count, transpose, v);
mProgram->setUniformMatrix2fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = setMatrixUniformInternal<3, 3>(location, count, transpose, v);
mProgram->setUniformMatrix3fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = setMatrixUniformInternal<4, 4>(location, count, transpose, v);
mProgram->setUniformMatrix4fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = setMatrixUniformInternal<2, 3>(location, count, transpose, v);
mProgram->setUniformMatrix2x3fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = setMatrixUniformInternal<2, 4>(location, count, transpose, v);
mProgram->setUniformMatrix2x4fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = setMatrixUniformInternal<3, 2>(location, count, transpose, v);
mProgram->setUniformMatrix3x2fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = setMatrixUniformInternal<3, 4>(location, count, transpose, v);
mProgram->setUniformMatrix3x4fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = setMatrixUniformInternal<4, 2>(location, count, transpose, v);
mProgram->setUniformMatrix4x2fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
GLsizei clampedCount = setMatrixUniformInternal<4, 3>(location, count, transpose, v);
mProgram->setUniformMatrix4x3fv(location, clampedCount, transpose, v);
}
void Program::getUniformfv(GLint location, GLfloat *v) const
{
getUniformInternal(location, v);
}
void Program::getUniformiv(GLint location, GLint *v) const
{
getUniformInternal(location, v);
}
void Program::getUniformuiv(GLint location, GLuint *v) const
{
getUniformInternal(location, v);
}
void Program::flagForDeletion()
{
mDeleteStatus = true;
}
bool Program::isFlaggedForDeletion() const
{
return mDeleteStatus;
}
void Program::validate(const Caps &caps)
{
mInfoLog.reset();
if (mLinked)
{
mValidated = (mProgram->validate(caps, &mInfoLog) == GL_TRUE);
}
else
{
mInfoLog << "Program has not been successfully linked.";
}
}
bool Program::validateSamplers(InfoLog *infoLog, const Caps &caps)
{
// Skip cache if we're using an infolog, so we get the full error.
// Also skip the cache if the sample mapping has changed, or if we haven't ever validated.
if (infoLog == nullptr && mCachedValidateSamplersResult.valid())
{
return mCachedValidateSamplersResult.value();
}
if (mTextureUnitTypesCache.empty())
{
mTextureUnitTypesCache.resize(caps.maxCombinedTextureImageUnits, GL_NONE);
}
else
{
std::fill(mTextureUnitTypesCache.begin(), mTextureUnitTypesCache.end(), GL_NONE);
}
// if any two active samplers in a program are of different types, but refer to the same
// texture image unit, and this is the current program, then ValidateProgram will fail, and
// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
for (const auto &samplerBinding : mState.mSamplerBindings)
{
GLenum textureType = samplerBinding.textureType;
for (GLuint textureUnit : samplerBinding.boundTextureUnits)
{
if (textureUnit >= caps.maxCombinedTextureImageUnits)
{
if (infoLog)
{
(*infoLog) << "Sampler uniform (" << textureUnit
<< ") exceeds GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS ("
<< caps.maxCombinedTextureImageUnits << ")";
}
mCachedValidateSamplersResult = false;
return false;
}
if (mTextureUnitTypesCache[textureUnit] != GL_NONE)
{
if (textureType != mTextureUnitTypesCache[textureUnit])
{
if (infoLog)
{
(*infoLog) << "Samplers of conflicting types refer to the same texture "
"image unit ("
<< textureUnit << ").";
}
mCachedValidateSamplersResult = false;
return false;
}
}
else
{
mTextureUnitTypesCache[textureUnit] = textureType;
}
}
}
mCachedValidateSamplersResult = true;
return true;
}
bool Program::isValidated() const
{
return mValidated;
}
GLuint Program::getActiveUniformBlockCount() const
{
return static_cast<GLuint>(mState.mUniformBlocks.size());
}
void Program::getActiveUniformBlockName(GLuint uniformBlockIndex, GLsizei bufSize, GLsizei *length, GLchar *uniformBlockName) const
{
ASSERT(
uniformBlockIndex <
mState.mUniformBlocks.size()); // index must be smaller than getActiveUniformBlockCount()
const UniformBlock &uniformBlock = mState.mUniformBlocks[uniformBlockIndex];
if (bufSize > 0)
{
std::string string = uniformBlock.name;
if (uniformBlock.isArray)
{
string += ArrayString(uniformBlock.arrayElement);
}
CopyStringToBuffer(uniformBlockName, string, bufSize, length);
}
}
GLint Program::getActiveUniformBlockMaxLength() const
{
int maxLength = 0;
if (mLinked)
{
unsigned int numUniformBlocks = static_cast<unsigned int>(mState.mUniformBlocks.size());
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < numUniformBlocks; uniformBlockIndex++)
{
const UniformBlock &uniformBlock = mState.mUniformBlocks[uniformBlockIndex];
if (!uniformBlock.name.empty())
{
const int length = static_cast<int>(uniformBlock.name.length()) + 1;
// Counting in "[0]".
const int arrayLength = (uniformBlock.isArray ? 3 : 0);
maxLength = std::max(length + arrayLength, maxLength);
}
}
}
return maxLength;
}
GLuint Program::getUniformBlockIndex(const std::string &name) const
{
size_t subscript = GL_INVALID_INDEX;
std::string baseName = ParseResourceName(name, &subscript);
unsigned int numUniformBlocks = static_cast<unsigned int>(mState.mUniformBlocks.size());
for (unsigned int blockIndex = 0; blockIndex < numUniformBlocks; blockIndex++)
{
const UniformBlock &uniformBlock = mState.mUniformBlocks[blockIndex];
if (uniformBlock.name == baseName)
{
const bool arrayElementZero =
(subscript == GL_INVALID_INDEX &&
(!uniformBlock.isArray || uniformBlock.arrayElement == 0));
if (subscript == uniformBlock.arrayElement || arrayElementZero)
{
return blockIndex;
}
}
}
return GL_INVALID_INDEX;
}
const UniformBlock &Program::getUniformBlockByIndex(GLuint index) const
{
ASSERT(index < static_cast<GLuint>(mState.mUniformBlocks.size()));
return mState.mUniformBlocks[index];
}
void Program::bindUniformBlock(GLuint uniformBlockIndex, GLuint uniformBlockBinding)
{
mState.mUniformBlockBindings[uniformBlockIndex] = uniformBlockBinding;
mState.mActiveUniformBlockBindings.set(uniformBlockIndex, uniformBlockBinding != 0);
mProgram->setUniformBlockBinding(uniformBlockIndex, uniformBlockBinding);
}
GLuint Program::getUniformBlockBinding(GLuint uniformBlockIndex) const
{
return mState.getUniformBlockBinding(uniformBlockIndex);
}
void Program::resetUniformBlockBindings()
{
for (unsigned int blockId = 0; blockId < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS; blockId++)
{
mState.mUniformBlockBindings[blockId] = 0;
}
mState.mActiveUniformBlockBindings.reset();
}
void Program::setTransformFeedbackVaryings(GLsizei count, const GLchar *const *varyings, GLenum bufferMode)
{
mState.mTransformFeedbackVaryingNames.resize(count);
for (GLsizei i = 0; i < count; i++)
{
mState.mTransformFeedbackVaryingNames[i] = varyings[i];
}
mState.mTransformFeedbackBufferMode = bufferMode;
}
void Program::getTransformFeedbackVarying(GLuint index, GLsizei bufSize, GLsizei *length, GLsizei *size, GLenum *type, GLchar *name) const
{
if (mLinked)
{
ASSERT(index < mState.mLinkedTransformFeedbackVaryings.size());
const auto &var = mState.mLinkedTransformFeedbackVaryings[index];
std::string varName = var.nameWithArrayIndex();
GLsizei lastNameIdx = std::min(bufSize - 1, static_cast<GLsizei>(varName.length()));
if (length)
{
*length = lastNameIdx;
}
if (size)
{
*size = var.size();
}
if (type)
{
*type = var.type;
}
if (name)
{
memcpy(name, varName.c_str(), lastNameIdx);
name[lastNameIdx] = '\0';
}
}
}
GLsizei Program::getTransformFeedbackVaryingCount() const
{
if (mLinked)
{
return static_cast<GLsizei>(mState.mLinkedTransformFeedbackVaryings.size());
}
else
{
return 0;
}
}
GLsizei Program::getTransformFeedbackVaryingMaxLength() const
{
if (mLinked)
{
GLsizei maxSize = 0;
for (const auto &var : mState.mLinkedTransformFeedbackVaryings)
{
maxSize =
std::max(maxSize, static_cast<GLsizei>(var.nameWithArrayIndex().length() + 1));
}
return maxSize;
}
else
{
return 0;
}
}
GLenum Program::getTransformFeedbackBufferMode() const
{
return mState.mTransformFeedbackBufferMode;
}
bool Program::linkVaryings(InfoLog &infoLog) const
{
const Shader *vertexShader = mState.mAttachedVertexShader;
const Shader *fragmentShader = mState.mAttachedFragmentShader;
ASSERT(vertexShader->getShaderVersion() == fragmentShader->getShaderVersion());
const std::vector<sh::Varying> &vertexVaryings = vertexShader->getVaryings();
const std::vector<sh::Varying> &fragmentVaryings = fragmentShader->getVaryings();
std::map<GLuint, std::string> staticFragmentInputLocations;
for (const sh::Varying &output : fragmentVaryings)
{
bool matched = false;
// Built-in varyings obey special rules
if (output.isBuiltIn())
{
continue;
}
for (const sh::Varying &input : vertexVaryings)
{
if (output.name == input.name)
{
ASSERT(!input.isBuiltIn());
if (!linkValidateVaryings(infoLog, output.name, input, output,
vertexShader->getShaderVersion()))
{
return false;
}
matched = true;
break;
}
}
// We permit unmatched, unreferenced varyings
if (!matched && output.staticUse)
{
infoLog << "Fragment varying " << output.name << " does not match any vertex varying";
return false;
}
// Check for aliased path rendering input bindings (if any).
// If more than one binding refer statically to the same
// location the link must fail.
if (!output.staticUse)
continue;
const auto inputBinding = mFragmentInputBindings.getBinding(output.name);
if (inputBinding == -1)
continue;
const auto it = staticFragmentInputLocations.find(inputBinding);
if (it == std::end(staticFragmentInputLocations))
{
staticFragmentInputLocations.insert(std::make_pair(inputBinding, output.name));
}
else
{
infoLog << "Binding for fragment input " << output.name << " conflicts with "
<< it->second;
return false;
}
}
if (!linkValidateBuiltInVaryings(infoLog))
{
return false;
}
// TODO(jmadill): verify no unmatched vertex varyings?
return true;
}
bool Program::linkUniforms(InfoLog &infoLog,
const Caps &caps,
const Bindings &uniformLocationBindings)
{
UniformLinker linker(mState);
if (!linker.link(infoLog, caps, uniformLocationBindings))
{
return false;
}
linker.getResults(&mState.mUniforms, &mState.mUniformLocations);
linkSamplerBindings();
return true;
}
void Program::linkSamplerBindings()
{
mState.mSamplerUniformRange.end = static_cast<unsigned int>(mState.mUniforms.size());
mState.mSamplerUniformRange.start = mState.mSamplerUniformRange.end;
auto samplerIter = mState.mUniforms.rbegin();
while (samplerIter != mState.mUniforms.rend() && samplerIter->isSampler())
{
--mState.mSamplerUniformRange.start;
++samplerIter;
}
// If uniform is a sampler type, insert it into the mSamplerBindings array.
for (unsigned int samplerIndex = mState.mSamplerUniformRange.start;
samplerIndex < mState.mUniforms.size(); ++samplerIndex)
{
const auto &samplerUniform = mState.mUniforms[samplerIndex];
GLenum textureType = SamplerTypeToTextureType(samplerUniform.type);
mState.mSamplerBindings.emplace_back(
SamplerBinding(textureType, samplerUniform.elementCount()));
}
}
bool Program::linkValidateInterfaceBlockFields(InfoLog &infoLog,
const std::string &uniformName,
const sh::InterfaceBlockField &vertexUniform,
const sh::InterfaceBlockField &fragmentUniform)
{
// We don't validate precision on UBO fields. See resolution of Khronos bug 10287.
if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, false))
{
return false;
}
if (vertexUniform.isRowMajorLayout != fragmentUniform.isRowMajorLayout)
{
infoLog << "Matrix packings for " << uniformName << " differ between vertex and fragment shaders";
return false;
}
return true;
}
// Assigns locations to all attributes from the bindings and program locations.
bool Program::linkAttributes(const ContextState &data, InfoLog &infoLog)
{
const auto *vertexShader = mState.getAttachedVertexShader();
unsigned int usedLocations = 0;
mState.mAttributes = vertexShader->getActiveAttributes();
GLuint maxAttribs = data.getCaps().maxVertexAttributes;
// TODO(jmadill): handle aliasing robustly
if (mState.mAttributes.size() > maxAttribs)
{
infoLog << "Too many vertex attributes.";
return false;
}
std::vector<sh::Attribute *> usedAttribMap(maxAttribs, nullptr);
// Link attributes that have a binding location
for (sh::Attribute &attribute : mState.mAttributes)
{
int bindingLocation = mAttributeBindings.getBinding(attribute.name);
if (attribute.location == -1 && bindingLocation != -1)
{
attribute.location = bindingLocation;
}
if (attribute.location != -1)
{
// Location is set by glBindAttribLocation or by location layout qualifier
const int regs = VariableRegisterCount(attribute.type);
if (static_cast<GLuint>(regs + attribute.location) > maxAttribs)
{
infoLog << "Active attribute (" << attribute.name << ") at location "
<< attribute.location << " is too big to fit";
return false;
}
for (int reg = 0; reg < regs; reg++)
{
const int regLocation = attribute.location + reg;
sh::ShaderVariable *linkedAttribute = usedAttribMap[regLocation];
// In GLSL 3.00, attribute aliasing produces a link error
// In GLSL 1.00, attribute aliasing is allowed, but ANGLE currently has a bug
if (linkedAttribute)
{
// TODO(jmadill): fix aliasing on ES2
// if (mProgram->getShaderVersion() >= 300)
{
infoLog << "Attribute '" << attribute.name << "' aliases attribute '"
<< linkedAttribute->name << "' at location " << regLocation;
return false;
}
}
else
{
usedAttribMap[regLocation] = &attribute;
}
usedLocations |= 1 << regLocation;
}
}
}
// Link attributes that don't have a binding location
for (sh::Attribute &attribute : mState.mAttributes)
{
// Not set by glBindAttribLocation or by location layout qualifier
if (attribute.location == -1)
{
int regs = VariableRegisterCount(attribute.type);
int availableIndex = AllocateFirstFreeBits(&usedLocations, regs, maxAttribs);
if (availableIndex == -1 || static_cast<GLuint>(availableIndex + regs) > maxAttribs)
{
infoLog << "Too many active attributes (" << attribute.name << ")";
return false;
}
attribute.location = availableIndex;
}
}
for (const sh::Attribute &attribute : mState.mAttributes)
{
ASSERT(attribute.location != -1);
int regs = VariableRegisterCount(attribute.type);
for (int r = 0; r < regs; r++)
{
mState.mActiveAttribLocationsMask.set(attribute.location + r);
}
}
return true;
}
bool Program::validateUniformBlocksCount(GLuint maxUniformBlocks,
const std::vector<sh::InterfaceBlock> &intefaceBlocks,
const std::string &errorMessage,
InfoLog &infoLog) const
{
GLuint blockCount = 0;
for (const sh::InterfaceBlock &block : intefaceBlocks)
{
if (block.staticUse || block.layout != sh::BLOCKLAYOUT_PACKED)
{
if (++blockCount > maxUniformBlocks)
{
infoLog << errorMessage << maxUniformBlocks << ")";
return false;
}
}
}
return true;
}
bool Program::validateVertexAndFragmentInterfaceBlocks(
const std::vector<sh::InterfaceBlock> &vertexInterfaceBlocks,
const std::vector<sh::InterfaceBlock> &fragmentInterfaceBlocks,
InfoLog &infoLog) const
{
// Check that interface blocks defined in the vertex and fragment shaders are identical
typedef std::map<std::string, const sh::InterfaceBlock *> UniformBlockMap;
UniformBlockMap linkedUniformBlocks;
for (const sh::InterfaceBlock &vertexInterfaceBlock : vertexInterfaceBlocks)
{
linkedUniformBlocks[vertexInterfaceBlock.name] = &vertexInterfaceBlock;
}
for (const sh::InterfaceBlock &fragmentInterfaceBlock : fragmentInterfaceBlocks)
{
auto entry = linkedUniformBlocks.find(fragmentInterfaceBlock.name);
if (entry != linkedUniformBlocks.end())
{
const sh::InterfaceBlock &vertexInterfaceBlock = *entry->second;
if (!areMatchingInterfaceBlocks(infoLog, vertexInterfaceBlock, fragmentInterfaceBlock))
{
return false;
}
}
}
return true;
}
bool Program::linkUniformBlocks(InfoLog &infoLog, const Caps &caps)
{
if (mState.mAttachedComputeShader)
{
const Shader &computeShader = *mState.mAttachedComputeShader;
const auto &computeInterfaceBlocks = computeShader.getInterfaceBlocks();
if (!validateUniformBlocksCount(
caps.maxComputeUniformBlocks, computeInterfaceBlocks,
"Compute shader uniform block count exceeds GL_MAX_COMPUTE_UNIFORM_BLOCKS (",
infoLog))
{
return false;
}
return true;
}
const Shader &vertexShader = *mState.mAttachedVertexShader;
const Shader &fragmentShader = *mState.mAttachedFragmentShader;
const auto &vertexInterfaceBlocks = vertexShader.getInterfaceBlocks();
const auto &fragmentInterfaceBlocks = fragmentShader.getInterfaceBlocks();
if (!validateUniformBlocksCount(
caps.maxVertexUniformBlocks, vertexInterfaceBlocks,
"Vertex shader uniform block count exceeds GL_MAX_VERTEX_UNIFORM_BLOCKS (", infoLog))
{
return false;
}
if (!validateUniformBlocksCount(
caps.maxFragmentUniformBlocks, fragmentInterfaceBlocks,
"Fragment shader uniform block count exceeds GL_MAX_FRAGMENT_UNIFORM_BLOCKS (",
infoLog))
{
return false;
}
if (!validateVertexAndFragmentInterfaceBlocks(vertexInterfaceBlocks, fragmentInterfaceBlocks,
infoLog))
{
return false;
}
return true;
}
bool Program::areMatchingInterfaceBlocks(InfoLog &infoLog,
const sh::InterfaceBlock &vertexInterfaceBlock,
const sh::InterfaceBlock &fragmentInterfaceBlock) const
{
const char* blockName = vertexInterfaceBlock.name.c_str();
// validate blocks for the same member types
if (vertexInterfaceBlock.fields.size() != fragmentInterfaceBlock.fields.size())
{
infoLog << "Types for interface block '" << blockName
<< "' differ between vertex and fragment shaders";
return false;
}
if (vertexInterfaceBlock.arraySize != fragmentInterfaceBlock.arraySize)
{
infoLog << "Array sizes differ for interface block '" << blockName
<< "' between vertex and fragment shaders";
return false;
}
if (vertexInterfaceBlock.layout != fragmentInterfaceBlock.layout || vertexInterfaceBlock.isRowMajorLayout != fragmentInterfaceBlock.isRowMajorLayout)
{
infoLog << "Layout qualifiers differ for interface block '" << blockName
<< "' between vertex and fragment shaders";
return false;
}
const unsigned int numBlockMembers =
static_cast<unsigned int>(vertexInterfaceBlock.fields.size());
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++)
{
const sh::InterfaceBlockField &vertexMember = vertexInterfaceBlock.fields[blockMemberIndex];
const sh::InterfaceBlockField &fragmentMember = fragmentInterfaceBlock.fields[blockMemberIndex];
if (vertexMember.name != fragmentMember.name)
{
infoLog << "Name mismatch for field " << blockMemberIndex
<< " of interface block '" << blockName
<< "': (in vertex: '" << vertexMember.name
<< "', in fragment: '" << fragmentMember.name << "')";
return false;
}
std::string memberName = "interface block '" + vertexInterfaceBlock.name + "' member '" + vertexMember.name + "'";
if (!linkValidateInterfaceBlockFields(infoLog, memberName, vertexMember, fragmentMember))
{
return false;
}
}
return true;
}
bool Program::linkValidateVariablesBase(InfoLog &infoLog, const std::string &variableName, const sh::ShaderVariable &vertexVariable,
const sh::ShaderVariable &fragmentVariable, bool validatePrecision)
{
if (vertexVariable.type != fragmentVariable.type)
{
infoLog << "Types for " << variableName << " differ between vertex and fragment shaders";
return false;
}
if (vertexVariable.arraySize != fragmentVariable.arraySize)
{
infoLog << "Array sizes for " << variableName << " differ between vertex and fragment shaders";
return false;
}
if (validatePrecision && vertexVariable.precision != fragmentVariable.precision)
{
infoLog << "Precisions for " << variableName << " differ between vertex and fragment shaders";
return false;
}
if (vertexVariable.fields.size() != fragmentVariable.fields.size())
{
infoLog << "Structure lengths for " << variableName << " differ between vertex and fragment shaders";
return false;
}
const unsigned int numMembers = static_cast<unsigned int>(vertexVariable.fields.size());
for (unsigned int memberIndex = 0; memberIndex < numMembers; memberIndex++)
{
const sh::ShaderVariable &vertexMember = vertexVariable.fields[memberIndex];
const sh::ShaderVariable &fragmentMember = fragmentVariable.fields[memberIndex];
if (vertexMember.name != fragmentMember.name)
{
infoLog << "Name mismatch for field '" << memberIndex
<< "' of " << variableName
<< ": (in vertex: '" << vertexMember.name
<< "', in fragment: '" << fragmentMember.name << "')";
return false;
}
const std::string memberName = variableName.substr(0, variableName.length() - 1) + "." +
vertexMember.name + "'";
if (!linkValidateVariablesBase(infoLog, vertexMember.name, vertexMember, fragmentMember, validatePrecision))
{
return false;
}
}
return true;
}
bool Program::linkValidateVaryings(InfoLog &infoLog,
const std::string &varyingName,
const sh::Varying &vertexVarying,
const sh::Varying &fragmentVarying,
int shaderVersion)
{
if (!linkValidateVariablesBase(infoLog, varyingName, vertexVarying, fragmentVarying, false))
{
return false;
}
if (!sh::InterpolationTypesMatch(vertexVarying.interpolation, fragmentVarying.interpolation))
{
infoLog << "Interpolation types for " << varyingName
<< " differ between vertex and fragment shaders.";
return false;
}
if (shaderVersion == 100 && vertexVarying.isInvariant != fragmentVarying.isInvariant)
{
infoLog << "Invariance for " << varyingName
<< " differs between vertex and fragment shaders.";
return false;
}
return true;
}
bool Program::linkValidateBuiltInVaryings(InfoLog &infoLog) const
{
const Shader *vertexShader = mState.mAttachedVertexShader;
const Shader *fragmentShader = mState.mAttachedFragmentShader;
const std::vector<sh::Varying> &vertexVaryings = vertexShader->getVaryings();
const std::vector<sh::Varying> &fragmentVaryings = fragmentShader->getVaryings();
int shaderVersion = vertexShader->getShaderVersion();
if (shaderVersion != 100)
{
// Only ESSL 1.0 has restrictions on matching input and output invariance
return true;
}
bool glPositionIsInvariant = false;
bool glPointSizeIsInvariant = false;
bool glFragCoordIsInvariant = false;
bool glPointCoordIsInvariant = false;
for (const sh::Varying &varying : vertexVaryings)
{
if (!varying.isBuiltIn())
{
continue;
}
if (varying.name.compare("gl_Position") == 0)
{
glPositionIsInvariant = varying.isInvariant;
}
else if (varying.name.compare("gl_PointSize") == 0)
{
glPointSizeIsInvariant = varying.isInvariant;
}
}
for (const sh::Varying &varying : fragmentVaryings)
{
if (!varying.isBuiltIn())
{
continue;
}
if (varying.name.compare("gl_FragCoord") == 0)
{
glFragCoordIsInvariant = varying.isInvariant;
}
else if (varying.name.compare("gl_PointCoord") == 0)
{
glPointCoordIsInvariant = varying.isInvariant;
}
}
// There is some ambiguity in ESSL 1.00.17 paragraph 4.6.4 interpretation,
// for example, https://cvs.khronos.org/bugzilla/show_bug.cgi?id=13842.
// Not requiring invariance to match is supported by:
// dEQP, WebGL CTS, Nexus 5X GLES
if (glFragCoordIsInvariant && !glPositionIsInvariant)
{
infoLog << "gl_FragCoord can only be declared invariant if and only if gl_Position is "
"declared invariant.";
return false;
}
if (glPointCoordIsInvariant && !glPointSizeIsInvariant)
{
infoLog << "gl_PointCoord can only be declared invariant if and only if gl_PointSize is "
"declared invariant.";
return false;
}
return true;
}
bool Program::linkValidateTransformFeedback(const gl::Context *context,
InfoLog &infoLog,
const Program::MergedVaryings &varyings,
const Caps &caps) const
{
size_t totalComponents = 0;
std::set<std::string> uniqueNames;
for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames)
{
bool found = false;
size_t subscript = GL_INVALID_INDEX;
std::string baseName = ParseResourceName(tfVaryingName, &subscript);
for (const auto &ref : varyings)
{
const sh::Varying *varying = ref.second.get();
if (baseName == varying->name)
{
if (uniqueNames.count(tfVaryingName) > 0)
{
infoLog << "Two transform feedback varyings specify the same output variable ("
<< tfVaryingName << ").";
return false;
}
if (context->getClientVersion() >= Version(3, 1))
{
if (IncludeSameArrayElement(uniqueNames, tfVaryingName))
{
infoLog
<< "Two transform feedback varyings include the same array element ("
<< tfVaryingName << ").";
return false;
}
}
else if (varying->isArray())
{
infoLog << "Capture of arrays is undefined and not supported.";
return false;
}
uniqueNames.insert(tfVaryingName);
// TODO(jmadill): Investigate implementation limits on D3D11
size_t elementCount =
((varying->isArray() && subscript == GL_INVALID_INDEX) ? varying->elementCount()
: 1);
size_t componentCount = VariableComponentCount(varying->type) * elementCount;
if (mState.mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS &&
componentCount > caps.maxTransformFeedbackSeparateComponents)
{
infoLog << "Transform feedback varying's " << varying->name << " components ("
<< componentCount << ") exceed the maximum separate components ("
<< caps.maxTransformFeedbackSeparateComponents << ").";
return false;
}
totalComponents += componentCount;
found = true;
break;
}
}
if (context->getClientVersion() < Version(3, 1) &&
tfVaryingName.find('[') != std::string::npos)
{
infoLog << "Capture of array elements is undefined and not supported.";
return false;
}
// All transform feedback varyings are expected to exist since packVaryings checks for them.
ASSERT(found);
}
if (mState.mTransformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS &&
totalComponents > caps.maxTransformFeedbackInterleavedComponents)
{
infoLog << "Transform feedback varying total components (" << totalComponents
<< ") exceed the maximum interleaved components ("
<< caps.maxTransformFeedbackInterleavedComponents << ").";
return false;
}
return true;
}
void Program::gatherTransformFeedbackVaryings(const Program::MergedVaryings &varyings)
{
// Gather the linked varyings that are used for transform feedback, they should all exist.
mState.mLinkedTransformFeedbackVaryings.clear();
for (const std::string &tfVaryingName : mState.mTransformFeedbackVaryingNames)
{
size_t subscript = GL_INVALID_INDEX;
std::string baseName = ParseResourceName(tfVaryingName, &subscript);
for (const auto &ref : varyings)
{
const sh::Varying *varying = ref.second.get();
if (baseName == varying->name)
{
mState.mLinkedTransformFeedbackVaryings.emplace_back(
*varying, static_cast<GLuint>(subscript));
break;
}
}
}
}
Program::MergedVaryings Program::getMergedVaryings() const
{
MergedVaryings merged;
for (const sh::Varying &varying : mState.mAttachedVertexShader->getVaryings())
{
merged[varying.name].vertex = &varying;
}
for (const sh::Varying &varying : mState.mAttachedFragmentShader->getVaryings())
{
merged[varying.name].fragment = &varying;
}
return merged;
}
std::vector<PackedVarying> Program::getPackedVaryings(
const Program::MergedVaryings &mergedVaryings) const
{
const std::vector<std::string> &tfVaryings = mState.getTransformFeedbackVaryingNames();
std::vector<PackedVarying> packedVaryings;
std::set<std::string> uniqueFullNames;
for (const auto &ref : mergedVaryings)
{
const sh::Varying *input = ref.second.vertex;
const sh::Varying *output = ref.second.fragment;
// Only pack varyings that have a matched input or output, plus special builtins.
if ((input && output) || (output && output->isBuiltIn()))
{
// Will get the vertex shader interpolation by default.
auto interpolation = ref.second.get()->interpolation;
// Interpolation qualifiers must match.
if (output->isStruct())
{
ASSERT(!output->isArray());
for (const auto &field : output->fields)
{
ASSERT(!field.isStruct() && !field.isArray());
packedVaryings.push_back(PackedVarying(field, interpolation, output->name));
}
}
else
{
packedVaryings.push_back(PackedVarying(*output, interpolation));
}
continue;
}
// Keep Transform FB varyings in the merged list always.
if (!input)
{
continue;
}
for (const std::string &tfVarying : tfVaryings)
{
size_t subscript = GL_INVALID_INDEX;
std::string baseName = ParseResourceName(tfVarying, &subscript);
if (uniqueFullNames.count(tfVarying) > 0)
{
continue;
}
if (baseName == input->name)
{
// Transform feedback for varying structs is underspecified.
// See Khronos bug 9856.
// TODO(jmadill): Figure out how to be spec-compliant here.
if (!input->isStruct())
{
packedVaryings.push_back(PackedVarying(*input, input->interpolation));