blob: 4236b99ded48ebe7599a4ee9b26672d073285ad0 [file] [log] [blame]
//
// Copyright (c) 2012-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Renderer9.cpp: Implements a back-end specific class for the D3D9 renderer.
#include "libANGLE/renderer/d3d/d3d9/Renderer9.h"
#include <EGL/eglext.h>
#include <sstream>
#include "common/utilities.h"
#include "libANGLE/Buffer.h"
#include "libANGLE/Display.h"
#include "libANGLE/Framebuffer.h"
#include "libANGLE/FramebufferAttachment.h"
#include "libANGLE/Program.h"
#include "libANGLE/Renderbuffer.h"
#include "libANGLE/State.h"
#include "libANGLE/Surface.h"
#include "libANGLE/Texture.h"
#include "libANGLE/angletypes.h"
#include "libANGLE/features.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/d3d/CompilerD3D.h"
#include "libANGLE/renderer/d3d/DeviceD3D.h"
#include "libANGLE/renderer/d3d/FramebufferD3D.h"
#include "libANGLE/renderer/d3d/IndexDataManager.h"
#include "libANGLE/renderer/d3d/ProgramD3D.h"
#include "libANGLE/renderer/d3d/RenderbufferD3D.h"
#include "libANGLE/renderer/d3d/ShaderD3D.h"
#include "libANGLE/renderer/d3d/SurfaceD3D.h"
#include "libANGLE/renderer/d3d/TextureD3D.h"
#include "libANGLE/renderer/d3d/d3d9/Blit9.h"
#include "libANGLE/renderer/d3d/d3d9/Buffer9.h"
#include "libANGLE/renderer/d3d/d3d9/Context9.h"
#include "libANGLE/renderer/d3d/d3d9/Fence9.h"
#include "libANGLE/renderer/d3d/d3d9/Framebuffer9.h"
#include "libANGLE/renderer/d3d/d3d9/Image9.h"
#include "libANGLE/renderer/d3d/d3d9/IndexBuffer9.h"
#include "libANGLE/renderer/d3d/d3d9/NativeWindow9.h"
#include "libANGLE/renderer/d3d/d3d9/Query9.h"
#include "libANGLE/renderer/d3d/d3d9/RenderTarget9.h"
#include "libANGLE/renderer/d3d/d3d9/ShaderExecutable9.h"
#include "libANGLE/renderer/d3d/d3d9/SwapChain9.h"
#include "libANGLE/renderer/d3d/d3d9/TextureStorage9.h"
#include "libANGLE/renderer/d3d/d3d9/VertexArray9.h"
#include "libANGLE/renderer/d3d/d3d9/VertexBuffer9.h"
#include "libANGLE/renderer/d3d/d3d9/formatutils9.h"
#include "libANGLE/renderer/d3d/d3d9/renderer9_utils.h"
#include "third_party/trace_event/trace_event.h"
#if !defined(ANGLE_COMPILE_OPTIMIZATION_LEVEL)
#define ANGLE_COMPILE_OPTIMIZATION_LEVEL D3DCOMPILE_OPTIMIZATION_LEVEL3
#endif
// Enable ANGLE_SUPPORT_SHADER_MODEL_2 if you wish devices with only shader model 2.
// Such a device would not be conformant.
#ifndef ANGLE_SUPPORT_SHADER_MODEL_2
#define ANGLE_SUPPORT_SHADER_MODEL_2 0
#endif
namespace rx
{
enum
{
MAX_VERTEX_CONSTANT_VECTORS_D3D9 = 256,
MAX_PIXEL_CONSTANT_VECTORS_SM2 = 32,
MAX_PIXEL_CONSTANT_VECTORS_SM3 = 224,
MAX_VARYING_VECTORS_SM2 = 8,
MAX_VARYING_VECTORS_SM3 = 10,
MAX_TEXTURE_IMAGE_UNITS_VTF_SM3 = 4
};
Renderer9::Renderer9(egl::Display *display) : RendererD3D(display), mStateManager(this)
{
mD3d9Module = nullptr;
mD3d9 = nullptr;
mD3d9Ex = nullptr;
mDevice = nullptr;
mDeviceEx = nullptr;
mDeviceWindow = nullptr;
mBlit = nullptr;
mAdapter = D3DADAPTER_DEFAULT;
const egl::AttributeMap &attributes = display->getAttributeMap();
EGLint requestedDeviceType = static_cast<EGLint>(attributes.get(
EGL_PLATFORM_ANGLE_DEVICE_TYPE_ANGLE, EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE));
switch (requestedDeviceType)
{
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE:
mDeviceType = D3DDEVTYPE_HAL;
break;
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_REFERENCE_ANGLE:
mDeviceType = D3DDEVTYPE_REF;
break;
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_NULL_ANGLE:
mDeviceType = D3DDEVTYPE_NULLREF;
break;
default:
UNREACHABLE();
}
mMaskedClearSavedState = nullptr;
mVertexDataManager = nullptr;
mIndexDataManager = nullptr;
mLineLoopIB = nullptr;
mCountingIB = nullptr;
mMaxNullColorbufferLRU = 0;
for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++)
{
mNullColorbufferCache[i].lruCount = 0;
mNullColorbufferCache[i].width = 0;
mNullColorbufferCache[i].height = 0;
mNullColorbufferCache[i].buffer = nullptr;
}
mAppliedVertexShader = nullptr;
mAppliedPixelShader = nullptr;
mAppliedProgramSerial = 0;
gl::InitializeDebugAnnotations(&mAnnotator);
mEGLDevice = nullptr;
}
Renderer9::~Renderer9()
{
if (mDevice)
{
// If the device is lost, reset it first to prevent leaving the driver in an unstable state
if (testDeviceLost())
{
resetDevice();
}
}
release();
}
void Renderer9::release()
{
RendererD3D::cleanup();
gl::UninitializeDebugAnnotations();
mTranslatedAttribCache.clear();
releaseDeviceResources();
SafeDelete(mEGLDevice);
SafeRelease(mDevice);
SafeRelease(mDeviceEx);
SafeRelease(mD3d9);
SafeRelease(mD3d9Ex);
mCompiler.release();
if (mDeviceWindow)
{
DestroyWindow(mDeviceWindow);
mDeviceWindow = nullptr;
}
mD3d9Module = nullptr;
}
egl::Error Renderer9::initialize()
{
TRACE_EVENT0("gpu.angle", "GetModuleHandle_d3d9");
mD3d9Module = GetModuleHandle(TEXT("d3d9.dll"));
if (mD3d9Module == nullptr)
{
return egl::Error(EGL_NOT_INITIALIZED, D3D9_INIT_MISSING_DEP, "No D3D9 module found.");
}
typedef HRESULT(WINAPI * Direct3DCreate9ExFunc)(UINT, IDirect3D9Ex **);
Direct3DCreate9ExFunc Direct3DCreate9ExPtr =
reinterpret_cast<Direct3DCreate9ExFunc>(GetProcAddress(mD3d9Module, "Direct3DCreate9Ex"));
// Use Direct3D9Ex if available. Among other things, this version is less
// inclined to report a lost context, for example when the user switches
// desktop. Direct3D9Ex is available in Windows Vista and later if suitable drivers are
// available.
if (ANGLE_D3D9EX == ANGLE_ENABLED && Direct3DCreate9ExPtr &&
SUCCEEDED(Direct3DCreate9ExPtr(D3D_SDK_VERSION, &mD3d9Ex)))
{
TRACE_EVENT0("gpu.angle", "D3d9Ex_QueryInterface");
ASSERT(mD3d9Ex);
mD3d9Ex->QueryInterface(__uuidof(IDirect3D9), reinterpret_cast<void **>(&mD3d9));
ASSERT(mD3d9);
}
else
{
TRACE_EVENT0("gpu.angle", "Direct3DCreate9");
mD3d9 = Direct3DCreate9(D3D_SDK_VERSION);
}
if (!mD3d9)
{
return egl::Error(EGL_NOT_INITIALIZED, D3D9_INIT_MISSING_DEP,
"Could not create D3D9 device.");
}
if (mDisplay->getNativeDisplayId() != nullptr)
{
// UNIMPLEMENTED(); // FIXME: Determine which adapter index the device context
// corresponds to
}
HRESULT result;
// Give up on getting device caps after about one second.
{
TRACE_EVENT0("gpu.angle", "GetDeviceCaps");
for (int i = 0; i < 10; ++i)
{
result = mD3d9->GetDeviceCaps(mAdapter, mDeviceType, &mDeviceCaps);
if (SUCCEEDED(result))
{
break;
}
else if (result == D3DERR_NOTAVAILABLE)
{
Sleep(100); // Give the driver some time to initialize/recover
}
else if (FAILED(result)) // D3DERR_OUTOFVIDEOMEMORY, E_OUTOFMEMORY,
// D3DERR_INVALIDDEVICE, or another error we can't recover
// from
{
return egl::Error(EGL_NOT_INITIALIZED, D3D9_INIT_OTHER_ERROR,
"Failed to get device caps: Error code 0x%x\n", result);
}
}
}
#if ANGLE_SUPPORT_SHADER_MODEL_2
size_t minShaderModel = 2;
#else
size_t minShaderModel = 3;
#endif
if (mDeviceCaps.PixelShaderVersion < D3DPS_VERSION(minShaderModel, 0))
{
return egl::Error(EGL_NOT_INITIALIZED, D3D9_INIT_UNSUPPORTED_VERSION,
"Renderer does not support PS %u.%u.aborting!", minShaderModel, 0);
}
// When DirectX9 is running with an older DirectX8 driver, a StretchRect from a regular texture
// to a render target texture is not supported. This is required by
// Texture2D::ensureRenderTarget.
if ((mDeviceCaps.DevCaps2 & D3DDEVCAPS2_CAN_STRETCHRECT_FROM_TEXTURES) == 0)
{
return egl::Error(EGL_NOT_INITIALIZED, D3D9_INIT_UNSUPPORTED_STRETCHRECT,
"Renderer does not support StretctRect from textures.");
}
{
TRACE_EVENT0("gpu.angle", "GetAdapterIdentifier");
mD3d9->GetAdapterIdentifier(mAdapter, 0, &mAdapterIdentifier);
}
static const TCHAR windowName[] = TEXT("AngleHiddenWindow");
static const TCHAR className[] = TEXT("STATIC");
{
TRACE_EVENT0("gpu.angle", "CreateWindowEx");
mDeviceWindow =
CreateWindowEx(WS_EX_NOACTIVATE, className, windowName, WS_DISABLED | WS_POPUP, 0, 0, 1,
1, HWND_MESSAGE, nullptr, GetModuleHandle(nullptr), nullptr);
}
D3DPRESENT_PARAMETERS presentParameters = getDefaultPresentParameters();
DWORD behaviorFlags =
D3DCREATE_FPU_PRESERVE | D3DCREATE_NOWINDOWCHANGES | D3DCREATE_MULTITHREADED;
{
TRACE_EVENT0("gpu.angle", "D3d9_CreateDevice");
result = mD3d9->CreateDevice(
mAdapter, mDeviceType, mDeviceWindow,
behaviorFlags | D3DCREATE_HARDWARE_VERTEXPROCESSING | D3DCREATE_PUREDEVICE,
&presentParameters, &mDevice);
}
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY || result == D3DERR_DEVICELOST)
{
return egl::Error(EGL_BAD_ALLOC, D3D9_INIT_OUT_OF_MEMORY,
"CreateDevice failed: device lost of out of memory");
}
if (FAILED(result))
{
TRACE_EVENT0("gpu.angle", "D3d9_CreateDevice2");
result = mD3d9->CreateDevice(mAdapter, mDeviceType, mDeviceWindow,
behaviorFlags | D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&presentParameters, &mDevice);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY ||
result == D3DERR_NOTAVAILABLE || result == D3DERR_DEVICELOST);
return egl::Error(
EGL_BAD_ALLOC, D3D9_INIT_OUT_OF_MEMORY,
"CreateDevice2 failed: device lost, not available, or of out of memory");
}
}
if (mD3d9Ex)
{
TRACE_EVENT0("gpu.angle", "mDevice_QueryInterface");
result = mDevice->QueryInterface(__uuidof(IDirect3DDevice9Ex), (void **)&mDeviceEx);
ASSERT(SUCCEEDED(result));
}
{
TRACE_EVENT0("gpu.angle", "ShaderCache initialize");
mVertexShaderCache.initialize(mDevice);
mPixelShaderCache.initialize(mDevice);
}
D3DDISPLAYMODE currentDisplayMode;
mD3d9->GetAdapterDisplayMode(mAdapter, &currentDisplayMode);
// Check vertex texture support
// Only Direct3D 10 ready devices support all the necessary vertex texture formats.
// We test this using D3D9 by checking support for the R16F format.
mVertexTextureSupport = mDeviceCaps.PixelShaderVersion >= D3DPS_VERSION(3, 0) &&
SUCCEEDED(mD3d9->CheckDeviceFormat(
mAdapter, mDeviceType, currentDisplayMode.Format,
D3DUSAGE_QUERY_VERTEXTEXTURE, D3DRTYPE_TEXTURE, D3DFMT_R16F));
initializeDevice();
return egl::Error(EGL_SUCCESS);
}
// do any one-time device initialization
// NOTE: this is also needed after a device lost/reset
// to reset the scene status and ensure the default states are reset.
void Renderer9::initializeDevice()
{
// Permanent non-default states
mDevice->SetRenderState(D3DRS_POINTSPRITEENABLE, TRUE);
mDevice->SetRenderState(D3DRS_LASTPIXEL, FALSE);
if (mDeviceCaps.PixelShaderVersion >= D3DPS_VERSION(3, 0))
{
mDevice->SetRenderState(D3DRS_POINTSIZE_MAX, (DWORD &)mDeviceCaps.MaxPointSize);
}
else
{
mDevice->SetRenderState(D3DRS_POINTSIZE_MAX, 0x3F800000); // 1.0f
}
const gl::Caps &rendererCaps = getNativeCaps();
mCurVertexSamplerStates.resize(rendererCaps.maxVertexTextureImageUnits);
mCurPixelSamplerStates.resize(rendererCaps.maxTextureImageUnits);
mCurVertexTextures.resize(rendererCaps.maxVertexTextureImageUnits);
mCurPixelTextures.resize(rendererCaps.maxTextureImageUnits);
markAllStateDirty();
mSceneStarted = false;
ASSERT(!mBlit);
mBlit = new Blit9(this);
mBlit->initialize();
ASSERT(!mVertexDataManager && !mIndexDataManager);
mVertexDataManager = new VertexDataManager(this);
mIndexDataManager = new IndexDataManager(this, getRendererClass());
mTranslatedAttribCache.resize(getNativeCaps().maxVertexAttributes);
mStateManager.initialize();
}
D3DPRESENT_PARAMETERS Renderer9::getDefaultPresentParameters()
{
D3DPRESENT_PARAMETERS presentParameters = {0};
// The default swap chain is never actually used. Surface will create a new swap chain with the
// proper parameters.
presentParameters.AutoDepthStencilFormat = D3DFMT_UNKNOWN;
presentParameters.BackBufferCount = 1;
presentParameters.BackBufferFormat = D3DFMT_UNKNOWN;
presentParameters.BackBufferWidth = 1;
presentParameters.BackBufferHeight = 1;
presentParameters.EnableAutoDepthStencil = FALSE;
presentParameters.Flags = 0;
presentParameters.hDeviceWindow = mDeviceWindow;
presentParameters.MultiSampleQuality = 0;
presentParameters.MultiSampleType = D3DMULTISAMPLE_NONE;
presentParameters.PresentationInterval = D3DPRESENT_INTERVAL_DEFAULT;
presentParameters.SwapEffect = D3DSWAPEFFECT_DISCARD;
presentParameters.Windowed = TRUE;
return presentParameters;
}
egl::ConfigSet Renderer9::generateConfigs()
{
static const GLenum colorBufferFormats[] = {
GL_BGR5_A1_ANGLEX, GL_BGRA8_EXT, GL_RGB565,
};
static const GLenum depthStencilBufferFormats[] = {
GL_NONE,
GL_DEPTH_COMPONENT32_OES,
GL_DEPTH24_STENCIL8_OES,
GL_DEPTH_COMPONENT24_OES,
GL_DEPTH_COMPONENT16,
};
const gl::Caps &rendererCaps = getNativeCaps();
const gl::TextureCapsMap &rendererTextureCaps = getNativeTextureCaps();
D3DDISPLAYMODE currentDisplayMode;
mD3d9->GetAdapterDisplayMode(mAdapter, &currentDisplayMode);
// Determine the min and max swap intervals
int minSwapInterval = 4;
int maxSwapInterval = 0;
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_IMMEDIATE)
{
minSwapInterval = std::min(minSwapInterval, 0);
maxSwapInterval = std::max(maxSwapInterval, 0);
}
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_ONE)
{
minSwapInterval = std::min(minSwapInterval, 1);
maxSwapInterval = std::max(maxSwapInterval, 1);
}
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_TWO)
{
minSwapInterval = std::min(minSwapInterval, 2);
maxSwapInterval = std::max(maxSwapInterval, 2);
}
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_THREE)
{
minSwapInterval = std::min(minSwapInterval, 3);
maxSwapInterval = std::max(maxSwapInterval, 3);
}
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_FOUR)
{
minSwapInterval = std::min(minSwapInterval, 4);
maxSwapInterval = std::max(maxSwapInterval, 4);
}
egl::ConfigSet configs;
for (size_t formatIndex = 0; formatIndex < ArraySize(colorBufferFormats); formatIndex++)
{
GLenum colorBufferInternalFormat = colorBufferFormats[formatIndex];
const gl::TextureCaps &colorBufferFormatCaps =
rendererTextureCaps.get(colorBufferInternalFormat);
if (colorBufferFormatCaps.renderable)
{
for (size_t depthStencilIndex = 0;
depthStencilIndex < ArraySize(depthStencilBufferFormats); depthStencilIndex++)
{
GLenum depthStencilBufferInternalFormat =
depthStencilBufferFormats[depthStencilIndex];
const gl::TextureCaps &depthStencilBufferFormatCaps =
rendererTextureCaps.get(depthStencilBufferInternalFormat);
if (depthStencilBufferFormatCaps.renderable ||
depthStencilBufferInternalFormat == GL_NONE)
{
const gl::InternalFormat &colorBufferFormatInfo =
gl::GetSizedInternalFormatInfo(colorBufferInternalFormat);
const gl::InternalFormat &depthStencilBufferFormatInfo =
gl::GetSizedInternalFormatInfo(depthStencilBufferInternalFormat);
const d3d9::TextureFormat &d3d9ColorBufferFormatInfo =
d3d9::GetTextureFormatInfo(colorBufferInternalFormat);
egl::Config config;
config.renderTargetFormat = colorBufferInternalFormat;
config.depthStencilFormat = depthStencilBufferInternalFormat;
config.bufferSize = colorBufferFormatInfo.pixelBytes * 8;
config.redSize = colorBufferFormatInfo.redBits;
config.greenSize = colorBufferFormatInfo.greenBits;
config.blueSize = colorBufferFormatInfo.blueBits;
config.luminanceSize = colorBufferFormatInfo.luminanceBits;
config.alphaSize = colorBufferFormatInfo.alphaBits;
config.alphaMaskSize = 0;
config.bindToTextureRGB = (colorBufferFormatInfo.format == GL_RGB);
config.bindToTextureRGBA = (colorBufferFormatInfo.format == GL_RGBA ||
colorBufferFormatInfo.format == GL_BGRA_EXT);
config.colorBufferType = EGL_RGB_BUFFER;
// Mark as slow if blits to the back-buffer won't be straight forward
config.configCaveat =
(currentDisplayMode.Format == d3d9ColorBufferFormatInfo.renderFormat)
? EGL_NONE
: EGL_SLOW_CONFIG;
config.configID = static_cast<EGLint>(configs.size() + 1);
config.conformant = EGL_OPENGL_ES2_BIT;
config.depthSize = depthStencilBufferFormatInfo.depthBits;
config.level = 0;
config.matchNativePixmap = EGL_NONE;
config.maxPBufferWidth = rendererCaps.max2DTextureSize;
config.maxPBufferHeight = rendererCaps.max2DTextureSize;
config.maxPBufferPixels =
rendererCaps.max2DTextureSize * rendererCaps.max2DTextureSize;
config.maxSwapInterval = maxSwapInterval;
config.minSwapInterval = minSwapInterval;
config.nativeRenderable = EGL_FALSE;
config.nativeVisualID = 0;
config.nativeVisualType = EGL_NONE;
config.renderableType = EGL_OPENGL_ES2_BIT;
config.sampleBuffers = 0; // FIXME: enumerate multi-sampling
config.samples = 0;
config.stencilSize = depthStencilBufferFormatInfo.stencilBits;
config.surfaceType =
EGL_PBUFFER_BIT | EGL_WINDOW_BIT | EGL_SWAP_BEHAVIOR_PRESERVED_BIT;
config.transparentType = EGL_NONE;
config.transparentRedValue = 0;
config.transparentGreenValue = 0;
config.transparentBlueValue = 0;
config.colorComponentType = gl_egl::GLComponentTypeToEGLColorComponentType(
colorBufferFormatInfo.componentType);
configs.add(config);
}
}
}
}
ASSERT(configs.size() > 0);
return configs;
}
void Renderer9::generateDisplayExtensions(egl::DisplayExtensions *outExtensions) const
{
outExtensions->createContextRobustness = true;
if (getShareHandleSupport())
{
outExtensions->d3dShareHandleClientBuffer = true;
outExtensions->surfaceD3DTexture2DShareHandle = true;
}
outExtensions->d3dTextureClientBuffer = true;
outExtensions->querySurfacePointer = true;
outExtensions->windowFixedSize = true;
outExtensions->postSubBuffer = true;
outExtensions->deviceQuery = true;
outExtensions->image = true;
outExtensions->imageBase = true;
outExtensions->glTexture2DImage = true;
outExtensions->glRenderbufferImage = true;
outExtensions->flexibleSurfaceCompatibility = true;
// Contexts are virtualized so textures can be shared globally
outExtensions->displayTextureShareGroup = true;
}
void Renderer9::startScene()
{
if (!mSceneStarted)
{
long result = mDevice->BeginScene();
if (SUCCEEDED(result))
{
// This is defensive checking against the device being
// lost at unexpected times.
mSceneStarted = true;
}
}
}
void Renderer9::endScene()
{
if (mSceneStarted)
{
// EndScene can fail if the device was lost, for example due
// to a TDR during a draw call.
mDevice->EndScene();
mSceneStarted = false;
}
}
gl::Error Renderer9::flush()
{
IDirect3DQuery9 *query = nullptr;
gl::Error error = allocateEventQuery(&query);
if (error.isError())
{
return error;
}
HRESULT result = query->Issue(D3DISSUE_END);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to issue event query, result: 0x%X.", result);
}
// Grab the query data once
result = query->GetData(nullptr, 0, D3DGETDATA_FLUSH);
freeEventQuery(query);
if (FAILED(result))
{
if (d3d9::isDeviceLostError(result))
{
notifyDeviceLost();
}
return gl::Error(GL_OUT_OF_MEMORY, "Failed to get event query data, result: 0x%X.", result);
}
return gl::NoError();
}
gl::Error Renderer9::finish()
{
IDirect3DQuery9 *query = nullptr;
gl::Error error = allocateEventQuery(&query);
if (error.isError())
{
return error;
}
HRESULT result = query->Issue(D3DISSUE_END);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to issue event query, result: 0x%X.", result);
}
// Grab the query data once
result = query->GetData(nullptr, 0, D3DGETDATA_FLUSH);
if (FAILED(result))
{
if (d3d9::isDeviceLostError(result))
{
notifyDeviceLost();
}
freeEventQuery(query);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to get event query data, result: 0x%X.", result);
}
// Loop until the query completes
while (result == S_FALSE)
{
// Keep polling, but allow other threads to do something useful first
ScheduleYield();
result = query->GetData(nullptr, 0, D3DGETDATA_FLUSH);
// explicitly check for device loss
// some drivers seem to return S_FALSE even if the device is lost
// instead of D3DERR_DEVICELOST like they should
if (result == S_FALSE && testDeviceLost())
{
result = D3DERR_DEVICELOST;
}
if (FAILED(result))
{
if (d3d9::isDeviceLostError(result))
{
notifyDeviceLost();
}
freeEventQuery(query);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to get event query data, result: 0x%X.",
result);
}
}
freeEventQuery(query);
return gl::NoError();
}
bool Renderer9::isValidNativeWindow(EGLNativeWindowType window) const
{
return NativeWindow9::IsValidNativeWindow(window);
}
NativeWindowD3D *Renderer9::createNativeWindow(EGLNativeWindowType window,
const egl::Config *,
const egl::AttributeMap &) const
{
return new NativeWindow9(window);
}
SwapChainD3D *Renderer9::createSwapChain(NativeWindowD3D *nativeWindow,
HANDLE shareHandle,
IUnknown *d3dTexture,
GLenum backBufferFormat,
GLenum depthBufferFormat,
EGLint orientation,
EGLint samples)
{
return new SwapChain9(this, GetAs<NativeWindow9>(nativeWindow), shareHandle, d3dTexture,
backBufferFormat, depthBufferFormat, orientation);
}
egl::Error Renderer9::getD3DTextureInfo(const egl::Config *config,
IUnknown *d3dTexture,
EGLint *width,
EGLint *height,
GLenum *fboFormat) const
{
IDirect3DTexture9 *texture = nullptr;
if (FAILED(d3dTexture->QueryInterface(&texture)))
{
return egl::Error(EGL_BAD_PARAMETER, "client buffer is not a IDirect3DTexture9");
}
IDirect3DDevice9 *textureDevice = nullptr;
texture->GetDevice(&textureDevice);
if (textureDevice != mDevice)
{
SafeRelease(texture);
return egl::Error(EGL_BAD_PARAMETER, "Texture's device does not match.");
}
SafeRelease(textureDevice);
D3DSURFACE_DESC desc;
texture->GetLevelDesc(0, &desc);
SafeRelease(texture);
if (width)
{
*width = static_cast<EGLint>(desc.Width);
}
if (height)
{
*height = static_cast<EGLint>(desc.Height);
}
// From table egl.restrictions in EGL_ANGLE_d3d_texture_client_buffer.
switch (desc.Format)
{
case D3DFMT_R8G8B8:
case D3DFMT_A8R8G8B8:
case D3DFMT_A16B16G16R16F:
case D3DFMT_A32B32G32R32F:
break;
default:
return egl::Error(EGL_BAD_PARAMETER, "Unknown client buffer texture format: %u.",
desc.Format);
}
if (fboFormat)
{
const auto &d3dFormatInfo = d3d9::GetD3DFormatInfo(desc.Format);
ASSERT(d3dFormatInfo.info().id != angle::Format::ID::NONE);
*fboFormat = d3dFormatInfo.info().fboImplementationInternalFormat;
}
return egl::Error(EGL_SUCCESS);
}
egl::Error Renderer9::validateShareHandle(const egl::Config *config,
HANDLE shareHandle,
const egl::AttributeMap &attribs) const
{
if (shareHandle == nullptr)
{
return egl::Error(EGL_BAD_PARAMETER, "NULL share handle.");
}
EGLint width = attribs.getAsInt(EGL_WIDTH, 0);
EGLint height = attribs.getAsInt(EGL_HEIGHT, 0);
ASSERT(width != 0 && height != 0);
const d3d9::TextureFormat &backBufferd3dFormatInfo =
d3d9::GetTextureFormatInfo(config->renderTargetFormat);
IDirect3DTexture9 *texture = nullptr;
HRESULT result = mDevice->CreateTexture(width, height, 1, D3DUSAGE_RENDERTARGET,
backBufferd3dFormatInfo.texFormat, D3DPOOL_DEFAULT,
&texture, &shareHandle);
if (FAILED(result))
{
return egl::Error(EGL_BAD_PARAMETER, "Failed to open share handle, result: 0x%X.", result);
}
DWORD levelCount = texture->GetLevelCount();
D3DSURFACE_DESC desc;
texture->GetLevelDesc(0, &desc);
SafeRelease(texture);
if (levelCount != 1 || desc.Width != static_cast<UINT>(width) ||
desc.Height != static_cast<UINT>(height) ||
desc.Format != backBufferd3dFormatInfo.texFormat)
{
return egl::Error(EGL_BAD_PARAMETER, "Invalid texture parameters in share handle texture.");
}
return egl::Error(EGL_SUCCESS);
}
ContextImpl *Renderer9::createContext(const gl::ContextState &state)
{
return new Context9(state, this);
}
void *Renderer9::getD3DDevice()
{
return reinterpret_cast<void *>(mDevice);
}
gl::Error Renderer9::allocateEventQuery(IDirect3DQuery9 **outQuery)
{
if (mEventQueryPool.empty())
{
HRESULT result = mDevice->CreateQuery(D3DQUERYTYPE_EVENT, outQuery);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to allocate event query, result: 0x%X.",
result);
}
}
else
{
*outQuery = mEventQueryPool.back();
mEventQueryPool.pop_back();
}
return gl::NoError();
}
void Renderer9::freeEventQuery(IDirect3DQuery9 *query)
{
if (mEventQueryPool.size() > 1000)
{
SafeRelease(query);
}
else
{
mEventQueryPool.push_back(query);
}
}
gl::Error Renderer9::createVertexShader(const DWORD *function,
size_t length,
IDirect3DVertexShader9 **outShader)
{
return mVertexShaderCache.create(function, length, outShader);
}
gl::Error Renderer9::createPixelShader(const DWORD *function,
size_t length,
IDirect3DPixelShader9 **outShader)
{
return mPixelShaderCache.create(function, length, outShader);
}
HRESULT Renderer9::createVertexBuffer(UINT Length,
DWORD Usage,
IDirect3DVertexBuffer9 **ppVertexBuffer)
{
D3DPOOL Pool = getBufferPool(Usage);
return mDevice->CreateVertexBuffer(Length, Usage, 0, Pool, ppVertexBuffer, nullptr);
}
VertexBuffer *Renderer9::createVertexBuffer()
{
return new VertexBuffer9(this);
}
HRESULT Renderer9::createIndexBuffer(UINT Length,
DWORD Usage,
D3DFORMAT Format,
IDirect3DIndexBuffer9 **ppIndexBuffer)
{
D3DPOOL Pool = getBufferPool(Usage);
return mDevice->CreateIndexBuffer(Length, Usage, Format, Pool, ppIndexBuffer, nullptr);
}
IndexBuffer *Renderer9::createIndexBuffer()
{
return new IndexBuffer9(this);
}
StreamProducerImpl *Renderer9::createStreamProducerD3DTextureNV12(
egl::Stream::ConsumerType consumerType,
const egl::AttributeMap &attribs)
{
// Streams are not supported under D3D9
UNREACHABLE();
return nullptr;
}
bool Renderer9::supportsFastCopyBufferToTexture(GLenum internalFormat) const
{
// Pixel buffer objects are not supported in D3D9, since D3D9 is ES2-only and PBOs are ES3.
return false;
}
gl::Error Renderer9::fastCopyBufferToTexture(const gl::PixelUnpackState &unpack,
unsigned int offset,
RenderTargetD3D *destRenderTarget,
GLenum destinationFormat,
GLenum sourcePixelsType,
const gl::Box &destArea)
{
// Pixel buffer objects are not supported in D3D9, since D3D9 is ES2-only and PBOs are ES3.
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
gl::Error Renderer9::setSamplerState(gl::SamplerType type,
int index,
gl::Texture *texture,
const gl::SamplerState &samplerState)
{
CurSamplerState &appliedSampler = (type == gl::SAMPLER_PIXEL) ? mCurPixelSamplerStates[index]
: mCurVertexSamplerStates[index];
// Make sure to add the level offset for our tiny compressed texture workaround
TextureD3D *textureD3D = GetImplAs<TextureD3D>(texture);
TextureStorage *storage = nullptr;
gl::Error error = textureD3D->getNativeTexture(&storage);
if (error.isError())
{
return error;
}
// Storage should exist, texture should be complete
ASSERT(storage);
DWORD baseLevel = texture->getBaseLevel() + storage->getTopLevel();
if (appliedSampler.forceSet || appliedSampler.baseLevel != baseLevel ||
memcmp(&samplerState, &appliedSampler, sizeof(gl::SamplerState)) != 0)
{
int d3dSamplerOffset = (type == gl::SAMPLER_PIXEL) ? 0 : D3DVERTEXTEXTURESAMPLER0;
int d3dSampler = index + d3dSamplerOffset;
mDevice->SetSamplerState(d3dSampler, D3DSAMP_ADDRESSU,
gl_d3d9::ConvertTextureWrap(samplerState.wrapS));
mDevice->SetSamplerState(d3dSampler, D3DSAMP_ADDRESSV,
gl_d3d9::ConvertTextureWrap(samplerState.wrapT));
mDevice->SetSamplerState(
d3dSampler, D3DSAMP_MAGFILTER,
gl_d3d9::ConvertMagFilter(samplerState.magFilter, samplerState.maxAnisotropy));
D3DTEXTUREFILTERTYPE d3dMinFilter, d3dMipFilter;
float lodBias;
gl_d3d9::ConvertMinFilter(samplerState.minFilter, &d3dMinFilter, &d3dMipFilter, &lodBias,
samplerState.maxAnisotropy, baseLevel);
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MINFILTER, d3dMinFilter);
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MIPFILTER, d3dMipFilter);
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAXMIPLEVEL, baseLevel);
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MIPMAPLODBIAS, static_cast<DWORD>(lodBias));
if (getNativeExtensions().textureFilterAnisotropic)
{
DWORD maxAnisotropy =
std::min(mDeviceCaps.MaxAnisotropy, static_cast<DWORD>(samplerState.maxAnisotropy));
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAXANISOTROPY, maxAnisotropy);
}
}
appliedSampler.forceSet = false;
appliedSampler.samplerState = samplerState;
appliedSampler.baseLevel = baseLevel;
return gl::NoError();
}
gl::Error Renderer9::setTexture(gl::SamplerType type, int index, gl::Texture *texture)
{
int d3dSamplerOffset = (type == gl::SAMPLER_PIXEL) ? 0 : D3DVERTEXTEXTURESAMPLER0;
int d3dSampler = index + d3dSamplerOffset;
IDirect3DBaseTexture9 *d3dTexture = nullptr;
bool forceSetTexture = false;
std::vector<uintptr_t> &appliedTextures =
(type == gl::SAMPLER_PIXEL) ? mCurPixelTextures : mCurVertexTextures;
if (texture)
{
TextureD3D *textureImpl = GetImplAs<TextureD3D>(texture);
TextureStorage *texStorage = nullptr;
gl::Error error = textureImpl->getNativeTexture(&texStorage);
if (error.isError())
{
return error;
}
// Texture should be complete and have a storage
ASSERT(texStorage);
TextureStorage9 *storage9 = GetAs<TextureStorage9>(texStorage);
error = storage9->getBaseTexture(&d3dTexture);
if (error.isError())
{
return error;
}
// If we get NULL back from getBaseTexture here, something went wrong
// in the texture class and we're unexpectedly missing the d3d texture
ASSERT(d3dTexture != nullptr);
forceSetTexture = textureImpl->hasDirtyImages();
textureImpl->resetDirty();
}
if (forceSetTexture || appliedTextures[index] != reinterpret_cast<uintptr_t>(d3dTexture))
{
mDevice->SetTexture(d3dSampler, d3dTexture);
}
appliedTextures[index] = reinterpret_cast<uintptr_t>(d3dTexture);
return gl::NoError();
}
gl::Error Renderer9::setUniformBuffers(const gl::ContextState & /*data*/,
const std::vector<GLint> & /*vertexUniformBuffers*/,
const std::vector<GLint> & /*fragmentUniformBuffers*/)
{
// No effect in ES2/D3D9
return gl::NoError();
}
gl::Error Renderer9::updateState(Context9 *context, GLenum drawMode)
{
const auto &data = context->getContextState();
const auto &glState = data.getState();
// Applies the render target surface, depth stencil surface, viewport rectangle and
// scissor rectangle to the renderer
gl::Framebuffer *framebuffer = glState.getDrawFramebuffer();
ASSERT(framebuffer && !framebuffer->hasAnyDirtyBit() && framebuffer->cachedComplete());
ANGLE_TRY(applyRenderTarget(context, framebuffer));
// Setting viewport state
setViewport(glState.getViewport(), glState.getNearPlane(), glState.getFarPlane(), drawMode,
glState.getRasterizerState().frontFace, false);
// Setting scissors state
setScissorRectangle(glState.getScissor(), glState.isScissorTestEnabled());
// Setting blend, depth stencil, and rasterizer states
// Since framebuffer->getSamples will return the original samples which may be different with
// the sample counts that we set in render target view, here we use renderTarget->getSamples to
// get the actual samples.
GLsizei samples = 0;
auto firstColorAttachment = framebuffer->getFirstColorbuffer();
if (firstColorAttachment)
{
ASSERT(firstColorAttachment->isAttached());
RenderTarget9 *renderTarget = nullptr;
ANGLE_TRY(firstColorAttachment->getRenderTarget(&renderTarget));
samples = renderTarget->getSamples();
}
gl::RasterizerState rasterizer = glState.getRasterizerState();
rasterizer.pointDrawMode = (drawMode == GL_POINTS);
rasterizer.multiSample = (samples != 0);
unsigned int mask = GetBlendSampleMask(data, samples);
ANGLE_TRY(setBlendDepthRasterStates(data, mask));
mStateManager.resetDirtyBits();
return gl::NoError();
}
void Renderer9::setScissorRectangle(const gl::Rectangle &scissor, bool enabled)
{
mStateManager.setScissorState(scissor, enabled);
}
gl::Error Renderer9::setBlendDepthRasterStates(const gl::ContextState &glData, GLenum drawMode)
{
const auto &glState = glData.getState();
auto drawFramebuffer = glState.getDrawFramebuffer();
ASSERT(!drawFramebuffer->hasAnyDirtyBit());
// Since framebuffer->getSamples will return the original samples which may be different with
// the sample counts that we set in render target view, here we use renderTarget->getSamples to
// get the actual samples.
GLsizei samples = 0;
auto firstColorAttachment = drawFramebuffer->getFirstColorbuffer();
if (firstColorAttachment)
{
ASSERT(firstColorAttachment->isAttached());
RenderTarget9 *renderTarget = nullptr;
ANGLE_TRY(firstColorAttachment->getRenderTarget(&renderTarget));
samples = renderTarget->getSamples();
}
gl::RasterizerState rasterizer = glState.getRasterizerState();
rasterizer.pointDrawMode = (drawMode == GL_POINTS);
rasterizer.multiSample = (samples != 0);
unsigned int mask = GetBlendSampleMask(glData, samples);
return mStateManager.setBlendDepthRasterStates(glState, mask);
}
void Renderer9::setViewport(const gl::Rectangle &viewport,
float zNear,
float zFar,
GLenum drawMode,
GLenum frontFace,
bool ignoreViewport)
{
mStateManager.setViewportState(viewport, zNear, zFar, drawMode, frontFace, ignoreViewport);
}
bool Renderer9::applyPrimitiveType(GLenum mode, GLsizei count, bool usesPointSize)
{
switch (mode)
{
case GL_POINTS:
mPrimitiveType = D3DPT_POINTLIST;
mPrimitiveCount = count;
break;
case GL_LINES:
mPrimitiveType = D3DPT_LINELIST;
mPrimitiveCount = count / 2;
break;
case GL_LINE_LOOP:
mPrimitiveType = D3DPT_LINESTRIP;
mPrimitiveCount =
count - 1; // D3D doesn't support line loops, so we draw the last line separately
break;
case GL_LINE_STRIP:
mPrimitiveType = D3DPT_LINESTRIP;
mPrimitiveCount = count - 1;
break;
case GL_TRIANGLES:
mPrimitiveType = D3DPT_TRIANGLELIST;
mPrimitiveCount = count / 3;
break;
case GL_TRIANGLE_STRIP:
mPrimitiveType = D3DPT_TRIANGLESTRIP;
mPrimitiveCount = count - 2;
break;
case GL_TRIANGLE_FAN:
mPrimitiveType = D3DPT_TRIANGLEFAN;
mPrimitiveCount = count - 2;
break;
default:
UNREACHABLE();
return false;
}
return mPrimitiveCount > 0;
}
gl::Error Renderer9::getNullColorbuffer(GLImplFactory *implFactory,
const gl::FramebufferAttachment *depthbuffer,
const gl::FramebufferAttachment **outColorBuffer)
{
ASSERT(depthbuffer);
const gl::Extents &size = depthbuffer->getSize();
// search cached nullcolorbuffers
for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++)
{
if (mNullColorbufferCache[i].buffer != nullptr &&
mNullColorbufferCache[i].width == size.width &&
mNullColorbufferCache[i].height == size.height)
{
mNullColorbufferCache[i].lruCount = ++mMaxNullColorbufferLRU;
*outColorBuffer = mNullColorbufferCache[i].buffer;
return gl::NoError();
}
}
gl::Renderbuffer *nullRenderbuffer = new gl::Renderbuffer(implFactory->createRenderbuffer(), 0);
gl::Error error = nullRenderbuffer->setStorage(GL_NONE, size.width, size.height);
if (error.isError())
{
SafeDelete(nullRenderbuffer);
return error;
}
gl::FramebufferAttachment *nullbuffer = new gl::FramebufferAttachment(
GL_RENDERBUFFER, GL_NONE, gl::ImageIndex::MakeInvalid(), nullRenderbuffer);
// add nullbuffer to the cache
NullColorbufferCacheEntry *oldest = &mNullColorbufferCache[0];
for (int i = 1; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++)
{
if (mNullColorbufferCache[i].lruCount < oldest->lruCount)
{
oldest = &mNullColorbufferCache[i];
}
}
delete oldest->buffer;
oldest->buffer = nullbuffer;
oldest->lruCount = ++mMaxNullColorbufferLRU;
oldest->width = size.width;
oldest->height = size.height;
*outColorBuffer = nullbuffer;
return gl::NoError();
}
gl::Error Renderer9::applyRenderTarget(GLImplFactory *implFactory,
const gl::FramebufferAttachment *colorAttachment,
const gl::FramebufferAttachment *depthStencilAttachment)
{
const gl::FramebufferAttachment *renderAttachment = colorAttachment;
gl::Error error(GL_NO_ERROR);
// if there is no color attachment we must synthesize a NULL colorattachment
// to keep the D3D runtime happy. This should only be possible if depth texturing.
if (renderAttachment == nullptr)
{
error = getNullColorbuffer(implFactory, depthStencilAttachment, &renderAttachment);
if (error.isError())
{
return error;
}
}
ASSERT(renderAttachment != nullptr);
size_t renderTargetWidth = 0;
size_t renderTargetHeight = 0;
D3DFORMAT renderTargetFormat = D3DFMT_UNKNOWN;
RenderTarget9 *renderTarget = nullptr;
error = renderAttachment->getRenderTarget(&renderTarget);
if (error.isError())
{
return error;
}
ASSERT(renderTarget);
bool renderTargetChanged = false;
unsigned int renderTargetSerial = renderTarget->getSerial();
if (renderTargetSerial != mAppliedRenderTargetSerial)
{
// Apply the render target on the device
IDirect3DSurface9 *renderTargetSurface = renderTarget->getSurface();
ASSERT(renderTargetSurface);
mDevice->SetRenderTarget(0, renderTargetSurface);
SafeRelease(renderTargetSurface);
renderTargetWidth = renderTarget->getWidth();
renderTargetHeight = renderTarget->getHeight();
renderTargetFormat = renderTarget->getD3DFormat();
mAppliedRenderTargetSerial = renderTargetSerial;
renderTargetChanged = true;
}
RenderTarget9 *depthStencilRenderTarget = nullptr;
unsigned int depthStencilSerial = 0;
if (depthStencilAttachment != nullptr)
{
error = depthStencilAttachment->getRenderTarget(&depthStencilRenderTarget);
if (error.isError())
{
return error;
}
ASSERT(depthStencilRenderTarget);
depthStencilSerial = depthStencilRenderTarget->getSerial();
}
if (depthStencilSerial != mAppliedDepthStencilSerial || !mDepthStencilInitialized)
{
unsigned int depthSize = 0;
unsigned int stencilSize = 0;
// Apply the depth stencil on the device
if (depthStencilRenderTarget)
{
IDirect3DSurface9 *depthStencilSurface = depthStencilRenderTarget->getSurface();
ASSERT(depthStencilSurface);
mDevice->SetDepthStencilSurface(depthStencilSurface);
SafeRelease(depthStencilSurface);
depthSize = depthStencilAttachment->getDepthSize();
stencilSize = depthStencilAttachment->getStencilSize();
}
else
{
mDevice->SetDepthStencilSurface(nullptr);
}
mStateManager.updateDepthSizeIfChanged(mDepthStencilInitialized, depthSize);
mStateManager.updateStencilSizeIfChanged(mDepthStencilInitialized, stencilSize);
mAppliedDepthStencilSerial = depthStencilSerial;
mDepthStencilInitialized = true;
}
if (renderTargetChanged || !mRenderTargetDescInitialized)
{
mStateManager.forceSetBlendState();
mStateManager.forceSetScissorState();
mStateManager.setRenderTargetBounds(renderTargetWidth, renderTargetHeight);
mRenderTargetDescInitialized = true;
}
return gl::NoError();
}
gl::Error Renderer9::applyRenderTarget(GLImplFactory *implFactory,
const gl::Framebuffer *framebuffer)
{
return applyRenderTarget(implFactory, framebuffer->getColorbuffer(0),
framebuffer->getDepthOrStencilbuffer());
}
gl::Error Renderer9::applyVertexBuffer(const gl::State &state,
GLenum mode,
GLint first,
GLsizei count,
GLsizei instances,
TranslatedIndexData * /*indexInfo*/)
{
gl::Error error = mVertexDataManager->prepareVertexData(state, first, count,
&mTranslatedAttribCache, instances);
if (error.isError())
{
return error;
}
return mVertexDeclarationCache.applyDeclaration(
mDevice, mTranslatedAttribCache, state.getProgram(), first, instances, &mRepeatDraw);
}
// Applies the indices and element array bindings to the Direct3D 9 device
gl::Error Renderer9::applyIndexBuffer(const gl::ContextState &data,
const void *indices,
GLsizei count,
GLenum mode,
GLenum type,
TranslatedIndexData *indexInfo)
{
gl::VertexArray *vao = data.getState().getVertexArray();
gl::Buffer *elementArrayBuffer = vao->getElementArrayBuffer().get();
gl::Error error = mIndexDataManager->prepareIndexData(type, count, elementArrayBuffer, indices,
indexInfo, false);
if (error.isError())
{
return error;
}
// Directly binding the storage buffer is not supported for d3d9
ASSERT(indexInfo->storage == nullptr);
if (indexInfo->serial != mAppliedIBSerial)
{
IndexBuffer9 *indexBuffer = GetAs<IndexBuffer9>(indexInfo->indexBuffer);
mDevice->SetIndices(indexBuffer->getBuffer());
mAppliedIBSerial = indexInfo->serial;
}
return gl::NoError();
}
gl::Error Renderer9::applyTransformFeedbackBuffers(const gl::State &state)
{
ASSERT(!state.isTransformFeedbackActiveUnpaused());
return gl::NoError();
}
gl::Error Renderer9::drawArraysImpl(const gl::ContextState &data,
GLenum mode,
GLint startVertex,
GLsizei count,
GLsizei instances)
{
ASSERT(!data.getState().isTransformFeedbackActiveUnpaused());
startScene();
if (mode == GL_LINE_LOOP)
{
return drawLineLoop(count, GL_NONE, nullptr, 0, nullptr);
}
else if (instances > 0)
{
StaticIndexBufferInterface *countingIB = nullptr;
gl::Error error = getCountingIB(count, &countingIB);
if (error.isError())
{
return error;
}
if (mAppliedIBSerial != countingIB->getSerial())
{
IndexBuffer9 *indexBuffer = GetAs<IndexBuffer9>(countingIB->getIndexBuffer());
mDevice->SetIndices(indexBuffer->getBuffer());
mAppliedIBSerial = countingIB->getSerial();
}
for (int i = 0; i < mRepeatDraw; i++)
{
mDevice->DrawIndexedPrimitive(mPrimitiveType, 0, 0, count, 0, mPrimitiveCount);
}
return gl::NoError();
}
else // Regular case
{
mDevice->DrawPrimitive(mPrimitiveType, 0, mPrimitiveCount);
return gl::NoError();
}
}
gl::Error Renderer9::drawElementsImpl(const gl::ContextState &data,
const TranslatedIndexData &indexInfo,
GLenum mode,
GLsizei count,
GLenum type,
const void *indices,
GLsizei /*instances*/)
{
startScene();
int minIndex = static_cast<int>(indexInfo.indexRange.start);
gl::VertexArray *vao = data.getState().getVertexArray();
gl::Buffer *elementArrayBuffer = vao->getElementArrayBuffer().get();
if (mode == GL_POINTS)
{
return drawIndexedPoints(count, type, indices, minIndex, elementArrayBuffer);
}
else if (mode == GL_LINE_LOOP)
{
return drawLineLoop(count, type, indices, minIndex, elementArrayBuffer);
}
else
{
size_t vertexCount = indexInfo.indexRange.vertexCount();
for (int i = 0; i < mRepeatDraw; i++)
{
mDevice->DrawIndexedPrimitive(mPrimitiveType, -minIndex, minIndex,
static_cast<UINT>(vertexCount), indexInfo.startIndex,
mPrimitiveCount);
}
return gl::NoError();
}
}
gl::Error Renderer9::drawLineLoop(GLsizei count,
GLenum type,
const void *indices,
int minIndex,
gl::Buffer *elementArrayBuffer)
{
// Get the raw indices for an indexed draw
if (type != GL_NONE && elementArrayBuffer)
{
BufferD3D *storage = GetImplAs<BufferD3D>(elementArrayBuffer);
intptr_t offset = reinterpret_cast<intptr_t>(indices);
const uint8_t *bufferData = nullptr;
gl::Error error = storage->getData(&bufferData);
if (error.isError())
{
return error;
}
indices = bufferData + offset;
}
unsigned int startIndex = 0;
if (getNativeExtensions().elementIndexUint)
{
if (!mLineLoopIB)
{
mLineLoopIB = new StreamingIndexBufferInterface(this);
gl::Error error =
mLineLoopIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_INT);
if (error.isError())
{
SafeDelete(mLineLoopIB);
return error;
}
}
// Checked by Renderer9::applyPrimitiveType
ASSERT(count >= 0);
if (static_cast<unsigned int>(count) + 1 >
(std::numeric_limits<unsigned int>::max() / sizeof(unsigned int)))
{
return gl::Error(GL_OUT_OF_MEMORY,
"Failed to create a 32-bit looping index buffer for GL_LINE_LOOP, too "
"many indices required.");
}
const unsigned int spaceNeeded =
(static_cast<unsigned int>(count) + 1) * sizeof(unsigned int);
gl::Error error = mLineLoopIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_INT);
if (error.isError())
{
return error;
}
void *mappedMemory = nullptr;
unsigned int offset = 0;
error = mLineLoopIB->mapBuffer(spaceNeeded, &mappedMemory, &offset);
if (error.isError())
{
return error;
}
startIndex = static_cast<unsigned int>(offset) / 4;
unsigned int *data = reinterpret_cast<unsigned int *>(mappedMemory);
switch (type)
{
case GL_NONE: // Non-indexed draw
for (int i = 0; i < count; i++)
{
data[i] = i;
}
data[count] = 0;
break;
case GL_UNSIGNED_BYTE:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLubyte *>(indices)[i];
}
data[count] = static_cast<const GLubyte *>(indices)[0];
break;
case GL_UNSIGNED_SHORT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLushort *>(indices)[i];
}
data[count] = static_cast<const GLushort *>(indices)[0];
break;
case GL_UNSIGNED_INT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLuint *>(indices)[i];
}
data[count] = static_cast<const GLuint *>(indices)[0];
break;
default:
UNREACHABLE();
}
error = mLineLoopIB->unmapBuffer();
if (error.isError())
{
return error;
}
}
else
{
if (!mLineLoopIB)
{
mLineLoopIB = new StreamingIndexBufferInterface(this);
gl::Error error =
mLineLoopIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_SHORT);
if (error.isError())
{
SafeDelete(mLineLoopIB);
return error;
}
}
// Checked by Renderer9::applyPrimitiveType
ASSERT(count >= 0);
if (static_cast<unsigned int>(count) + 1 >
(std::numeric_limits<unsigned short>::max() / sizeof(unsigned short)))
{
return gl::Error(GL_OUT_OF_MEMORY,
"Failed to create a 16-bit looping index buffer for GL_LINE_LOOP, too "
"many indices required.");
}
const unsigned int spaceNeeded =
(static_cast<unsigned int>(count) + 1) * sizeof(unsigned short);
gl::Error error = mLineLoopIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_SHORT);
if (error.isError())
{
return error;
}
void *mappedMemory = nullptr;
unsigned int offset;
error = mLineLoopIB->mapBuffer(spaceNeeded, &mappedMemory, &offset);
if (error.isError())
{
return error;
}
startIndex = static_cast<unsigned int>(offset) / 2;
unsigned short *data = reinterpret_cast<unsigned short *>(mappedMemory);
switch (type)
{
case GL_NONE: // Non-indexed draw
for (int i = 0; i < count; i++)
{
data[i] = static_cast<unsigned short>(i);
}
data[count] = 0;
break;
case GL_UNSIGNED_BYTE:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLubyte *>(indices)[i];
}
data[count] = static_cast<const GLubyte *>(indices)[0];
break;
case GL_UNSIGNED_SHORT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLushort *>(indices)[i];
}
data[count] = static_cast<const GLushort *>(indices)[0];
break;
case GL_UNSIGNED_INT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<unsigned short>(static_cast<const GLuint *>(indices)[i]);
}
data[count] = static_cast<unsigned short>(static_cast<const GLuint *>(indices)[0]);
break;
default:
UNREACHABLE();
}
error = mLineLoopIB->unmapBuffer();
if (error.isError())
{
return error;
}
}
if (mAppliedIBSerial != mLineLoopIB->getSerial())
{
IndexBuffer9 *indexBuffer = GetAs<IndexBuffer9>(mLineLoopIB->getIndexBuffer());
mDevice->SetIndices(indexBuffer->getBuffer());
mAppliedIBSerial = mLineLoopIB->getSerial();
}
mDevice->DrawIndexedPrimitive(D3DPT_LINESTRIP, -minIndex, minIndex, count, startIndex, count);
return gl::NoError();
}
template <typename T>
static gl::Error drawPoints(IDirect3DDevice9 *device,
GLsizei count,
const void *indices,
int minIndex)
{
for (int i = 0; i < count; i++)
{
unsigned int indexValue =
static_cast<unsigned int>(static_cast<const T *>(indices)[i]) - minIndex;
device->DrawPrimitive(D3DPT_POINTLIST, indexValue, 1);
}
return gl::NoError();
}
gl::Error Renderer9::drawIndexedPoints(GLsizei count,
GLenum type,
const void *indices,
int minIndex,
gl::Buffer *elementArrayBuffer)
{
// Drawing index point lists is unsupported in d3d9, fall back to a regular DrawPrimitive call
// for each individual point. This call is not expected to happen often.
if (elementArrayBuffer)
{
BufferD3D *storage = GetImplAs<BufferD3D>(elementArrayBuffer);
intptr_t offset = reinterpret_cast<intptr_t>(indices);
const uint8_t *bufferData = nullptr;
gl::Error error = storage->getData(&bufferData);
if (error.isError())
{
return error;
}
indices = bufferData + offset;
}
switch (type)
{
case GL_UNSIGNED_BYTE:
return drawPoints<GLubyte>(mDevice, count, indices, minIndex);
case GL_UNSIGNED_SHORT:
return drawPoints<GLushort>(mDevice, count, indices, minIndex);
case GL_UNSIGNED_INT:
return drawPoints<GLuint>(mDevice, count, indices, minIndex);
default:
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
}
gl::Error Renderer9::getCountingIB(size_t count, StaticIndexBufferInterface **outIB)
{
// Update the counting index buffer if it is not large enough or has not been created yet.
if (count <= 65536) // 16-bit indices
{
const unsigned int spaceNeeded = static_cast<unsigned int>(count) * sizeof(unsigned short);
if (!mCountingIB || mCountingIB->getBufferSize() < spaceNeeded)
{
SafeDelete(mCountingIB);
mCountingIB = new StaticIndexBufferInterface(this);
mCountingIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_SHORT);
void *mappedMemory = nullptr;
gl::Error error = mCountingIB->mapBuffer(spaceNeeded, &mappedMemory, nullptr);
if (error.isError())
{
return error;
}
unsigned short *data = reinterpret_cast<unsigned short *>(mappedMemory);
for (size_t i = 0; i < count; i++)
{
data[i] = static_cast<unsigned short>(i);
}
error = mCountingIB->unmapBuffer();
if (error.isError())
{
return error;
}
}
}
else if (getNativeExtensions().elementIndexUint)
{
const unsigned int spaceNeeded = static_cast<unsigned int>(count) * sizeof(unsigned int);
if (!mCountingIB || mCountingIB->getBufferSize() < spaceNeeded)
{
SafeDelete(mCountingIB);
mCountingIB = new StaticIndexBufferInterface(this);
mCountingIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_INT);
void *mappedMemory = nullptr;
gl::Error error = mCountingIB->mapBuffer(spaceNeeded, &mappedMemory, nullptr);
if (error.isError())
{
return error;
}
unsigned int *data = reinterpret_cast<unsigned int *>(mappedMemory);
for (unsigned int i = 0; i < count; i++)
{
data[i] = i;
}
error = mCountingIB->unmapBuffer();
if (error.isError())
{
return error;
}
}
}
else
{
return gl::Error(GL_OUT_OF_MEMORY,
"Could not create a counting index buffer for glDrawArraysInstanced.");
}
*outIB = mCountingIB;
return gl::NoError();
}
gl::Error Renderer9::applyShaders(const gl::ContextState &data, GLenum drawMode)
{
// This method is called single-threaded.
ANGLE_TRY(ensureHLSLCompilerInitialized());
ProgramD3D *programD3D = GetImplAs<ProgramD3D>(data.getState().getProgram());
programD3D->updateCachedInputLayout(data.getState());
const auto &inputLayout = programD3D->getCachedInputLayout();
ShaderExecutableD3D *vertexExe = nullptr;
ANGLE_TRY(programD3D->getVertexExecutableForInputLayout(inputLayout, &vertexExe, nullptr));
const gl::Framebuffer *drawFramebuffer = data.getState().getDrawFramebuffer();
ShaderExecutableD3D *pixelExe = nullptr;
ANGLE_TRY(programD3D->getPixelExecutableForFramebuffer(drawFramebuffer, &pixelExe));
IDirect3DVertexShader9 *vertexShader =
(vertexExe ? GetAs<ShaderExecutable9>(vertexExe)->getVertexShader() : nullptr);
IDirect3DPixelShader9 *pixelShader =
(pixelExe ? GetAs<ShaderExecutable9>(pixelExe)->getPixelShader() : nullptr);
if (vertexShader != mAppliedVertexShader)
{
mDevice->SetVertexShader(vertexShader);
mAppliedVertexShader = vertexShader;
}
if (pixelShader != mAppliedPixelShader)
{
mDevice->SetPixelShader(pixelShader);
mAppliedPixelShader = pixelShader;
}
// D3D9 has a quirk where creating multiple shaders with the same content
// can return the same shader pointer. Because GL programs store different data
// per-program, checking the program serial guarantees we upload fresh
// uniform data even if our shader pointers are the same.
// https://code.google.com/p/angleproject/issues/detail?id=661
unsigned int programSerial = programD3D->getSerial();
if (programSerial != mAppliedProgramSerial)
{
programD3D->dirtyAllUniforms();
mStateManager.forceSetDXUniformsState();
mAppliedProgramSerial = programSerial;
}
return programD3D->applyUniforms(drawMode);
}
gl::Error Renderer9::applyUniforms(const ProgramD3D &programD3D,
GLenum /*drawMode*/,
const std::vector<D3DUniform *> &uniformArray)
{
for (const D3DUniform *targetUniform : uniformArray)
{
if (!targetUniform->dirty)
continue;
GLfloat *f = (GLfloat *)targetUniform->data;
GLint *i = (GLint *)targetUniform->data;
switch (targetUniform->type)
{
case GL_SAMPLER_2D:
case GL_SAMPLER_CUBE:
case GL_SAMPLER_EXTERNAL_OES:
break;
case GL_BOOL:
case GL_BOOL_VEC2:
case GL_BOOL_VEC3:
case GL_BOOL_VEC4:
applyUniformnbv(targetUniform, i);
break;
case GL_FLOAT:
case GL_FLOAT_VEC2:
case GL_FLOAT_VEC3:
case GL_FLOAT_VEC4:
case GL_FLOAT_MAT2:
case GL_FLOAT_MAT3:
case GL_FLOAT_MAT4:
applyUniformnfv(targetUniform, f);
break;
case GL_INT:
case GL_INT_VEC2:
case GL_INT_VEC3:
case GL_INT_VEC4:
applyUniformniv(targetUniform, i);
break;
default:
UNREACHABLE();
}
}
// Driver uniforms
mStateManager.setShaderConstants();
return gl::NoError();
}
void Renderer9::applyUniformnfv(const D3DUniform *targetUniform, const GLfloat *v)
{
if (targetUniform->isReferencedByFragmentShader())
{
mDevice->SetPixelShaderConstantF(targetUniform->psRegisterIndex, v,
targetUniform->registerCount);
}
if (targetUniform->isReferencedByVertexShader())
{
mDevice->SetVertexShaderConstantF(targetUniform->vsRegisterIndex, v,
targetUniform->registerCount);
}
}
void Renderer9::applyUniformniv(const D3DUniform *targetUniform, const GLint *v)
{
ASSERT(targetUniform->registerCount <= MAX_VERTEX_CONSTANT_VECTORS_D3D9);
GLfloat vector[MAX_VERTEX_CONSTANT_VECTORS_D3D9][4];
for (unsigned int i = 0; i < targetUniform->registerCount; i++)
{
vector[i][0] = (GLfloat)v[4 * i + 0];
vector[i][1] = (GLfloat)v[4 * i + 1];
vector[i][2] = (GLfloat)v[4 * i + 2];
vector[i][3] = (GLfloat)v[4 * i + 3];
}
applyUniformnfv(targetUniform, (GLfloat *)vector);
}
void Renderer9::applyUniformnbv(const D3DUniform *targetUniform, const GLint *v)
{
ASSERT(targetUniform->registerCount <= MAX_VERTEX_CONSTANT_VECTORS_D3D9);
GLfloat vector[MAX_VERTEX_CONSTANT_VECTORS_D3D9][4];
for (unsigned int i = 0; i < targetUniform->registerCount; i++)
{
vector[i][0] = (v[4 * i + 0] == GL_FALSE) ? 0.0f : 1.0f;
vector[i][1] = (v[4 * i + 1] == GL_FALSE) ? 0.0f : 1.0f;
vector[i][2] = (v[4 * i + 2] == GL_FALSE) ? 0.0f : 1.0f;
vector[i][3] = (v[4 * i + 3] == GL_FALSE) ? 0.0f : 1.0f;
}
applyUniformnfv(targetUniform, (GLfloat *)vector);
}
gl::Error Renderer9::clear(const ClearParameters &clearParams,
const gl::FramebufferAttachment *colorBuffer,
const gl::FramebufferAttachment *depthStencilBuffer)
{
if (clearParams.colorType != GL_FLOAT)
{
// Clearing buffers with non-float values is not supported by Renderer9 and ES 2.0
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
bool clearColor = clearParams.clearColor[0];
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
if (clearParams.clearColor[i] != clearColor)
{
// Clearing individual buffers other than buffer zero is not supported by Renderer9 and
// ES 2.0
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
}
float depth = gl::clamp01(clearParams.depthValue);
DWORD stencil = clearParams.stencilValue & 0x000000FF;
unsigned int stencilUnmasked = 0x0;
if (clearParams.clearStencil && depthStencilBuffer->getStencilSize() > 0)
{
ASSERT(depthStencilBuffer != nullptr);
RenderTargetD3D *stencilRenderTarget = nullptr;
gl::Error error = depthStencilBuffer->getRenderTarget(&stencilRenderTarget);
if (error.isError())
{
return error;
}
RenderTarget9 *stencilRenderTarget9 = GetAs<RenderTarget9>(stencilRenderTarget);
ASSERT(stencilRenderTarget9);
const d3d9::D3DFormat &d3dFormatInfo =
d3d9::GetD3DFormatInfo(stencilRenderTarget9->getD3DFormat());
stencilUnmasked = (0x1 << d3dFormatInfo.stencilBits) - 1;
}
const bool needMaskedStencilClear =
clearParams.clearStencil &&
(clearParams.stencilWriteMask & stencilUnmasked) != stencilUnmasked;
bool needMaskedColorClear = false;
D3DCOLOR color = D3DCOLOR_ARGB(255, 0, 0, 0);
if (clearColor)
{
ASSERT(colorBuffer != nullptr);
RenderTargetD3D *colorRenderTarget = nullptr;
gl::Error error = colorBuffer->getRenderTarget(&colorRenderTarget);
if (error.isError())
{
return error;
}
RenderTarget9 *colorRenderTarget9 = GetAs<RenderTarget9>(colorRenderTarget);
ASSERT(colorRenderTarget9);
const gl::InternalFormat &formatInfo = *colorBuffer->getFormat().info;
const d3d9::D3DFormat &d3dFormatInfo =
d3d9::GetD3DFormatInfo(colorRenderTarget9->getD3DFormat());
color =
D3DCOLOR_ARGB(gl::unorm<8>((formatInfo.alphaBits == 0 && d3dFormatInfo.alphaBits > 0)
? 1.0f
: clearParams.colorF.alpha),
gl::unorm<8>((formatInfo.redBits == 0 && d3dFormatInfo.redBits > 0)
? 0.0f
: clearParams.colorF.red),
gl::unorm<8>((formatInfo.greenBits == 0 && d3dFormatInfo.greenBits > 0)
? 0.0f
: clearParams.colorF.green),
gl::unorm<8>((formatInfo.blueBits == 0 && d3dFormatInfo.blueBits > 0)
? 0.0f
: clearParams.colorF.blue));
if ((formatInfo.redBits > 0 && !clearParams.colorMaskRed) ||
(formatInfo.greenBits > 0 && !clearParams.colorMaskGreen) ||
(formatInfo.blueBits > 0 && !clearParams.colorMaskBlue) ||
(formatInfo.alphaBits > 0 && !clearParams.colorMaskAlpha))
{
needMaskedColorClear = true;
}
}
if (needMaskedColorClear || needMaskedStencilClear)
{
// State which is altered in all paths from this point to the clear call is saved.
// State which is altered in only some paths will be flagged dirty in the case that
// that path is taken.
HRESULT hr;
if (mMaskedClearSavedState == nullptr)
{
hr = mDevice->BeginStateBlock();
ASSERT(SUCCEEDED(hr) || hr == D3DERR_OUTOFVIDEOMEMORY || hr == E_OUTOFMEMORY);
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
mDevice->SetRenderState(D3DRS_ZENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
mDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
mDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, 0);
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0);
mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
mDevice->SetPixelShader(nullptr);
mDevice->SetVertexShader(nullptr);
mDevice->SetFVF(D3DFVF_XYZRHW | D3DFVF_DIFFUSE);
mDevice->SetStreamSource(0, nullptr, 0, 0);
mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE);
mDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TFACTOR);
mDevice->SetRenderState(D3DRS_TEXTUREFACTOR, color);
mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, 0xFFFFFFFF);
for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
mDevice->SetStreamSourceFreq(i, 1);
}
hr = mDevice->EndStateBlock(&mMaskedClearSavedState);
ASSERT(SUCCEEDED(hr) || hr == D3DERR_OUTOFVIDEOMEMORY || hr == E_OUTOFMEMORY);
}
ASSERT(mMaskedClearSavedState != nullptr);
if (mMaskedClearSavedState != nullptr)
{
hr = mMaskedClearSavedState->Capture();
ASSERT(SUCCEEDED(hr));
}
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
mDevice->SetRenderState(D3DRS_ZENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
mDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
mDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, 0);
if (clearColor)
{
mDevice->SetRenderState(
D3DRS_COLORWRITEENABLE,
gl_d3d9::ConvertColorMask(clearParams.colorMaskRed, clearParams.colorMaskGreen,
clearParams.colorMaskBlue, clearParams.colorMaskAlpha));
}
else
{
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0);
}
if (stencilUnmasked != 0x0 && clearParams.clearStencil)
{
mDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);
mDevice->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, FALSE);
mDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);
mDevice->SetRenderState(D3DRS_STENCILREF, stencil);
mDevice->SetRenderState(D3DRS_STENCILWRITEMASK, clearParams.stencilWriteMask);
mDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_REPLACE);
mDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_REPLACE);
mDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE);
}
else
{
mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
}
mDevice->SetPixelShader(nullptr);
mDevice->SetVertexShader(nullptr);
mDevice->SetFVF(D3DFVF_XYZRHW);
mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE);
mDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TFACTOR);
mDevice->SetRenderState(D3DRS_TEXTUREFACTOR, color);
mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, 0xFFFFFFFF);
for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
mDevice->SetStreamSourceFreq(i, 1);
}
int renderTargetWidth = mStateManager.getRenderTargetWidth();
int renderTargetHeight = mStateManager.getRenderTargetHeight();
float quad[4][4]; // A quadrilateral covering the target, aligned to match the edges
quad[0][0] = -0.5f;
quad[0][1] = renderTargetHeight - 0.5f;
quad[0][2] = 0.0f;
quad[0][3] = 1.0f;
quad[1][0] = renderTargetWidth - 0.5f;
quad[1][1] = renderTargetHeight - 0.5f;
quad[1][2] = 0.0f;
quad[1][3] = 1.0f;
quad[2][0] = -0.5f;
quad[2][1] = -0.5f;
quad[2][2] = 0.0f;
quad[2][3] = 1.0f;
quad[3][0] = renderTargetWidth - 0.5f;
quad[3][1] = -0.5f;
quad[3][2] = 0.0f;
quad[3][3] = 1.0f;
startScene();
mDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, quad, sizeof(float[4]));
if (clearParams.clearDepth)
{
mDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);
mDevice->Clear(0, nullptr, D3DCLEAR_ZBUFFER, color, depth, stencil);
}
if (mMaskedClearSavedState != nullptr)
{
mMaskedClearSavedState->Apply();
}
}
else if (clearColor || clearParams.clearDepth || clearParams.clearStencil)
{
DWORD dxClearFlags = 0;
if (clearColor)
{
dxClearFlags |= D3DCLEAR_TARGET;
}
if (clearParams.clearDepth)
{
dxClearFlags |= D3DCLEAR_ZBUFFER;
}
if (clearParams.clearStencil)
{
dxClearFlags |= D3DCLEAR_STENCIL;
}
mDevice->Clear(0, nullptr, dxClearFlags, color, depth, stencil);
}
return gl::NoError();
}
void Renderer9::markAllStateDirty()
{
mAppliedRenderTargetSerial = 0;
mAppliedDepthStencilSerial = 0;
mDepthStencilInitialized = false;
mRenderTargetDescInitialized = false;
mStateManager.forceSetRasterState();
mStateManager.forceSetDepthStencilState();
mStateManager.forceSetBlendState();
mStateManager.forceSetScissorState();
mStateManager.forceSetViewportState();
ASSERT(mCurVertexSamplerStates.size() == mCurVertexTextures.size());
for (unsigned int i = 0; i < mCurVertexTextures.size(); i++)
{
mCurVertexSamplerStates[i].forceSet = true;
mCurVertexTextures[i] = angle::DirtyPointer;
}
ASSERT(mCurPixelSamplerStates.size() == mCurPixelTextures.size());
for (unsigned int i = 0; i < mCurPixelSamplerStates.size(); i++)
{
mCurPixelSamplerStates[i].forceSet = true;
mCurPixelTextures[i] = angle::DirtyPointer;
}
mAppliedIBSerial = 0;
mAppliedVertexShader = nullptr;
mAppliedPixelShader = nullptr;
mAppliedProgramSerial = 0;
mStateManager.forceSetDXUniformsState();
mVertexDeclarationCache.markStateDirty();
}
void Renderer9::releaseDeviceResources()
{
for (size_t i = 0; i < mEventQueryPool.size(); i++)
{
SafeRelease(mEventQueryPool[i]);
}
mEventQueryPool.clear();
SafeRelease(mMaskedClearSavedState);
mVertexShaderCache.clear();
mPixelShaderCache.clear();
SafeDelete(mBlit);
SafeDelete(mVertexDataManager);
SafeDelete(mIndexDataManager);
SafeDelete(mLineLoopIB);
SafeDelete(mCountingIB);
for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++)
{
SafeDelete(mNullColorbufferCache[i].buffer);
}
}
// set notify to true to broadcast a message to all contexts of the device loss
bool Renderer9::testDeviceLost()
{
HRESULT status = getDeviceStatusCode();
return FAILED(status);
}
HRESULT Renderer9::getDeviceStatusCode()
{
HRESULT status = D3D_OK;
if (mDeviceEx)
{
status = mDeviceEx->CheckDeviceState(nullptr);
}
else if (mDevice)
{
status = mDevice->TestCooperativeLevel();
}
return status;
}
bool Renderer9::testDeviceResettable()
{
// On D3D9Ex, DEVICELOST represents a hung device that needs to be restarted
// DEVICEREMOVED indicates the device has been stopped and must be recreated
switch (getDeviceStatusCode())
{
case D3DERR_DEVICENOTRESET:
case D3DERR_DEVICEHUNG:
return true;
case D3DERR_DEVICELOST:
return (mDeviceEx != nullptr);
case D3DERR_DEVICEREMOVED:
ASSERT(mDeviceEx != nullptr);
return isRemovedDeviceResettable();
default:
return false;
}
}
bool Renderer9::resetDevice()
{
releaseDeviceResources();
D3DPRESENT_PARAMETERS presentParameters = getDefaultPresentParameters();
HRESULT result = D3D_OK;
bool lost = testDeviceLost();
bool removedDevice = (getDeviceStatusCode() == D3DERR_DEVICEREMOVED);
// Device Removed is a feature which is only present with D3D9Ex
ASSERT(mDeviceEx != nullptr || !removedDevice);
for (int attempts = 3; lost && attempts > 0; attempts--)
{
if (removedDevice)
{
// Device removed, which may trigger on driver reinstallation,
// may cause a longer wait other reset attempts before the
// system is ready to handle creating a new device.
Sleep(800);
lost = !resetRemovedDevice();
}
else if (mDeviceEx)
{
Sleep(500); // Give the graphics driver some CPU time
result = mDeviceEx->ResetEx(&presentParameters, nullptr);
lost = testDeviceLost();
}
else
{
result = mDevice->TestCooperativeLevel();
while (result == D3DERR_DEVICELOST)
{
Sleep(100); // Give the graphics driver some CPU time
result = mDevice->TestCooperativeLevel();
}
if (result == D3DERR_DEVICENOTRESET)
{
result = mDevice->Reset(&presentParameters);
}
lost = testDeviceLost();
}
}
if (FAILED(result))
{
ERR() << "Reset/ResetEx failed multiple times, " << gl::FmtHR(result);
return false;
}
if (removedDevice && lost)
{
ERR() << "Device lost reset failed multiple times";
return false;
}
// If the device was removed, we already finished re-initialization in resetRemovedDevice
if (!removedDevice)
{
// reset device defaults
initializeDevice();
}
return true;
}
bool Renderer9::isRemovedDeviceResettable() const
{
bool success = false;
#if ANGLE_D3D9EX == ANGLE_ENABLED
IDirect3D9Ex *d3d9Ex = nullptr;
typedef HRESULT(WINAPI * Direct3DCreate9ExFunc)(UINT, IDirect3D9Ex **);
Direct3DCreate9ExFunc Direct3DCreate9ExPtr =
reinterpret_cast<Direct3DCreate9ExFunc>(GetProcAddress(mD3d9Module, "Direct3DCreate9Ex"));
if (Direct3DCreate9ExPtr && SUCCEEDED(Direct3DCreate9ExPtr(D3D_SDK_VERSION, &d3d9Ex)))
{
D3DCAPS9 deviceCaps;
HRESULT result = d3d9Ex->GetDeviceCaps(mAdapter, mDeviceType, &deviceCaps);
success = SUCCEEDED(result);
}
SafeRelease(d3d9Ex);
#else
ASSERT(UNREACHABLE());
#endif
return success;
}
bool Renderer9::resetRemovedDevice()
{
// From http://msdn.microsoft.com/en-us/library/windows/desktop/bb172554(v=vs.85).aspx:
// The hardware adapter has been removed. Application must destroy the device, do enumeration of
// adapters and create another Direct3D device. If application continues rendering without
// calling Reset, the rendering calls will succeed. Applies to Direct3D 9Ex only.
release();
return !initialize().isError();
}
VendorID Renderer9::getVendorId() const
{
return static_cast<VendorID>(mAdapterIdentifier.VendorId);
}
std::string Renderer9::getRendererDescription() const
{
std::ostringstream rendererString;
rendererString << mAdapterIdentifier.Description;
if (getShareHandleSupport())
{
rendererString << " Direct3D9Ex";
}
else
{
rendererString << " Direct3D9";
}
rendererString << " vs_" << D3DSHADER_VERSION_MAJOR(mDeviceCaps.VertexShaderVersion) << "_"
<< D3DSHADER_VERSION_MINOR(mDeviceCaps.VertexShaderVersion);
rendererString << " ps_" << D3DSHADER_VERSION_MAJOR(mDeviceCaps.PixelShaderVersion) << "_"
<< D3DSHADER_VERSION_MINOR(mDeviceCaps.PixelShaderVersion);
return rendererString.str();
}
DeviceIdentifier Renderer9::getAdapterIdentifier() const
{
DeviceIdentifier deviceIdentifier = {0};
deviceIdentifier.VendorId = static_cast<UINT>(mAdapterIdentifier.VendorId);
deviceIdentifier.DeviceId = static_cast<UINT>(mAdapterIdentifier.DeviceId);
deviceIdentifier.SubSysId = static_cast<UINT>(mAdapterIdentifier.SubSysId);
deviceIdentifier.Revision = static_cast<UINT>(mAdapterIdentifier.Revision);
deviceIdentifier.FeatureLevel = 0;
return deviceIdentifier;
}
unsigned int Renderer9::getReservedVertexUniformVectors() const
{
return d3d9_gl::GetReservedVertexUniformVectors();
}
unsigned int Renderer9::getReservedFragmentUniformVectors() const
{
return d3d9_gl::GetReservedFragmentUniformVectors();
}
unsigned int Renderer9::getReservedVertexUniformBuffers() const
{
return 0;
}
unsigned int Renderer9::getReservedFragmentUniformBuffers() const
{
return 0;
}
bool Renderer9::getShareHandleSupport() const
{
// PIX doesn't seem to support using share handles, so disable them.
return (mD3d9Ex != nullptr) && !gl::DebugAnnotationsActive();
}
int Renderer9::getMajorShaderModel() const
{
return D3DSHADER_VERSION_MAJOR(mDeviceCaps.PixelShaderVersion);
}
int Renderer9::getMinorShaderModel() const
{
return D3DSHADER_VERSION_MINOR(mDeviceCaps.PixelShaderVersion);
}
std::string Renderer9::getShaderModelSuffix() const
{
return "";
}
DWORD Renderer9::getCapsDeclTypes() const
{
return mDeviceCaps.DeclTypes;
}
D3DPOOL Renderer9::getBufferPool(DWORD usage) const
{
if (mD3d9Ex != nullptr)
{
return D3DPOOL_DEFAULT;
}
else
{
if (!(usage & D3DUSAGE_DYNAMIC))
{
return D3DPOOL_MANAGED;
}
}
return D3DPOOL_DEFAULT;
}
gl::Error Renderer9::copyImage2D(const gl::Framebuffer *framebuffer,
const gl::Rectangle &sourceRect,
GLenum destFormat,
const gl::Offset &destOffset,
TextureStorage *storage,
GLint level)
{
RECT rect;
rect.left = sourceRect.x;
rect.top = sourceRect.y;
rect.right = sourceRect.x + sourceRect.width;
rect.bottom = sourceRect.y + sourceRect.height;
return mBlit->copy2D(framebuffer, rect, destFormat, destOffset, storage, level);
}
gl::Error Renderer9::copyImageCube(const gl::Framebuffer *framebuffer,
const gl::Rectangle &sourceRect,
GLenum destFormat,
const gl::Offset &destOffset,
TextureStorage *storage,
GLenum target,
GLint level)
{
RECT rect;
rect.left = sourceRect.x;
rect.top = sourceRect.y;
rect.right = sourceRect.x + sourceRect.width;
rect.bottom = sourceRect.y + sourceRect.height;
return mBlit->copyCube(framebuffer, rect, destFormat, destOffset, storage, target, level);
}
gl::Error Renderer9::copyImage3D(const gl::Framebuffer *framebuffer,
const gl::Rectangle &sourceRect,
GLenum destFormat,
const gl::Offset &destOffset,
TextureStorage *storage,
GLint level)
{
// 3D textures are not available in the D3D9 backend.
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
gl::Error Renderer9::copyImage2DArray(const gl::Framebuffer *framebuffer,
const gl::Rectangle &sourceRect,
GLenum destFormat,
const gl::Offset &destOffset,
TextureStorage *storage,
GLint level)
{
// 2D array textures are not available in the D3D9 backend.
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
gl::Error Renderer9::copyTexture(const gl::Texture *source,
GLint sourceLevel,
const gl::Rectangle &sourceRect,
GLenum destFormat,
const gl::Offset &destOffset,
TextureStorage *storage,
GLenum destTarget,
GLint destLevel,
bool unpackFlipY,
bool unpackPremultiplyAlpha,
bool unpackUnmultiplyAlpha)
{
ASSERT(destTarget == GL_TEXTURE_2D);
RECT rect;
rect.left = sourceRect.x;
rect.top = sourceRect.y;
rect.right = sourceRect.x + sourceRect.width;
rect.bottom = sourceRect.y + sourceRect.height;
return mBlit->copyTexture2D(source, sourceLevel, rect, destFormat, destOffset, storage,
destLevel, unpackFlipY, unpackPremultiplyAlpha,
unpackUnmultiplyAlpha);
}
gl::Error Renderer9::copyCompressedTexture(const gl::Texture *source,
GLint sourceLevel,
TextureStorage *storage,
GLint destLevel)
{
UNIMPLEMENTED();
return gl::Error(GL_INVALID_OPERATION);
}
gl::Error Renderer9::createRenderTarget(int width,
int height,
GLenum format,
GLsizei samples,
RenderTargetD3D **outRT)
{
const d3d9::TextureFormat &d3d9FormatInfo = d3d9::GetTextureFormatInfo(format);
const gl::TextureCaps &textureCaps = getNativeTextureCaps().get(format);
GLuint supportedSamples = textureCaps.getNearestSamples(samples);
IDirect3DTexture9 *texture = nullptr;
IDirect3DSurface9 *renderTarget = nullptr;
if (width > 0 && height > 0)
{
bool requiresInitialization = false;
HRESULT result = D3DERR_INVALIDCALL;
const gl::InternalFormat &formatInfo = gl::GetSizedInternalFormatInfo(format);
if (formatInfo.depthBits > 0 || formatInfo.stencilBits > 0)
{
result = mDevice->CreateDepthStencilSurface(
width, height, d3d9FormatInfo.renderFormat,
gl_d3d9::GetMultisampleType(supportedSamples), 0, FALSE, &renderTarget, nullptr);
}
else
{
requiresInitialization = (d3d9FormatInfo.dataInitializerFunction != nullptr);
if (supportedSamples > 0)
{
result = mDevice->CreateRenderTarget(width, height, d3d9FormatInfo.renderFormat,
gl_d3d9::GetMultisampleType(supportedSamples),
0, FALSE, &renderTarget, nullptr);
}
else
{
result = mDevice->CreateTexture(
width, height, 1, D3DUSAGE_RENDERTARGET, d3d9FormatInfo.texFormat,
getTexturePool(D3DUSAGE_RENDERTARGET), &texture, nullptr);
if (!FAILED(result))
{
result = texture->GetSurfaceLevel(0, &renderTarget);
}
}
}
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create render target, result: 0x%X.",
result);
}
if (requiresInitialization)
{
// This format requires that the data be initialized before the render target can be
// used Unfortunately this requires a Get call on the d3d device but it is far better
// than having to mark the render target as lockable and copy data to the gpu.
IDirect3DSurface9 *prevRenderTarget = nullptr;
mDevice->GetRenderTarget(0, &prevRenderTarget);
mDevice->SetRenderTarget(0, renderTarget);
mDevice->Clear(0, nullptr, D3DCLEAR_TARGET, D3DCOLOR_RGBA(0, 0, 0, 255), 0.0f, 0);
mDevice->SetRenderTarget(0, prevRenderTarget);
}
}
*outRT = new TextureRenderTarget9(texture, 0, renderTarget, format, width, height, 1,
supportedSamples);
return gl::NoError();
}
gl::Error Renderer9::createRenderTargetCopy(RenderTargetD3D *source, RenderTargetD3D **outRT)
{
ASSERT(source != nullptr);
RenderTargetD3D *newRT = nullptr;
gl::Error error = createRenderTarget(source->getWidth(), source->getHeight(),
source->getInternalFormat(), source->getSamples(), &newRT);
if (error.isError())
{
return error;
}
RenderTarget9 *source9 = GetAs<RenderTarget9>(source);
RenderTarget9 *dest9 = GetAs<RenderTarget9>(newRT);
HRESULT result = mDevice->StretchRect(source9->getSurface(), nullptr, dest9->getSurface(),
nullptr, D3DTEXF_NONE);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to copy render target, result: 0x%X.", result);
}
*outRT = newRT;
return gl::NoError();
}
gl::Error Renderer9::loadExecutable(const void *function,
size_t length,
ShaderType type,
const std::vector<D3DVarying> &streamOutVaryings,
bool separatedOutputBuffers,
ShaderExecutableD3D **outExecutable)
{
// Transform feedback is not supported in ES2 or D3D9
ASSERT(streamOutVaryings.empty());
switch (type)
{
case SHADER_VERTEX:
{
IDirect3DVertexShader9 *vshader = nullptr;
gl::Error error = createVertexShader((DWORD *)function, length, &vshader);
if (error.isError())
{
return error;
}
*outExecutable = new ShaderExecutable9(function, length, vshader);
}
break;
case SHADER_PIXEL:
{
IDirect3DPixelShader9 *pshader = nullptr;
gl::Error error = createPixelShader((DWORD *)function, length, &pshader);
if (error.isError())
{
return error;
}
*outExecutable = new ShaderExecutable9(function, length, pshader);
}
break;
default:
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
return gl::NoError();
}
gl::Error Renderer9::compileToExecutable(gl::InfoLog &infoLog,
const std::string &shaderHLSL,
ShaderType type,
const std::vector<D3DVarying> &streamOutVaryings,
bool separatedOutputBuffers,
const angle::CompilerWorkaroundsD3D &workarounds,
ShaderExecutableD3D **outExectuable)
{
// Transform feedback is not supported in ES2 or D3D9
ASSERT(streamOutVaryings.empty());
std::stringstream profileStream;
switch (type)
{
case SHADER_VERTEX:
profileStream << "vs";
break;
case SHADER_PIXEL:
profileStream << "ps";
break;
default:
UNREACHABLE();
return gl::Error(GL_INVALID_OPERATION);
}
profileStream << "_" << ((getMajorShaderModel() >= 3) ? 3 : 2);
profileStream << "_"
<< "0";
std::string profile = profileStream.str();
UINT flags = ANGLE_COMPILE_OPTIMIZATION_LEVEL;
if (workarounds.skipOptimization)
{
flags = D3DCOMPILE_SKIP_OPTIMIZATION;
}
else if (workarounds.useMaxOptimization)
{
flags = D3DCOMPILE_OPTIMIZATION_LEVEL3;
}
if (gl::DebugAnnotationsActive())
{
#ifndef NDEBUG
flags = D3DCOMPILE_SKIP_OPTIMIZATION;
#endif
flags |= D3DCOMPILE_DEBUG;
}
// Sometimes D3DCompile will fail with the default compilation flags for complicated shaders
// when it would otherwise pass with alternative options. Try the default flags first and if
// compilation fails, try some alternatives.
std::vector<CompileConfig> configs;
configs.push_back(CompileConfig(flags, "default"));
configs.push_back(CompileConfig(flags | D3DCOMPILE_AVOID_FLOW_CONTROL, "avoid flow control"));
configs.push_back(CompileConfig(flags | D3DCOMPILE_PREFER_FLOW_CONTROL, "prefer flow control"));
ID3DBlob *binary = nullptr;
std::string debugInfo;
gl::Error error = mCompiler.compileToBinary(infoLog, shaderHLSL, profile, configs, nullptr,
&binary, &debugInfo);
if (error.isError())
{
return error;
}
// It's possible that binary is NULL if the compiler failed in all configurations. Set the
// executable to NULL and return GL_NO_ERROR to signify that there was a link error but the
// internal state is still OK.
if (!binary)
{
*outExectuable = nullptr;
return gl::NoError();
}
error = loadExecutable(binary->GetBufferPointer(), binary->GetBufferSize(), type,
streamOutVaryings, separatedOutputBuffers, outExectuable);
SafeRelease(binary);
if (error.isError())
{
return error;
}
if (!debugInfo.empty())
{
(*outExectuable)->appendDebugInfo(debugInfo);
}
return gl::NoError();
}
gl::Error Renderer9::ensureHLSLCompilerInitialized()
{
return mCompiler.ensureInitialized();
}
UniformStorageD3D *Renderer9::createUniformStorage(size_t storageSize)
{
return new UniformStorageD3D(storageSize);
}
gl::Error Renderer9::boxFilter(IDirect3DSurface9 *source, IDirect3DSurface9 *dest)
{
return mBlit->boxFilter(source, dest);
}
D3DPOOL Renderer9::getTexturePool(DWORD usage) const
{
if (mD3d9Ex != nullptr)
{
return D3DPOOL_DEFAULT;
}
else
{
if (!(usage & (D3DUSAGE_DEPTHSTENCIL | D3DUSAGE_RENDERTARGET)))
{
return D3DPOOL_MANAGED;
}
}
return D3DPOOL_DEFAULT;
}
gl::Error Renderer9::copyToRenderTarget(IDirect3DSurface9 *dest,
IDirect3DSurface9 *source,
bool fromManaged)
{
ASSERT(source && dest);
HRESULT result = D3DERR_OUTOFVIDEOMEMORY;
if (fromManaged)
{
D3DSURFACE_DESC desc;
source->GetDesc(&desc);
IDirect3DSurface9 *surf = 0;
result = mDevice->CreateOffscreenPlainSurface(desc.Width, desc.Height, desc.Format,
D3DPOOL_SYSTEMMEM, &surf, nullptr);
if (SUCCEEDED(result))
{
Image9::copyLockableSurfaces(surf, source);
result = mDevice->UpdateSurface(surf, nullptr, dest, nullptr);
SafeRelease(surf);
}
}
else
{
endScene();
result = mDevice->StretchRect(source, nullptr, dest, nullptr, D3DTEXF_NONE);
}
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
return gl::Error(GL_OUT_OF_MEMORY, "Failed to blit internal texture, result: 0x%X.",
result);
}
return gl::NoError();
}
ImageD3D *Renderer9::createImage()
{
return new Image9(this);
}
gl::Error Renderer9::generateMipmap(ImageD3D *dest, ImageD3D *src)
{
Image9 *src9 = GetAs<Image9>(src);
Image9 *dst9 = GetAs<Image9>(dest);
return Image9::generateMipmap(dst9, src9);
}
gl::Error Renderer9::generateMipmapUsingD3D(TextureStorage *storage,
const gl::TextureState &textureState)
{
UNREACHABLE();
return gl::NoError();
}
TextureStorage *Renderer9::createTextureStorage2D(SwapChainD3D *swapChain)
{
SwapChain9 *swapChain9 = GetAs<SwapChain9>(swapChain);
return new TextureStorage9_2D(this, swapChain9);
}
TextureStorage *Renderer9::createTextureStorageEGLImage(EGLImageD3D *eglImage,
RenderTargetD3D *renderTargetD3D)
{
return new TextureStorage9_EGLImage(this, eglImage, GetAs<RenderTarget9>(renderTargetD3D));
}
TextureStorage *Renderer9::createTextureStorageExternal(
egl::Stream *stream,
const egl::Stream::GLTextureDescription &desc)
{
UNIMPLEMENTED();
return nullptr;
}
TextureStorage *Renderer9::createTextureStorage2D(GLenum internalformat,
bool renderTarget,
GLsizei width,
GLsizei height,
int levels,
bool hintLevelZeroOnly)
{
return new TextureStorage9_2D(this, internalformat, renderTarget, width, height, levels);
}
TextureStorage *Renderer9::createTextureStorageCube(GLenum internalformat,
bool renderTarget,
int size,
int levels,
bool hintLevelZeroOnly)
{
return new TextureStorage9_Cube(this, internalformat, renderTarget, size, levels,
hintLevelZeroOnly);
}
TextureStorage *Renderer9::createTextureStorage3D(GLenum internalformat,
bool renderTarget,
GLsizei width,
GLsizei height,
GLsizei depth,
int levels)
{
// 3D textures are not supported by the D3D9 backend.
UNREACHABLE();
return nullptr;
}
TextureStorage *Renderer9::createTextureStorage2DArray(GLenum internalformat,
bool renderTarget,
GLsizei width,
GLsizei height,
GLsizei depth,
int levels)
{
// 2D array textures are not supported by the D3D9 backend.
UNREACHABLE();
return nullptr;
}
bool Renderer9::getLUID(LUID *adapterLuid) const
{
adapterLuid->HighPart = 0;
adapterLuid->LowPart = 0;
if (mD3d9Ex)
{
mD3d9Ex->GetAdapterLUID(mAdapter, adapterLuid);
return true;
}
return false;
}
VertexConversionType Renderer9::getVertexConversionType(gl::VertexFormatType vertexFormatType) const
{
return d3d9::GetVertexFormatInfo(getCapsDeclTypes(), vertexFormatType).conversionType;
}
GLenum Renderer9::getVertexComponentType(gl::VertexFormatType vertexFormatType) const
{
return d3d9::GetVertexFormatInfo(getCapsDeclTypes(), vertexFormatType).componentType;
}
gl::ErrorOrResult<unsigned int> Renderer9::getVertexSpaceRequired(const gl::VertexAttribute &attrib,
const gl::VertexBinding &binding,
GLsizei count,
GLsizei instances) const
{
if (!attrib.enabled)
{
return 16u;
}
gl::VertexFormatType vertexFormatType = gl::GetVertexFormatType(attrib, GL_FLOAT);
const d3d9::VertexFormat &d3d9VertexInfo =
d3d9::GetVertexFormatInfo(getCapsDeclTypes(), vertexFormatType);
unsigned int elementCount = 0;
if (instances == 0 || binding.divisor == 0)
{
elementCount = static_cast<unsigned int>(count);
}
else
{
// Round up to divisor, if possible
elementCount = UnsignedCeilDivide(static_cast<unsigned int>(instances), binding.divisor);
}
if (d3d9VertexInfo.outputElementSize > std::numeric_limits<unsigned int>::max() / elementCount)
{
return gl::Error(GL_OUT_OF_MEMORY, "New vertex buffer size would result in an overflow.");
}
return static_cast<unsigned int>(d3d9VertexInfo.outputElementSize) * elementCount;
}
void Renderer9::generateCaps(gl::Caps *outCaps,
gl::TextureCapsMap *outTextureCaps,
gl::Extensions *outExtensions,
gl::Limitations *outLimitations) const
{
d3d9_gl::GenerateCaps(mD3d9, mDevice, mDeviceType, mAdapter, outCaps, outTextureCaps,
outExtensions, outLimitations);
}
angle::WorkaroundsD3D Renderer9::generateWorkarounds() const
{
return d3d9::GenerateWorkarounds();
}
gl::Error Renderer9::clearTextures(gl::SamplerType samplerType, size_t rangeStart, size_t rangeEnd)
{
// TODO(jmadill): faster way?
for (size_t samplerIndex = rangeStart; samplerIndex < rangeEnd; samplerIndex++)
{
gl::Error error = setTexture(samplerType, static_cast<int>(samplerIndex), nullptr);
if (error.isError())
{
return error;
}
}
return gl::NoError();
}
egl::Error Renderer9::getEGLDevice(DeviceImpl **device)
{
if (mEGLDevice == nullptr)
{
ASSERT(mDevice != nullptr);
mEGLDevice = new DeviceD3D();
egl::Error error = mEGLDevice->initialize(reinterpret_cast<void *>(mDevice),
EGL_D3D9_DEVICE_ANGLE, EGL_FALSE);
if (error.isError())
{
SafeDelete(mEGLDevice);
return error;
}
}
*device = static_cast<DeviceImpl *>(mEGLDevice);
return egl::Error(EGL_SUCCESS);
}
Renderer9::CurSamplerState::CurSamplerState()
: forceSet(true), baseLevel(std::numeric_limits<size_t>::max()), samplerState()
{
}
gl::Error Renderer9::genericDrawElements(Context9 *context,
GLenum mode,
GLsizei count,
GLenum type,
const void *indices,
GLsizei instances,
const gl::IndexRange &indexRange)
{
const auto &data = context->getContextState();
gl::Program *program = context->getGLState().getProgram();
ASSERT(program != nullptr);
ProgramD3D *programD3D = GetImplAs<ProgramD3D>(program);
bool usesPointSize = programD3D->usesPointSize();
programD3D->updateSamplerMapping();
if (!applyPrimitiveType(mode, count, usesPointSize))
{
return gl::NoError();
}
ANGLE_TRY(updateState(context, mode));
TranslatedIndexData indexInfo;
indexInfo.indexRange = indexRange;
ANGLE_TRY(applyIndexBuffer(data, indices, count, mode, type, &indexInfo));
applyTransformFeedbackBuffers(data.getState());
// Transform feedback is not allowed for DrawElements, this error should have been caught at the
// API validation
// layer.
ASSERT(!data.getState().isTransformFeedbackActiveUnpaused());
size_t vertexCount = indexInfo.indexRange.vertexCount();
ANGLE_TRY(applyVertexBuffer(data.getState(), mode,
static_cast<GLsizei>(indexInfo.indexRange.start),
static_cast<GLsizei>(vertexCount), instances, &indexInfo));
ANGLE_TRY(applyTextures(context, data));
ANGLE_TRY(applyShaders(data, mode));
ANGLE_TRY(programD3D->applyUniformBuffers(data));
if (!skipDraw(data, mode))
{
ANGLE_TRY(drawElementsImpl(data, indexInfo, mode, count, type, indices, instances));
}
return gl::NoError();
}
gl::Error Renderer9::genericDrawArrays(Context9 *context,
GLenum mode,
GLint first,
GLsizei count,
GLsizei instances)
{
const auto &data = context->getContextState();
gl::Program *program = context->getGLState().getProgram();
ASSERT(program != nullptr);
ProgramD3D *programD3D = GetImplAs<ProgramD3D>(program);
bool usesPointSize = programD3D->usesPointSize();
programD3D->updateSamplerMapping();
if (!applyPrimitiveType(mode, count, usesPointSize))
{
return gl::NoError();
}
ANGLE_TRY(updateState(context, mode));
ANGLE_TRY(applyTransformFeedbackBuffers(data.getState()));
ANGLE_TRY(applyVertexBuffer(data.getState(), mode, first, count, instances, nullptr));
ANGLE_TRY(applyTextures(context, data));
ANGLE_TRY(applyShaders(data, mode));
ANGLE_TRY(programD3D->applyUniformBuffers(data));
if (!skipDraw(data, mode))
{
ANGLE_TRY(drawArraysImpl(data, mode, first, count, instances));
if (data.getState().isTransformFeedbackActiveUnpaused())
{
ANGLE_TRY(markTransformFeedbackUsage(data));
}
}
return gl::NoError();
}
FramebufferImpl *Renderer9::createDefaultFramebuffer(const gl::FramebufferState &state)
{
return new Framebuffer9(state, this);
}
gl::Version Renderer9::getMaxSupportedESVersion() const
{
return gl::Version(2, 0);
}
gl::Error Renderer9::applyComputeUniforms(const ProgramD3D &programD3D,
const std::vector<D3DUniform *> &uniformArray)
{
UNIMPLEMENTED();
return gl::InternalError() << "Compute shader is not implemented on D3D9";
}
} // namespace rx