| #include <glm/gtc/bitfield.hpp> |
| #include <glm/gtc/type_precision.hpp> |
| #include <glm/vector_relational.hpp> |
| #include <glm/integer.hpp> |
| #include <ctime> |
| #include <cstdio> |
| #include <vector> |
| |
| namespace mask |
| { |
| template <typename genType> |
| struct type |
| { |
| genType Value; |
| genType Return; |
| }; |
| |
| inline int mask_zero(int Bits) |
| { |
| return ~((~0) << Bits); |
| } |
| |
| inline int mask_mix(int Bits) |
| { |
| return Bits >= sizeof(int) * 8 ? 0xffffffff : (static_cast<int>(1) << Bits) - static_cast<int>(1); |
| } |
| |
| inline int mask_half(int Bits) |
| { |
| // We do the shift in two steps because 1 << 32 on an int is undefined. |
| |
| int const Half = Bits >> 1; |
| int const Fill = ~0; |
| int const ShiftHaft = (Fill << Half); |
| int const Rest = Bits - Half; |
| int const Reversed = ShiftHaft << Rest; |
| |
| return ~Reversed; |
| } |
| |
| inline int mask_loop(int Bits) |
| { |
| int Mask = 0; |
| for(int Bit = 0; Bit < Bits; ++Bit) |
| Mask |= (static_cast<int>(1) << Bit); |
| return Mask; |
| } |
| |
| int perf() |
| { |
| int const Count = 100000000; |
| |
| std::clock_t Timestamp1 = std::clock(); |
| |
| { |
| std::vector<int> Mask; |
| Mask.resize(Count); |
| for(int i = 0; i < Count; ++i) |
| Mask[i] = mask_mix(i % 32); |
| } |
| |
| std::clock_t Timestamp2 = std::clock(); |
| |
| { |
| std::vector<int> Mask; |
| Mask.resize(Count); |
| for(int i = 0; i < Count; ++i) |
| Mask[i] = mask_loop(i % 32); |
| } |
| |
| std::clock_t Timestamp3 = std::clock(); |
| |
| { |
| std::vector<int> Mask; |
| Mask.resize(Count); |
| for(int i = 0; i < Count; ++i) |
| Mask[i] = glm::mask(i % 32); |
| } |
| |
| std::clock_t Timestamp4 = std::clock(); |
| |
| { |
| std::vector<int> Mask; |
| Mask.resize(Count); |
| for(int i = 0; i < Count; ++i) |
| Mask[i] = mask_zero(i % 32); |
| } |
| |
| std::clock_t Timestamp5 = std::clock(); |
| |
| { |
| std::vector<int> Mask; |
| Mask.resize(Count); |
| for(int i = 0; i < Count; ++i) |
| Mask[i] = mask_half(i % 32); |
| } |
| |
| std::clock_t Timestamp6 = std::clock(); |
| |
| std::clock_t TimeMix = Timestamp2 - Timestamp1; |
| std::clock_t TimeLoop = Timestamp3 - Timestamp2; |
| std::clock_t TimeDefault = Timestamp4 - Timestamp3; |
| std::clock_t TimeZero = Timestamp5 - Timestamp4; |
| std::clock_t TimeHalf = Timestamp6 - Timestamp5; |
| |
| printf("mask[mix]: %d\n", static_cast<unsigned int>(TimeMix)); |
| printf("mask[loop]: %d\n", static_cast<unsigned int>(TimeLoop)); |
| printf("mask[default]: %d\n", static_cast<unsigned int>(TimeDefault)); |
| printf("mask[zero]: %d\n", static_cast<unsigned int>(TimeZero)); |
| printf("mask[half]: %d\n", static_cast<unsigned int>(TimeHalf)); |
| |
| return TimeDefault < TimeLoop ? 0 : 1; |
| } |
| |
| int test_uint() |
| { |
| type<glm::uint> const Data[] = |
| { |
| { 0, 0x00000000}, |
| { 1, 0x00000001}, |
| { 2, 0x00000003}, |
| { 3, 0x00000007}, |
| {31, 0x7fffffff}, |
| {32, 0xffffffff} |
| }; |
| |
| int Error(0); |
| /* mask_zero is sadly not a correct code |
| for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) |
| { |
| int Result = mask_zero(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| */ |
| for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) |
| { |
| int Result = mask_mix(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) |
| { |
| int Result = mask_half(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) |
| { |
| int Result = mask_loop(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) |
| { |
| int Result = glm::mask(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test_uvec4() |
| { |
| type<glm::ivec4> const Data[] = |
| { |
| {glm::ivec4( 0), glm::ivec4(0x00000000)}, |
| {glm::ivec4( 1), glm::ivec4(0x00000001)}, |
| {glm::ivec4( 2), glm::ivec4(0x00000003)}, |
| {glm::ivec4( 3), glm::ivec4(0x00000007)}, |
| {glm::ivec4(31), glm::ivec4(0x7fffffff)}, |
| {glm::ivec4(32), glm::ivec4(0xffffffff)} |
| }; |
| |
| int Error(0); |
| |
| for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::ivec4>); i < n; ++i) |
| { |
| glm::ivec4 Result = glm::mask(Data[i].Value); |
| Error += glm::all(glm::equal(Data[i].Return, Result)) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test() |
| { |
| int Error(0); |
| |
| Error += test_uint(); |
| Error += test_uvec4(); |
| |
| return Error; |
| } |
| }//namespace mask |
| |
| namespace bitfieldInterleave3 |
| { |
| template <typename PARAM, typename RET> |
| inline RET refBitfieldInterleave(PARAM x, PARAM y, PARAM z) |
| { |
| RET Result = 0; |
| for(RET i = 0; i < sizeof(PARAM) * 8; ++i) |
| { |
| Result |= ((RET(x) & (RET(1U) << i)) << ((i << 1) + 0)); |
| Result |= ((RET(y) & (RET(1U) << i)) << ((i << 1) + 1)); |
| Result |= ((RET(z) & (RET(1U) << i)) << ((i << 1) + 2)); |
| } |
| return Result; |
| } |
| |
| int test() |
| { |
| int Error(0); |
| |
| glm::uint16 x_max = 1 << 11; |
| glm::uint16 y_max = 1 << 11; |
| glm::uint16 z_max = 1 << 11; |
| |
| for(glm::uint16 z = 0; z < z_max; z += 27) |
| for(glm::uint16 y = 0; y < y_max; y += 27) |
| for(glm::uint16 x = 0; x < x_max; x += 27) |
| { |
| glm::uint64 ResultA = refBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z); |
| glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z); |
| Error += ResultA == ResultB ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| } |
| |
| namespace bitfieldInterleave4 |
| { |
| template <typename PARAM, typename RET> |
| inline RET loopBitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w) |
| { |
| RET const v[4] = {x, y, z, w}; |
| RET Result = 0; |
| for(RET i = 0; i < sizeof(PARAM) * 8; i++) |
| { |
| Result |= ((((v[0] >> i) & 1U)) << ((i << 2) + 0)); |
| Result |= ((((v[1] >> i) & 1U)) << ((i << 2) + 1)); |
| Result |= ((((v[2] >> i) & 1U)) << ((i << 2) + 2)); |
| Result |= ((((v[3] >> i) & 1U)) << ((i << 2) + 3)); |
| } |
| return Result; |
| } |
| |
| int test() |
| { |
| int Error(0); |
| |
| glm::uint16 x_max = 1 << 11; |
| glm::uint16 y_max = 1 << 11; |
| glm::uint16 z_max = 1 << 11; |
| glm::uint16 w_max = 1 << 11; |
| |
| for(glm::uint16 w = 0; w < w_max; w += 27) |
| for(glm::uint16 z = 0; z < z_max; z += 27) |
| for(glm::uint16 y = 0; y < y_max; y += 27) |
| for(glm::uint16 x = 0; x < x_max; x += 27) |
| { |
| glm::uint64 ResultA = loopBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z, w); |
| glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z, w); |
| Error += ResultA == ResultB ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| } |
| |
| namespace bitfieldInterleave |
| { |
| inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
| { |
| glm::uint64 REG1; |
| glm::uint64 REG2; |
| |
| REG1 = x; |
| REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
| REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
| REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
| REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
| REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
| |
| REG2 = y; |
| REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
| REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
| REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
| REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
| REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
| |
| return REG1 | (REG2 << 1); |
| } |
| |
| inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
| { |
| glm::uint64 REG1; |
| glm::uint64 REG2; |
| |
| REG1 = x; |
| REG2 = y; |
| |
| REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
| REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
| |
| REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
| REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
| |
| REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
| REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
| |
| REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
| REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
| |
| REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
| REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
| |
| return REG1 | (REG2 << 1); |
| } |
| /* |
| inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
| { |
| static glm::uint64 const Mask[5] = |
| { |
| 0x5555555555555555, |
| 0x3333333333333333, |
| 0x0F0F0F0F0F0F0F0F, |
| 0x00FF00FF00FF00FF, |
| 0x0000FFFF0000FFFF |
| }; |
| |
| glm::uint64 REG1 = x; |
| glm::uint64 REG2 = y; |
| for(int i = 4; i >= 0; --i) |
| { |
| REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i]; |
| REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i]; |
| } |
| |
| return REG1 | (REG2 << 1); |
| } |
| */ |
| #if(GLM_ARCH != GLM_ARCH_PURE) |
| inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
| { |
| GLM_ALIGN(16) glm::uint32 const Array[4] = {x, 0, y, 0}; |
| |
| __m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); |
| __m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); |
| __m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); |
| __m128i const Mask1 = _mm_set1_epi32(0x33333333); |
| __m128i const Mask0 = _mm_set1_epi32(0x55555555); |
| |
| __m128i Reg1; |
| __m128i Reg2; |
| |
| // REG1 = x; |
| // REG2 = y; |
| Reg1 = _mm_load_si128((__m128i*)Array); |
| |
| //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
| //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
| Reg2 = _mm_slli_si128(Reg1, 2); |
| Reg1 = _mm_or_si128(Reg2, Reg1); |
| Reg1 = _mm_and_si128(Reg1, Mask4); |
| |
| //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
| //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
| Reg2 = _mm_slli_si128(Reg1, 1); |
| Reg1 = _mm_or_si128(Reg2, Reg1); |
| Reg1 = _mm_and_si128(Reg1, Mask3); |
| |
| //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
| //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
| Reg2 = _mm_slli_epi32(Reg1, 4); |
| Reg1 = _mm_or_si128(Reg2, Reg1); |
| Reg1 = _mm_and_si128(Reg1, Mask2); |
| |
| //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
| //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
| Reg2 = _mm_slli_epi32(Reg1, 2); |
| Reg1 = _mm_or_si128(Reg2, Reg1); |
| Reg1 = _mm_and_si128(Reg1, Mask1); |
| |
| //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
| //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
| Reg2 = _mm_slli_epi32(Reg1, 1); |
| Reg1 = _mm_or_si128(Reg2, Reg1); |
| Reg1 = _mm_and_si128(Reg1, Mask0); |
| |
| //return REG1 | (REG2 << 1); |
| Reg2 = _mm_slli_epi32(Reg1, 1); |
| Reg2 = _mm_srli_si128(Reg2, 8); |
| Reg1 = _mm_or_si128(Reg1, Reg2); |
| |
| GLM_ALIGN(16) glm::uint64 Result[2]; |
| _mm_store_si128((__m128i*)Result, Reg1); |
| |
| return Result[0]; |
| } |
| |
| inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
| { |
| glm::uint32 const Array[4] = {x, 0, y, 0}; |
| |
| __m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); |
| __m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); |
| __m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); |
| __m128i const Mask1 = _mm_set1_epi32(0x33333333); |
| __m128i const Mask0 = _mm_set1_epi32(0x55555555); |
| |
| __m128i Reg1; |
| __m128i Reg2; |
| |
| // REG1 = x; |
| // REG2 = y; |
| Reg1 = _mm_loadu_si128((__m128i*)Array); |
| |
| //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
| //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
| Reg2 = _mm_slli_si128(Reg1, 2); |
| Reg1 = _mm_or_si128(Reg2, Reg1); |
| Reg1 = _mm_and_si128(Reg1, Mask4); |
| |
| //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
| //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
| Reg2 = _mm_slli_si128(Reg1, 1); |
| Reg1 = _mm_or_si128(Reg2, Reg1); |
| Reg1 = _mm_and_si128(Reg1, Mask3); |
| |
| //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
| //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
| Reg2 = _mm_slli_epi32(Reg1, 4); |
| Reg1 = _mm_or_si128(Reg2, Reg1); |
| Reg1 = _mm_and_si128(Reg1, Mask2); |
| |
| //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
| //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
| Reg2 = _mm_slli_epi32(Reg1, 2); |
| Reg1 = _mm_or_si128(Reg2, Reg1); |
| Reg1 = _mm_and_si128(Reg1, Mask1); |
| |
| //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
| //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
| Reg2 = _mm_slli_epi32(Reg1, 1); |
| Reg1 = _mm_or_si128(Reg2, Reg1); |
| Reg1 = _mm_and_si128(Reg1, Mask0); |
| |
| //return REG1 | (REG2 << 1); |
| Reg2 = _mm_slli_epi32(Reg1, 1); |
| Reg2 = _mm_srli_si128(Reg2, 8); |
| Reg1 = _mm_or_si128(Reg1, Reg2); |
| |
| glm::uint64 Result[2]; |
| _mm_storeu_si128((__m128i*)Result, Reg1); |
| |
| return Result[0]; |
| } |
| #endif//(GLM_ARCH != GLM_ARCH_PURE) |
| |
| int test() |
| { |
| { |
| for(glm::uint32 y = 0; y < (1 << 10); ++y) |
| for(glm::uint32 x = 0; x < (1 << 10); ++x) |
| { |
| glm::uint64 A = glm::bitfieldInterleave(x, y); |
| glm::uint64 B = fastBitfieldInterleave(x, y); |
| //glm::uint64 C = loopBitfieldInterleave(x, y); |
| glm::uint64 D = interleaveBitfieldInterleave(x, y); |
| |
| assert(A == B); |
| //assert(A == C); |
| assert(A == D); |
| |
| # if GLM_ARCH & GLM_ARCH_SSE2_BIT |
| glm::uint64 E = sseBitfieldInterleave(x, y); |
| glm::uint64 F = sseUnalignedBitfieldInterleave(x, y); |
| assert(A == E); |
| assert(A == F); |
| |
| __m128i G = glm_i128_interleave(_mm_set_epi32(0, y, 0, x)); |
| glm::uint64 Result[2]; |
| _mm_storeu_si128((__m128i*)Result, G); |
| assert(A == Result[0]); |
| # endif//GLM_ARCH & GLM_ARCH_SSE2_BIT |
| } |
| } |
| |
| { |
| for(glm::uint8 y = 0; y < 127; ++y) |
| for(glm::uint8 x = 0; x < 127; ++x) |
| { |
| glm::uint64 A(glm::bitfieldInterleave(glm::uint8(x), glm::uint8(y))); |
| glm::uint64 B(glm::bitfieldInterleave(glm::uint16(x), glm::uint16(y))); |
| glm::uint64 C(glm::bitfieldInterleave(glm::uint32(x), glm::uint32(y))); |
| |
| glm::int64 D(glm::bitfieldInterleave(glm::int8(x), glm::int8(y))); |
| glm::int64 E(glm::bitfieldInterleave(glm::int16(x), glm::int16(y))); |
| glm::int64 F(glm::bitfieldInterleave(glm::int32(x), glm::int32(y))); |
| |
| assert(D == E); |
| assert(D == F); |
| } |
| } |
| |
| return 0; |
| } |
| |
| int perf() |
| { |
| glm::uint32 x_max = 1 << 11; |
| glm::uint32 y_max = 1 << 10; |
| |
| // ALU |
| std::vector<glm::uint64> Data(x_max * y_max); |
| std::vector<glm::u32vec2> Param(x_max * y_max); |
| for(glm::uint32 i = 0; i < Param.size(); ++i) |
| Param[i] = glm::u32vec2(i % x_max, i / y_max); |
| |
| { |
| std::clock_t LastTime = std::clock(); |
| |
| for(std::size_t i = 0; i < Data.size(); ++i) |
| Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y); |
| |
| std::clock_t Time = std::clock() - LastTime; |
| |
| std::printf("glm::bitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); |
| } |
| |
| { |
| std::clock_t LastTime = std::clock(); |
| |
| for(std::size_t i = 0; i < Data.size(); ++i) |
| Data[i] = fastBitfieldInterleave(Param[i].x, Param[i].y); |
| |
| std::clock_t Time = std::clock() - LastTime; |
| |
| std::printf("fastBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); |
| } |
| /* |
| { |
| std::clock_t LastTime = std::clock(); |
| |
| for(std::size_t i = 0; i < Data.size(); ++i) |
| Data[i] = loopBitfieldInterleave(Param[i].x, Param[i].y); |
| |
| std::clock_t Time = std::clock() - LastTime; |
| |
| std::printf("loopBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); |
| } |
| */ |
| { |
| std::clock_t LastTime = std::clock(); |
| |
| for(std::size_t i = 0; i < Data.size(); ++i) |
| Data[i] = interleaveBitfieldInterleave(Param[i].x, Param[i].y); |
| |
| std::clock_t Time = std::clock() - LastTime; |
| |
| std::printf("interleaveBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); |
| } |
| |
| # if(GLM_ARCH != GLM_ARCH_PURE) |
| { |
| std::clock_t LastTime = std::clock(); |
| |
| for(std::size_t i = 0; i < Data.size(); ++i) |
| Data[i] = sseBitfieldInterleave(Param[i].x, Param[i].y); |
| |
| std::clock_t Time = std::clock() - LastTime; |
| |
| std::printf("sseBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); |
| } |
| |
| { |
| std::clock_t LastTime = std::clock(); |
| |
| for(std::size_t i = 0; i < Data.size(); ++i) |
| Data[i] = sseUnalignedBitfieldInterleave(Param[i].x, Param[i].y); |
| |
| std::clock_t Time = std::clock() - LastTime; |
| |
| std::printf("sseUnalignedBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); |
| } |
| # endif//(GLM_ARCH != GLM_ARCH_PURE) |
| |
| { |
| std::clock_t LastTime = std::clock(); |
| |
| for(std::size_t i = 0; i < Data.size(); ++i) |
| Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y, Param[i].x); |
| |
| std::clock_t Time = std::clock() - LastTime; |
| |
| std::printf("glm::detail::bitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); |
| } |
| |
| # if(GLM_ARCH & GLM_ARCH_SSE2_BIT && !(GLM_COMPILER & GLM_COMPILER_GCC)) |
| { |
| // SIMD |
| std::vector<__m128i> SimdData; |
| SimdData.resize(x_max * y_max); |
| std::vector<__m128i> SimdParam; |
| SimdParam.resize(x_max * y_max); |
| for(int i = 0; i < SimdParam.size(); ++i) |
| SimdParam[i] = _mm_set_epi32(i % x_max, 0, i / y_max, 0); |
| |
| std::clock_t LastTime = std::clock(); |
| |
| for(std::size_t i = 0; i < SimdData.size(); ++i) |
| SimdData[i] = glm_i128_interleave(SimdParam[i]); |
| |
| std::clock_t Time = std::clock() - LastTime; |
| |
| std::printf("_mm_bit_interleave_si128 Time %d clocks\n", static_cast<unsigned int>(Time)); |
| } |
| # endif//GLM_ARCH & GLM_ARCH_SSE2_BIT |
| |
| return 0; |
| } |
| }//namespace bitfieldInterleave |
| |
| int main() |
| { |
| int Error(0); |
| |
| Error += ::mask::test(); |
| Error += ::bitfieldInterleave3::test(); |
| Error += ::bitfieldInterleave4::test(); |
| Error += ::bitfieldInterleave::test(); |
| //Error += ::bitRevert::test(); |
| |
| # ifdef NDEBUG |
| Error += ::mask::perf(); |
| Error += ::bitfieldInterleave::perf(); |
| # endif//NDEBUG |
| |
| return Error; |
| } |