| // Copyright 2012 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // main entry for the decoder |
| // |
| // Authors: Vikas Arora (vikaas.arora@gmail.com) |
| // Jyrki Alakuijala (jyrki@google.com) |
| |
| #if defined(STARBOARD) |
| #include "starboard/log.h" |
| #include "starboard/memory.h" |
| #else |
| #include <stdio.h> |
| #include <stdlib.h> |
| #endif |
| |
| #include "./vp8li.h" |
| #include "../dsp/lossless.h" |
| #include "../dsp/yuv.h" |
| #include "../utils/huffman.h" |
| #include "../utils/utils.h" |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| extern "C" { |
| #endif |
| |
| #define NUM_ARGB_CACHE_ROWS 16 |
| |
| static const int kCodeLengthLiterals = 16; |
| static const int kCodeLengthRepeatCode = 16; |
| static const int kCodeLengthExtraBits[3] = { 2, 3, 7 }; |
| static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 }; |
| |
| // ----------------------------------------------------------------------------- |
| // Five Huffman codes are used at each meta code: |
| // 1. green + length prefix codes + color cache codes, |
| // 2. alpha, |
| // 3. red, |
| // 4. blue, and, |
| // 5. distance prefix codes. |
| typedef enum { |
| GREEN = 0, |
| RED = 1, |
| BLUE = 2, |
| ALPHA = 3, |
| DIST = 4 |
| } HuffIndex; |
| |
| static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = { |
| NUM_LITERAL_CODES + NUM_LENGTH_CODES, |
| NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES, |
| NUM_DISTANCE_CODES |
| }; |
| |
| |
| #define NUM_CODE_LENGTH_CODES 19 |
| static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = { |
| 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| }; |
| |
| #define CODE_TO_PLANE_CODES 120 |
| static const uint8_t code_to_plane_lut[CODE_TO_PLANE_CODES] = { |
| 0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a, |
| 0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a, |
| 0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b, |
| 0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03, |
| 0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c, |
| 0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e, |
| 0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b, |
| 0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f, |
| 0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b, |
| 0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41, |
| 0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f, |
| 0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70 |
| }; |
| |
| static int DecodeImageStream(int xsize, int ysize, |
| int is_level0, |
| VP8LDecoder* const dec, |
| uint32_t** const decoded_data); |
| |
| //------------------------------------------------------------------------------ |
| |
| int VP8LCheckSignature(const uint8_t* const data, size_t size) { |
| return (size >= 1) && (data[0] == VP8L_MAGIC_BYTE); |
| } |
| |
| static int ReadImageInfo(VP8LBitReader* const br, |
| int* const width, int* const height, |
| int* const has_alpha) { |
| const uint8_t signature = VP8LReadBits(br, 8); |
| if (!VP8LCheckSignature(&signature, 1)) { |
| return 0; |
| } |
| *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1; |
| *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1; |
| *has_alpha = VP8LReadBits(br, 1); |
| VP8LReadBits(br, VP8L_VERSION_BITS); // Read/ignore the version number. |
| return 1; |
| } |
| |
| int VP8LGetInfo(const uint8_t* data, size_t data_size, |
| int* const width, int* const height, int* const has_alpha) { |
| if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) { |
| return 0; // not enough data |
| } else { |
| int w, h, a; |
| VP8LBitReader br; |
| VP8LInitBitReader(&br, data, data_size); |
| if (!ReadImageInfo(&br, &w, &h, &a)) { |
| return 0; |
| } |
| if (width != NULL) *width = w; |
| if (height != NULL) *height = h; |
| if (has_alpha != NULL) *has_alpha = a; |
| return 1; |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| static WEBP_INLINE int GetCopyDistance(int distance_symbol, |
| VP8LBitReader* const br) { |
| int extra_bits, offset; |
| if (distance_symbol < 4) { |
| return distance_symbol + 1; |
| } |
| extra_bits = (distance_symbol - 2) >> 1; |
| offset = (2 + (distance_symbol & 1)) << extra_bits; |
| return offset + VP8LReadBits(br, extra_bits) + 1; |
| } |
| |
| static WEBP_INLINE int GetCopyLength(int length_symbol, |
| VP8LBitReader* const br) { |
| // Length and distance prefixes are encoded the same way. |
| return GetCopyDistance(length_symbol, br); |
| } |
| |
| static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) { |
| if (plane_code > CODE_TO_PLANE_CODES) { |
| return plane_code - CODE_TO_PLANE_CODES; |
| } else { |
| const int dist_code = code_to_plane_lut[plane_code - 1]; |
| const int yoffset = dist_code >> 4; |
| const int xoffset = 8 - (dist_code & 0xf); |
| const int dist = yoffset * xsize + xoffset; |
| return (dist >= 1) ? dist : 1; |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Decodes the next Huffman code from bit-stream. |
| // FillBitWindow(br) needs to be called at minimum every second call |
| // to ReadSymbol, in order to pre-fetch enough bits. |
| static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree, |
| VP8LBitReader* const br) { |
| const HuffmanTreeNode* node = tree->root_; |
| int num_bits = 0; |
| uint32_t bits = VP8LPrefetchBits(br); |
| SB_DCHECK(node != NULL); |
| while (!HuffmanTreeNodeIsLeaf(node)) { |
| node = HuffmanTreeNextNode(node, bits & 1); |
| bits >>= 1; |
| ++num_bits; |
| } |
| VP8LDiscardBits(br, num_bits); |
| return node->symbol_; |
| } |
| |
| static int ReadHuffmanCodeLengths( |
| VP8LDecoder* const dec, const int* const code_length_code_lengths, |
| int num_symbols, int* const code_lengths) { |
| int ok = 0; |
| VP8LBitReader* const br = &dec->br_; |
| int symbol; |
| int max_symbol; |
| int prev_code_len = DEFAULT_CODE_LENGTH; |
| HuffmanTree tree; |
| |
| if (!HuffmanTreeBuildImplicit(&tree, code_length_code_lengths, |
| NUM_CODE_LENGTH_CODES)) { |
| dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
| return 0; |
| } |
| |
| if (VP8LReadBits(br, 1)) { // use length |
| const int length_nbits = 2 + 2 * VP8LReadBits(br, 3); |
| max_symbol = 2 + VP8LReadBits(br, length_nbits); |
| if (max_symbol > num_symbols) { |
| dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
| goto End; |
| } |
| } else { |
| max_symbol = num_symbols; |
| } |
| |
| symbol = 0; |
| while (symbol < num_symbols) { |
| int code_len; |
| if (max_symbol-- == 0) break; |
| VP8LFillBitWindow(br); |
| code_len = ReadSymbol(&tree, br); |
| if (code_len < kCodeLengthLiterals) { |
| code_lengths[symbol++] = code_len; |
| if (code_len != 0) prev_code_len = code_len; |
| } else { |
| const int use_prev = (code_len == kCodeLengthRepeatCode); |
| const int slot = code_len - kCodeLengthLiterals; |
| const int extra_bits = kCodeLengthExtraBits[slot]; |
| const int repeat_offset = kCodeLengthRepeatOffsets[slot]; |
| int repeat = VP8LReadBits(br, extra_bits) + repeat_offset; |
| if (symbol + repeat > num_symbols) { |
| dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
| goto End; |
| } else { |
| const int length = use_prev ? prev_code_len : 0; |
| while (repeat-- > 0) code_lengths[symbol++] = length; |
| } |
| } |
| } |
| ok = 1; |
| |
| End: |
| HuffmanTreeRelease(&tree); |
| return ok; |
| } |
| |
| static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec, |
| HuffmanTree* const tree) { |
| int ok = 0; |
| VP8LBitReader* const br = &dec->br_; |
| const int simple_code = VP8LReadBits(br, 1); |
| |
| if (simple_code) { // Read symbols, codes & code lengths directly. |
| int symbols[2]; |
| int codes[2]; |
| int code_lengths[2]; |
| const int num_symbols = VP8LReadBits(br, 1) + 1; |
| const int first_symbol_len_code = VP8LReadBits(br, 1); |
| // The first code is either 1 bit or 8 bit code. |
| symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8); |
| codes[0] = 0; |
| code_lengths[0] = num_symbols - 1; |
| // The second code (if present), is always 8 bit long. |
| if (num_symbols == 2) { |
| symbols[1] = VP8LReadBits(br, 8); |
| codes[1] = 1; |
| code_lengths[1] = num_symbols - 1; |
| } |
| ok = HuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols, |
| alphabet_size, num_symbols); |
| } else { // Decode Huffman-coded code lengths. |
| int* code_lengths = NULL; |
| int i; |
| int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 }; |
| const int num_codes = VP8LReadBits(br, 4) + 4; |
| if (num_codes > NUM_CODE_LENGTH_CODES) { |
| dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
| return 0; |
| } |
| |
| code_lengths = |
| (int*)WebPSafeCalloc((uint64_t)alphabet_size, sizeof(*code_lengths)); |
| if (code_lengths == NULL) { |
| dec->status_ = VP8_STATUS_OUT_OF_MEMORY; |
| return 0; |
| } |
| |
| for (i = 0; i < num_codes; ++i) { |
| code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3); |
| } |
| ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size, |
| code_lengths); |
| if (ok) { |
| ok = HuffmanTreeBuildImplicit(tree, code_lengths, alphabet_size); |
| } |
| SbMemoryDeallocate(code_lengths); |
| } |
| ok = ok && !br->error_; |
| if (!ok) { |
| dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
| return 0; |
| } |
| return 1; |
| } |
| |
| static void DeleteHtreeGroups(HTreeGroup* htree_groups, int num_htree_groups) { |
| if (htree_groups != NULL) { |
| int i, j; |
| for (i = 0; i < num_htree_groups; ++i) { |
| HuffmanTree* const htrees = htree_groups[i].htrees_; |
| for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { |
| HuffmanTreeRelease(&htrees[j]); |
| } |
| } |
| SbMemoryDeallocate(htree_groups); |
| } |
| } |
| |
| static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize, |
| int color_cache_bits, int allow_recursion) { |
| int i, j; |
| VP8LBitReader* const br = &dec->br_; |
| VP8LMetadata* const hdr = &dec->hdr_; |
| uint32_t* huffman_image = NULL; |
| HTreeGroup* htree_groups = NULL; |
| int num_htree_groups = 1; |
| |
| if (allow_recursion && VP8LReadBits(br, 1)) { |
| // use meta Huffman codes. |
| const int huffman_precision = VP8LReadBits(br, 3) + 2; |
| const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision); |
| const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision); |
| const int huffman_pixs = huffman_xsize * huffman_ysize; |
| if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec, |
| &huffman_image)) { |
| dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
| goto Error; |
| } |
| hdr->huffman_subsample_bits_ = huffman_precision; |
| for (i = 0; i < huffman_pixs; ++i) { |
| // The huffman data is stored in red and green bytes. |
| const int group = (huffman_image[i] >> 8) & 0xffff; |
| huffman_image[i] = group; |
| if (group >= num_htree_groups) { |
| num_htree_groups = group + 1; |
| } |
| } |
| } |
| |
| if (br->error_) goto Error; |
| |
| SB_DCHECK(num_htree_groups <= 0x10000); |
| htree_groups = |
| (HTreeGroup*)WebPSafeCalloc((uint64_t)num_htree_groups, |
| sizeof(*htree_groups)); |
| if (htree_groups == NULL) { |
| dec->status_ = VP8_STATUS_OUT_OF_MEMORY; |
| goto Error; |
| } |
| |
| for (i = 0; i < num_htree_groups; ++i) { |
| HuffmanTree* const htrees = htree_groups[i].htrees_; |
| for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { |
| int alphabet_size = kAlphabetSize[j]; |
| if (j == 0 && color_cache_bits > 0) { |
| alphabet_size += 1 << color_cache_bits; |
| } |
| if (!ReadHuffmanCode(alphabet_size, dec, htrees + j)) goto Error; |
| } |
| } |
| |
| // All OK. Finalize pointers and return. |
| hdr->huffman_image_ = huffman_image; |
| hdr->num_htree_groups_ = num_htree_groups; |
| hdr->htree_groups_ = htree_groups; |
| return 1; |
| |
| Error: |
| SbMemoryDeallocate(huffman_image); |
| DeleteHtreeGroups(htree_groups, num_htree_groups); |
| return 0; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Scaling. |
| |
| static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) { |
| const int num_channels = 4; |
| const int in_width = io->mb_w; |
| const int out_width = io->scaled_width; |
| const int in_height = io->mb_h; |
| const int out_height = io->scaled_height; |
| const uint64_t work_size = 2 * num_channels * (uint64_t)out_width; |
| int32_t* work; // Rescaler work area. |
| const uint64_t scaled_data_size = num_channels * (uint64_t)out_width; |
| uint32_t* scaled_data; // Temporary storage for scaled BGRA data. |
| const uint64_t memory_size = sizeof(*dec->rescaler) + |
| work_size * sizeof(*work) + |
| scaled_data_size * sizeof(*scaled_data); |
| uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory)); |
| if (memory == NULL) { |
| dec->status_ = VP8_STATUS_OUT_OF_MEMORY; |
| return 0; |
| } |
| SB_DCHECK(dec->rescaler_memory == NULL); |
| dec->rescaler_memory = memory; |
| |
| dec->rescaler = (WebPRescaler*)memory; |
| memory += sizeof(*dec->rescaler); |
| work = (int32_t*)memory; |
| memory += work_size * sizeof(*work); |
| scaled_data = (uint32_t*)memory; |
| |
| WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data, |
| out_width, out_height, 0, num_channels, |
| in_width, out_width, in_height, out_height, work); |
| return 1; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Export to ARGB |
| |
| // We have special "export" function since we need to convert from BGRA |
| static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace, |
| int rgba_stride, uint8_t* const rgba) { |
| const uint32_t* const src = (const uint32_t*)rescaler->dst; |
| const int dst_width = rescaler->dst_width; |
| int num_lines_out = 0; |
| while (WebPRescalerHasPendingOutput(rescaler)) { |
| uint8_t* const dst = rgba + num_lines_out * rgba_stride; |
| WebPRescalerExportRow(rescaler); |
| VP8LConvertFromBGRA(src, dst_width, colorspace, dst); |
| ++num_lines_out; |
| } |
| return num_lines_out; |
| } |
| |
| // Emit scaled rows. |
| static int EmitRescaledRows(const VP8LDecoder* const dec, |
| const uint32_t* const data, int in_stride, int mb_h, |
| uint8_t* const out, int out_stride) { |
| const WEBP_CSP_MODE colorspace = dec->output_->colorspace; |
| const uint8_t* const in = (const uint8_t*)data; |
| int num_lines_in = 0; |
| int num_lines_out = 0; |
| while (num_lines_in < mb_h) { |
| const uint8_t* const row_in = in + num_lines_in * in_stride; |
| uint8_t* const row_out = out + num_lines_out * out_stride; |
| num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in, |
| row_in, in_stride); |
| num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out); |
| } |
| return num_lines_out; |
| } |
| |
| // Emit rows without any scaling. |
| static int EmitRows(WEBP_CSP_MODE colorspace, |
| const uint32_t* const data, int in_stride, |
| int mb_w, int mb_h, |
| uint8_t* const out, int out_stride) { |
| int lines = mb_h; |
| const uint8_t* row_in = (const uint8_t*)data; |
| uint8_t* row_out = out; |
| while (lines-- > 0) { |
| VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out); |
| row_in += in_stride; |
| row_out += out_stride; |
| } |
| return mb_h; // Num rows out == num rows in. |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Export to YUVA |
| |
| static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos, |
| const WebPDecBuffer* const output) { |
| const WebPYUVABuffer* const buf = &output->u.YUVA; |
| // first, the luma plane |
| { |
| int i; |
| uint8_t* const y = buf->y + y_pos * buf->y_stride; |
| for (i = 0; i < width; ++i) { |
| const uint32_t p = src[i]; |
| y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff); |
| } |
| } |
| |
| // then U/V planes |
| { |
| uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride; |
| uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride; |
| const int uv_width = width >> 1; |
| int i; |
| for (i = 0; i < uv_width; ++i) { |
| const uint32_t v0 = src[2 * i + 0]; |
| const uint32_t v1 = src[2 * i + 1]; |
| // VP8RGBToU/V expects four accumulated pixels. Hence we need to |
| // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less. |
| const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe); |
| const int g = ((v0 >> 7) & 0x1fe) + ((v1 >> 7) & 0x1fe); |
| const int b = ((v0 << 1) & 0x1fe) + ((v1 << 1) & 0x1fe); |
| if (!(y_pos & 1)) { // even lines: store values |
| u[i] = VP8RGBToU(r, g, b); |
| v[i] = VP8RGBToV(r, g, b); |
| } else { // odd lines: average with previous values |
| const int tmp_u = VP8RGBToU(r, g, b); |
| const int tmp_v = VP8RGBToV(r, g, b); |
| // Approximated average-of-four. But it's an acceptable diff. |
| u[i] = (u[i] + tmp_u + 1) >> 1; |
| v[i] = (v[i] + tmp_v + 1) >> 1; |
| } |
| } |
| if (width & 1) { // last pixel |
| const uint32_t v0 = src[2 * i + 0]; |
| const int r = (v0 >> 14) & 0x3fc; |
| const int g = (v0 >> 6) & 0x3fc; |
| const int b = (v0 << 2) & 0x3fc; |
| if (!(y_pos & 1)) { // even lines |
| u[i] = VP8RGBToU(r, g, b); |
| v[i] = VP8RGBToV(r, g, b); |
| } else { // odd lines (note: we could just skip this) |
| const int tmp_u = VP8RGBToU(r, g, b); |
| const int tmp_v = VP8RGBToV(r, g, b); |
| u[i] = (u[i] + tmp_u + 1) >> 1; |
| v[i] = (v[i] + tmp_v + 1) >> 1; |
| } |
| } |
| } |
| // Lastly, store alpha if needed. |
| if (buf->a != NULL) { |
| int i; |
| uint8_t* const a = buf->a + y_pos * buf->a_stride; |
| for (i = 0; i < width; ++i) a[i] = (src[i] >> 24); |
| } |
| } |
| |
| static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) { |
| WebPRescaler* const rescaler = dec->rescaler; |
| const uint32_t* const src = (const uint32_t*)rescaler->dst; |
| const int dst_width = rescaler->dst_width; |
| int num_lines_out = 0; |
| while (WebPRescalerHasPendingOutput(rescaler)) { |
| WebPRescalerExportRow(rescaler); |
| ConvertToYUVA(src, dst_width, y_pos, dec->output_); |
| ++y_pos; |
| ++num_lines_out; |
| } |
| return num_lines_out; |
| } |
| |
| static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec, |
| const uint32_t* const data, |
| int in_stride, int mb_h) { |
| const uint8_t* const in = (const uint8_t*)data; |
| int num_lines_in = 0; |
| int y_pos = dec->last_out_row_; |
| while (num_lines_in < mb_h) { |
| const uint8_t* const row_in = in + num_lines_in * in_stride; |
| num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in, |
| row_in, in_stride); |
| y_pos += ExportYUVA(dec, y_pos); |
| } |
| return y_pos; |
| } |
| |
| static int EmitRowsYUVA(const VP8LDecoder* const dec, |
| const uint32_t* const data, int in_stride, |
| int mb_w, int num_rows) { |
| int y_pos = dec->last_out_row_; |
| const uint8_t* row_in = (const uint8_t*)data; |
| while (num_rows-- > 0) { |
| ConvertToYUVA((const uint32_t*)row_in, mb_w, y_pos, dec->output_); |
| row_in += in_stride; |
| ++y_pos; |
| } |
| return y_pos; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Cropping. |
| |
| // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and |
| // crop options. Also updates the input data pointer, so that it points to the |
| // start of the cropped window. |
| // Note that 'pixel_stride' is in units of 'uint32_t' (and not 'bytes). |
| // Returns true if the crop window is not empty. |
| static int SetCropWindow(VP8Io* const io, int y_start, int y_end, |
| const uint32_t** const in_data, int pixel_stride) { |
| SB_DCHECK(y_start < y_end); |
| SB_DCHECK(io->crop_left < io->crop_right); |
| if (y_end > io->crop_bottom) { |
| y_end = io->crop_bottom; // make sure we don't overflow on last row. |
| } |
| if (y_start < io->crop_top) { |
| const int delta = io->crop_top - y_start; |
| y_start = io->crop_top; |
| *in_data += pixel_stride * delta; |
| } |
| if (y_start >= y_end) return 0; // Crop window is empty. |
| |
| *in_data += io->crop_left; |
| |
| io->mb_y = y_start - io->crop_top; |
| io->mb_w = io->crop_right - io->crop_left; |
| io->mb_h = y_end - y_start; |
| return 1; // Non-empty crop window. |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| static WEBP_INLINE int GetMetaIndex( |
| const uint32_t* const image, int xsize, int bits, int x, int y) { |
| if (bits == 0) return 0; |
| return image[xsize * (y >> bits) + (x >> bits)]; |
| } |
| |
| static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr, |
| int x, int y) { |
| const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_, |
| hdr->huffman_subsample_bits_, x, y); |
| SB_DCHECK(meta_index < hdr->num_htree_groups_); |
| return hdr->htree_groups_ + meta_index; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Main loop, with custom row-processing function |
| |
| typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row); |
| |
| static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows, |
| const uint32_t* const rows) { |
| int n = dec->next_transform_; |
| const int cache_pixs = dec->width_ * num_rows; |
| const int start_row = dec->last_row_; |
| const int end_row = start_row + num_rows; |
| const uint32_t* rows_in = rows; |
| uint32_t* const rows_out = dec->argb_cache_; |
| |
| // Inverse transforms. |
| // TODO: most transforms only need to operate on the cropped region only. |
| SbMemoryCopy(rows_out, rows_in, cache_pixs * sizeof(*rows_out)); |
| while (n-- > 0) { |
| VP8LTransform* const transform = &dec->transforms_[n]; |
| VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out); |
| rows_in = rows_out; |
| } |
| } |
| |
| // Special method for paletted alpha data. |
| static void ApplyInverseTransformsAlpha(VP8LDecoder* const dec, int num_rows, |
| const uint8_t* const rows) { |
| const int start_row = dec->last_row_; |
| const int end_row = start_row + num_rows; |
| const uint8_t* rows_in = rows; |
| uint8_t* rows_out = (uint8_t*)dec->io_->opaque + dec->io_->width * start_row; |
| VP8LTransform* const transform = &dec->transforms_[0]; |
| SB_DCHECK(dec->next_transform_ == 1); |
| SB_DCHECK(transform->type_ == COLOR_INDEXING_TRANSFORM); |
| VP8LColorIndexInverseTransformAlpha(transform, start_row, end_row, rows_in, |
| rows_out); |
| } |
| |
| // Processes (transforms, scales & color-converts) the rows decoded after the |
| // last call. |
| static void ProcessRows(VP8LDecoder* const dec, int row) { |
| const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_; |
| const int num_rows = row - dec->last_row_; |
| |
| if (num_rows <= 0) return; // Nothing to be done. |
| ApplyInverseTransforms(dec, num_rows, rows); |
| |
| // Emit output. |
| { |
| VP8Io* const io = dec->io_; |
| const uint32_t* rows_data = dec->argb_cache_; |
| if (!SetCropWindow(io, dec->last_row_, row, &rows_data, io->width)) { |
| // Nothing to output (this time). |
| } else { |
| const WebPDecBuffer* const output = dec->output_; |
| const int in_stride = io->width * sizeof(*rows_data); |
| if (output->colorspace < MODE_YUV) { // convert to RGBA |
| const WebPRGBABuffer* const buf = &output->u.RGBA; |
| uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride; |
| const int num_rows_out = io->use_scaling ? |
| EmitRescaledRows(dec, rows_data, in_stride, io->mb_h, |
| rgba, buf->stride) : |
| EmitRows(output->colorspace, rows_data, in_stride, |
| io->mb_w, io->mb_h, rgba, buf->stride); |
| // Update 'last_out_row_'. |
| dec->last_out_row_ += num_rows_out; |
| } else { // convert to YUVA |
| dec->last_out_row_ = io->use_scaling ? |
| EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) : |
| EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h); |
| } |
| SB_DCHECK(dec->last_out_row_ <= output->height); |
| } |
| } |
| |
| // Update 'last_row_'. |
| dec->last_row_ = row; |
| SB_DCHECK(dec->last_row_ <= dec->height_); |
| } |
| |
| #define DECODE_DATA_FUNC(FUNC_NAME, TYPE, STORE_PIXEL) \ |
| static int FUNC_NAME(VP8LDecoder* const dec, TYPE* const data, int width, \ |
| int height, ProcessRowsFunc process_func) { \ |
| int ok = 1; \ |
| int col = 0, row = 0; \ |
| VP8LBitReader* const br = &dec->br_; \ |
| VP8LMetadata* const hdr = &dec->hdr_; \ |
| HTreeGroup* htree_group = hdr->htree_groups_; \ |
| TYPE* src = data; \ |
| TYPE* last_cached = data; \ |
| TYPE* const src_end = data + width * height; \ |
| const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES; \ |
| const int color_cache_limit = len_code_limit + hdr->color_cache_size_; \ |
| VP8LColorCache* const color_cache = \ |
| (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL; \ |
| const int mask = hdr->huffman_mask_; \ |
| SB_DCHECK(htree_group != NULL); \ |
| while (!br->eos_ && src < src_end) { \ |
| int code; \ |
| /* Only update when changing tile. Note we could use this test: */ \ |
| /* if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed */ \ |
| /* but that's actually slower and needs storing the previous col/row. */ \ |
| if ((col & mask) == 0) { \ |
| htree_group = GetHtreeGroupForPos(hdr, col, row); \ |
| } \ |
| VP8LFillBitWindow(br); \ |
| code = ReadSymbol(&htree_group->htrees_[GREEN], br); \ |
| if (code < NUM_LITERAL_CODES) { /* Literal*/ \ |
| int red, green, blue, alpha; \ |
| red = ReadSymbol(&htree_group->htrees_[RED], br); \ |
| green = code; \ |
| VP8LFillBitWindow(br); \ |
| blue = ReadSymbol(&htree_group->htrees_[BLUE], br); \ |
| alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br); \ |
| *src = STORE_PIXEL(alpha, red, green, blue); \ |
| AdvanceByOne: \ |
| ++src; \ |
| ++col; \ |
| if (col >= width) { \ |
| col = 0; \ |
| ++row; \ |
| if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) { \ |
| process_func(dec, row); \ |
| } \ |
| if (color_cache != NULL) { \ |
| while (last_cached < src) { \ |
| VP8LColorCacheInsert(color_cache, *last_cached++); \ |
| } \ |
| } \ |
| } \ |
| } else if (code < len_code_limit) { /* Backward reference */ \ |
| int dist_code, dist; \ |
| const int length_sym = code - NUM_LITERAL_CODES; \ |
| const int length = GetCopyLength(length_sym, br); \ |
| const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br); \ |
| VP8LFillBitWindow(br); \ |
| dist_code = GetCopyDistance(dist_symbol, br); \ |
| dist = PlaneCodeToDistance(width, dist_code); \ |
| if (src - data < dist || src_end - src < length) { \ |
| ok = 0; \ |
| goto End; \ |
| } \ |
| { \ |
| int i; \ |
| for (i = 0; i < length; ++i) src[i] = src[i - dist]; \ |
| src += length; \ |
| } \ |
| col += length; \ |
| while (col >= width) { \ |
| col -= width; \ |
| ++row; \ |
| if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) { \ |
| process_func(dec, row); \ |
| } \ |
| } \ |
| if (src < src_end) { \ |
| htree_group = GetHtreeGroupForPos(hdr, col, row); \ |
| if (color_cache != NULL) { \ |
| while (last_cached < src) { \ |
| VP8LColorCacheInsert(color_cache, *last_cached++); \ |
| } \ |
| } \ |
| } \ |
| } else if (code < color_cache_limit) { /* Color cache */ \ |
| const int key = code - len_code_limit; \ |
| SB_DCHECK(color_cache != NULL); \ |
| while (last_cached < src) { \ |
| VP8LColorCacheInsert(color_cache, *last_cached++); \ |
| } \ |
| *src = VP8LColorCacheLookup(color_cache, key); \ |
| goto AdvanceByOne; \ |
| } else { /* Not reached */ \ |
| ok = 0; \ |
| goto End; \ |
| } \ |
| ok = !br->error_; \ |
| if (!ok) goto End; \ |
| } \ |
| /* Process the remaining rows corresponding to last row-block. */ \ |
| if (process_func != NULL) process_func(dec, row); \ |
| End: \ |
| if (br->error_ || !ok || (br->eos_ && src < src_end)) { \ |
| ok = 0; \ |
| dec->status_ = \ |
| (!br->eos_) ? VP8_STATUS_BITSTREAM_ERROR : VP8_STATUS_SUSPENDED; \ |
| } else if (src == src_end) { \ |
| dec->state_ = READ_DATA; \ |
| } \ |
| return ok; \ |
| } |
| |
| static WEBP_INLINE uint32_t GetARGBPixel(int alpha, int red, int green, |
| int blue) { |
| return (alpha << 24) | (red << 16) | (green << 8) | blue; |
| } |
| |
| static WEBP_INLINE uint8_t GetAlphaPixel(int alpha, int red, int green, |
| int blue) { |
| (void)alpha; |
| (void)red; |
| (void)blue; |
| return green; // Alpha value is stored in green channel. |
| } |
| |
| DECODE_DATA_FUNC(DecodeImageData, uint32_t, GetARGBPixel) |
| DECODE_DATA_FUNC(DecodeAlphaData, uint8_t, GetAlphaPixel) |
| |
| #undef DECODE_DATA_FUNC |
| |
| // ----------------------------------------------------------------------------- |
| // VP8LTransform |
| |
| static void ClearTransform(VP8LTransform* const transform) { |
| SbMemoryDeallocate(transform->data_); |
| transform->data_ = NULL; |
| } |
| |
| // For security reason, we need to remap the color map to span |
| // the total possible bundled values, and not just the num_colors. |
| static int ExpandColorMap(int num_colors, VP8LTransform* const transform) { |
| int i; |
| const int final_num_colors = 1 << (8 >> transform->bits_); |
| uint32_t* const new_color_map = |
| (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors, |
| sizeof(*new_color_map)); |
| if (new_color_map == NULL) { |
| return 0; |
| } else { |
| uint8_t* const data = (uint8_t*)transform->data_; |
| uint8_t* const new_data = (uint8_t*)new_color_map; |
| new_color_map[0] = transform->data_[0]; |
| for (i = 4; i < 4 * num_colors; ++i) { |
| // Equivalent to AddPixelEq(), on a byte-basis. |
| new_data[i] = (data[i] + new_data[i - 4]) & 0xff; |
| } |
| for (; i < 4 * final_num_colors; ++i) |
| new_data[i] = 0; // black tail. |
| SbMemoryDeallocate(transform->data_); |
| transform->data_ = new_color_map; |
| } |
| return 1; |
| } |
| |
| static int ReadTransform(int* const xsize, int const* ysize, |
| VP8LDecoder* const dec) { |
| int ok = 1; |
| VP8LBitReader* const br = &dec->br_; |
| VP8LTransform* transform = &dec->transforms_[dec->next_transform_]; |
| const VP8LImageTransformType type = |
| (VP8LImageTransformType)VP8LReadBits(br, 2); |
| |
| // Each transform type can only be present once in the stream. |
| if (dec->transforms_seen_ & (1U << type)) { |
| return 0; // Already there, let's not accept the second same transform. |
| } |
| dec->transforms_seen_ |= (1U << type); |
| |
| transform->type_ = type; |
| transform->xsize_ = *xsize; |
| transform->ysize_ = *ysize; |
| transform->data_ = NULL; |
| ++dec->next_transform_; |
| SB_DCHECK(dec->next_transform_ <= NUM_TRANSFORMS); |
| |
| switch (type) { |
| case PREDICTOR_TRANSFORM: |
| case CROSS_COLOR_TRANSFORM: |
| transform->bits_ = VP8LReadBits(br, 3) + 2; |
| ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_, |
| transform->bits_), |
| VP8LSubSampleSize(transform->ysize_, |
| transform->bits_), |
| 0, dec, &transform->data_); |
| break; |
| case COLOR_INDEXING_TRANSFORM: { |
| const int num_colors = VP8LReadBits(br, 8) + 1; |
| const int bits = (num_colors > 16) ? 0 |
| : (num_colors > 4) ? 1 |
| : (num_colors > 2) ? 2 |
| : 3; |
| *xsize = VP8LSubSampleSize(transform->xsize_, bits); |
| transform->bits_ = bits; |
| ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_); |
| ok = ok && ExpandColorMap(num_colors, transform); |
| break; |
| } |
| case SUBTRACT_GREEN: |
| break; |
| default: |
| SB_DCHECK(0); // can't happen |
| break; |
| } |
| |
| return ok; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // VP8LMetadata |
| |
| static void InitMetadata(VP8LMetadata* const hdr) { |
| SB_DCHECK(hdr); |
| SbMemorySet(hdr, 0, sizeof(*hdr)); |
| } |
| |
| static void ClearMetadata(VP8LMetadata* const hdr) { |
| SB_DCHECK(hdr); |
| |
| SbMemoryDeallocate(hdr->huffman_image_); |
| DeleteHtreeGroups(hdr->htree_groups_, hdr->num_htree_groups_); |
| VP8LColorCacheClear(&hdr->color_cache_); |
| InitMetadata(hdr); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // VP8LDecoder |
| |
| VP8LDecoder* VP8LNew(void) { |
| VP8LDecoder* const dec = (VP8LDecoder*)SbMemoryCalloc(1, sizeof(*dec)); |
| if (dec == NULL) return NULL; |
| dec->status_ = VP8_STATUS_OK; |
| dec->action_ = READ_DIM; |
| dec->state_ = READ_DIM; |
| return dec; |
| } |
| |
| void VP8LClear(VP8LDecoder* const dec) { |
| int i; |
| if (dec == NULL) return; |
| ClearMetadata(&dec->hdr_); |
| |
| SbMemoryDeallocate(dec->pixels_); |
| dec->pixels_ = NULL; |
| for (i = 0; i < dec->next_transform_; ++i) { |
| ClearTransform(&dec->transforms_[i]); |
| } |
| dec->next_transform_ = 0; |
| dec->transforms_seen_ = 0; |
| |
| SbMemoryDeallocate(dec->rescaler_memory); |
| dec->rescaler_memory = NULL; |
| |
| dec->output_ = NULL; // leave no trace behind |
| } |
| |
| void VP8LDelete(VP8LDecoder* const dec) { |
| if (dec != NULL) { |
| VP8LClear(dec); |
| SbMemoryDeallocate(dec); |
| } |
| } |
| |
| static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) { |
| VP8LMetadata* const hdr = &dec->hdr_; |
| const int num_bits = hdr->huffman_subsample_bits_; |
| dec->width_ = width; |
| dec->height_ = height; |
| |
| hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits); |
| hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1; |
| } |
| |
| static int DecodeImageStream(int xsize, int ysize, |
| int is_level0, |
| VP8LDecoder* const dec, |
| uint32_t** const decoded_data) { |
| int ok = 1; |
| int transform_xsize = xsize; |
| int transform_ysize = ysize; |
| VP8LBitReader* const br = &dec->br_; |
| VP8LMetadata* const hdr = &dec->hdr_; |
| uint32_t* data = NULL; |
| int color_cache_bits = 0; |
| |
| // Read the transforms (may recurse). |
| if (is_level0) { |
| while (ok && VP8LReadBits(br, 1)) { |
| ok = ReadTransform(&transform_xsize, &transform_ysize, dec); |
| } |
| } |
| |
| // Color cache |
| if (ok && VP8LReadBits(br, 1)) { |
| color_cache_bits = VP8LReadBits(br, 4); |
| ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS); |
| if (!ok) { |
| dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
| goto End; |
| } |
| } |
| |
| // Read the Huffman codes (may recurse). |
| ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize, |
| color_cache_bits, is_level0); |
| if (!ok) { |
| dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
| goto End; |
| } |
| |
| // Finish setting up the color-cache |
| if (color_cache_bits > 0) { |
| hdr->color_cache_size_ = 1 << color_cache_bits; |
| if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) { |
| dec->status_ = VP8_STATUS_OUT_OF_MEMORY; |
| ok = 0; |
| goto End; |
| } |
| } else { |
| hdr->color_cache_size_ = 0; |
| } |
| UpdateDecoder(dec, transform_xsize, transform_ysize); |
| |
| if (is_level0) { // level 0 complete |
| dec->state_ = READ_HDR; |
| goto End; |
| } |
| |
| { |
| const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize; |
| data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data)); |
| if (data == NULL) { |
| dec->status_ = VP8_STATUS_OUT_OF_MEMORY; |
| ok = 0; |
| goto End; |
| } |
| } |
| |
| // Use the Huffman trees to decode the LZ77 encoded data. |
| ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, NULL); |
| ok = ok && !br->error_; |
| |
| End: |
| |
| if (!ok) { |
| SbMemoryDeallocate(data); |
| ClearMetadata(hdr); |
| // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the |
| // status appropriately. |
| if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) { |
| dec->status_ = VP8_STATUS_SUSPENDED; |
| } |
| } else { |
| if (decoded_data != NULL) { |
| *decoded_data = data; |
| } else { |
| // We allocate image data in this function only for transforms. At level 0 |
| // (that is: not the transforms), we shouldn't have allocated anything. |
| SB_DCHECK(data == NULL); |
| SB_DCHECK(is_level0); |
| } |
| if (!is_level0) ClearMetadata(hdr); // Clean up temporary data behind. |
| } |
| return ok; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Allocate internal buffers dec->pixels_ and dec->argb_cache_. |
| static int AllocateInternalBuffers(VP8LDecoder* const dec, int final_width, |
| size_t bytes_per_pixel) { |
| const int argb_cache_needed = (bytes_per_pixel == sizeof(uint32_t)); |
| const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_; |
| // Scratch buffer corresponding to top-prediction row for transforming the |
| // first row in the row-blocks. Not needed for paletted alpha. |
| const uint64_t cache_top_pixels = |
| argb_cache_needed ? (uint16_t)final_width : 0ULL; |
| // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha. |
| const uint64_t cache_pixels = |
| argb_cache_needed ? (uint64_t)final_width * NUM_ARGB_CACHE_ROWS : 0ULL; |
| const uint64_t total_num_pixels = |
| num_pixels + cache_top_pixels + cache_pixels; |
| |
| SB_DCHECK(dec->width_ <= final_width); |
| dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, bytes_per_pixel); |
| if (dec->pixels_ == NULL) { |
| dec->argb_cache_ = NULL; // for sanity check |
| dec->status_ = VP8_STATUS_OUT_OF_MEMORY; |
| return 0; |
| } |
| dec->argb_cache_ = |
| argb_cache_needed ? dec->pixels_ + num_pixels + cache_top_pixels : NULL; |
| return 1; |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| // Special row-processing that only stores the alpha data. |
| static void ExtractAlphaRows(VP8LDecoder* const dec, int row) { |
| const int num_rows = row - dec->last_row_; |
| const uint32_t* const in = dec->pixels_ + dec->width_ * dec->last_row_; |
| |
| if (num_rows <= 0) return; // Nothing to be done. |
| ApplyInverseTransforms(dec, num_rows, in); |
| |
| // Extract alpha (which is stored in the green plane). |
| { |
| const int width = dec->io_->width; // the final width (!= dec->width_) |
| const int cache_pixs = width * num_rows; |
| uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_; |
| const uint32_t* const src = dec->argb_cache_; |
| int i; |
| for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff; |
| } |
| dec->last_row_ = dec->last_out_row_ = row; |
| } |
| |
| // Row-processing for the special case when alpha data contains only one |
| // transform: color indexing. |
| static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int row) { |
| const int num_rows = row - dec->last_row_; |
| const uint8_t* const in = |
| (uint8_t*)dec->pixels_ + dec->width_ * dec->last_row_; |
| if (num_rows <= 0) return; // Nothing to be done. |
| ApplyInverseTransformsAlpha(dec, num_rows, in); |
| dec->last_row_ = dec->last_out_row_ = row; |
| } |
| |
| int VP8LDecodeAlphaImageStream(int width, int height, const uint8_t* const data, |
| size_t data_size, uint8_t* const output) { |
| VP8Io io; |
| int ok = 0; |
| VP8LDecoder* const dec = VP8LNew(); |
| size_t bytes_per_pixel = sizeof(uint32_t); // Default: BGRA mode. |
| if (dec == NULL) return 0; |
| |
| dec->width_ = width; |
| dec->height_ = height; |
| dec->io_ = &io; |
| |
| VP8InitIo(&io); |
| WebPInitCustomIo(NULL, &io); // Just a sanity Init. io won't be used. |
| io.opaque = output; |
| io.width = width; |
| io.height = height; |
| |
| dec->status_ = VP8_STATUS_OK; |
| VP8LInitBitReader(&dec->br_, data, data_size); |
| |
| dec->action_ = READ_HDR; |
| if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Err; |
| |
| // Special case: if alpha data uses only the color indexing transform and |
| // doesn't use color cache (a frequent case), we will use DecodeAlphaData() |
| // method that only needs allocation of 1 byte per pixel (alpha channel). |
| if (dec->next_transform_ == 1 && |
| dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM && |
| dec->hdr_.color_cache_size_ == 0) { |
| bytes_per_pixel = sizeof(uint8_t); |
| } |
| |
| // Allocate internal buffers (note that dec->width_ may have changed here). |
| if (!AllocateInternalBuffers(dec, width, bytes_per_pixel)) goto Err; |
| |
| // Decode (with special row processing). |
| dec->action_ = READ_DATA; |
| ok = (bytes_per_pixel == sizeof(uint8_t)) ? |
| DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_, |
| ExtractPalettedAlphaRows) : |
| DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_, |
| ExtractAlphaRows); |
| |
| Err: |
| VP8LDelete(dec); |
| return ok; |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) { |
| int width, height, has_alpha; |
| |
| if (dec == NULL) return 0; |
| if (io == NULL) { |
| dec->status_ = VP8_STATUS_INVALID_PARAM; |
| return 0; |
| } |
| |
| dec->io_ = io; |
| dec->status_ = VP8_STATUS_OK; |
| VP8LInitBitReader(&dec->br_, io->data, io->data_size); |
| if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) { |
| dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
| goto Error; |
| } |
| dec->state_ = READ_DIM; |
| io->width = width; |
| io->height = height; |
| |
| dec->action_ = READ_HDR; |
| if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error; |
| return 1; |
| |
| Error: |
| VP8LClear(dec); |
| SB_DCHECK(dec->status_ != VP8_STATUS_OK); |
| return 0; |
| } |
| |
| int VP8LDecodeImage(VP8LDecoder* const dec) { |
| const size_t bytes_per_pixel = sizeof(uint32_t); |
| VP8Io* io = NULL; |
| WebPDecParams* params = NULL; |
| |
| // Sanity checks. |
| if (dec == NULL) return 0; |
| |
| io = dec->io_; |
| SB_DCHECK(io != NULL); |
| params = (WebPDecParams*)io->opaque; |
| SB_DCHECK(params != NULL); |
| dec->output_ = params->output; |
| SB_DCHECK(dec->output_ != NULL); |
| |
| // Initialization. |
| if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) { |
| dec->status_ = VP8_STATUS_INVALID_PARAM; |
| goto Err; |
| } |
| |
| if (!AllocateInternalBuffers(dec, io->width, bytes_per_pixel)) goto Err; |
| |
| if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err; |
| |
| // Decode. |
| dec->action_ = READ_DATA; |
| if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_, |
| ProcessRows)) { |
| goto Err; |
| } |
| |
| // Cleanup. |
| params->last_y = dec->last_out_row_; |
| VP8LClear(dec); |
| return 1; |
| |
| Err: |
| VP8LClear(dec); |
| SB_DCHECK(dec->status_ != VP8_STATUS_OK); |
| return 0; |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| } // extern "C" |
| #endif |