| /* |
| ******************************************************************************* |
| * Copyright (C) 2010, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| ******************************************************************************* |
| * file name: denseranges.cpp |
| * encoding: US-ASCII |
| * tab size: 8 (not used) |
| * indentation:4 |
| * |
| * created on: 2010sep25 |
| * created by: Markus W. Scherer |
| * |
| * Helper code for finding a small number of dense ranges. |
| */ |
| |
| #include "unicode/utypes.h" |
| #include "denseranges.h" |
| |
| // Definitions in the anonymous namespace are invisible outside this file. |
| namespace { |
| |
| /** |
| * Collect up to 15 range gaps and sort them by ascending gap size. |
| */ |
| class LargestGaps { |
| public: |
| LargestGaps(int32_t max) : maxLength(max<=kCapacity ? max : kCapacity), length(0) {} |
| |
| void add(int32_t gapStart, int64_t gapLength) { |
| int32_t i=length; |
| while(i>0 && gapLength>gapLengths[i-1]) { |
| --i; |
| } |
| if(i<maxLength) { |
| // The new gap is now one of the maxLength largest. |
| // Insert the new gap, moving up smaller ones of the previous |
| // length largest. |
| int32_t j= length<maxLength ? length++ : maxLength-1; |
| while(j>i) { |
| gapStarts[j]=gapStarts[j-1]; |
| gapLengths[j]=gapLengths[j-1]; |
| --j; |
| } |
| gapStarts[i]=gapStart; |
| gapLengths[i]=gapLength; |
| } |
| } |
| |
| void truncate(int32_t newLength) { |
| if(newLength<length) { |
| length=newLength; |
| } |
| } |
| |
| int32_t count() const { return length; } |
| int32_t gapStart(int32_t i) const { return gapStarts[i]; } |
| int64_t gapLength(int32_t i) const { return gapLengths[i]; } |
| |
| int32_t firstAfter(int32_t value) const { |
| if(length==0) { |
| return -1; |
| } |
| int32_t minValue=0; |
| int32_t minIndex=-1; |
| for(int32_t i=0; i<length; ++i) { |
| if(value<gapStarts[i] && (minIndex<0 || gapStarts[i]<minValue)) { |
| minValue=gapStarts[i]; |
| minIndex=i; |
| } |
| } |
| return minIndex; |
| } |
| |
| private: |
| static const int32_t kCapacity=15; |
| |
| int32_t maxLength; |
| int32_t length; |
| int32_t gapStarts[kCapacity]; |
| int64_t gapLengths[kCapacity]; |
| }; |
| |
| } // namespace |
| |
| /** |
| * Does it make sense to write 1..capacity ranges? |
| * Returns 0 if not, otherwise the number of ranges. |
| * @param values Sorted array of signed-integer values. |
| * @param length Number of values. |
| * @param density Minimum average range density, in 256th. (0x100=100%=perfectly dense.) |
| * Should be 0x80..0x100, must be 1..0x100. |
| * @param ranges Output ranges array. |
| * @param capacity Maximum number of ranges. |
| * @return Minimum number of ranges (at most capacity) that have the desired density, |
| * or 0 if that density cannot be achieved. |
| */ |
| U_CAPI int32_t U_EXPORT2 |
| uprv_makeDenseRanges(const int32_t values[], int32_t length, |
| int32_t density, |
| int32_t ranges[][2], int32_t capacity) { |
| if(length<=2) { |
| return 0; |
| } |
| int32_t minValue=values[0]; |
| int32_t maxValue=values[length-1]; // Assume minValue<=maxValue. |
| // Use int64_t variables for intermediate-value precision and to avoid |
| // signed-int32_t overflow of maxValue-minValue. |
| int64_t maxLength=(int64_t)maxValue-(int64_t)minValue+1; |
| if(length>=(density*maxLength)/0x100) { |
| // Use one range. |
| ranges[0][0]=minValue; |
| ranges[0][1]=maxValue; |
| return 1; |
| } |
| if(length<=4) { |
| return 0; |
| } |
| // See if we can split [minValue, maxValue] into 2..capacity ranges, |
| // divided by the 1..(capacity-1) largest gaps. |
| LargestGaps gaps(capacity-1); |
| int32_t i; |
| int32_t expectedValue=minValue; |
| for(i=1; i<length; ++i) { |
| ++expectedValue; |
| int32_t actualValue=values[i]; |
| if(expectedValue!=actualValue) { |
| gaps.add(expectedValue, (int64_t)actualValue-(int64_t)expectedValue); |
| expectedValue=actualValue; |
| } |
| } |
| // We know gaps.count()>=1 because we have fewer values (length) than |
| // the length of the [minValue..maxValue] range (maxLength). |
| // (Otherwise we would have returned with the one range above.) |
| int32_t num; |
| for(i=0, num=2;; ++i, ++num) { |
| if(i>=gaps.count()) { |
| // The values are too sparse for capacity or fewer ranges |
| // of the requested density. |
| return 0; |
| } |
| maxLength-=gaps.gapLength(i); |
| if(length>num*2 && length>=(density*maxLength)/0x100) { |
| break; |
| } |
| } |
| // Use the num ranges with the num-1 largest gaps. |
| gaps.truncate(num-1); |
| ranges[0][0]=minValue; |
| for(i=0; i<=num-2; ++i) { |
| int32_t gapIndex=gaps.firstAfter(minValue); |
| int32_t gapStart=gaps.gapStart(gapIndex); |
| ranges[i][1]=gapStart-1; |
| ranges[i+1][0]=minValue=(int32_t)(gapStart+gaps.gapLength(gapIndex)); |
| } |
| ranges[num-1][1]=maxValue; |
| return num; |
| } |