| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 |
| |
| #include "src/api/api-arguments.h" |
| #include "src/codegen/code-factory.h" |
| // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop. |
| #include "src/codegen/macro-assembler-inl.h" |
| #include "src/codegen/register-configuration.h" |
| #include "src/debug/debug.h" |
| #include "src/deoptimizer/deoptimizer.h" |
| #include "src/execution/frame-constants.h" |
| #include "src/execution/frames.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/logging/counters.h" |
| #include "src/objects/cell.h" |
| #include "src/objects/foreign.h" |
| #include "src/objects/heap-number.h" |
| #include "src/objects/js-generator.h" |
| #include "src/objects/smi.h" |
| #include "src/runtime/runtime.h" |
| #include "src/wasm/wasm-linkage.h" |
| #include "src/wasm/wasm-objects.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) { |
| __ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void GenerateTailCallToReturnedCode(MacroAssembler* masm, |
| Runtime::FunctionId function_id) { |
| // ----------- S t a t e ------------- |
| // -- r3 : actual argument count |
| // -- r4 : target function (preserved for callee) |
| // -- r6 : new target (preserved for callee) |
| // ----------------------------------- |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| // Push a copy of the target function, the new target and the actual |
| // argument count. |
| // Push function as parameter to the runtime call. |
| __ SmiTag(kJavaScriptCallArgCountRegister); |
| __ Push(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister, |
| kJavaScriptCallArgCountRegister, kJavaScriptCallTargetRegister); |
| |
| __ CallRuntime(function_id, 1); |
| __ mr(r5, r3); |
| |
| // Restore target function, new target and actual argument count. |
| __ Pop(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister, |
| kJavaScriptCallArgCountRegister); |
| __ SmiUntag(kJavaScriptCallArgCountRegister); |
| } |
| static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); |
| __ JumpCodeObject(r5); |
| } |
| |
| namespace { |
| |
| enum StackLimitKind { kInterruptStackLimit, kRealStackLimit }; |
| |
| void LoadStackLimit(MacroAssembler* masm, Register destination, |
| StackLimitKind kind) { |
| DCHECK(masm->root_array_available()); |
| Isolate* isolate = masm->isolate(); |
| ExternalReference limit = |
| kind == StackLimitKind::kRealStackLimit |
| ? ExternalReference::address_of_real_jslimit(isolate) |
| : ExternalReference::address_of_jslimit(isolate); |
| DCHECK(TurboAssembler::IsAddressableThroughRootRegister(isolate, limit)); |
| |
| intptr_t offset = |
| TurboAssembler::RootRegisterOffsetForExternalReference(isolate, limit); |
| CHECK(is_int32(offset)); |
| __ LoadP(destination, MemOperand(kRootRegister, offset), r0); |
| } |
| |
| void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, |
| Register scratch, Label* stack_overflow) { |
| // Check the stack for overflow. We are not trying to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| LoadStackLimit(masm, scratch, StackLimitKind::kRealStackLimit); |
| // Make scratch the space we have left. The stack might already be overflowed |
| // here which will cause scratch to become negative. |
| __ sub(scratch, sp, scratch); |
| // Check if the arguments will overflow the stack. |
| __ ShiftLeftImm(r0, num_args, Operand(kSystemPointerSizeLog2)); |
| __ cmp(scratch, r0); |
| __ ble(stack_overflow); // Signed comparison. |
| } |
| |
| void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : number of arguments |
| // -- r4 : constructor function |
| // -- r6 : new target |
| // -- cp : context |
| // -- lr : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| Register scratch = r5; |
| |
| Label stack_overflow; |
| |
| Generate_StackOverflowCheck(masm, r3, r8, &stack_overflow); |
| // Enter a construct frame. |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); |
| |
| // Preserve the incoming parameters on the stack. |
| |
| __ SmiTag(r3); |
| __ Push(cp, r3); |
| __ SmiUntag(r3, SetRC); |
| |
| // Set up pointer to last argument (skip receiver). |
| __ addi( |
| r7, fp, |
| Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize)); |
| // Copy arguments and receiver to the expression stack. |
| __ PushArray(r7, r3, r8, r0); |
| // The receiver for the builtin/api call. |
| __ PushRoot(RootIndex::kTheHoleValue); |
| |
| // Call the function. |
| // r3: number of arguments (untagged) |
| // r4: constructor function |
| // r6: new target |
| { |
| ConstantPoolUnavailableScope constant_pool_unavailable(masm); |
| __ InvokeFunctionWithNewTarget(r4, r6, r3, CALL_FUNCTION); |
| } |
| |
| // Restore context from the frame. |
| __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| // Restore smi-tagged arguments count from the frame. |
| __ LoadP(scratch, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| |
| // Leave construct frame. |
| } |
| // Remove caller arguments from the stack and return. |
| STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| |
| __ SmiToPtrArrayOffset(scratch, scratch); |
| __ add(sp, sp, scratch); |
| __ addi(sp, sp, Operand(kSystemPointerSize)); |
| __ blr(); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bkpt(0); // Unreachable code. |
| } |
| } |
| |
| } // namespace |
| |
| // The construct stub for ES5 constructor functions and ES6 class constructors. |
| void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3: number of arguments (untagged) |
| // -- r4: constructor function |
| // -- r6: new target |
| // -- cp: context |
| // -- lr: return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| // Enter a construct frame. |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); |
| Label post_instantiation_deopt_entry, not_create_implicit_receiver; |
| |
| // Preserve the incoming parameters on the stack. |
| __ SmiTag(r3); |
| __ Push(cp, r3, r4); |
| __ PushRoot(RootIndex::kUndefinedValue); |
| __ Push(r6); |
| |
| // ----------- S t a t e ------------- |
| // -- sp[0*kSystemPointerSize]: new target |
| // -- sp[1*kSystemPointerSize]: padding |
| // -- r4 and sp[2*kSystemPointerSize]: constructor function |
| // -- sp[3*kSystemPointerSize]: number of arguments (tagged) |
| // -- sp[4*kSystemPointerSize]: context |
| // ----------------------------------- |
| |
| __ LoadTaggedPointerField( |
| r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
| __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset)); |
| __ DecodeField<SharedFunctionInfo::FunctionKindBits>(r7); |
| __ JumpIfIsInRange(r7, kDefaultDerivedConstructor, kDerivedConstructor, |
| ¬_create_implicit_receiver); |
| |
| // If not derived class constructor: Allocate the new receiver object. |
| __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, |
| r7, r8); |
| __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), |
| RelocInfo::CODE_TARGET); |
| __ b(&post_instantiation_deopt_entry); |
| |
| // Else: use TheHoleValue as receiver for constructor call |
| __ bind(¬_create_implicit_receiver); |
| __ LoadRoot(r3, RootIndex::kTheHoleValue); |
| |
| // ----------- S t a t e ------------- |
| // -- r3: receiver |
| // -- Slot 4 / sp[0*kSystemPointerSize]: new target |
| // -- Slot 3 / sp[1*kSystemPointerSize]: padding |
| // -- Slot 2 / sp[2*kSystemPointerSize]: constructor function |
| // -- Slot 1 / sp[3*kSystemPointerSize]: number of arguments (tagged) |
| // -- Slot 0 / sp[4*kSystemPointerSize]: context |
| // ----------------------------------- |
| // Deoptimizer enters here. |
| masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( |
| masm->pc_offset()); |
| __ bind(&post_instantiation_deopt_entry); |
| |
| // Restore new target. |
| __ Pop(r6); |
| |
| // Push the allocated receiver to the stack. |
| __ Push(r3); |
| // We need two copies because we may have to return the original one |
| // and the calling conventions dictate that the called function pops the |
| // receiver. The second copy is pushed after the arguments, we saved in r6 |
| // since r0 needs to store the number of arguments before |
| // InvokingFunction. |
| __ mr(r9, r3); |
| |
| // Set up pointer to first argument (skip receiver). |
| __ addi( |
| r7, fp, |
| Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize)); |
| |
| // ----------- S t a t e ------------- |
| // -- r6: new target |
| // -- sp[0*kSystemPointerSize]: implicit receiver |
| // -- sp[1*kSystemPointerSize]: implicit receiver |
| // -- sp[2*kSystemPointerSize]: padding |
| // -- sp[3*kSystemPointerSize]: constructor function |
| // -- sp[4*kSystemPointerSize]: number of arguments (tagged) |
| // -- sp[5*kSystemPointerSize]: context |
| // ----------------------------------- |
| |
| // Restore constructor function and argument count. |
| __ LoadP(r4, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); |
| __ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| __ SmiUntag(r3); |
| |
| Label enough_stack_space, stack_overflow; |
| Generate_StackOverflowCheck(masm, r3, r8, &stack_overflow); |
| __ b(&enough_stack_space); |
| |
| __ bind(&stack_overflow); |
| // Restore the context from the frame. |
| __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable code. |
| __ bkpt(0); |
| |
| __ bind(&enough_stack_space); |
| |
| // Copy arguments and receiver to the expression stack. |
| __ PushArray(r7, r3, r8, r0); |
| |
| // Push implicit receiver. |
| __ Push(r9); |
| |
| // Call the function. |
| { |
| ConstantPoolUnavailableScope constant_pool_unavailable(masm); |
| __ InvokeFunctionWithNewTarget(r4, r6, r3, CALL_FUNCTION); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- r0: constructor result |
| // -- sp[0*kSystemPointerSize]: implicit receiver |
| // -- sp[1*kSystemPointerSize]: padding |
| // -- sp[2*kSystemPointerSize]: constructor function |
| // -- sp[3*kSystemPointerSize]: number of arguments |
| // -- sp[4*kSystemPointerSize]: context |
| // ----------------------------------- |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // Restore the context from the frame. |
| __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| |
| // If the result is an object (in the ECMA sense), we should get rid |
| // of the receiver and use the result; see ECMA-262 section 13.2.2-7 |
| // on page 74. |
| Label use_receiver, do_throw, leave_frame; |
| |
| // If the result is undefined, we jump out to using the implicit receiver. |
| __ JumpIfRoot(r3, RootIndex::kUndefinedValue, &use_receiver); |
| |
| // Otherwise we do a smi check and fall through to check if the return value |
| // is a valid receiver. |
| |
| // If the result is a smi, it is *not* an object in the ECMA sense. |
| __ JumpIfSmi(r3, &use_receiver); |
| |
| // If the type of the result (stored in its map) is less than |
| // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CompareObjectType(r3, r7, r7, FIRST_JS_RECEIVER_TYPE); |
| __ bge(&leave_frame); |
| __ b(&use_receiver); |
| |
| __ bind(&do_throw); |
| __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); |
| |
| // Throw away the result of the constructor invocation and use the |
| // on-stack receiver as the result. |
| __ bind(&use_receiver); |
| __ LoadP(r3, MemOperand(sp)); |
| __ JumpIfRoot(r3, RootIndex::kTheHoleValue, &do_throw); |
| |
| __ bind(&leave_frame); |
| // Restore smi-tagged arguments count from the frame. |
| __ LoadP(r4, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| // Leave construct frame. |
| } |
| |
| // Remove caller arguments from the stack and return. |
| STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| |
| __ SmiToPtrArrayOffset(r4, r4); |
| __ add(sp, sp, r4); |
| __ addi(sp, sp, Operand(kSystemPointerSize)); |
| __ blr(); |
| } |
| |
| void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { |
| Generate_JSBuiltinsConstructStubHelper(masm); |
| } |
| |
| static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, |
| Register sfi_data, |
| Register scratch1) { |
| Label done; |
| |
| __ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE); |
| __ bne(&done); |
| __ LoadTaggedPointerField( |
| sfi_data, |
| FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); |
| __ bind(&done); |
| } |
| |
| // static |
| void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : the value to pass to the generator |
| // -- r4 : the JSGeneratorObject to resume |
| // -- lr : return address |
| // ----------------------------------- |
| __ AssertGeneratorObject(r4); |
| |
| // Store input value into generator object. |
| __ StoreTaggedField( |
| r3, FieldMemOperand(r4, JSGeneratorObject::kInputOrDebugPosOffset), r0); |
| __ RecordWriteField(r4, JSGeneratorObject::kInputOrDebugPosOffset, r3, r6, |
| kLRHasNotBeenSaved, kDontSaveFPRegs); |
| |
| // Load suspended function and context. |
| __ LoadTaggedPointerField( |
| r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset)); |
| __ LoadTaggedPointerField(cp, |
| FieldMemOperand(r7, JSFunction::kContextOffset)); |
| |
| // Flood function if we are stepping. |
| Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; |
| Label stepping_prepared; |
| Register scratch = r8; |
| ExternalReference debug_hook = |
| ExternalReference::debug_hook_on_function_call_address(masm->isolate()); |
| __ Move(scratch, debug_hook); |
| __ LoadByte(scratch, MemOperand(scratch), r0); |
| __ extsb(scratch, scratch); |
| __ CmpSmiLiteral(scratch, Smi::zero(), r0); |
| __ bne(&prepare_step_in_if_stepping); |
| |
| // Flood function if we need to continue stepping in the suspended generator. |
| |
| ExternalReference debug_suspended_generator = |
| ExternalReference::debug_suspended_generator_address(masm->isolate()); |
| |
| __ Move(scratch, debug_suspended_generator); |
| __ LoadP(scratch, MemOperand(scratch)); |
| __ cmp(scratch, r4); |
| __ beq(&prepare_step_in_suspended_generator); |
| __ bind(&stepping_prepared); |
| |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| Label stack_overflow; |
| LoadStackLimit(masm, scratch, StackLimitKind::kRealStackLimit); |
| __ cmpl(sp, scratch); |
| __ blt(&stack_overflow); |
| |
| // ----------- S t a t e ------------- |
| // -- r4 : the JSGeneratorObject to resume |
| // -- r7 : generator function |
| // -- cp : generator context |
| // -- lr : return address |
| // ----------------------------------- |
| |
| // Copy the function arguments from the generator object's register file. |
| __ LoadTaggedPointerField( |
| r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadHalfWord( |
| r6, FieldMemOperand(r6, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ LoadTaggedPointerField( |
| r5, |
| FieldMemOperand(r4, JSGeneratorObject::kParametersAndRegistersOffset)); |
| { |
| Label done_loop, loop; |
| __ mr(r9, r6); |
| |
| __ bind(&loop); |
| __ subi(r9, r9, Operand(1)); |
| __ cmpi(r9, Operand::Zero()); |
| __ blt(&done_loop); |
| __ ShiftLeftImm(r10, r9, Operand(kTaggedSizeLog2)); |
| __ add(scratch, r5, r10); |
| __ LoadAnyTaggedField(scratch, |
| FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
| __ Push(scratch); |
| __ b(&loop); |
| |
| __ bind(&done_loop); |
| |
| // Push receiver. |
| __ LoadAnyTaggedField( |
| scratch, FieldMemOperand(r4, JSGeneratorObject::kReceiverOffset)); |
| __ Push(scratch); |
| } |
| |
| // Underlying function needs to have bytecode available. |
| if (FLAG_debug_code) { |
| __ LoadTaggedPointerField( |
| r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadTaggedPointerField( |
| r6, FieldMemOperand(r6, SharedFunctionInfo::kFunctionDataOffset)); |
| GetSharedFunctionInfoBytecode(masm, r6, r3); |
| __ CompareObjectType(r6, r6, r6, BYTECODE_ARRAY_TYPE); |
| __ Assert(eq, AbortReason::kMissingBytecodeArray); |
| } |
| |
| // Resume (Ignition/TurboFan) generator object. |
| { |
| __ LoadP(r3, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadHalfWord( |
| r3, |
| FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset)); |
| // We abuse new.target both to indicate that this is a resume call and to |
| // pass in the generator object. In ordinary calls, new.target is always |
| // undefined because generator functions are non-constructable. |
| __ mr(r6, r4); |
| __ mr(r4, r7); |
| static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); |
| __ LoadTaggedPointerField(r5, FieldMemOperand(r4, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(r5); |
| } |
| |
| __ bind(&prepare_step_in_if_stepping); |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ Push(r4, r7); |
| // Push hole as receiver since we do not use it for stepping. |
| __ PushRoot(RootIndex::kTheHoleValue); |
| __ CallRuntime(Runtime::kDebugOnFunctionCall); |
| __ Pop(r4); |
| __ LoadTaggedPointerField( |
| r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ b(&stepping_prepared); |
| |
| __ bind(&prepare_step_in_suspended_generator); |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ Push(r4); |
| __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); |
| __ Pop(r4); |
| __ LoadTaggedPointerField( |
| r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ b(&stepping_prepared); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bkpt(0); // This should be unreachable. |
| } |
| } |
| |
| void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ push(r4); |
| __ CallRuntime(Runtime::kThrowConstructedNonConstructable); |
| } |
| |
| namespace { |
| |
| // Called with the native C calling convention. The corresponding function |
| // signature is either: |
| // |
| // using JSEntryFunction = GeneratedCode<Address( |
| // Address root_register_value, Address new_target, Address target, |
| // Address receiver, intptr_t argc, Address** args)>; |
| // or |
| // using JSEntryFunction = GeneratedCode<Address( |
| // Address root_register_value, MicrotaskQueue* microtask_queue)>; |
| void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type, |
| Builtins::Name entry_trampoline) { |
| // The register state is either: |
| // r3: root_register_value |
| // r4: code entry |
| // r5: function |
| // r6: receiver |
| // r7: argc |
| // r8: argv |
| // or |
| // r3: root_register_value |
| // r4: microtask_queue |
| |
| Label invoke, handler_entry, exit; |
| |
| { |
| NoRootArrayScope no_root_array(masm); |
| |
| // PPC LINUX ABI: |
| // preserve LR in pre-reserved slot in caller's frame |
| __ mflr(r0); |
| __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kSystemPointerSize)); |
| |
| // Save callee saved registers on the stack. |
| __ MultiPush(kCalleeSaved); |
| |
| // Save callee-saved double registers. |
| __ MultiPushDoubles(kCalleeSavedDoubles); |
| // Set up the reserved register for 0.0. |
| __ LoadDoubleLiteral(kDoubleRegZero, Double(0.0), r0); |
| |
| // Initialize the root register. |
| // C calling convention. The first argument is passed in r3. |
| __ mr(kRootRegister, r3); |
| } |
| |
| // Push a frame with special values setup to mark it as an entry frame. |
| // r4: code entry |
| // r5: function |
| // r6: receiver |
| // r7: argc |
| // r8: argv |
| __ li(r0, Operand(-1)); // Push a bad frame pointer to fail if it is used. |
| __ push(r0); |
| if (FLAG_enable_embedded_constant_pool) { |
| __ li(kConstantPoolRegister, Operand::Zero()); |
| __ push(kConstantPoolRegister); |
| } |
| __ mov(r0, Operand(StackFrame::TypeToMarker(type))); |
| __ push(r0); |
| __ push(r0); |
| // Save copies of the top frame descriptor on the stack. |
| __ Move(r3, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, |
| masm->isolate())); |
| __ LoadP(r0, MemOperand(r3)); |
| __ push(r0); |
| |
| Register scratch = r9; |
| // Set up frame pointer for the frame to be pushed. |
| __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
| |
| // If this is the outermost JS call, set js_entry_sp value. |
| Label non_outermost_js; |
| ExternalReference js_entry_sp = |
| ExternalReference::Create(IsolateAddressId::kJSEntrySPAddress, |
| masm->isolate()); |
| __ Move(r3, js_entry_sp); |
| __ LoadP(scratch, MemOperand(r3)); |
| __ cmpi(scratch, Operand::Zero()); |
| __ bne(&non_outermost_js); |
| __ StoreP(fp, MemOperand(r3)); |
| __ mov(scratch, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| Label cont; |
| __ b(&cont); |
| __ bind(&non_outermost_js); |
| __ mov(scratch, Operand(StackFrame::INNER_JSENTRY_FRAME)); |
| __ bind(&cont); |
| __ push(scratch); // frame-type |
| |
| // Jump to a faked try block that does the invoke, with a faked catch |
| // block that sets the pending exception. |
| __ b(&invoke); |
| |
| // Block literal pool emission whilst taking the position of the handler |
| // entry. This avoids making the assumption that literal pools are always |
| // emitted after an instruction is emitted, rather than before. |
| { |
| ConstantPoolUnavailableScope constant_pool_unavailable(masm); |
| __ bind(&handler_entry); |
| |
| // Store the current pc as the handler offset. It's used later to create the |
| // handler table. |
| masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos()); |
| |
| // Caught exception: Store result (exception) in the pending exception |
| // field in the JSEnv and return a failure sentinel. Coming in here the |
| // fp will be invalid because the PushStackHandler below sets it to 0 to |
| // signal the existence of the JSEntry frame. |
| __ Move(scratch, |
| ExternalReference::Create( |
| IsolateAddressId::kPendingExceptionAddress, masm->isolate())); |
| } |
| |
| __ StoreP(r3, MemOperand(scratch)); |
| __ LoadRoot(r3, RootIndex::kException); |
| __ b(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| // Must preserve r4-r8. |
| __ PushStackHandler(); |
| // If an exception not caught by another handler occurs, this handler |
| // returns control to the code after the b(&invoke) above, which |
| // restores all kCalleeSaved registers (including cp and fp) to their |
| // saved values before returning a failure to C. |
| |
| // Invoke the function by calling through JS entry trampoline builtin. |
| // Notice that we cannot store a reference to the trampoline code directly in |
| // this stub, because runtime stubs are not traversed when doing GC. |
| |
| // Invoke the function by calling through JS entry trampoline builtin and |
| // pop the faked function when we return. |
| Handle<Code> trampoline_code = |
| masm->isolate()->builtins()->builtin_handle(entry_trampoline); |
| __ Call(trampoline_code, RelocInfo::CODE_TARGET); |
| |
| // Unlink this frame from the handler chain. |
| __ PopStackHandler(); |
| |
| __ bind(&exit); // r3 holds result |
| // Check if the current stack frame is marked as the outermost JS frame. |
| Label non_outermost_js_2; |
| __ pop(r8); |
| __ cmpi(r8, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| __ bne(&non_outermost_js_2); |
| __ mov(scratch, Operand::Zero()); |
| __ Move(r8, js_entry_sp); |
| __ StoreP(scratch, MemOperand(r8)); |
| __ bind(&non_outermost_js_2); |
| |
| // Restore the top frame descriptors from the stack. |
| __ pop(r6); |
| __ Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, |
| masm->isolate())); |
| __ StoreP(r6, MemOperand(scratch)); |
| |
| // Reset the stack to the callee saved registers. |
| __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
| |
| // Restore callee-saved double registers. |
| __ MultiPopDoubles(kCalleeSavedDoubles); |
| |
| // Restore callee-saved registers. |
| __ MultiPop(kCalleeSaved); |
| |
| // Return |
| __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kSystemPointerSize)); |
| __ mtlr(r0); |
| __ blr(); |
| } |
| |
| } // namespace |
| |
| void Builtins::Generate_JSEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::ENTRY, |
| Builtins::kJSEntryTrampoline); |
| } |
| |
| void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY, |
| Builtins::kJSConstructEntryTrampoline); |
| } |
| |
| void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::ENTRY, |
| Builtins::kRunMicrotasksTrampoline); |
| } |
| |
| // Clobbers scratch1 and scratch2; preserves all other registers. |
| static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc, |
| Register scratch1, Register scratch2) { |
| // Check the stack for overflow. We are not trying to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| Label okay; |
| LoadStackLimit(masm, scratch1, StackLimitKind::kRealStackLimit); |
| // Make scratch1 the space we have left. The stack might already be overflowed |
| // here which will cause scratch1 to become negative. |
| __ sub(scratch1, sp, scratch1); |
| // Check if the arguments will overflow the stack. |
| __ ShiftLeftImm(scratch2, argc, Operand(kSystemPointerSizeLog2)); |
| __ cmp(scratch1, scratch2); |
| __ bgt(&okay); // Signed comparison. |
| |
| // Out of stack space. |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| |
| __ bind(&okay); |
| } |
| |
| static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, |
| bool is_construct) { |
| // Called from Generate_JS_Entry |
| // r4: new.target |
| // r5: function |
| // r6: receiver |
| // r7: argc |
| // r8: argv |
| // r0,r3,r9, cp may be clobbered |
| |
| // Enter an internal frame. |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Setup the context (we need to use the caller context from the isolate). |
| ExternalReference context_address = ExternalReference::Create( |
| IsolateAddressId::kContextAddress, masm->isolate()); |
| __ Move(cp, context_address); |
| __ LoadP(cp, MemOperand(cp)); |
| |
| // Push the function. |
| __ Push(r5); |
| |
| // Check if we have enough stack space to push all arguments. |
| __ addi(r3, r7, Operand(1)); |
| Generate_CheckStackOverflow(masm, r3, r9, r0); |
| |
| // Copy arguments to the stack in a loop. |
| // r4: function |
| // r7: argc |
| // r8: argv, i.e. points to first arg |
| Label loop, done; |
| __ cmpi(r7, Operand::Zero()); |
| __ beq(&done); |
| |
| __ ShiftLeftImm(r9, r7, Operand(kSystemPointerSizeLog2)); |
| __ add(r8, r8, r9); // point to last arg |
| |
| __ mtctr(r7); |
| __ bind(&loop); |
| __ LoadPU(r9, MemOperand(r8, -kSystemPointerSize)); // read next parameter |
| __ LoadP(r0, MemOperand(r9)); // dereference handle |
| __ push(r0); // push parameter |
| __ bdnz(&loop); |
| __ bind(&done); |
| |
| // Push the receiver. |
| __ Push(r6); |
| |
| // r3: argc |
| // r4: function |
| // r6: new.target |
| __ mr(r3, r7); |
| __ mr(r6, r4); |
| __ mr(r4, r5); |
| |
| // Initialize all JavaScript callee-saved registers, since they will be seen |
| // by the garbage collector as part of handlers. |
| __ LoadRoot(r7, RootIndex::kUndefinedValue); |
| __ mr(r8, r7); |
| __ mr(r14, r7); |
| __ mr(r15, r7); |
| __ mr(r16, r7); |
| __ mr(r17, r7); |
| |
| // Invoke the code. |
| Handle<Code> builtin = is_construct |
| ? BUILTIN_CODE(masm->isolate(), Construct) |
| : masm->isolate()->builtins()->Call(); |
| __ Call(builtin, RelocInfo::CODE_TARGET); |
| |
| // Exit the JS frame and remove the parameters (except function), and |
| // return. |
| } |
| __ blr(); |
| |
| // r3: result |
| } |
| |
| void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, false); |
| } |
| |
| void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, true); |
| } |
| |
| void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) { |
| // This expects two C++ function parameters passed by Invoke() in |
| // execution.cc. |
| // r3: root_register_value |
| // r4: microtask_queue |
| |
| __ mr(RunMicrotasksDescriptor::MicrotaskQueueRegister(), r4); |
| __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET); |
| } |
| |
| static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm, |
| Register optimized_code, |
| Register closure, |
| Register scratch1, |
| Register scratch2) { |
| // Store code entry in the closure. |
| __ StoreTaggedField(optimized_code, |
| FieldMemOperand(closure, JSFunction::kCodeOffset), r0); |
| __ mr(scratch1, optimized_code); // Write barrier clobbers scratch1 below. |
| __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, |
| kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
| OMIT_SMI_CHECK); |
| } |
| |
| static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { |
| Register args_count = scratch; |
| |
| // Get the arguments + receiver count. |
| __ LoadP(args_count, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ lwz(args_count, |
| FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset)); |
| |
| // Leave the frame (also dropping the register file). |
| __ LeaveFrame(StackFrame::INTERPRETED); |
| |
| __ add(sp, sp, args_count); |
| } |
| |
| // Tail-call |function_id| if |actual_marker| == |expected_marker| |
| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, |
| Register actual_marker, |
| OptimizationMarker expected_marker, |
| Runtime::FunctionId function_id) { |
| Label no_match; |
| __ cmpi(actual_marker, Operand(expected_marker)); |
| __ bne(&no_match); |
| GenerateTailCallToReturnedCode(masm, function_id); |
| __ bind(&no_match); |
| } |
| |
| static void TailCallOptimizedCodeSlot(MacroAssembler* masm, |
| Register optimized_code_entry, |
| Register scratch) { |
| // ----------- S t a t e ------------- |
| // -- r3 : actual argument count |
| // -- r6 : new target (preserved for callee if needed, and caller) |
| // -- r4 : target function (preserved for callee if needed, and caller) |
| // ----------------------------------- |
| DCHECK(!AreAliased(r4, r6, optimized_code_entry, scratch)); |
| |
| Register closure = r4; |
| Label heal_optimized_code_slot; |
| |
| // If the optimized code is cleared, go to runtime to update the optimization |
| // marker field. |
| __ LoadWeakValue(optimized_code_entry, optimized_code_entry, |
| &heal_optimized_code_slot); |
| |
| // Check if the optimized code is marked for deopt. If it is, call the |
| // runtime to clear it. |
| __ LoadTaggedPointerField( |
| scratch, |
| FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); |
| __ LoadWordArith( |
| scratch, |
| FieldMemOperand(scratch, CodeDataContainer::kKindSpecificFlagsOffset)); |
| __ TestBit(scratch, Code::kMarkedForDeoptimizationBit, r0); |
| __ bne(&heal_optimized_code_slot, cr0); |
| |
| // Optimized code is good, get it into the closure and link the closure |
| // into the optimized functions list, then tail call the optimized code. |
| ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, |
| scratch, r8); |
| static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); |
| __ LoadCodeObjectEntry(r5, optimized_code_entry); |
| __ Jump(r5); |
| |
| // Optimized code slot contains deoptimized code or code is cleared and |
| // optimized code marker isn't updated. Evict the code, update the marker |
| // and re-enter the closure's code. |
| __ bind(&heal_optimized_code_slot); |
| GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot); |
| } |
| |
| static void MaybeOptimizeCode(MacroAssembler* masm, Register feedback_vector, |
| Register optimization_marker) { |
| // ----------- S t a t e ------------- |
| // -- r3 : actual argument count |
| // -- r6 : new target (preserved for callee if needed, and caller) |
| // -- r4 : target function (preserved for callee if needed, and caller) |
| // -- feedback vector (preserved for caller if needed) |
| // -- optimization_marker : a int32 containing a non-zero optimization |
| // marker. |
| // ----------------------------------- |
| DCHECK(!AreAliased(feedback_vector, r4, r6, optimization_marker)); |
| |
| // TODO(v8:8394): The logging of first execution will break if |
| // feedback vectors are not allocated. We need to find a different way of |
| // logging these events if required. |
| TailCallRuntimeIfMarkerEquals(masm, optimization_marker, |
| OptimizationMarker::kLogFirstExecution, |
| Runtime::kFunctionFirstExecution); |
| TailCallRuntimeIfMarkerEquals(masm, optimization_marker, |
| OptimizationMarker::kCompileOptimized, |
| Runtime::kCompileOptimized_NotConcurrent); |
| TailCallRuntimeIfMarkerEquals(masm, optimization_marker, |
| OptimizationMarker::kCompileOptimizedConcurrent, |
| Runtime::kCompileOptimized_Concurrent); |
| |
| // Marker should be one of LogFirstExecution / CompileOptimized / |
| // CompileOptimizedConcurrent. InOptimizationQueue and None shouldn't reach |
| // here. |
| if (FLAG_debug_code) { |
| __ stop(); |
| } |
| } |
| |
| // Advance the current bytecode offset. This simulates what all bytecode |
| // handlers do upon completion of the underlying operation. Will bail out to a |
| // label if the bytecode (without prefix) is a return bytecode. Will not advance |
| // the bytecode offset if the current bytecode is a JumpLoop, instead just |
| // re-executing the JumpLoop to jump to the correct bytecode. |
| static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, |
| Register bytecode_array, |
| Register bytecode_offset, |
| Register bytecode, Register scratch1, |
| Register scratch2, Label* if_return) { |
| Register bytecode_size_table = scratch1; |
| Register scratch3 = bytecode; |
| |
| // The bytecode offset value will be increased by one in wide and extra wide |
| // cases. In the case of having a wide or extra wide JumpLoop bytecode, we |
| // will restore the original bytecode. In order to simplify the code, we have |
| // a backup of it. |
| Register original_bytecode_offset = scratch2; |
| DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, |
| bytecode, original_bytecode_offset)); |
| __ Move(bytecode_size_table, |
| ExternalReference::bytecode_size_table_address()); |
| __ Move(original_bytecode_offset, bytecode_offset); |
| |
| // Check if the bytecode is a Wide or ExtraWide prefix bytecode. |
| Label process_bytecode, extra_wide; |
| STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide)); |
| STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); |
| STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide)); |
| STATIC_ASSERT(3 == |
| static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide)); |
| __ cmpi(bytecode, Operand(0x3)); |
| __ bgt(&process_bytecode); |
| __ andi(r0, bytecode, Operand(0x1)); |
| __ bne(&extra_wide, cr0); |
| |
| // Load the next bytecode and update table to the wide scaled table. |
| __ addi(bytecode_offset, bytecode_offset, Operand(1)); |
| __ lbzx(bytecode, MemOperand(bytecode_array, bytecode_offset)); |
| __ addi(bytecode_size_table, bytecode_size_table, |
| Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| __ b(&process_bytecode); |
| |
| __ bind(&extra_wide); |
| // Load the next bytecode and update table to the extra wide scaled table. |
| __ addi(bytecode_offset, bytecode_offset, Operand(1)); |
| __ lbzx(bytecode, MemOperand(bytecode_array, bytecode_offset)); |
| __ addi(bytecode_size_table, bytecode_size_table, |
| Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| |
| // Load the size of the current bytecode. |
| __ bind(&process_bytecode); |
| |
| // Bailout to the return label if this is a return bytecode. |
| #define JUMP_IF_EQUAL(NAME) \ |
| __ cmpi(bytecode, \ |
| Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \ |
| __ beq(if_return); |
| RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) |
| #undef JUMP_IF_EQUAL |
| |
| // If this is a JumpLoop, re-execute it to perform the jump to the beginning |
| // of the loop. |
| Label end, not_jump_loop; |
| __ cmpi(bytecode, |
| Operand(static_cast<int>(interpreter::Bytecode::kJumpLoop))); |
| __ bne(¬_jump_loop); |
| // We need to restore the original bytecode_offset since we might have |
| // increased it to skip the wide / extra-wide prefix bytecode. |
| __ Move(bytecode_offset, original_bytecode_offset); |
| __ b(&end); |
| |
| __ bind(¬_jump_loop); |
| // Otherwise, load the size of the current bytecode and advance the offset. |
| __ ShiftLeftImm(scratch3, bytecode, Operand(2)); |
| __ lwzx(scratch3, MemOperand(bytecode_size_table, scratch3)); |
| __ add(bytecode_offset, bytecode_offset, scratch3); |
| |
| __ bind(&end); |
| } |
| // Generate code for entering a JS function with the interpreter. |
| // On entry to the function the receiver and arguments have been pushed on the |
| // stack left to right. |
| // |
| // The live registers are: |
| // o r3: actual argument count (not including the receiver) |
| // o r4: the JS function object being called. |
| // o r6: the incoming new target or generator object |
| // o cp: our context |
| // o pp: the caller's constant pool pointer (if enabled) |
| // o fp: the caller's frame pointer |
| // o sp: stack pointer |
| // o lr: return address |
| // |
| // The function builds an interpreter frame. See InterpreterFrameConstants in |
| // frames.h for its layout. |
| void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { |
| Register closure = r4; |
| Register feedback_vector = r5; |
| |
| // Get the bytecode array from the function object and load it into |
| // kInterpreterBytecodeArrayRegister. |
| __ LoadTaggedPointerField( |
| r7, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); |
| // Load original bytecode array or the debug copy. |
| __ LoadTaggedPointerField( |
| kInterpreterBytecodeArrayRegister, |
| FieldMemOperand(r7, SharedFunctionInfo::kFunctionDataOffset)); |
| GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, ip); |
| |
| // The bytecode array could have been flushed from the shared function info, |
| // if so, call into CompileLazy. |
| Label compile_lazy; |
| __ CompareObjectType(kInterpreterBytecodeArrayRegister, r7, no_reg, |
| BYTECODE_ARRAY_TYPE); |
| __ bne(&compile_lazy); |
| |
| // Load the feedback vector from the closure. |
| __ LoadTaggedPointerField( |
| feedback_vector, |
| FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); |
| __ LoadTaggedPointerField( |
| feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); |
| |
| Label push_stack_frame; |
| // Check if feedback vector is valid. If valid, check for optimized code |
| // and update invocation count. Otherwise, setup the stack frame. |
| __ LoadTaggedPointerField( |
| r7, FieldMemOperand(feedback_vector, HeapObject::kMapOffset)); |
| __ LoadHalfWord(r7, FieldMemOperand(r7, Map::kInstanceTypeOffset)); |
| __ cmpi(r7, Operand(FEEDBACK_VECTOR_TYPE)); |
| __ bne(&push_stack_frame); |
| |
| Register optimization_state = r7; |
| |
| // Read off the optimization state in the feedback vector. |
| __ LoadWord(optimization_state, |
| FieldMemOperand(feedback_vector, FeedbackVector::kFlagsOffset), |
| r0); |
| |
| // Check if the optimized code slot is not empty or has a optimization marker. |
| Label has_optimized_code_or_marker; |
| __ TestBitMask(optimization_state, |
| FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask, |
| r0); |
| __ bne(&has_optimized_code_or_marker, cr0); |
| |
| Label not_optimized; |
| __ bind(¬_optimized); |
| |
| // Increment invocation count for the function. |
| __ LoadWord( |
| r8, |
| FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset), |
| r0); |
| __ addi(r8, r8, Operand(1)); |
| __ StoreWord( |
| r8, |
| FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset), |
| r0); |
| |
| // Open a frame scope to indicate that there is a frame on the stack. The |
| // MANUAL indicates that the scope shouldn't actually generate code to set up |
| // the frame (that is done below). |
| |
| __ bind(&push_stack_frame); |
| |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ PushStandardFrame(closure); |
| |
| // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are |
| // 8-bit fields next to each other, so we could just optimize by writing a |
| // 16-bit. These static asserts guard our assumption is valid. |
| STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset == |
| BytecodeArray::kOsrNestingLevelOffset + kCharSize); |
| STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0); |
| __ li(r8, Operand(0)); |
| __ StoreHalfWord(r8, |
| FieldMemOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kOsrNestingLevelOffset), |
| r0); |
| |
| // Load initial bytecode offset. |
| __ mov(kInterpreterBytecodeOffsetRegister, |
| Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| |
| // Push bytecode array and Smi tagged bytecode array offset. |
| __ SmiTag(r7, kInterpreterBytecodeOffsetRegister); |
| __ Push(kInterpreterBytecodeArrayRegister, r7); |
| |
| // Allocate the local and temporary register file on the stack. |
| Label stack_overflow; |
| { |
| // Load frame size (word) from the BytecodeArray object. |
| __ lwz(r5, FieldMemOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kFrameSizeOffset)); |
| |
| // Do a stack check to ensure we don't go over the limit. |
| __ sub(r8, sp, r5); |
| LoadStackLimit(masm, r0, StackLimitKind::kRealStackLimit); |
| __ cmpl(r8, r0); |
| __ blt(&stack_overflow); |
| |
| // If ok, push undefined as the initial value for all register file entries. |
| // TODO(rmcilroy): Consider doing more than one push per loop iteration. |
| Label loop, no_args; |
| __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); |
| __ ShiftRightImm(r5, r5, Operand(kSystemPointerSizeLog2), SetRC); |
| __ beq(&no_args, cr0); |
| __ mtctr(r5); |
| __ bind(&loop); |
| __ push(kInterpreterAccumulatorRegister); |
| __ bdnz(&loop); |
| __ bind(&no_args); |
| } |
| |
| // If the bytecode array has a valid incoming new target or generator object |
| // register, initialize it with incoming value which was passed in r6. |
| Label no_incoming_new_target_or_generator_register; |
| __ LoadWordArith( |
| r8, FieldMemOperand( |
| kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); |
| __ cmpi(r8, Operand::Zero()); |
| __ beq(&no_incoming_new_target_or_generator_register); |
| __ ShiftLeftImm(r8, r8, Operand(kSystemPointerSizeLog2)); |
| __ StorePX(r6, MemOperand(fp, r8)); |
| __ bind(&no_incoming_new_target_or_generator_register); |
| |
| // Perform interrupt stack check. |
| // TODO(solanes): Merge with the real stack limit check above. |
| Label stack_check_interrupt, after_stack_check_interrupt; |
| LoadStackLimit(masm, r0, StackLimitKind::kInterruptStackLimit); |
| __ cmpl(sp, r0); |
| __ blt(&stack_check_interrupt); |
| __ bind(&after_stack_check_interrupt); |
| |
| // The accumulator is already loaded with undefined. |
| |
| // Load the dispatch table into a register and dispatch to the bytecode |
| // handler at the current bytecode offset. |
| Label do_dispatch; |
| __ bind(&do_dispatch); |
| __ Move( |
| kInterpreterDispatchTableRegister, |
| ExternalReference::interpreter_dispatch_table_address(masm->isolate())); |
| __ lbzx(r6, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| __ ShiftLeftImm(r6, r6, Operand(kSystemPointerSizeLog2)); |
| __ LoadPX(kJavaScriptCallCodeStartRegister, |
| MemOperand(kInterpreterDispatchTableRegister, r6)); |
| __ Call(kJavaScriptCallCodeStartRegister); |
| |
| masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); |
| |
| // Any returns to the entry trampoline are either due to the return bytecode |
| // or the interpreter tail calling a builtin and then a dispatch. |
| |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ LoadP(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ LoadP(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| // Either return, or advance to the next bytecode and dispatch. |
| Label do_return; |
| __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, r4, r5, r6, |
| &do_return); |
| __ b(&do_dispatch); |
| |
| __ bind(&do_return); |
| // The return value is in r3. |
| LeaveInterpreterFrame(masm, r5); |
| __ blr(); |
| |
| __ bind(&stack_check_interrupt); |
| // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset |
| // for the call to the StackGuard. |
| __ mov(kInterpreterBytecodeOffsetRegister, |
| Operand(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag + |
| kFunctionEntryBytecodeOffset))); |
| __ StoreP(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ CallRuntime(Runtime::kStackGuard); |
| |
| // After the call, restore the bytecode array, bytecode offset and accumulator |
| // registers again. Also, restore the bytecode offset in the stack to its |
| // previous value. |
| __ LoadP(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ mov(kInterpreterBytecodeOffsetRegister, |
| Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); |
| |
| __ SmiTag(r0, kInterpreterBytecodeOffsetRegister); |
| __ StoreP(r0, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| |
| __ jmp(&after_stack_check_interrupt); |
| |
| __ bind(&has_optimized_code_or_marker); |
| Label maybe_has_optimized_code; |
| |
| // Check if optimized code is available |
| __ TestBitMask(optimization_state, |
| FeedbackVector::kHasCompileOptimizedOrLogFirstExecutionMarker, |
| r0); |
| __ beq(&maybe_has_optimized_code, cr0); |
| |
| Register optimization_marker = optimization_state; |
| __ DecodeField<FeedbackVector::OptimizationMarkerBits>(optimization_marker); |
| MaybeOptimizeCode(masm, feedback_vector, optimization_marker); |
| // Fall through if there's no runnable optimized code. |
| __ jmp(¬_optimized); |
| |
| __ bind(&maybe_has_optimized_code); |
| Register optimized_code_entry = optimization_state; |
| __ LoadAnyTaggedField( |
| optimization_marker, |
| FieldMemOperand(feedback_vector, |
| FeedbackVector::kMaybeOptimizedCodeOffset)); |
| TailCallOptimizedCodeSlot(masm, optimized_code_entry, r9); |
| |
| __ bind(&compile_lazy); |
| GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); |
| |
| __ bind(&stack_overflow); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bkpt(0); // Should not return. |
| } |
| |
| static void Generate_InterpreterPushArgs(MacroAssembler* masm, |
| Register num_args, |
| Register start_address, |
| Register scratch) { |
| __ subi(scratch, num_args, Operand(1)); |
| __ ShiftLeftImm(scratch, scratch, Operand(kSystemPointerSizeLog2)); |
| __ sub(start_address, start_address, scratch); |
| // Push the arguments. |
| __ PushArray(start_address, num_args, scratch, r0, |
| TurboAssembler::PushArrayOrder::kReverse); |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenCallImpl( |
| MacroAssembler* masm, ConvertReceiverMode receiver_mode, |
| InterpreterPushArgsMode mode) { |
| DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); |
| // ----------- S t a t e ------------- |
| // -- r3 : the number of arguments (not including the receiver) |
| // -- r5 : the address of the first argument to be pushed. Subsequent |
| // arguments should be consecutive above this, in the same order as |
| // they are to be pushed onto the stack. |
| // -- r4 : the target to call (can be any Object). |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // The spread argument should not be pushed. |
| __ subi(r3, r3, Operand(1)); |
| } |
| |
| // Calculate number of arguments (add one for receiver). |
| __ addi(r6, r3, Operand(1)); |
| Generate_StackOverflowCheck(masm, r6, ip, &stack_overflow); |
| |
| if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { |
| // Don't copy receiver. Argument count is correct. |
| __ mr(r6, r3); |
| } |
| |
| // Push the arguments. |
| Generate_InterpreterPushArgs(masm, r6, r5, r7); |
| |
| if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { |
| __ PushRoot(RootIndex::kUndefinedValue); |
| } |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Pass the spread in the register r3. |
| // r2 already points to the penultimate argument, the spread |
| // lies in the next interpreter register. |
| __ LoadP(r5, MemOperand(r5, -kSystemPointerSize)); |
| } |
| |
| // Call the target. |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable Code. |
| __ bkpt(0); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenConstructImpl( |
| MacroAssembler* masm, InterpreterPushArgsMode mode) { |
| // ----------- S t a t e ------------- |
| // -- r3 : argument count (not including receiver) |
| // -- r6 : new target |
| // -- r4 : constructor to call |
| // -- r5 : allocation site feedback if available, undefined otherwise. |
| // -- r7 : address of the first argument |
| // ----------------------------------- |
| Label stack_overflow; |
| __ addi(r8, r3, Operand(1)); |
| Generate_StackOverflowCheck(masm, r8, ip, &stack_overflow); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // The spread argument should not be pushed. |
| __ subi(r3, r3, Operand(1)); |
| } |
| |
| // Push the arguments. |
| Generate_InterpreterPushArgs(masm, r3, r7, r8); |
| |
| // Push a slot for the receiver to be constructed. |
| __ li(r0, Operand::Zero()); |
| __ push(r0); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Pass the spread in the register r2. |
| // r4 already points to the penultimate argument, the spread |
| // lies in the next interpreter register. |
| __ subi(r7, r7, Operand(kSystemPointerSize)); |
| __ LoadP(r5, MemOperand(r7)); |
| } else { |
| __ AssertUndefinedOrAllocationSite(r5, r8); |
| } |
| |
| if (mode == InterpreterPushArgsMode::kArrayFunction) { |
| __ AssertFunction(r4); |
| |
| // Tail call to the array construct stub (still in the caller |
| // context at this point). |
| Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl); |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Call the constructor with r3, r4, and r6 unmodified. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); |
| // Call the constructor with r3, r4, and r6 unmodified. |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable Code. |
| __ bkpt(0); |
| } |
| } |
| |
| static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { |
| // Set the return address to the correct point in the interpreter entry |
| // trampoline. |
| Label builtin_trampoline, trampoline_loaded; |
| Smi interpreter_entry_return_pc_offset( |
| masm->isolate()->heap()->interpreter_entry_return_pc_offset()); |
| DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero()); |
| |
| // If the SFI function_data is an InterpreterData, the function will have a |
| // custom copy of the interpreter entry trampoline for profiling. If so, |
| // get the custom trampoline, otherwise grab the entry address of the global |
| // trampoline. |
| __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); |
| __ LoadTaggedPointerField( |
| r5, FieldMemOperand(r5, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadTaggedPointerField( |
| r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset)); |
| __ CompareObjectType(r5, kInterpreterDispatchTableRegister, |
| kInterpreterDispatchTableRegister, |
| INTERPRETER_DATA_TYPE); |
| __ bne(&builtin_trampoline); |
| |
| __ LoadTaggedPointerField( |
| r5, FieldMemOperand(r5, InterpreterData::kInterpreterTrampolineOffset)); |
| __ addi(r5, r5, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ b(&trampoline_loaded); |
| |
| __ bind(&builtin_trampoline); |
| __ Move(r5, ExternalReference:: |
| address_of_interpreter_entry_trampoline_instruction_start( |
| masm->isolate())); |
| __ LoadP(r5, MemOperand(r5)); |
| |
| __ bind(&trampoline_loaded); |
| __ addi(r0, r5, Operand(interpreter_entry_return_pc_offset.value())); |
| __ mtlr(r0); |
| |
| // Initialize the dispatch table register. |
| __ Move( |
| kInterpreterDispatchTableRegister, |
| ExternalReference::interpreter_dispatch_table_address(masm->isolate())); |
| |
| // Get the bytecode array pointer from the frame. |
| __ LoadP(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| |
| if (FLAG_debug_code) { |
| // Check function data field is actually a BytecodeArray object. |
| __ TestIfSmi(kInterpreterBytecodeArrayRegister, r0); |
| __ Assert(ne, |
| AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, |
| cr0); |
| __ CompareObjectType(kInterpreterBytecodeArrayRegister, r4, no_reg, |
| BYTECODE_ARRAY_TYPE); |
| __ Assert( |
| eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| } |
| |
| // Get the target bytecode offset from the frame. |
| __ LoadP(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| if (FLAG_debug_code) { |
| Label okay; |
| __ cmpi(kInterpreterBytecodeOffsetRegister, |
| Operand(BytecodeArray::kHeaderSize - kHeapObjectTag + |
| kFunctionEntryBytecodeOffset)); |
| __ bge(&okay); |
| __ bkpt(0); |
| __ bind(&okay); |
| } |
| |
| // Dispatch to the target bytecode. |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.Acquire(); |
| __ lbzx(ip, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| __ ShiftLeftImm(scratch, scratch, Operand(kSystemPointerSizeLog2)); |
| __ LoadPX(kJavaScriptCallCodeStartRegister, |
| MemOperand(kInterpreterDispatchTableRegister, scratch)); |
| __ Jump(kJavaScriptCallCodeStartRegister); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ LoadP(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ LoadP(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| Label enter_bytecode, function_entry_bytecode; |
| __ cmpi(kInterpreterBytecodeOffsetRegister, |
| Operand(BytecodeArray::kHeaderSize - kHeapObjectTag + |
| kFunctionEntryBytecodeOffset)); |
| __ beq(&function_entry_bytecode); |
| |
| // Load the current bytecode. |
| __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| |
| // Advance to the next bytecode. |
| Label if_return; |
| AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, r4, r5, r6, |
| &if_return); |
| |
| __ bind(&enter_bytecode); |
| // Convert new bytecode offset to a Smi and save in the stackframe. |
| __ SmiTag(r5, kInterpreterBytecodeOffsetRegister); |
| __ StoreP(r5, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| |
| Generate_InterpreterEnterBytecode(masm); |
| |
| __ bind(&function_entry_bytecode); |
| // If the code deoptimizes during the implicit function entry stack interrupt |
| // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is |
| // not a valid bytecode offset. Detect this case and advance to the first |
| // actual bytecode. |
| __ mov(kInterpreterBytecodeOffsetRegister, |
| Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| __ b(&enter_bytecode); |
| |
| // We should never take the if_return path. |
| __ bind(&if_return); |
| __ Abort(AbortReason::kInvalidBytecodeAdvance); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { |
| Generate_InterpreterEnterBytecode(masm); |
| } |
| |
| namespace { |
| void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, |
| bool java_script_builtin, |
| bool with_result) { |
| const RegisterConfiguration* config(RegisterConfiguration::Default()); |
| int allocatable_register_count = config->num_allocatable_general_registers(); |
| Register scratch = ip; |
| if (with_result) { |
| if (java_script_builtin) { |
| __ mr(scratch, r3); |
| } else { |
| // Overwrite the hole inserted by the deoptimizer with the return value |
| // from the LAZY deopt point. |
| __ StoreP( |
| r3, MemOperand( |
| sp, config->num_allocatable_general_registers() * |
| kSystemPointerSize + |
| BuiltinContinuationFrameConstants::kFixedFrameSize)); |
| } |
| } |
| for (int i = allocatable_register_count - 1; i >= 0; --i) { |
| int code = config->GetAllocatableGeneralCode(i); |
| __ Pop(Register::from_code(code)); |
| if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { |
| __ SmiUntag(Register::from_code(code)); |
| } |
| } |
| if (java_script_builtin && with_result) { |
| // Overwrite the hole inserted by the deoptimizer with the return value from |
| // the LAZY deopt point. r0 contains the arguments count, the return value |
| // from LAZY is always the last argument. |
| __ addi(r3, r3, |
| Operand(BuiltinContinuationFrameConstants::kFixedSlotCount)); |
| __ ShiftLeftImm(r0, r3, Operand(kSystemPointerSizeLog2)); |
| __ StorePX(scratch, MemOperand(sp, r0)); |
| // Recover arguments count. |
| __ subi(r3, r3, |
| Operand(BuiltinContinuationFrameConstants::kFixedSlotCount)); |
| } |
| __ LoadP( |
| fp, |
| MemOperand(sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); |
| // Load builtin index (stored as a Smi) and use it to get the builtin start |
| // address from the builtins table. |
| UseScratchRegisterScope temps(masm); |
| Register builtin = temps.Acquire(); |
| __ Pop(builtin); |
| __ addi(sp, sp, |
| Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); |
| __ Pop(r0); |
| __ mtlr(r0); |
| __ LoadEntryFromBuiltinIndex(builtin); |
| __ Jump(builtin); |
| } |
| } // namespace |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, false); |
| } |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, true); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, false); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, true); |
| } |
| |
| void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kNotifyDeoptimized); |
| } |
| |
| DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r3.code()); |
| __ LoadP(r3, MemOperand(sp, 0 * kSystemPointerSize)); |
| __ addi(sp, sp, Operand(1 * kSystemPointerSize)); |
| __ Ret(); |
| } |
| |
| void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kCompileForOnStackReplacement); |
| } |
| |
| // If the code object is null, just return to the caller. |
| Label skip; |
| __ CmpSmiLiteral(r3, Smi::zero(), r0); |
| __ bne(&skip); |
| __ Ret(); |
| |
| __ bind(&skip); |
| |
| // Drop the handler frame that is be sitting on top of the actual |
| // JavaScript frame. This is the case then OSR is triggered from bytecode. |
| __ LeaveFrame(StackFrame::STUB); |
| |
| // Load deoptimization data from the code object. |
| // <deopt_data> = <code>[#deoptimization_data_offset] |
| __ LoadTaggedPointerField( |
| r4, FieldMemOperand(r3, Code::kDeoptimizationDataOffset)); |
| |
| { |
| ConstantPoolUnavailableScope constant_pool_unavailable(masm); |
| __ addi(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start |
| |
| if (FLAG_enable_embedded_constant_pool) { |
| __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r3); |
| } |
| |
| // Load the OSR entrypoint offset from the deoptimization data. |
| // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] |
| __ SmiUntagField( |
| r4, FieldMemOperand(r4, FixedArray::OffsetOfElementAt( |
| DeoptimizationData::kOsrPcOffsetIndex))); |
| |
| // Compute the target address = code start + osr_offset |
| __ add(r0, r3, r4); |
| |
| // And "return" to the OSR entry point of the function. |
| __ mtlr(r0); |
| __ blr(); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : argc |
| // -- sp[0] : receiver |
| // -- sp[4] : thisArg |
| // -- sp[8] : argArray |
| // ----------------------------------- |
| |
| // 1. Load receiver into r4, argArray into r5 (if present), remove all |
| // arguments from the stack (including the receiver), and push thisArg (if |
| // present) instead. |
| { |
| __ LoadRoot(r8, RootIndex::kUndefinedValue); |
| __ mr(r5, r8); |
| |
| Label done; |
| __ LoadP(r4, MemOperand(sp)); // receiver |
| __ cmpi(r3, Operand(1)); |
| __ blt(&done); |
| __ LoadP(r8, MemOperand(sp, kSystemPointerSize)); // thisArg |
| __ cmpi(r3, Operand(2)); |
| __ blt(&done); |
| __ LoadP(r5, MemOperand(sp, 2 * kSystemPointerSize)); // argArray |
| |
| __ bind(&done); |
| __ ShiftLeftImm(ip, r3, Operand(kSystemPointerSizeLog2)); |
| __ add(sp, sp, ip); |
| __ StoreP(r8, MemOperand(sp)); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- r5 : argArray |
| // -- r4 : receiver |
| // -- sp[0] : thisArg |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable receiver here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Tail call with no arguments if argArray is null or undefined. |
| Label no_arguments; |
| __ JumpIfRoot(r5, RootIndex::kNullValue, &no_arguments); |
| __ JumpIfRoot(r5, RootIndex::kUndefinedValue, &no_arguments); |
| |
| // 4a. Apply the receiver to the given argArray. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| |
| // 4b. The argArray is either null or undefined, so we tail call without any |
| // arguments to the receiver. |
| __ bind(&no_arguments); |
| { |
| __ li(r3, Operand::Zero()); |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { |
| // 1. Get the callable to call (passed as receiver) from the stack. |
| __ Pop(r4); |
| |
| // 2. Make sure we have at least one argument. |
| // r3: actual number of arguments |
| { |
| Label done; |
| __ cmpi(r3, Operand::Zero()); |
| __ bne(&done); |
| __ PushRoot(RootIndex::kUndefinedValue); |
| __ addi(r3, r3, Operand(1)); |
| __ bind(&done); |
| } |
| |
| // 3. Adjust the actual number of arguments. |
| __ subi(r3, r3, Operand(1)); |
| |
| // 4. Call the callable. |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : argc |
| // -- sp[0] : receiver |
| // -- sp[4] : target (if argc >= 1) |
| // -- sp[8] : thisArgument (if argc >= 2) |
| // -- sp[12] : argumentsList (if argc == 3) |
| // ----------------------------------- |
| |
| // 1. Load target into r4 (if present), argumentsList into r5 (if present), |
| // remove all arguments from the stack (including the receiver), and push |
| // thisArgument (if present) instead. |
| { |
| __ LoadRoot(r4, RootIndex::kUndefinedValue); |
| __ mr(r8, r4); |
| __ mr(r5, r4); |
| |
| Label done; |
| __ cmpi(r3, Operand(1)); |
| __ blt(&done); |
| __ LoadP(r4, MemOperand(sp, kSystemPointerSize)); // thisArg |
| __ cmpi(r3, Operand(2)); |
| __ blt(&done); |
| __ LoadP(r8, MemOperand(sp, 2 * kSystemPointerSize)); // argArray |
| __ cmpi(r3, Operand(3)); |
| __ blt(&done); |
| __ LoadP(r5, MemOperand(sp, 3 * kSystemPointerSize)); // argArray |
| |
| __ bind(&done); |
| __ ShiftLeftImm(ip, r3, Operand(kSystemPointerSizeLog2)); |
| __ add(sp, sp, ip); |
| __ StoreP(r8, MemOperand(sp)); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- r5 : argumentsList |
| // -- r4 : target |
| // -- sp[0] : thisArgument |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable target here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Apply the target to the given argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : argc |
| // -- sp[0] : receiver |
| // -- sp[4] : target |
| // -- sp[8] : argumentsList |
| // -- sp[12] : new.target (optional) |
| // ----------------------------------- |
| |
| // 1. Load target into r4 (if present), argumentsList into r5 (if present), |
| // new.target into r6 (if present, otherwise use target), remove all |
| // arguments from the stack (including the receiver), and push thisArgument |
| // (if present) instead. |
| { |
| __ LoadRoot(r4, RootIndex::kUndefinedValue); |
| __ mr(r5, r4); |
| |
| Label done; |
| __ mr(r7, r4); |
| __ cmpi(r3, Operand(1)); |
| __ blt(&done); |
| __ LoadP(r4, MemOperand(sp, kSystemPointerSize)); // thisArg |
| __ mr(r6, r4); |
| __ cmpi(r3, Operand(2)); |
| __ blt(&done); |
| __ LoadP(r5, MemOperand(sp, 2 * kSystemPointerSize)); // argArray |
| __ cmpi(r3, Operand(3)); |
| __ blt(&done); |
| __ LoadP(r6, MemOperand(sp, 3 * kSystemPointerSize)); // argArray |
| __ bind(&done); |
| __ ShiftLeftImm(r0, r3, Operand(kSystemPointerSizeLog2)); |
| __ add(sp, sp, r0); |
| __ StoreP(r7, MemOperand(sp)); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- r5 : argumentsList |
| // -- r6 : new.target |
| // -- r4 : target |
| // -- sp[0] : receiver (undefined) |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for constructor target here, |
| // since that's the first thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 3. We don't need to check explicitly for constructor new.target here, |
| // since that's the second thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 4. Construct the target with the given new.target and argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { |
| __ SmiTag(r3); |
| __ mov(r7, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ mflr(r0); |
| __ push(r0); |
| if (FLAG_enable_embedded_constant_pool) { |
| __ Push(fp, kConstantPoolRegister, r7, r4, r3); |
| } else { |
| __ Push(fp, r7, r4, r3); |
| } |
| __ Push(Smi::zero()); // Padding. |
| __ addi(fp, sp, |
| Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp)); |
| } |
| |
| static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : result being passed through |
| // ----------------------------------- |
| // Get the number of arguments passed (as a smi), tear down the frame and |
| // then tear down the parameters. |
| __ LoadP(r4, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| int stack_adjustment = kSystemPointerSize; // adjust for receiver |
| __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment); |
| __ SmiToPtrArrayOffset(r0, r4); |
| __ add(sp, sp, r0); |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- r4 : target |
| // -- r3 : number of parameters on the stack (not including the receiver) |
| // -- r5 : arguments list (a FixedArray) |
| // -- r7 : len (number of elements to push from args) |
| // -- r6 : new.target (for [[Construct]]) |
| // ----------------------------------- |
| |
| Register scratch = ip; |
| |
| if (masm->emit_debug_code()) { |
| // Allow r5 to be a FixedArray, or a FixedDoubleArray if r7 == 0. |
| Label ok, fail; |
| __ AssertNotSmi(r5); |
| __ LoadTaggedPointerField(scratch, |
| FieldMemOperand(r5, HeapObject::kMapOffset)); |
| __ LoadHalfWord(scratch, |
| FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| __ cmpi(scratch, Operand(FIXED_ARRAY_TYPE)); |
| __ beq(&ok); |
| __ cmpi(scratch, Operand(FIXED_DOUBLE_ARRAY_TYPE)); |
| __ bne(&fail); |
| __ cmpi(r7, Operand::Zero()); |
| __ beq(&ok); |
| // Fall through. |
| __ bind(&fail); |
| __ Abort(AbortReason::kOperandIsNotAFixedArray); |
| |
| __ bind(&ok); |
| } |
| |
| // Check for stack overflow. |
| Label stack_overflow; |
| Generate_StackOverflowCheck(masm, r7, scratch, &stack_overflow); |
| |
| // Move the arguments already in the stack, |
| // including the receiver and the return address. |
| { |
| Label copy; |
| Register src = r9, dest = r8; |
| __ addi(src, sp, Operand(-kSystemPointerSize)); |
| __ ShiftLeftImm(r0, r7, Operand(kSystemPointerSizeLog2)); |
| __ sub(sp, sp, r0); |
| // Update stack pointer. |
| __ addi(dest, sp, Operand(-kSystemPointerSize)); |
| __ addi(r0, r3, Operand(1)); |
| __ mtctr(r0); |
| |
| __ bind(©); |
| __ LoadPU(r0, MemOperand(src, kSystemPointerSize)); |
| __ StorePU(r0, MemOperand(dest, kSystemPointerSize)); |
| __ bdnz(©); |
| } |
| |
| // Push arguments onto the stack (thisArgument is already on the stack). |
| { |
| Label loop, no_args, skip; |
| __ cmpi(r7, Operand::Zero()); |
| __ beq(&no_args); |
| __ addi(r5, r5, |
| Operand(FixedArray::kHeaderSize - kHeapObjectTag - kTaggedSize)); |
| __ mtctr(r7); |
| __ bind(&loop); |
| __ LoadTaggedPointerField(scratch, MemOperand(r5, kTaggedSize)); |
| __ addi(r5, r5, Operand(kTaggedSize)); |
| __ CompareRoot(scratch, RootIndex::kTheHoleValue); |
| __ bne(&skip); |
| __ LoadRoot(scratch, RootIndex::kUndefinedValue); |
| __ bind(&skip); |
| __ StorePU(scratch, MemOperand(r8, kSystemPointerSize)); |
| __ bdnz(&loop); |
| __ bind(&no_args); |
| __ add(r3, r3, r7); |
| } |
| |
| // Tail-call to the actual Call or Construct builtin. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, |
| CallOrConstructMode mode, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- r3 : the number of arguments (not including the receiver) |
| // -- r6 : the new.target (for [[Construct]] calls) |
| // -- r4 : the target to call (can be any Object) |
| // -- r5 : start index (to support rest parameters) |
| // ----------------------------------- |
| |
| Register scratch = r9; |
| |
| if (mode == CallOrConstructMode::kConstruct) { |
| Label new_target_constructor, new_target_not_constructor; |
| __ JumpIfSmi(r6, &new_target_not_constructor); |
| __ LoadTaggedPointerField(scratch, |
| FieldMemOperand(r6, HeapObject::kMapOffset)); |
| __ lbz(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); |
| __ TestBit(scratch, Map::Bits1::IsConstructorBit::kShift, r0); |
| __ bne(&new_target_constructor, cr0); |
| __ bind(&new_target_not_constructor); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ Push(r6); |
| __ CallRuntime(Runtime::kThrowNotConstructor); |
| } |
| __ bind(&new_target_constructor); |
| } |
| |
| // Check if we have an arguments adaptor frame below the function frame. |
| Label arguments_adaptor, arguments_done; |
| __ LoadP(r7, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ LoadP(scratch, |
| MemOperand(r7, CommonFrameConstants::kContextOrFrameTypeOffset)); |
| __ cmpi(scratch, |
| Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ beq(&arguments_adaptor); |
| { |
| __ LoadP(r8, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); |
| __ LoadTaggedPointerField( |
| r8, FieldMemOperand(r8, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadHalfWord( |
| r8, |
| FieldMemOperand(r8, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ mr(r7, fp); |
| } |
| __ b(&arguments_done); |
| __ bind(&arguments_adaptor); |
| { |
| // Load the length from the ArgumentsAdaptorFrame. |
| __ LoadP(r8, MemOperand(r7, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ SmiUntag(r8); |
| } |
| __ bind(&arguments_done); |
| |
| Label stack_done, stack_overflow; |
| __ sub(r8, r8, r5, LeaveOE, SetRC); |
| __ ble(&stack_done, cr0); |
| { |
| // ----------- S t a t e ------------- |
| // -- r3 : the number of arguments already in the stack (not including the |
| // receiver) |
| // -- r4 : the target to call (can be any Object) |
| // -- r5 : start index (to support rest parameters) |
| // -- r6 : the new.target (for [[Construct]] calls) |
| // -- r7 : point to the caller stack frame |
| // -- r8 : number of arguments to copy, i.e. arguments count - start index |
| // ----------------------------------- |
| |
| // Check for stack overflow. |
| Generate_StackOverflowCheck(masm, r8, scratch, &stack_overflow); |
| |
| // Forward the arguments from the caller frame. |
| // Point to the first argument to copy (skipping the receiver). |
| __ addi(r7, r7, |
| Operand(CommonFrameConstants::kFixedFrameSizeAboveFp + |
| kSystemPointerSize)); |
| __ ShiftLeftImm(scratch, r5, Operand(kSystemPointerSizeLog2)); |
| __ add(r7, r7, scratch); |
| |
| // Move the arguments already in the stack, |
| // including the receiver and the return address. |
| { |
| Label copy; |
| Register src = ip, dest = r5; // r7 and r10 are context and root. |
| __ addi(src, sp, Operand(-kSystemPointerSize)); |
| // Update stack pointer. |
| __ ShiftLeftImm(scratch, r8, Operand(kSystemPointerSizeLog2)); |
| __ sub(sp, sp, scratch); |
| __ addi(dest, sp, Operand(-kSystemPointerSize)); |
| __ addi(r0, r3, Operand(1)); |
| __ mtctr(r0); |
| |
| __ bind(©); |
| __ LoadPU(r0, MemOperand(src, kSystemPointerSize)); |
| __ StorePU(r0, MemOperand(dest, kSystemPointerSize)); |
| __ bdnz(©); |
| } |
| // Copy arguments from the caller frame. |
| // TODO(victorgomes): Consider using forward order as potentially more cache |
| // friendly. |
| { |
| Label loop; |
| __ add(r3, r3, r8); |
| __ addi(r5, r5, Operand(kSystemPointerSize)); |
| __ bind(&loop); |
| { |
| __ subi(r8, r8, Operand(1)); |
| __ ShiftLeftImm(scratch, r8, Operand(kSystemPointerSizeLog2)); |
| __ LoadPX(r0, MemOperand(r7, scratch)); |
| __ StorePX(r0, MemOperand(r5, scratch)); |
| __ cmpi(r8, Operand::Zero()); |
| __ bne(&loop); |
| } |
| } |
| } |
| __ b(&stack_done); |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&stack_done); |
| |
| // Tail-call to the {code} handler. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_CallFunction(MacroAssembler* masm, |
| ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- r3 : the number of arguments (not including the receiver) |
| // -- r4 : the function to call (checked to be a JSFunction) |
| // ----------------------------------- |
| __ AssertFunction(r4); |
| |
| // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) |
| // Check that the function is not a "classConstructor". |
| Label class_constructor; |
| __ LoadTaggedPointerField( |
| r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
| __ lwz(r6, FieldMemOperand(r5, SharedFunctionInfo::kFlagsOffset)); |
| __ TestBitMask(r6, SharedFunctionInfo::IsClassConstructorBit::kMask, r0); |
| __ bne(&class_constructor, cr0); |
| |
| // Enter the context of the function; ToObject has to run in the function |
| // context, and we also need to take the global proxy from the function |
| // context in case of conversion. |
| __ LoadTaggedPointerField(cp, |
| FieldMemOperand(r4, JSFunction::kContextOffset)); |
| // We need to convert the receiver for non-native sloppy mode functions. |
| Label done_convert; |
| __ andi(r0, r6, |
| Operand(SharedFunctionInfo::IsStrictBit::kMask | |
| SharedFunctionInfo::IsNativeBit::kMask)); |
| __ bne(&done_convert, cr0); |
| { |
| // ----------- S t a t e ------------- |
| // -- r3 : the number of arguments (not including the receiver) |
| // -- r4 : the function to call (checked to be a JSFunction) |
| // -- r5 : the shared function info. |
| // -- cp : the function context. |
| // ----------------------------------- |
| |
| if (mode == ConvertReceiverMode::kNullOrUndefined) { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(r6); |
| } else { |
| Label convert_to_object, convert_receiver; |
| __ LoadReceiver(r6, r3); |
| __ JumpIfSmi(r6, &convert_to_object); |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CompareObjectType(r6, r7, r7, FIRST_JS_RECEIVER_TYPE); |
| __ bge(&done_convert); |
| if (mode != ConvertReceiverMode::kNotNullOrUndefined) { |
| Label convert_global_proxy; |
| __ JumpIfRoot(r6, RootIndex::kUndefinedValue, &convert_global_proxy); |
| __ JumpIfNotRoot(r6, RootIndex::kNullValue, &convert_to_object); |
| __ bind(&convert_global_proxy); |
| { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(r6); |
| } |
| __ b(&convert_receiver); |
| } |
| __ bind(&convert_to_object); |
| { |
| // Convert receiver using ToObject. |
| // TODO(bmeurer): Inline the allocation here to avoid building the frame |
| // in the fast case? (fall back to AllocateInNewSpace?) |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ SmiTag(r3); |
| __ Push(r3, r4); |
| __ mr(r3, r6); |
| __ Push(cp); |
| __ Call(BUILTIN_CODE(masm->isolate(), ToObject), |
| RelocInfo::CODE_TARGET); |
| __ Pop(cp); |
| __ mr(r6, r3); |
| __ Pop(r3, r4); |
| __ SmiUntag(r3); |
| } |
| __ LoadTaggedPointerField( |
| r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
| __ bind(&convert_receiver); |
| } |
| __ StoreReceiver(r6, r3, r7); |
| } |
| __ bind(&done_convert); |
| |
| // ----------- S t a t e ------------- |
| // -- r3 : the number of arguments (not including the receiver) |
| // -- r4 : the function to call (checked to be a JSFunction) |
| // -- r5 : the shared function info. |
| // -- cp : the function context. |
| // ----------------------------------- |
| |
| __ LoadHalfWord( |
| r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ InvokeFunctionCode(r4, no_reg, r5, r3, JUMP_FUNCTION); |
| |
| // The function is a "classConstructor", need to raise an exception. |
| __ bind(&class_constructor); |
| { |
| FrameAndConstantPoolScope frame(masm, StackFrame::INTERNAL); |
| __ push(r4); |
| __ CallRuntime(Runtime::kThrowConstructorNonCallableError); |
| } |
| } |
| |
| namespace { |
| |
| void Generate_PushBoundArguments(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : the number of arguments (not including the receiver) |
| // -- r4 : target (checked to be a JSBoundFunction) |
| // -- r6 : new.target (only in case of [[Construct]]) |
| // ----------------------------------- |
| |
| // Load [[BoundArguments]] into r5 and length of that into r7. |
| Label no_bound_arguments; |
| __ LoadTaggedPointerField( |
| r5, FieldMemOperand(r4, JSBoundFunction::kBoundArgumentsOffset)); |
| __ SmiUntagField(r7, FieldMemOperand(r5, FixedArray::kLengthOffset), SetRC); |
| __ beq(&no_bound_arguments, cr0); |
| { |
| // ----------- S t a t e ------------- |
| // -- r3 : the number of arguments (not including the receiver) |
| // -- r4 : target (checked to be a JSBoundFunction) |
| // -- r5 : the [[BoundArguments]] (implemented as FixedArray) |
| // -- r6 : new.target (only in case of [[Construct]]) |
| // -- r7 : the number of [[BoundArguments]] |
| // ----------------------------------- |
| |
| Register scratch = r9; |
| // Reserve stack space for the [[BoundArguments]]. |
| { |
| Label done; |
| __ ShiftLeftImm(r10, r7, Operand(kSystemPointerSizeLog2)); |
| __ sub(r0, sp, r10); |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack |
| // limit". |
| { |
| LoadStackLimit(masm, scratch, StackLimitKind::kRealStackLimit); |
| __ cmpl(r0, scratch); |
| } |
| __ bgt(&done); // Signed comparison. |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| } |
| __ bind(&done); |
| } |
| |
| // Pop receiver. |
| __ Pop(r8); |
| |
| // Push [[BoundArguments]]. |
| { |
| Label loop, done; |
| __ add(r3, r3, r7); // Adjust effective number of arguments. |
| __ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ mtctr(r7); |
| |
| __ bind(&loop); |
| __ subi(r7, r7, Operand(1)); |
| __ ShiftLeftImm(scratch, r7, Operand(kTaggedSizeLog2)); |
| __ add(scratch, scratch, r5); |
| __ LoadAnyTaggedField(scratch, MemOperand(scratch)); |
| __ Push(scratch); |
| __ bdnz(&loop); |
| __ bind(&done); |
| } |
| |
| // Push receiver. |
| __ Push(r8); |
| } |
| __ bind(&no_bound_arguments); |
| } |
| |
| } // namespace |
| |
| // static |
| void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : the number of arguments (not including the receiver) |
| // -- r4 : the function to call (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| __ AssertBoundFunction(r4); |
| |
| // Patch the receiver to [[BoundThis]]. |
| __ LoadAnyTaggedField(r6, |
| FieldMemOperand(r4, JSBoundFunction::kBoundThisOffset)); |
| __ StoreReceiver(r6, r3, ip); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Call the [[BoundTargetFunction]] via the Call builtin. |
| __ LoadTaggedPointerField( |
| r4, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- r3 : the number of arguments (not including the receiver) |
| // -- r4 : the target to call (can be any Object). |
| // ----------------------------------- |
| |
| Label non_callable, non_smi; |
| __ JumpIfSmi(r4, &non_callable); |
| __ bind(&non_smi); |
| __ CompareObjectType(r4, r7, r8, JS_FUNCTION_TYPE); |
| __ Jump(masm->isolate()->builtins()->CallFunction(mode), |
| RelocInfo::CODE_TARGET, eq); |
| __ cmpi(r8, Operand(JS_BOUND_FUNCTION_TYPE)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Check if target has a [[Call]] internal method. |
| __ lbz(r7, FieldMemOperand(r7, Map::kBitFieldOffset)); |
| __ TestBit(r7, Map::Bits1::IsCallableBit::kShift, r0); |
| __ beq(&non_callable, cr0); |
| |
| // Check if target is a proxy and call CallProxy external builtin |
| __ cmpi(r8, Operand(JS_PROXY_TYPE)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET, eq); |
| |
| // 2. Call to something else, which might have a [[Call]] internal method (if |
| // not we raise an exception). |
| // Overwrite the original receiver the (original) target. |
| __ StoreReceiver(r4, r3, r8); |
| // Let the "call_as_function_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r4); |
| __ Jump(masm->isolate()->builtins()->CallFunction( |
| ConvertReceiverMode::kNotNullOrUndefined), |
| RelocInfo::CODE_TARGET); |
| |
| // 3. Call to something that is not callable. |
| __ bind(&non_callable); |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ Push(r4); |
| __ CallRuntime(Runtime::kThrowCalledNonCallable); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : the number of arguments (not including the receiver) |
| // -- r4 : the constructor to call (checked to be a JSFunction) |
| // -- r6 : the new target (checked to be a constructor) |
| // ----------------------------------- |
| __ AssertConstructor(r4); |
| __ AssertFunction(r4); |
| |
| // Calling convention for function specific ConstructStubs require |
| // r5 to contain either an AllocationSite or undefined. |
| __ LoadRoot(r5, RootIndex::kUndefinedValue); |
| |
| Label call_generic_stub; |
| |
| // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. |
| __ LoadTaggedPointerField( |
| r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
| __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset)); |
| __ mov(ip, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); |
| __ and_(r7, r7, ip, SetRC); |
| __ beq(&call_generic_stub, cr0); |
| |
| __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), |
| RelocInfo::CODE_TARGET); |
| |
| __ bind(&call_generic_stub); |
| __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : the number of arguments (not including the receiver) |
| // -- r4 : the function to call (checked to be a JSBoundFunction) |
| // -- r6 : the new target (checked to be a constructor) |
| // ----------------------------------- |
| __ AssertConstructor(r4); |
| __ AssertBoundFunction(r4); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Patch new.target to [[BoundTargetFunction]] if new.target equals target. |
| Label skip; |
| __ CompareTagged(r4, r6); |
| __ bne(&skip); |
| __ LoadTaggedPointerField( |
| r6, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ bind(&skip); |
| |
| // Construct the [[BoundTargetFunction]] via the Construct builtin. |
| __ LoadTaggedPointerField( |
| r4, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Construct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : the number of arguments (not including the receiver) |
| // -- r4 : the constructor to call (can be any Object) |
| // -- r6 : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // ----------------------------------- |
| |
| // Check if target is a Smi. |
| Label non_constructor, non_proxy; |
| __ JumpIfSmi(r4, &non_constructor); |
| |
| // Check if target has a [[Construct]] internal method. |
| __ LoadTaggedPointerField(r7, FieldMemOperand(r4, HeapObject::kMapOffset)); |
| __ lbz(r5, FieldMemOperand(r7, Map::kBitFieldOffset)); |
| __ TestBit(r5, Map::Bits1::IsConstructorBit::kShift, r0); |
| __ beq(&non_constructor, cr0); |
| |
| // Dispatch based on instance type. |
| __ CompareInstanceType(r7, r8, JS_FUNCTION_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Only dispatch to bound functions after checking whether they are |
| // constructors. |
| __ cmpi(r8, Operand(JS_BOUND_FUNCTION_TYPE)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Only dispatch to proxies after checking whether they are constructors. |
| __ cmpi(r8, Operand(JS_PROXY_TYPE)); |
| __ bne(&non_proxy); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), |
| RelocInfo::CODE_TARGET); |
| |
| // Called Construct on an exotic Object with a [[Construct]] internal method. |
| __ bind(&non_proxy); |
| { |
| // Overwrite the original receiver with the (original) target. |
| __ StoreReceiver(r4, r3, r8); |
| // Let the "call_as_constructor_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r4); |
| __ Jump(masm->isolate()->builtins()->CallFunction(), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // Called Construct on an Object that doesn't have a [[Construct]] internal |
| // method. |
| __ bind(&non_constructor); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : actual number of arguments |
| // -- r4 : function (passed through to callee) |
| // -- r5 : expected number of arguments |
| // -- r6 : new target (passed through to callee) |
| // ----------------------------------- |
| |
| Label dont_adapt_arguments, stack_overflow; |
| __ cmpli(r5, Operand(kDontAdaptArgumentsSentinel)); |
| __ beq(&dont_adapt_arguments); |
| __ LoadTaggedPointerField( |
| r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
| __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset)); |
| |
| // ------------------------------------------- |
| // Adapt arguments. |
| // ------------------------------------------- |
| { |
| Label under_application, over_application, invoke; |
| __ cmp(r3, r5); |
| __ blt(&under_application); |
| |
| // Enough parameters: actual >= expected |
| __ bind(&over_application); |
| { |
| EnterArgumentsAdaptorFrame(masm); |
| Generate_StackOverflowCheck(masm, r5, r8, &stack_overflow); |
| |
| // Calculate copy start address into r3 and copy end address into r7. |
| // r3: actual number of arguments as a smi |
| // r4: function |
| // r5: expected number of arguments |
| // r6: new target (passed through to callee) |
| __ ShiftLeftImm(r3, r5, Operand(kSystemPointerSizeLog2)); |
| __ add(r3, r3, fp); |
| // adjust for return address and receiver |
| __ addi(r3, r3, Operand(2 * kSystemPointerSize)); |
| __ ShiftLeftImm(r7, r5, Operand(kSystemPointerSizeLog2)); |
| __ sub(r7, r3, r7); |
| |
| // Copy the arguments (including the receiver) to the new stack frame. |
| // r3: copy start address |
| // r4: function |
| // r5: expected number of arguments |
| // r6: new target (passed through to callee) |
| // r7: copy end address |
| |
| Label copy; |
| __ bind(©); |
| __ LoadP(r0, MemOperand(r3, 0)); |
| __ push(r0); |
| __ cmp(r3, r7); // Compare before moving to next argument. |
| __ subi(r3, r3, Operand(kSystemPointerSize)); |
| __ bne(©); |
| |
| __ b(&invoke); |
| } |
| |
| // Too few parameters: Actual < expected |
| __ bind(&under_application); |
| { |
| EnterArgumentsAdaptorFrame(masm); |
| Generate_StackOverflowCheck(masm, r5, r8, &stack_overflow); |
| |
| // Fill the remaining expected arguments with undefined. |
| // r0: actual number of arguments as a smi |
| // r1: function |
| // r2: expected number of arguments |
| // r3: new target (passed through to callee) |
| __ LoadRoot(r8, RootIndex::kUndefinedValue); |
| __ SmiUntag(r0, r3); |
| __ sub(r9, r5, r0); |
| __ ShiftLeftImm(r7, r9, Operand(kSystemPointerSizeLog2)); |
| __ sub(r7, fp, r7); |
| // Adjust for frame. |
| __ subi(r7, r7, |
| Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp + |
| kSystemPointerSize)); |
| |
| Label fill; |
| __ bind(&fill); |
| __ push(r8); |
| __ cmp(sp, r7); |
| __ b(ne, &fill); |
| |
| // Calculate copy start address into r0 and copy end address is fp. |
| // r0: actual number of arguments as a smi |
| // r1: function |
| // r2: expected number of arguments |
| // r3: new target (passed through to callee) |
| __ SmiToPtrArrayOffset(r3, r3); |
| __ add(r3, r3, fp); |
| |
| // Copy the arguments (including the receiver) to the new stack frame. |
| // r0: copy start address |
| // r1: function |
| // r2: expected number of arguments |
| // r3: new target (passed through to callee) |
| Label copy; |
| __ bind(©); |
| |
| // Adjust load for return address and receiver. |
| __ LoadP(r8, MemOperand(r3, 2 * kSystemPointerSize)); |
| __ push(r8); |
| |
| __ cmp(r3, fp); // Compare before moving to next argument. |
| __ subi(r3, r3, Operand(kSystemPointerSize)); |
| __ b(ne, ©); |
| } |
| |
| // Call the entry point. |
| __ bind(&invoke); |
| __ mr(r3, r5); |
| // r3 : expected number of arguments |
| // r4 : function (passed through to callee) |
| // r6 : new target (passed through to callee) |
| static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); |
| __ LoadTaggedPointerField(r5, FieldMemOperand(r4, JSFunction::kCodeOffset)); |
| __ CallCodeObject(r5); |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // Exit frame and return. |
| LeaveArgumentsAdaptorFrame(masm); |
| __ blr(); |
| } |
| |
| // ------------------------------------------- |
| // Dont adapt arguments. |
| // ------------------------------------------- |
| __ bind(&dont_adapt_arguments); |
| __ RecordComment("-- Call without adapting args --"); |
| static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); |
| __ LoadTaggedPointerField(r5, FieldMemOperand(r4, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(r5); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bkpt(0); |
| } |
| } |
| |
| void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { |
| // The function index was put in a register by the jump table trampoline. |
| // Convert to Smi for the runtime call. |
| __ SmiTag(kWasmCompileLazyFuncIndexRegister, |
| kWasmCompileLazyFuncIndexRegister); |
| { |
| HardAbortScope hard_abort(masm); // Avoid calls to Abort. |
| FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY); |
| |
| // Save all parameter registers (see wasm-linkage.cc). They might be |
| // overwritten in the runtime call below. We don't have any callee-saved |
| // registers in wasm, so no need to store anything else. |
| constexpr RegList gp_regs = |
| Register::ListOf(r3, r4, r5, r6, r7, r8, r9, r10); |
| constexpr RegList fp_regs = |
| DoubleRegister::ListOf(d1, d2, d3, d4, d5, d6, d7, d8); |
| __ MultiPush(gp_regs); |
| __ MultiPushDoubles(fp_regs); |
| |
| // Pass instance and function index as explicit arguments to the runtime |
| // function. |
| __ Push(kWasmInstanceRegister, kWasmCompileLazyFuncIndexRegister); |
| // Initialize the JavaScript context with 0. CEntry will use it to |
| // set the current context on the isolate. |
| __ LoadSmiLiteral(cp, Smi::zero()); |
| __ CallRuntime(Runtime::kWasmCompileLazy, 2); |
| // The entrypoint address is the return value. |
| __ mr(r11, kReturnRegister0); |
| |
| // Restore registers. |
| __ MultiPopDoubles(fp_regs); |
| __ MultiPop(gp_regs); |
| } |
| // Finally, jump to the entrypoint. |
| __ Jump(r11); |
| } |
| |
| void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) { |
| HardAbortScope hard_abort(masm); // Avoid calls to Abort. |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::WASM_DEBUG_BREAK); |
| |
| // Save all parameter registers. They might hold live values, we restore |
| // them after the runtime call. |
| __ MultiPush(WasmDebugBreakFrameConstants::kPushedGpRegs); |
| __ MultiPushDoubles(WasmDebugBreakFrameConstants::kPushedFpRegs); |
| |
| // Initialize the JavaScript context with 0. CEntry will use it to |
| // set the current context on the isolate. |
| __ LoadSmiLiteral(cp, Smi::zero()); |
| __ CallRuntime(Runtime::kWasmDebugBreak, 0); |
| |
| // Restore registers. |
| __ MultiPopDoubles(WasmDebugBreakFrameConstants::kPushedFpRegs); |
| __ MultiPop(WasmDebugBreakFrameConstants::kPushedGpRegs); |
| } |
| __ Ret(); |
| } |
| |
| void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, |
| SaveFPRegsMode save_doubles, ArgvMode argv_mode, |
| bool builtin_exit_frame) { |
| // Called from JavaScript; parameters are on stack as if calling JS function. |
| // r3: number of arguments including receiver |
| // r4: pointer to builtin function |
| // fp: frame pointer (restored after C call) |
| // sp: stack pointer (restored as callee's sp after C call) |
| // cp: current context (C callee-saved) |
| // |
| // If argv_mode == kArgvInRegister: |
| // r5: pointer to the first argument |
| |
| __ mr(r15, r4); |
| |
| if (argv_mode == kArgvInRegister) { |
| // Move argv into the correct register. |
| __ mr(r4, r5); |
| } else { |
| // Compute the argv pointer. |
| __ ShiftLeftImm(r4, r3, Operand(kSystemPointerSizeLog2)); |
| __ add(r4, r4, sp); |
| __ subi(r4, r4, Operand(kSystemPointerSize)); |
| } |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| FrameScope scope(masm, StackFrame::MANUAL); |
| |
| // Need at least one extra slot for return address location. |
| int arg_stack_space = 1; |
| |
| // Pass buffer for return value on stack if necessary |
| bool needs_return_buffer = |
| (result_size == 2 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS); |
| if (needs_return_buffer) { |
| arg_stack_space += result_size; |
| } |
| |
| __ EnterExitFrame( |
| save_doubles, arg_stack_space, |
| builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); |
| |
| // Store a copy of argc in callee-saved registers for later. |
| __ mr(r14, r3); |
| |
| // r3, r14: number of arguments including receiver (C callee-saved) |
| // r4: pointer to the first argument |
| // r15: pointer to builtin function (C callee-saved) |
| |
| // Result returned in registers or stack, depending on result size and ABI. |
| |
| Register isolate_reg = r5; |
| if (needs_return_buffer) { |
| // The return value is a non-scalar value. |
| // Use frame storage reserved by calling function to pass return |
| // buffer as implicit first argument. |
| __ mr(r5, r4); |
| __ mr(r4, r3); |
| __ addi(r3, sp, |
| Operand((kStackFrameExtraParamSlot + 1) * kSystemPointerSize)); |
| isolate_reg = r6; |
| } |
| |
| // Call C built-in. |
| __ Move(isolate_reg, ExternalReference::isolate_address(masm->isolate())); |
| |
| Register target = r15; |
| __ StoreReturnAddressAndCall(target); |
| |
| // If return value is on the stack, pop it to registers. |
| if (needs_return_buffer) { |
| __ LoadP(r4, MemOperand(r3, kSystemPointerSize)); |
| __ LoadP(r3, MemOperand(r3)); |
| } |
| |
| // Check result for exception sentinel. |
| Label exception_returned; |
| __ CompareRoot(r3, RootIndex::kException); |
| __ beq(&exception_returned); |
| |
| // Check that there is no pending exception, otherwise we |
| // should have returned the exception sentinel. |
| if (FLAG_debug_code) { |
| Label okay; |
| ExternalReference pending_exception_address = ExternalReference::Create( |
| IsolateAddressId::kPendingExceptionAddress, masm->isolate()); |
| |
| __ Move(r6, pending_exception_address); |
| __ LoadP(r6, MemOperand(r6)); |
| __ CompareRoot(r6, RootIndex::kTheHoleValue); |
| // Cannot use check here as it attempts to generate call into runtime. |
| __ beq(&okay); |
| __ stop(); |
| __ bind(&okay); |
| } |
| |
| // Exit C frame and return. |
| // r3:r4: result |
| // sp: stack pointer |
| // fp: frame pointer |
| Register argc = argv_mode == kArgvInRegister |
| // We don't want to pop arguments so set argc to no_reg. |
| ? no_reg |
| // r14: still holds argc (callee-saved). |
| : r14; |
| __ LeaveExitFrame(save_doubles, argc); |
| __ blr(); |
| |
| // Handling of exception. |
| __ bind(&exception_returned); |
| |
| ExternalReference pending_handler_context_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); |
| ExternalReference pending_handler_entrypoint_address = |
| ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); |
| ExternalReference pending_handler_constant_pool_address = |
| ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerConstantPoolAddress, |
| masm->isolate()); |
| ExternalReference pending_handler_fp_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); |
| ExternalReference pending_handler_sp_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); |
| |
| // Ask the runtime for help to determine the handler. This will set r3 to |
| // contain the current pending exception, don't clobber it. |
| ExternalReference find_handler = |
| ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ PrepareCallCFunction(3, 0, r3); |
| __ li(r3, Operand::Zero()); |
| __ li(r4, Operand::Zero()); |
| __ Move(r5, ExternalReference::isolate_address(masm->isolate())); |
| __ CallCFunction(find_handler, 3); |
| } |
| |
| // Retrieve the handler context, SP and FP. |
| __ Move(cp, pending_handler_context_address); |
| __ LoadP(cp, MemOperand(cp)); |
| __ Move(sp, pending_handler_sp_address); |
| __ LoadP(sp, MemOperand(sp)); |
| __ Move(fp, pending_handler_fp_address); |
| __ LoadP(fp, MemOperand(fp)); |
| |
| // If the handler is a JS frame, restore the context to the frame. Note that |
| // the context will be set to (cp == 0) for non-JS frames. |
| Label skip; |
| __ cmpi(cp, Operand::Zero()); |
| __ beq(&skip); |
| __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| __ bind(&skip); |
| |
| // Reset the masking register. This is done independent of the underlying |
| // feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work |
| // with both configurations. It is safe to always do this, because the |
| // underlying register is caller-saved and can be arbitrarily clobbered. |
| __ ResetSpeculationPoisonRegister(); |
| |
| // Compute the handler entry address and jump to it. |
| ConstantPoolUnavailableScope constant_pool_unavailable(masm); |
| __ Move(ip, pending_handler_entrypoint_address); |
| __ LoadP(ip, MemOperand(ip)); |
| if (FLAG_enable_embedded_constant_pool) { |
| __ Move(kConstantPoolRegister, pending_handler_constant_pool_address); |
| __ LoadP(kConstantPoolRegister, MemOperand(kConstantPoolRegister)); |
| } |
| __ Jump(ip); |
| } |
| |
| void Builtins::Generate_DoubleToI(MacroAssembler* masm) { |
| Label out_of_range, only_low, negate, done, fastpath_done; |
| Register result_reg = r3; |
| |
| HardAbortScope hard_abort(masm); // Avoid calls to Abort. |
| |
| // Immediate values for this stub fit in instructions, so it's safe to use ip. |
| Register scratch = GetRegisterThatIsNotOneOf(result_reg); |
| Register scratch_low = GetRegisterThatIsNotOneOf(result_reg, scratch); |
| Register scratch_high = |
| GetRegisterThatIsNotOneOf(result_reg, scratch, scratch_low); |
| DoubleRegister double_scratch = kScratchDoubleReg; |
| |
| __ Push(result_reg, scratch); |
| // Account for saved regs. |
| int argument_offset = 2 * kSystemPointerSize; |
| |
| // Load double input. |
| __ lfd(double_scratch, MemOperand(sp, argument_offset)); |
| |
| // Do fast-path convert from double to int. |
| __ ConvertDoubleToInt64(double_scratch, |
| #if !V8_TARGET_ARCH_PPC64 |
| scratch, |
| #endif |
| result_reg, d0); |
| |
| // Test for overflow |
| #if V8_TARGET_ARCH_PPC64 |
| __ TestIfInt32(result_reg, r0); |
| #else |
| __ TestIfInt32(scratch, result_reg, r0); |
| #endif |
| __ beq(&fastpath_done); |
| |
| __ Push(scratch_high, scratch_low); |
| // Account for saved regs. |
| argument_offset += 2 * kSystemPointerSize; |
| |
| __ lwz(scratch_high, |
| MemOperand(sp, argument_offset + Register::kExponentOffset)); |
| __ lwz(scratch_low, |
| MemOperand(sp, argument_offset + Register::kMantissaOffset)); |
| |
| __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask); |
| // Load scratch with exponent - 1. This is faster than loading |
| // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value. |
| STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); |
| __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); |
| // If exponent is greater than or equal to 84, the 32 less significant |
| // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), |
| // the result is 0. |
| // Compare exponent with 84 (compare exponent - 1 with 83). |
| __ cmpi(scratch, Operand(83)); |
| __ bge(&out_of_range); |
| |
| // If we reach this code, 31 <= exponent <= 83. |
| // So, we don't have to handle cases where 0 <= exponent <= 20 for |
| // which we would need to shift right the high part of the mantissa. |
| // Scratch contains exponent - 1. |
| // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). |
| __ subfic(scratch, scratch, Operand(51)); |
| __ cmpi(scratch, Operand::Zero()); |
| __ ble(&only_low); |
| // 21 <= exponent <= 51, shift scratch_low and scratch_high |
| // to generate the result. |
| __ srw(scratch_low, scratch_low, scratch); |
| // Scratch contains: 52 - exponent. |
| // We needs: exponent - 20. |
| // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. |
| __ subfic(scratch, scratch, Operand(32)); |
| __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask); |
| // Set the implicit 1 before the mantissa part in scratch_high. |
| STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16); |
| __ oris(result_reg, result_reg, |
| Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16))); |
| __ slw(r0, result_reg, scratch); |
| __ orx(result_reg, scratch_low, r0); |
| __ b(&negate); |
| |
| __ bind(&out_of_range); |
| __ mov(result_reg, Operand::Zero()); |
| __ b(&done); |
| |
| __ bind(&only_low); |
| // 52 <= exponent <= 83, shift only scratch_low. |
| // On entry, scratch contains: 52 - exponent. |
| __ neg(scratch, scratch); |
| __ slw(result_reg, scratch_low, scratch); |
| |
| __ bind(&negate); |
| // If input was positive, scratch_high ASR 31 equals 0 and |
| // scratch_high LSR 31 equals zero. |
| // New result = (result eor 0) + 0 = result. |
| // If the input was negative, we have to negate the result. |
| // Input_high ASR 31 equals 0xFFFFFFFF and scratch_high LSR 31 equals 1. |
| // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result. |
| __ srawi(r0, scratch_high, 31); |
| #if V8_TARGET_ARCH_PPC64 |
| __ srdi(r0, r0, Operand(32)); |
| #endif |
| __ xor_(result_reg, result_reg, r0); |
| __ srwi(r0, scratch_high, Operand(31)); |
| __ add(result_reg, result_reg, r0); |
| |
| __ bind(&done); |
| __ Pop(scratch_high, scratch_low); |
| // Account for saved regs. |
| argument_offset -= 2 * kSystemPointerSize; |
| |
| __ bind(&fastpath_done); |
| __ StoreP(result_reg, MemOperand(sp, argument_offset)); |
| __ Pop(result_reg, scratch); |
| |
| __ Ret(); |
| } |
| |
| void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) { |
| // TODO(v8:10701): Implement for this platform. |
| __ Trap(); |
| } |
| |
| namespace { |
| |
| static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { |
| return ref0.address() - ref1.address(); |
| } |
| |
| |
| // Calls an API function. Allocates HandleScope, extracts returned value |
| // from handle and propagates exceptions. Restores context. stack_space |
| // - space to be unwound on exit (includes the call JS arguments space and |
| // the additional space allocated for the fast call). |
| static void CallApiFunctionAndReturn(MacroAssembler* masm, |
| Register function_address, |
| ExternalReference thunk_ref, |
| int stack_space, |
| MemOperand* stack_space_operand, |
| MemOperand return_value_operand) { |
| Isolate* isolate = masm->isolate(); |
| ExternalReference next_address = |
| ExternalReference::handle_scope_next_address(isolate); |
| const int kNextOffset = 0; |
| const int kLimitOffset = AddressOffset( |
| ExternalReference::handle_scope_limit_address(isolate), next_address); |
| const int kLevelOffset = AddressOffset( |
| ExternalReference::handle_scope_level_address(isolate), next_address); |
| |
| // Additional parameter is the address of the actual callback. |
| DCHECK(function_address == r4 || function_address == r5); |
| Register scratch = r6; |
| |
| __ Move(scratch, ExternalReference::is_profiling_address(isolate)); |
| __ lbz(scratch, MemOperand(scratch, 0)); |
| __ cmpi(scratch, Operand::Zero()); |
| |
| if (CpuFeatures::IsSupported(ISELECT)) { |
| __ Move(scratch, thunk_ref); |
| __ isel(eq, scratch, function_address, scratch); |
| } else { |
| Label profiler_enabled, end_profiler_check; |
| __ bne(&profiler_enabled); |
| __ Move(scratch, ExternalReference::address_of_runtime_stats_flag()); |
| __ lwz(scratch, MemOperand(scratch, 0)); |
| __ cmpi(scratch, Operand::Zero()); |
| __ bne(&profiler_enabled); |
| { |
| // Call the api function directly. |
| __ mr(scratch, function_address); |
| __ b(&end_profiler_check); |
| } |
| __ bind(&profiler_enabled); |
| { |
| // Additional parameter is the address of the actual callback. |
| __ Move(scratch, thunk_ref); |
| } |
| __ bind(&end_profiler_check); |
| } |
| |
| // Allocate HandleScope in callee-save registers. |
| // r17 - next_address |
| // r14 - next_address->kNextOffset |
| // r15 - next_address->kLimitOffset |
| // r16 - next_address->kLevelOffset |
| __ Move(r17, next_address); |
| __ LoadP(r14, MemOperand(r17, kNextOffset)); |
| __ LoadP(r15, MemOperand(r17, kLimitOffset)); |
| __ lwz(r16, MemOperand(r17, kLevelOffset)); |
| __ addi(r16, r16, Operand(1)); |
| __ stw(r16, MemOperand(r17, kLevelOffset)); |
| |
| __ StoreReturnAddressAndCall(scratch); |
| |
| Label promote_scheduled_exception; |
| Label delete_allocated_handles; |
| Label leave_exit_frame; |
| Label return_value_loaded; |
| |
| // load value from ReturnValue |
| __ LoadP(r3, return_value_operand); |
| __ bind(&return_value_loaded); |
| // No more valid handles (the result handle was the last one). Restore |
| // previous handle scope. |
| __ StoreP(r14, MemOperand(r17, kNextOffset)); |
| if (__ emit_debug_code()) { |
| __ lwz(r4, MemOperand(r17, kLevelOffset)); |
| __ cmp(r4, r16); |
| __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall); |
| } |
| __ subi(r16, r16, Operand(1)); |
| __ stw(r16, MemOperand(r17, kLevelOffset)); |
| __ LoadP(r0, MemOperand(r17, kLimitOffset)); |
| __ cmp(r15, r0); |
| __ bne(&delete_allocated_handles); |
| |
| // Leave the API exit frame. |
| __ bind(&leave_exit_frame); |
| // LeaveExitFrame expects unwind space to be in a register. |
| if (stack_space_operand != nullptr) { |
| __ LoadP(r14, *stack_space_operand); |
| } else { |
| __ mov(r14, Operand(stack_space)); |
| } |
| __ LeaveExitFrame(false, r14, stack_space_operand != nullptr); |
| |
| // Check if the function scheduled an exception. |
| __ LoadRoot(r14, RootIndex::kTheHoleValue); |
| __ Move(r15, ExternalReference::scheduled_exception_address(isolate)); |
| __ LoadP(r15, MemOperand(r15)); |
| __ cmp(r14, r15); |
| __ bne(&promote_scheduled_exception); |
| |
| __ blr(); |
| |
| // Re-throw by promoting a scheduled exception. |
| __ bind(&promote_scheduled_exception); |
| __ TailCallRuntime(Runtime::kPromoteScheduledException); |
| |
| // HandleScope limit has changed. Delete allocated extensions. |
| __ bind(&delete_allocated_handles); |
| __ StoreP(r15, MemOperand(r17, kLimitOffset)); |
| __ mr(r14, r3); |
| __ PrepareCallCFunction(1, r15); |
| __ Move(r3, ExternalReference::isolate_address(isolate)); |
| __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1); |
| __ mr(r3, r14); |
| __ b(&leave_exit_frame); |
| } |
| |
| } // namespace |
| |
| void Builtins::Generate_CallApiCallback(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- cp : context |
| // -- r4 : api function address |
| // -- r5 : arguments count (not including the receiver) |
| // -- r6 : call data |
| // -- r3 : holder |
| // -- sp[0] : receiver |
| // -- sp[8] : first argument |
| // -- ... |
| // -- sp[(argc) * 8] : last argument |
| // ----------------------------------- |
| |
| Register api_function_address = r4; |
| Register argc = r5; |
| Register call_data = r6; |
| Register holder = r3; |
| Register scratch = r7; |
| DCHECK(!AreAliased(api_function_address, argc, call_data, holder, scratch)); |
| |
| using FCA = FunctionCallbackArguments; |
| |
| STATIC_ASSERT(FCA::kArgsLength == 6); |
| STATIC_ASSERT(FCA::kNewTargetIndex == 5); |
| STATIC_ASSERT(FCA::kDataIndex == 4); |
| STATIC_ASSERT(FCA::kReturnValueOffset == 3); |
| STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); |
| STATIC_ASSERT(FCA::kIsolateIndex == 1); |
| STATIC_ASSERT(FCA::kHolderIndex == 0); |
| |
| // Set up FunctionCallbackInfo's implicit_args on the stack as follows: |
| // |
| // Target state: |
| // sp[0 * kSystemPointerSize]: kHolder |
| // sp[1 * kSystemPointerSize]: kIsolate |
| // sp[2 * kSystemPointerSize]: undefined (kReturnValueDefaultValue) |
| // sp[3 * kSystemPointerSize]: undefined (kReturnValue) |
| // sp[4 * kSystemPointerSize]: kData |
| // sp[5 * kSystemPointerSize]: undefined (kNewTarget) |
| |
| // Reserve space on the stack. |
| __ subi(sp, sp, Operand(FCA::kArgsLength * kSystemPointerSize)); |
| |
| // kHolder. |
| __ StoreP(holder, MemOperand(sp, 0 * kSystemPointerSize)); |
| |
| // kIsolate. |
| __ Move(scratch, ExternalReference::isolate_address(masm->isolate())); |
| __ StoreP(scratch, MemOperand(sp, 1 * kSystemPointerSize)); |
| |
| // kReturnValueDefaultValue and kReturnValue. |
| __ LoadRoot(scratch, RootIndex::kUndefinedValue); |
| __ StoreP(scratch, MemOperand(sp, 2 * kSystemPointerSize)); |
| __ StoreP(scratch, MemOperand(sp, 3 * kSystemPointerSize)); |
| |
| // kData. |
| __ StoreP(call_data, MemOperand(sp, 4 * kSystemPointerSize)); |
| |
| // kNewTarget. |
| __ StoreP(scratch, MemOperand(sp, 5 * kSystemPointerSize)); |
| |
| // Keep a pointer to kHolder (= implicit_args) in a scratch register. |
| // We use it below to set up the FunctionCallbackInfo object. |
| __ mr(scratch, sp); |
| |
| // Allocate the v8::Arguments structure in the arguments' space since |
| // it's not controlled by GC. |
| // PPC LINUX ABI: |
| // |
| // Create 4 extra slots on stack: |
| // [0] space for DirectCEntryStub's LR save |
| // [1-3] FunctionCallbackInfo |
| // [4] number of bytes to drop from the stack after returning |
| static constexpr int kApiStackSpace = 5; |
| static constexpr bool kDontSaveDoubles = false; |
| |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ EnterExitFrame(kDontSaveDoubles, kApiStackSpace); |
| |
| // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above). |
| // Arguments are after the return address (pushed by EnterExitFrame()). |
| __ StoreP(scratch, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * |
| kSystemPointerSize)); |
| |
| // FunctionCallbackInfo::values_ (points at the first varargs argument passed |
| // on the stack). |
| __ addi(scratch, scratch, |
| Operand((FCA::kArgsLength + 1) * kSystemPointerSize)); |
| __ StoreP(scratch, MemOperand(sp, (kStackFrameExtraParamSlot + 2) * |
| kSystemPointerSize)); |
| |
| // FunctionCallbackInfo::length_. |
| __ stw(argc, |
| MemOperand(sp, (kStackFrameExtraParamSlot + 3) * kSystemPointerSize)); |
| |
| // We also store the number of bytes to drop from the stack after returning |
| // from the API function here. |
| __ mov(scratch, |
| Operand((FCA::kArgsLength + 1 /* receiver */) * kSystemPointerSize)); |
| __ ShiftLeftImm(ip, argc, Operand(kSystemPointerSizeLog2)); |
| __ add(scratch, scratch, ip); |
| __ StoreP(scratch, MemOperand(sp, (kStackFrameExtraParamSlot + 4) * |
| kSystemPointerSize)); |
| |
| // v8::InvocationCallback's argument. |
| __ addi(r3, sp, |
| Operand((kStackFrameExtraParamSlot + 1) * kSystemPointerSize)); |
| |
| ExternalReference thunk_ref = ExternalReference::invoke_function_callback(); |
| |
| // There are two stack slots above the arguments we constructed on the stack. |
| // TODO(jgruber): Document what these arguments are. |
| static constexpr int kStackSlotsAboveFCA = 2; |
| MemOperand return_value_operand( |
| fp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kSystemPointerSize); |
| |
| static constexpr int kUseStackSpaceOperand = 0; |
| MemOperand stack_space_operand( |
| sp, (kStackFrameExtraParamSlot + 4) * kSystemPointerSize); |
| |
| AllowExternalCallThatCantCauseGC scope(masm); |
| CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, |
| kUseStackSpaceOperand, &stack_space_operand, |
| return_value_operand); |
| } |
| |
| |
| void Builtins::Generate_CallApiGetter(MacroAssembler* masm) { |
| int arg0Slot = 0; |
| int accessorInfoSlot = 0; |
| int apiStackSpace = 0; |
| // Build v8::PropertyCallbackInfo::args_ array on the stack and push property |
| // name below the exit frame to make GC aware of them. |
| STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); |
| STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); |
| STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); |
| STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); |
| STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); |
| STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); |
| STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); |
| STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); |
| |
| Register receiver = ApiGetterDescriptor::ReceiverRegister(); |
| Register holder = ApiGetterDescriptor::HolderRegister(); |
| Register callback = ApiGetterDescriptor::CallbackRegister(); |
| Register scratch = r7; |
| DCHECK(!AreAliased(receiver, holder, callback, scratch)); |
| |
| Register api_function_address = r5; |
| |
| __ push(receiver); |
| // Push data from AccessorInfo. |
| __ LoadAnyTaggedField(scratch, |
| FieldMemOperand(callback, AccessorInfo::kDataOffset)); |
| __ push(scratch); |
| __ LoadRoot(scratch, RootIndex::kUndefinedValue); |
| __ Push(scratch, scratch); |
| __ Move(scratch, ExternalReference::isolate_address(masm->isolate())); |
| __ Push(scratch, holder); |
| __ Push(Smi::zero()); // should_throw_on_error -> false |
| __ LoadTaggedPointerField( |
| scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset)); |
| __ push(scratch); |
| |
| // v8::PropertyCallbackInfo::args_ array and name handle. |
| const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; |
| |
| // Load address of v8::PropertyAccessorInfo::args_ array and name handle. |
| __ mr(r3, sp); // r3 = Handle<Name> |
| __ addi(r4, r3, Operand(1 * kSystemPointerSize)); // r4 = v8::PCI::args_ |
| |
| // If ABI passes Handles (pointer-sized struct) in a register: |
| // |
| // Create 2 extra slots on stack: |
| // [0] space for DirectCEntryStub's LR save |
| // [1] AccessorInfo& |
| // |
| // Otherwise: |
| // |
| // Create 3 extra slots on stack: |
| // [0] space for DirectCEntryStub's LR save |
| // [1] copy of Handle (first arg) |
| // [2] AccessorInfo& |
| if (ABI_PASSES_HANDLES_IN_REGS) { |
| accessorInfoSlot = kStackFrameExtraParamSlot + 1; |
| apiStackSpace = 2; |
| } else { |
| arg0Slot = kStackFrameExtraParamSlot + 1; |
| accessorInfoSlot = arg0Slot + 1; |
| apiStackSpace = 3; |
| } |
| |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ EnterExitFrame(false, apiStackSpace); |
| |
| if (!ABI_PASSES_HANDLES_IN_REGS) { |
| // pass 1st arg by reference |
| __ StoreP(r3, MemOperand(sp, arg0Slot * kSystemPointerSize)); |
| __ addi(r3, sp, Operand(arg0Slot * kSystemPointerSize)); |
| } |
| |
| // Create v8::PropertyCallbackInfo object on the stack and initialize |
| // it's args_ field. |
| __ StoreP(r4, MemOperand(sp, accessorInfoSlot * kSystemPointerSize)); |
| __ addi(r4, sp, Operand(accessorInfoSlot * kSystemPointerSize)); |
| // r4 = v8::PropertyCallbackInfo& |
| |
| ExternalReference thunk_ref = |
| ExternalReference::invoke_accessor_getter_callback(); |
| |
| __ LoadTaggedPointerField( |
| scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); |
| __ LoadP(api_function_address, |
| FieldMemOperand(scratch, Foreign::kForeignAddressOffset)); |
| |
| // +3 is to skip prolog, return address and name handle. |
| MemOperand return_value_operand( |
| fp, |
| (PropertyCallbackArguments::kReturnValueOffset + 3) * kSystemPointerSize); |
| MemOperand* const kUseStackSpaceConstant = nullptr; |
| CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, |
| kStackUnwindSpace, kUseStackSpaceConstant, |
| return_value_operand); |
| } |
| |
| void Builtins::Generate_DirectCEntry(MacroAssembler* masm) { |
| UseScratchRegisterScope temps(masm); |
| Register temp2 = temps.Acquire(); |
| // Place the return address on the stack, making the call |
| // GC safe. The RegExp backend also relies on this. |
| __ mflr(r0); |
| __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kSystemPointerSize)); |
| |
| if (ABI_USES_FUNCTION_DESCRIPTORS) { |
| // AIX/PPC64BE Linux use a function descriptor; |
| __ LoadP(ToRegister(ABI_TOC_REGISTER), |
| MemOperand(temp2, kSystemPointerSize)); |
| __ LoadP(temp2, MemOperand(temp2, 0)); // Instruction address |
| } |
| |
| __ Call(temp2); // Call the C++ function. |
| __ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kSystemPointerSize)); |
| __ mtlr(r0); |
| __ blr(); |
| } |
| |
| namespace { |
| |
| // This code tries to be close to ia32 code so that any changes can be |
| // easily ported. |
| void Generate_DeoptimizationEntry(MacroAssembler* masm, |
| DeoptimizeKind deopt_kind) { |
| Isolate* isolate = masm->isolate(); |
| |
| // Unlike on ARM we don't save all the registers, just the useful ones. |
| // For the rest, there are gaps on the stack, so the offsets remain the same. |
| const int kNumberOfRegisters = Register::kNumRegisters; |
| |
| RegList restored_regs = kJSCallerSaved | kCalleeSaved; |
| RegList saved_regs = restored_regs | sp.bit(); |
| |
| const int kDoubleRegsSize = kDoubleSize * DoubleRegister::kNumRegisters; |
| |
| // Save all double registers before messing with them. |
| __ subi(sp, sp, Operand(kDoubleRegsSize)); |
| const RegisterConfiguration* config = RegisterConfiguration::Default(); |
| for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { |
| int code = config->GetAllocatableDoubleCode(i); |
| const DoubleRegister dreg = DoubleRegister::from_code(code); |
| int offset = code * kDoubleSize; |
| __ stfd(dreg, MemOperand(sp, offset)); |
| } |
| |
| // Push saved_regs (needed to populate FrameDescription::registers_). |
| // Leave gaps for other registers. |
| __ subi(sp, sp, Operand(kNumberOfRegisters * kSystemPointerSize)); |
| for (int16_t i = kNumberOfRegisters - 1; i >= 0; i--) { |
| if ((saved_regs & (1 << i)) != 0) { |
| __ StoreP(ToRegister(i), MemOperand(sp, kSystemPointerSize * i)); |
| } |
| } |
| { |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.Acquire(); |
| __ Move(scratch, ExternalReference::Create( |
| IsolateAddressId::kCEntryFPAddress, isolate)); |
| __ StoreP(fp, MemOperand(scratch)); |
| } |
| const int kSavedRegistersAreaSize = |
| (kNumberOfRegisters * kSystemPointerSize) + kDoubleRegsSize; |
| |
| // Get the bailout id is passed as r29 by the caller. |
| __ mr(r5, r29); |
| |
| __ mov(r5, Operand(Deoptimizer::kFixedExitSizeMarker)); |
| // Get the address of the location in the code object (r6) (return |
| // address for lazy deoptimization) and compute the fp-to-sp delta in |
| // register r7. |
| __ mflr(r6); |
| __ addi(r7, sp, Operand(kSavedRegistersAreaSize)); |
| __ sub(r7, fp, r7); |
| |
| // Allocate a new deoptimizer object. |
| // Pass six arguments in r3 to r8. |
| __ PrepareCallCFunction(6, r8); |
| __ li(r3, Operand::Zero()); |
| Label context_check; |
| __ LoadP(r4, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset)); |
| __ JumpIfSmi(r4, &context_check); |
| __ LoadP(r3, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); |
| __ bind(&context_check); |
| __ li(r4, Operand(static_cast<int>(deopt_kind))); |
| // r5: bailout id already loaded. |
| // r6: code address or 0 already loaded. |
| // r7: Fp-to-sp delta. |
| __ Move(r8, ExternalReference::isolate_address(isolate)); |
| // Call Deoptimizer::New(). |
| { |
| AllowExternalCallThatCantCauseGC scope(masm); |
| __ CallCFunction(ExternalReference::new_deoptimizer_function(), 6); |
| } |
| |
| // Preserve "deoptimizer" object in register r3 and get the input |
| // frame descriptor pointer to r4 (deoptimizer->input_); |
| __ LoadP(r4, MemOperand(r3, Deoptimizer::input_offset())); |
| |
| // Copy core registers into FrameDescription::registers_[kNumRegisters]. |
| DCHECK_EQ(Register::kNumRegisters, kNumberOfRegisters); |
| for (int i = 0; i < kNumberOfRegisters; i++) { |
| int offset = |
| (i * kSystemPointerSize) + FrameDescription::registers_offset(); |
| __ LoadP(r5, MemOperand(sp, i * kSystemPointerSize)); |
| __ StoreP(r5, MemOperand(r4, offset)); |
| } |
| |
| int double_regs_offset = FrameDescription::double_registers_offset(); |
| // Copy double registers to |
| // double_registers_[DoubleRegister::kNumRegisters] |
| for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { |
| int code = config->GetAllocatableDoubleCode(i); |
| int dst_offset = code * kDoubleSize + double_regs_offset; |
| int src_offset = |
| code * kDoubleSize + kNumberOfRegisters * kSystemPointerSize; |
| __ lfd(d0, MemOperand(sp, src_offset)); |
| __ stfd(d0, MemOperand(r4, dst_offset)); |
| } |
| |
| // Mark the stack as not iterable for the CPU profiler which won't be able to |
| // walk the stack without the return address. |
| { |
| UseScratchRegisterScope temps(masm); |
| Register is_iterable = temps.Acquire(); |
| Register zero = r7; |
| __ Move(is_iterable, ExternalReference::stack_is_iterable_address(isolate)); |
| __ li(zero, Operand(0)); |
| __ stb(zero, MemOperand(is_iterable)); |
| } |
| |
| // Remove the saved registers from the stack. |
| __ addi(sp, sp, Operand(kSavedRegistersAreaSize)); |
| |
| // Compute a pointer to the unwinding limit in register r5; that is |
| // the first stack slot not part of the input frame. |
| __ LoadP(r5, MemOperand(r4, FrameDescription::frame_size_offset())); |
| __ add(r5, r5, sp); |
| |
| // Unwind the stack down to - but not including - the unwinding |
| // limit and copy the contents of the activation frame to the input |
| // frame description. |
| __ addi(r6, r4, Operand(FrameDescription::frame_content_offset())); |
| Label pop_loop; |
| Label pop_loop_header; |
| __ b(&pop_loop_header); |
| __ bind(&pop_loop); |
| __ pop(r7); |
| __ StoreP(r7, MemOperand(r6, 0)); |
| __ addi(r6, r6, Operand(kSystemPointerSize)); |
| __ bind(&pop_loop_header); |
| __ cmp(r5, sp); |
| __ bne(&pop_loop); |
| |
| // Compute the output frame in the deoptimizer. |
| __ push(r3); // Preserve deoptimizer object across call. |
| // r3: deoptimizer object; r4: scratch. |
| __ PrepareCallCFunction(1, r4); |
| // Call Deoptimizer::ComputeOutputFrames(). |
| { |
| AllowExternalCallThatCantCauseGC scope(masm); |
| __ CallCFunction(ExternalReference::compute_output_frames_function(), 1); |
| } |
| __ pop(r3); // Restore deoptimizer object (class Deoptimizer). |
| |
| __ LoadP(sp, MemOperand(r3, Deoptimizer::caller_frame_top_offset())); |
| |
| // Replace the current (input) frame with the output frames. |
| Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; |
| // Outer loop state: r7 = current "FrameDescription** output_", |
| // r4 = one past the last FrameDescription**. |
| __ lwz(r4, MemOperand(r3, Deoptimizer::output_count_offset())); |
| __ LoadP(r7, MemOperand(r3, Deoptimizer::output_offset())); // r7 is output_. |
| __ ShiftLeftImm(r4, r4, Operand(kSystemPointerSizeLog2)); |
| __ add(r4, r7, r4); |
| __ b(&outer_loop_header); |
| |
| __ bind(&outer_push_loop); |
| // Inner loop state: r5 = current FrameDescription*, r6 = loop index. |
| __ LoadP(r5, MemOperand(r7, 0)); // output_[ix] |
| __ LoadP(r6, MemOperand(r5, FrameDescription::frame_size_offset())); |
| __ b(&inner_loop_header); |
| |
| __ bind(&inner_push_loop); |
| __ addi(r6, r6, Operand(-sizeof(intptr_t))); |
| __ add(r9, r5, r6); |
| __ LoadP(r9, MemOperand(r9, FrameDescription::frame_content_offset())); |
| __ push(r9); |
| |
| __ bind(&inner_loop_header); |
| __ cmpi(r6, Operand::Zero()); |
| __ bne(&inner_push_loop); // test for gt? |
| |
| __ addi(r7, r7, Operand(kSystemPointerSize)); |
| __ bind(&outer_loop_header); |
| __ cmp(r7, r4); |
| __ blt(&outer_push_loop); |
| |
| __ LoadP(r4, MemOperand(r3, Deoptimizer::input_offset())); |
| for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { |
| int code = config->GetAllocatableDoubleCode(i); |
| const DoubleRegister dreg = DoubleRegister::from_code(code); |
| int src_offset = code * kDoubleSize + double_regs_offset; |
| __ lfd(dreg, MemOperand(r4, src_offset)); |
| } |
| |
| // Push pc, and continuation from the last output frame. |
| __ LoadP(r9, MemOperand(r5, FrameDescription::pc_offset())); |
| __ push(r9); |
| __ LoadP(r9, MemOperand(r5, FrameDescription::continuation_offset())); |
| __ push(r9); |
| |
| // Restore the registers from the last output frame. |
| { |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.Acquire(); |
| DCHECK(!(scratch.bit() & restored_regs)); |
| __ mr(scratch, r5); |
| for (int i = kNumberOfRegisters - 1; i >= 0; i--) { |
| int offset = |
| (i * kSystemPointerSize) + FrameDescription::registers_offset(); |
| if ((restored_regs & (1 << i)) != 0) { |
| __ LoadP(ToRegister(i), MemOperand(scratch, offset)); |
| } |
| } |
| } |
| |
| { |
| UseScratchRegisterScope temps(masm); |
| Register is_iterable = temps.Acquire(); |
| Register one = r7; |
| __ Move(is_iterable, ExternalReference::stack_is_iterable_address(isolate)); |
| __ li(one, Operand(1)); |
| __ stb(one, MemOperand(is_iterable)); |
| } |
| |
| { |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.Acquire(); |
| __ pop(scratch); // get continuation, leave pc on stack |
| __ pop(r0); |
| __ mtlr(r0); |
| __ Jump(scratch); |
| } |
| |
| __ stop(); |
| } |
| |
| } // namespace |
| |
| void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) { |
| Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager); |
| } |
| |
| void Builtins::Generate_DeoptimizationEntry_Soft(MacroAssembler* masm) { |
| Generate_DeoptimizationEntry(masm, DeoptimizeKind::kSoft); |
| } |
| |
| void Builtins::Generate_DeoptimizationEntry_Bailout(MacroAssembler* masm) { |
| Generate_DeoptimizationEntry(masm, DeoptimizeKind::kBailout); |
| } |
| |
| void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) { |
| Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy); |
| } |
| #undef __ |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_PPC64 || V8_TARGET_ARCH_PPC64 |