| // Copyright 2015 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/compiler/backend/instruction-selector-impl.h" |
| #include "src/compiler/node-matchers.h" |
| #include "src/compiler/node-properties.h" |
| #include "src/execution/frame-constants.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| enum class OperandMode : uint32_t { |
| kNone = 0u, |
| // Immediate mode |
| kShift32Imm = 1u << 0, |
| kShift64Imm = 1u << 1, |
| kInt32Imm = 1u << 2, |
| kInt32Imm_Negate = 1u << 3, |
| kUint32Imm = 1u << 4, |
| kInt20Imm = 1u << 5, |
| kUint12Imm = 1u << 6, |
| // Instr format |
| kAllowRRR = 1u << 7, |
| kAllowRM = 1u << 8, |
| kAllowRI = 1u << 9, |
| kAllowRRI = 1u << 10, |
| kAllowRRM = 1u << 11, |
| // Useful combination |
| kAllowImmediate = kAllowRI | kAllowRRI, |
| kAllowMemoryOperand = kAllowRM | kAllowRRM, |
| kAllowDistinctOps = kAllowRRR | kAllowRRI | kAllowRRM, |
| kBitWiseCommonMode = kAllowRI, |
| kArithmeticCommonMode = kAllowRM | kAllowRI |
| }; |
| |
| using OperandModes = base::Flags<OperandMode, uint32_t>; |
| DEFINE_OPERATORS_FOR_FLAGS(OperandModes) |
| OperandModes immediateModeMask = |
| OperandMode::kShift32Imm | OperandMode::kShift64Imm | |
| OperandMode::kInt32Imm | OperandMode::kInt32Imm_Negate | |
| OperandMode::kUint32Imm | OperandMode::kInt20Imm; |
| |
| #define AndCommonMode \ |
| ((OperandMode::kAllowRM | \ |
| (CpuFeatures::IsSupported(DISTINCT_OPS) ? OperandMode::kAllowRRR \ |
| : OperandMode::kNone))) |
| #define And64OperandMode AndCommonMode |
| #define Or64OperandMode And64OperandMode |
| #define Xor64OperandMode And64OperandMode |
| |
| #define And32OperandMode \ |
| (AndCommonMode | OperandMode::kAllowRI | OperandMode::kUint32Imm) |
| #define Or32OperandMode And32OperandMode |
| #define Xor32OperandMode And32OperandMode |
| |
| #define Shift32OperandMode \ |
| ((OperandMode::kAllowRI | OperandMode::kShift64Imm | \ |
| (CpuFeatures::IsSupported(DISTINCT_OPS) \ |
| ? (OperandMode::kAllowRRR | OperandMode::kAllowRRI) \ |
| : OperandMode::kNone))) |
| |
| #define Shift64OperandMode \ |
| ((OperandMode::kAllowRI | OperandMode::kShift64Imm | \ |
| OperandMode::kAllowRRR | OperandMode::kAllowRRI)) |
| |
| #define AddOperandMode \ |
| ((OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm | \ |
| (CpuFeatures::IsSupported(DISTINCT_OPS) \ |
| ? (OperandMode::kAllowRRR | OperandMode::kAllowRRI) \ |
| : OperandMode::kArithmeticCommonMode))) |
| #define SubOperandMode \ |
| ((OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm_Negate | \ |
| (CpuFeatures::IsSupported(DISTINCT_OPS) \ |
| ? (OperandMode::kAllowRRR | OperandMode::kAllowRRI) \ |
| : OperandMode::kArithmeticCommonMode))) |
| #define MulOperandMode \ |
| (OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm) |
| |
| // Adds S390-specific methods for generating operands. |
| class S390OperandGenerator final : public OperandGenerator { |
| public: |
| explicit S390OperandGenerator(InstructionSelector* selector) |
| : OperandGenerator(selector) {} |
| |
| InstructionOperand UseOperand(Node* node, OperandModes mode) { |
| if (CanBeImmediate(node, mode)) { |
| return UseImmediate(node); |
| } |
| return UseRegister(node); |
| } |
| |
| InstructionOperand UseAnyExceptImmediate(Node* node) { |
| if (NodeProperties::IsConstant(node)) |
| return UseRegister(node); |
| else |
| return Use(node); |
| } |
| |
| int64_t GetImmediate(Node* node) { |
| if (node->opcode() == IrOpcode::kInt32Constant) |
| return OpParameter<int32_t>(node->op()); |
| else if (node->opcode() == IrOpcode::kInt64Constant) |
| return OpParameter<int64_t>(node->op()); |
| else |
| UNIMPLEMENTED(); |
| return 0L; |
| } |
| |
| bool CanBeImmediate(Node* node, OperandModes mode) { |
| int64_t value; |
| if (node->opcode() == IrOpcode::kInt32Constant) |
| value = OpParameter<int32_t>(node->op()); |
| else if (node->opcode() == IrOpcode::kInt64Constant) |
| value = OpParameter<int64_t>(node->op()); |
| else |
| return false; |
| return CanBeImmediate(value, mode); |
| } |
| |
| bool CanBeImmediate(int64_t value, OperandModes mode) { |
| if (mode & OperandMode::kShift32Imm) |
| return 0 <= value && value < 32; |
| else if (mode & OperandMode::kShift64Imm) |
| return 0 <= value && value < 64; |
| else if (mode & OperandMode::kInt32Imm) |
| return is_int32(value); |
| else if (mode & OperandMode::kInt32Imm_Negate) |
| return is_int32(-value); |
| else if (mode & OperandMode::kUint32Imm) |
| return is_uint32(value); |
| else if (mode & OperandMode::kInt20Imm) |
| return is_int20(value); |
| else if (mode & OperandMode::kUint12Imm) |
| return is_uint12(value); |
| else |
| return false; |
| } |
| |
| bool CanBeMemoryOperand(InstructionCode opcode, Node* user, Node* input, |
| int effect_level) { |
| if (input->opcode() != IrOpcode::kLoad || |
| !selector()->CanCover(user, input)) { |
| return false; |
| } |
| |
| if (effect_level != selector()->GetEffectLevel(input)) { |
| return false; |
| } |
| |
| MachineRepresentation rep = |
| LoadRepresentationOf(input->op()).representation(); |
| switch (opcode) { |
| case kS390_Cmp64: |
| case kS390_LoadAndTestWord64: |
| return rep == MachineRepresentation::kWord64 || |
| (!COMPRESS_POINTERS_BOOL && IsAnyTagged(rep)); |
| case kS390_LoadAndTestWord32: |
| case kS390_Cmp32: |
| return rep == MachineRepresentation::kWord32 || |
| (COMPRESS_POINTERS_BOOL && IsAnyTagged(rep)); |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| AddressingMode GenerateMemoryOperandInputs(Node* index, Node* base, |
| Node* displacement, |
| DisplacementMode displacement_mode, |
| InstructionOperand inputs[], |
| size_t* input_count) { |
| AddressingMode mode = kMode_MRI; |
| if (base != nullptr) { |
| inputs[(*input_count)++] = UseRegister(base); |
| if (index != nullptr) { |
| inputs[(*input_count)++] = UseRegister(index); |
| if (displacement != nullptr) { |
| inputs[(*input_count)++] = displacement_mode |
| ? UseNegatedImmediate(displacement) |
| : UseImmediate(displacement); |
| mode = kMode_MRRI; |
| } else { |
| mode = kMode_MRR; |
| } |
| } else { |
| if (displacement == nullptr) { |
| mode = kMode_MR; |
| } else { |
| inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement |
| ? UseNegatedImmediate(displacement) |
| : UseImmediate(displacement); |
| mode = kMode_MRI; |
| } |
| } |
| } else { |
| DCHECK_NOT_NULL(index); |
| inputs[(*input_count)++] = UseRegister(index); |
| if (displacement != nullptr) { |
| inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement |
| ? UseNegatedImmediate(displacement) |
| : UseImmediate(displacement); |
| mode = kMode_MRI; |
| } else { |
| mode = kMode_MR; |
| } |
| } |
| return mode; |
| } |
| |
| AddressingMode GetEffectiveAddressMemoryOperand( |
| Node* operand, InstructionOperand inputs[], size_t* input_count, |
| OperandModes immediate_mode = OperandMode::kInt20Imm) { |
| #if V8_TARGET_ARCH_S390X |
| BaseWithIndexAndDisplacement64Matcher m(operand, |
| AddressOption::kAllowInputSwap); |
| #else |
| BaseWithIndexAndDisplacement32Matcher m(operand, |
| AddressOption::kAllowInputSwap); |
| #endif |
| DCHECK(m.matches()); |
| if ((m.displacement() == nullptr || |
| CanBeImmediate(m.displacement(), immediate_mode))) { |
| DCHECK_EQ(0, m.scale()); |
| return GenerateMemoryOperandInputs(m.index(), m.base(), m.displacement(), |
| m.displacement_mode(), inputs, |
| input_count); |
| } else { |
| inputs[(*input_count)++] = UseRegister(operand->InputAt(0)); |
| inputs[(*input_count)++] = UseRegister(operand->InputAt(1)); |
| return kMode_MRR; |
| } |
| } |
| |
| bool CanBeBetterLeftOperand(Node* node) const { |
| return !selector()->IsLive(node); |
| } |
| |
| MachineRepresentation GetRepresentation(Node* node) { |
| return sequence()->GetRepresentation(selector()->GetVirtualRegister(node)); |
| } |
| |
| bool Is64BitOperand(Node* node) { |
| return MachineRepresentation::kWord64 == GetRepresentation(node); |
| } |
| }; |
| |
| namespace { |
| |
| bool S390OpcodeOnlySupport12BitDisp(ArchOpcode opcode) { |
| switch (opcode) { |
| case kS390_AddFloat: |
| case kS390_AddDouble: |
| case kS390_CmpFloat: |
| case kS390_CmpDouble: |
| case kS390_Float32ToDouble: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool S390OpcodeOnlySupport12BitDisp(InstructionCode op) { |
| ArchOpcode opcode = ArchOpcodeField::decode(op); |
| return S390OpcodeOnlySupport12BitDisp(opcode); |
| } |
| |
| #define OpcodeImmMode(op) \ |
| (S390OpcodeOnlySupport12BitDisp(op) ? OperandMode::kUint12Imm \ |
| : OperandMode::kInt20Imm) |
| |
| ArchOpcode SelectLoadOpcode(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| ArchOpcode opcode; |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kFloat32: |
| opcode = kS390_LoadFloat32; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kS390_LoadDouble; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = load_rep.IsSigned() ? kS390_LoadWordS8 : kS390_LoadWordU8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsSigned() ? kS390_LoadWordS16 : kS390_LoadWordU16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kS390_LoadWordU32; |
| break; |
| case MachineRepresentation::kCompressedPointer: // Fall through. |
| case MachineRepresentation::kCompressed: |
| #ifdef V8_COMPRESS_POINTERS |
| opcode = kS390_LoadWordS32; |
| break; |
| #else |
| UNREACHABLE(); |
| #endif |
| #ifdef V8_COMPRESS_POINTERS |
| case MachineRepresentation::kTaggedSigned: |
| opcode = kS390_LoadDecompressTaggedSigned; |
| break; |
| case MachineRepresentation::kTaggedPointer: |
| opcode = kS390_LoadDecompressTaggedPointer; |
| break; |
| case MachineRepresentation::kTagged: |
| opcode = kS390_LoadDecompressAnyTagged; |
| break; |
| #else |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| #endif |
| case MachineRepresentation::kWord64: |
| opcode = kS390_LoadWord64; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kS390_LoadSimd128; |
| break; |
| case MachineRepresentation::kNone: |
| default: |
| UNREACHABLE(); |
| } |
| return opcode; |
| } |
| |
| #define RESULT_IS_WORD32_LIST(V) \ |
| /* Float unary op*/ \ |
| V(BitcastFloat32ToInt32) \ |
| /* V(TruncateFloat64ToWord32) */ \ |
| V(RoundFloat64ToInt32) \ |
| V(TruncateFloat32ToInt32) \ |
| V(TruncateFloat32ToUint32) \ |
| V(TruncateFloat64ToUint32) \ |
| V(ChangeFloat64ToInt32) \ |
| V(ChangeFloat64ToUint32) \ |
| /* Word32 unary op */ \ |
| V(Word32Clz) \ |
| V(Word32Popcnt) \ |
| V(Float64ExtractLowWord32) \ |
| V(Float64ExtractHighWord32) \ |
| V(SignExtendWord8ToInt32) \ |
| V(SignExtendWord16ToInt32) \ |
| /* Word32 bin op */ \ |
| V(Int32Add) \ |
| V(Int32Sub) \ |
| V(Int32Mul) \ |
| V(Int32AddWithOverflow) \ |
| V(Int32SubWithOverflow) \ |
| V(Int32MulWithOverflow) \ |
| V(Int32MulHigh) \ |
| V(Uint32MulHigh) \ |
| V(Int32Div) \ |
| V(Uint32Div) \ |
| V(Int32Mod) \ |
| V(Uint32Mod) \ |
| V(Word32Ror) \ |
| V(Word32And) \ |
| V(Word32Or) \ |
| V(Word32Xor) \ |
| V(Word32Shl) \ |
| V(Word32Shr) \ |
| V(Word32Sar) |
| |
| bool ProduceWord32Result(Node* node) { |
| #if !V8_TARGET_ARCH_S390X |
| return true; |
| #else |
| switch (node->opcode()) { |
| #define VISITOR(name) case IrOpcode::k##name: |
| RESULT_IS_WORD32_LIST(VISITOR) |
| #undef VISITOR |
| return true; |
| // TODO(john.yan): consider the following case to be valid |
| // case IrOpcode::kWord32Equal: |
| // case IrOpcode::kInt32LessThan: |
| // case IrOpcode::kInt32LessThanOrEqual: |
| // case IrOpcode::kUint32LessThan: |
| // case IrOpcode::kUint32LessThanOrEqual: |
| // case IrOpcode::kUint32MulHigh: |
| // // These 32-bit operations implicitly zero-extend to 64-bit on x64, so |
| // the |
| // // zero-extension is a no-op. |
| // return true; |
| // case IrOpcode::kProjection: { |
| // Node* const value = node->InputAt(0); |
| // switch (value->opcode()) { |
| // case IrOpcode::kInt32AddWithOverflow: |
| // case IrOpcode::kInt32SubWithOverflow: |
| // case IrOpcode::kInt32MulWithOverflow: |
| // return true; |
| // default: |
| // return false; |
| // } |
| // } |
| case IrOpcode::kLoad: { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kWord32: |
| return true; |
| case MachineRepresentation::kWord8: |
| if (load_rep.IsSigned()) |
| return false; |
| else |
| return true; |
| default: |
| return false; |
| } |
| } |
| default: |
| return false; |
| } |
| #endif |
| } |
| |
| static inline bool DoZeroExtForResult(Node* node) { |
| #if V8_TARGET_ARCH_S390X |
| return ProduceWord32Result(node); |
| #else |
| return false; |
| #endif |
| } |
| |
| // TODO(john.yan): Create VisiteShift to match dst = src shift (R+I) |
| #if 0 |
| void VisitShift() { } |
| #endif |
| |
| #if V8_TARGET_ARCH_S390X |
| void VisitTryTruncateDouble(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node) { |
| S390OperandGenerator g(selector); |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| selector->Emit(opcode, output_count, outputs, 1, inputs); |
| } |
| #endif |
| |
| template <class CanCombineWithLoad> |
| void GenerateRightOperands(InstructionSelector* selector, Node* node, |
| Node* right, InstructionCode* opcode, |
| OperandModes* operand_mode, |
| InstructionOperand* inputs, size_t* input_count, |
| CanCombineWithLoad canCombineWithLoad) { |
| S390OperandGenerator g(selector); |
| |
| if ((*operand_mode & OperandMode::kAllowImmediate) && |
| g.CanBeImmediate(right, *operand_mode)) { |
| inputs[(*input_count)++] = g.UseImmediate(right); |
| // Can only be RI or RRI |
| *operand_mode &= OperandMode::kAllowImmediate; |
| } else if (*operand_mode & OperandMode::kAllowMemoryOperand) { |
| NodeMatcher mright(right); |
| if (mright.IsLoad() && selector->CanCover(node, right) && |
| canCombineWithLoad(SelectLoadOpcode(right))) { |
| AddressingMode mode = g.GetEffectiveAddressMemoryOperand( |
| right, inputs, input_count, OpcodeImmMode(*opcode)); |
| *opcode |= AddressingModeField::encode(mode); |
| *operand_mode &= ~OperandMode::kAllowImmediate; |
| if (*operand_mode & OperandMode::kAllowRM) |
| *operand_mode &= ~OperandMode::kAllowDistinctOps; |
| } else if (*operand_mode & OperandMode::kAllowRM) { |
| DCHECK(!(*operand_mode & OperandMode::kAllowRRM)); |
| inputs[(*input_count)++] = g.UseAnyExceptImmediate(right); |
| // Can not be Immediate |
| *operand_mode &= |
| ~OperandMode::kAllowImmediate & ~OperandMode::kAllowDistinctOps; |
| } else if (*operand_mode & OperandMode::kAllowRRM) { |
| DCHECK(!(*operand_mode & OperandMode::kAllowRM)); |
| inputs[(*input_count)++] = g.UseAnyExceptImmediate(right); |
| // Can not be Immediate |
| *operand_mode &= ~OperandMode::kAllowImmediate; |
| } else { |
| UNREACHABLE(); |
| } |
| } else { |
| inputs[(*input_count)++] = g.UseRegister(right); |
| // Can only be RR or RRR |
| *operand_mode &= OperandMode::kAllowRRR; |
| } |
| } |
| |
| template <class CanCombineWithLoad> |
| void GenerateBinOpOperands(InstructionSelector* selector, Node* node, |
| Node* left, Node* right, InstructionCode* opcode, |
| OperandModes* operand_mode, |
| InstructionOperand* inputs, size_t* input_count, |
| CanCombineWithLoad canCombineWithLoad) { |
| S390OperandGenerator g(selector); |
| // left is always register |
| InstructionOperand const left_input = g.UseRegister(left); |
| inputs[(*input_count)++] = left_input; |
| |
| if (left == right) { |
| inputs[(*input_count)++] = left_input; |
| // Can only be RR or RRR |
| *operand_mode &= OperandMode::kAllowRRR; |
| } else { |
| GenerateRightOperands(selector, node, right, opcode, operand_mode, inputs, |
| input_count, canCombineWithLoad); |
| } |
| } |
| |
| template <class CanCombineWithLoad> |
| void VisitUnaryOp(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, OperandModes operand_mode, |
| FlagsContinuation* cont, |
| CanCombineWithLoad canCombineWithLoad); |
| |
| template <class CanCombineWithLoad> |
| void VisitBinOp(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, OperandModes operand_mode, |
| FlagsContinuation* cont, CanCombineWithLoad canCombineWithLoad); |
| |
| // Generate The following variations: |
| // VisitWord32UnaryOp, VisitWord32BinOp, |
| // VisitWord64UnaryOp, VisitWord64BinOp, |
| // VisitFloat32UnaryOp, VisitFloat32BinOp, |
| // VisitFloat64UnaryOp, VisitFloat64BinOp |
| #define VISIT_OP_LIST_32(V) \ |
| V(Word32, Unary, [](ArchOpcode opcode) { \ |
| return opcode == kS390_LoadWordS32 || opcode == kS390_LoadWordU32; \ |
| }) \ |
| V(Word64, Unary, \ |
| [](ArchOpcode opcode) { return opcode == kS390_LoadWord64; }) \ |
| V(Float32, Unary, \ |
| [](ArchOpcode opcode) { return opcode == kS390_LoadFloat32; }) \ |
| V(Float64, Unary, \ |
| [](ArchOpcode opcode) { return opcode == kS390_LoadDouble; }) \ |
| V(Word32, Bin, [](ArchOpcode opcode) { \ |
| return opcode == kS390_LoadWordS32 || opcode == kS390_LoadWordU32; \ |
| }) \ |
| V(Float32, Bin, \ |
| [](ArchOpcode opcode) { return opcode == kS390_LoadFloat32; }) \ |
| V(Float64, Bin, [](ArchOpcode opcode) { return opcode == kS390_LoadDouble; }) |
| |
| #if V8_TARGET_ARCH_S390X |
| #define VISIT_OP_LIST(V) \ |
| VISIT_OP_LIST_32(V) \ |
| V(Word64, Bin, [](ArchOpcode opcode) { return opcode == kS390_LoadWord64; }) |
| #else |
| #define VISIT_OP_LIST VISIT_OP_LIST_32 |
| #endif |
| |
| #define DECLARE_VISIT_HELPER_FUNCTIONS(type1, type2, canCombineWithLoad) \ |
| static inline void Visit##type1##type2##Op( \ |
| InstructionSelector* selector, Node* node, InstructionCode opcode, \ |
| OperandModes operand_mode, FlagsContinuation* cont) { \ |
| Visit##type2##Op(selector, node, opcode, operand_mode, cont, \ |
| canCombineWithLoad); \ |
| } \ |
| static inline void Visit##type1##type2##Op( \ |
| InstructionSelector* selector, Node* node, InstructionCode opcode, \ |
| OperandModes operand_mode) { \ |
| FlagsContinuation cont; \ |
| Visit##type1##type2##Op(selector, node, opcode, operand_mode, &cont); \ |
| } |
| VISIT_OP_LIST(DECLARE_VISIT_HELPER_FUNCTIONS) |
| #undef DECLARE_VISIT_HELPER_FUNCTIONS |
| #undef VISIT_OP_LIST_32 |
| #undef VISIT_OP_LIST |
| |
| template <class CanCombineWithLoad> |
| void VisitUnaryOp(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, OperandModes operand_mode, |
| FlagsContinuation* cont, |
| CanCombineWithLoad canCombineWithLoad) { |
| S390OperandGenerator g(selector); |
| InstructionOperand inputs[8]; |
| size_t input_count = 0; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| Node* input = node->InputAt(0); |
| |
| GenerateRightOperands(selector, node, input, &opcode, &operand_mode, inputs, |
| &input_count, canCombineWithLoad); |
| |
| bool input_is_word32 = ProduceWord32Result(input); |
| |
| bool doZeroExt = DoZeroExtForResult(node); |
| bool canEliminateZeroExt = input_is_word32; |
| |
| if (doZeroExt) { |
| // Add zero-ext indication |
| inputs[input_count++] = g.TempImmediate(!canEliminateZeroExt); |
| } |
| |
| if (!cont->IsDeoptimize()) { |
| // If we can deoptimize as a result of the binop, we need to make sure |
| // that the deopt inputs are not overwritten by the binop result. One way |
| // to achieve that is to declare the output register as same-as-first. |
| if (doZeroExt && canEliminateZeroExt) { |
| // we have to make sure result and left use the same register |
| outputs[output_count++] = g.DefineSameAsFirst(node); |
| } else { |
| outputs[output_count++] = g.DefineAsRegister(node); |
| } |
| } else { |
| outputs[output_count++] = g.DefineSameAsFirst(node); |
| } |
| |
| DCHECK_NE(0u, input_count); |
| DCHECK_NE(0u, output_count); |
| DCHECK_GE(arraysize(inputs), input_count); |
| DCHECK_GE(arraysize(outputs), output_count); |
| |
| selector->EmitWithContinuation(opcode, output_count, outputs, input_count, |
| inputs, cont); |
| } |
| |
| template <class CanCombineWithLoad> |
| void VisitBinOp(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, OperandModes operand_mode, |
| FlagsContinuation* cont, |
| CanCombineWithLoad canCombineWithLoad) { |
| S390OperandGenerator g(selector); |
| Int32BinopMatcher m(node); |
| Node* left = m.left().node(); |
| Node* right = m.right().node(); |
| InstructionOperand inputs[8]; |
| size_t input_count = 0; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| |
| if (node->op()->HasProperty(Operator::kCommutative) && |
| !g.CanBeImmediate(right, operand_mode) && |
| (g.CanBeBetterLeftOperand(right))) { |
| std::swap(left, right); |
| } |
| |
| GenerateBinOpOperands(selector, node, left, right, &opcode, &operand_mode, |
| inputs, &input_count, canCombineWithLoad); |
| |
| bool left_is_word32 = ProduceWord32Result(left); |
| |
| bool doZeroExt = DoZeroExtForResult(node); |
| bool canEliminateZeroExt = left_is_word32; |
| |
| if (doZeroExt) { |
| // Add zero-ext indication |
| inputs[input_count++] = g.TempImmediate(!canEliminateZeroExt); |
| } |
| |
| if ((operand_mode & OperandMode::kAllowDistinctOps) && |
| // If we can deoptimize as a result of the binop, we need to make sure |
| // that the deopt inputs are not overwritten by the binop result. One way |
| // to achieve that is to declare the output register as same-as-first. |
| !cont->IsDeoptimize()) { |
| if (doZeroExt && canEliminateZeroExt) { |
| // we have to make sure result and left use the same register |
| outputs[output_count++] = g.DefineSameAsFirst(node); |
| } else { |
| outputs[output_count++] = g.DefineAsRegister(node); |
| } |
| } else { |
| outputs[output_count++] = g.DefineSameAsFirst(node); |
| } |
| |
| DCHECK_NE(0u, input_count); |
| DCHECK_NE(0u, output_count); |
| DCHECK_GE(arraysize(inputs), input_count); |
| DCHECK_GE(arraysize(outputs), output_count); |
| |
| selector->EmitWithContinuation(opcode, output_count, outputs, input_count, |
| inputs, cont); |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitStackSlot(Node* node) { |
| StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); |
| int slot = frame_->AllocateSpillSlot(rep.size()); |
| OperandGenerator g(this); |
| |
| Emit(kArchStackSlot, g.DefineAsRegister(node), |
| sequence()->AddImmediate(Constant(slot)), 0, nullptr); |
| } |
| |
| void InstructionSelector::VisitAbortCSAAssert(Node* node) { |
| S390OperandGenerator g(this); |
| Emit(kArchAbortCSAAssert, g.NoOutput(), g.UseFixed(node->InputAt(0), r3)); |
| } |
| |
| void InstructionSelector::VisitLoad(Node* node) { |
| S390OperandGenerator g(this); |
| InstructionCode opcode = SelectLoadOpcode(node); |
| InstructionOperand outputs[] = {g.DefineAsRegister(node)}; |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| AddressingMode mode = |
| g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count); |
| opcode |= AddressingModeField::encode(mode); |
| if (node->opcode() == IrOpcode::kPoisonedLoad) { |
| CHECK_NE(poisoning_level_, PoisoningMitigationLevel::kDontPoison); |
| opcode |= MiscField::encode(kMemoryAccessPoisoned); |
| } |
| Emit(opcode, 1, outputs, input_count, inputs); |
| } |
| |
| void InstructionSelector::VisitPoisonedLoad(Node* node) { VisitLoad(node); } |
| |
| void InstructionSelector::VisitProtectedLoad(Node* node) { |
| // TODO(eholk) |
| UNIMPLEMENTED(); |
| } |
| |
| static void VisitGeneralStore( |
| InstructionSelector* selector, Node* node, MachineRepresentation rep, |
| WriteBarrierKind write_barrier_kind = kNoWriteBarrier) { |
| S390OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* offset = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| if (write_barrier_kind != kNoWriteBarrier && |
| V8_LIKELY(!FLAG_disable_write_barriers)) { |
| DCHECK(CanBeTaggedOrCompressedPointer(rep)); |
| AddressingMode addressing_mode; |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| // OutOfLineRecordWrite uses the offset in an 'AddP' instruction as well as |
| // for the store itself, so we must check compatibility with both. |
| if (g.CanBeImmediate(offset, OperandMode::kInt20Imm)) { |
| inputs[input_count++] = g.UseImmediate(offset); |
| addressing_mode = kMode_MRI; |
| } else { |
| inputs[input_count++] = g.UseUniqueRegister(offset); |
| addressing_mode = kMode_MRR; |
| } |
| inputs[input_count++] = g.UseUniqueRegister(value); |
| RecordWriteMode record_write_mode = |
| WriteBarrierKindToRecordWriteMode(write_barrier_kind); |
| InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; |
| size_t const temp_count = arraysize(temps); |
| InstructionCode code = kArchStoreWithWriteBarrier; |
| code |= AddressingModeField::encode(addressing_mode); |
| code |= MiscField::encode(static_cast<int>(record_write_mode)); |
| selector->Emit(code, 0, nullptr, input_count, inputs, temp_count, temps); |
| } else { |
| ArchOpcode opcode; |
| NodeMatcher m(value); |
| switch (rep) { |
| case MachineRepresentation::kFloat32: |
| opcode = kS390_StoreFloat32; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kS390_StoreDouble; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = kS390_StoreWord8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kS390_StoreWord16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kS390_StoreWord32; |
| if (m.IsWord32ReverseBytes()) { |
| opcode = kS390_StoreReverse32; |
| value = value->InputAt(0); |
| } |
| break; |
| case MachineRepresentation::kCompressedPointer: // Fall through. |
| case MachineRepresentation::kCompressed: |
| #ifdef V8_COMPRESS_POINTERS |
| opcode = kS390_StoreCompressTagged; |
| break; |
| #else |
| UNREACHABLE(); |
| #endif |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: |
| opcode = kS390_StoreCompressTagged; |
| break; |
| case MachineRepresentation::kWord64: |
| opcode = kS390_StoreWord64; |
| if (m.IsWord64ReverseBytes()) { |
| opcode = kS390_StoreReverse64; |
| value = value->InputAt(0); |
| } |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kS390_StoreSimd128; |
| if (m.IsSimd128ReverseBytes()) { |
| opcode = kS390_StoreReverseSimd128; |
| value = value->InputAt(0); |
| } |
| break; |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| } |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| AddressingMode addressing_mode = |
| g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count); |
| InstructionCode code = |
| opcode | AddressingModeField::encode(addressing_mode); |
| InstructionOperand value_operand = g.UseRegister(value); |
| inputs[input_count++] = value_operand; |
| selector->Emit(code, 0, static_cast<InstructionOperand*>(nullptr), |
| input_count, inputs); |
| } |
| } |
| |
| void InstructionSelector::VisitStore(Node* node) { |
| StoreRepresentation store_rep = StoreRepresentationOf(node->op()); |
| WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); |
| MachineRepresentation rep = store_rep.representation(); |
| |
| if (FLAG_enable_unconditional_write_barriers && |
| CanBeTaggedOrCompressedPointer(rep)) { |
| write_barrier_kind = kFullWriteBarrier; |
| } |
| |
| VisitGeneralStore(this, node, rep, write_barrier_kind); |
| } |
| |
| void InstructionSelector::VisitProtectedStore(Node* node) { |
| // TODO(eholk) |
| UNIMPLEMENTED(); |
| } |
| |
| // Architecture supports unaligned access, therefore VisitLoad is used instead |
| void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); } |
| |
| // Architecture supports unaligned access, therefore VisitStore is used instead |
| void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitStackPointerGreaterThan( |
| Node* node, FlagsContinuation* cont) { |
| StackCheckKind kind = StackCheckKindOf(node->op()); |
| InstructionCode opcode = |
| kArchStackPointerGreaterThan | MiscField::encode(static_cast<int>(kind)); |
| |
| S390OperandGenerator g(this); |
| |
| // No outputs. |
| InstructionOperand* const outputs = nullptr; |
| const int output_count = 0; |
| |
| // Applying an offset to this stack check requires a temp register. Offsets |
| // are only applied to the first stack check. If applying an offset, we must |
| // ensure the input and temp registers do not alias, thus kUniqueRegister. |
| InstructionOperand temps[] = {g.TempRegister()}; |
| const int temp_count = (kind == StackCheckKind::kJSFunctionEntry) ? 1 : 0; |
| const auto register_mode = (kind == StackCheckKind::kJSFunctionEntry) |
| ? OperandGenerator::kUniqueRegister |
| : OperandGenerator::kRegister; |
| |
| Node* const value = node->InputAt(0); |
| InstructionOperand inputs[] = {g.UseRegisterWithMode(value, register_mode)}; |
| static constexpr int input_count = arraysize(inputs); |
| |
| EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, |
| temp_count, temps, cont); |
| } |
| |
| #if 0 |
| static inline bool IsContiguousMask32(uint32_t value, int* mb, int* me) { |
| int mask_width = base::bits::CountPopulation(value); |
| int mask_msb = base::bits::CountLeadingZeros32(value); |
| int mask_lsb = base::bits::CountTrailingZeros32(value); |
| if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 32)) |
| return false; |
| *mb = mask_lsb + mask_width - 1; |
| *me = mask_lsb; |
| return true; |
| } |
| #endif |
| |
| #if V8_TARGET_ARCH_S390X |
| static inline bool IsContiguousMask64(uint64_t value, int* mb, int* me) { |
| int mask_width = base::bits::CountPopulation(value); |
| int mask_msb = base::bits::CountLeadingZeros64(value); |
| int mask_lsb = base::bits::CountTrailingZeros64(value); |
| if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 64)) |
| return false; |
| *mb = mask_lsb + mask_width - 1; |
| *me = mask_lsb; |
| return true; |
| } |
| #endif |
| |
| #if V8_TARGET_ARCH_S390X |
| void InstructionSelector::VisitWord64And(Node* node) { |
| S390OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| int mb = 0; |
| int me = 0; |
| if (m.right().HasResolvedValue() && |
| IsContiguousMask64(m.right().ResolvedValue(), &mb, &me)) { |
| int sh = 0; |
| Node* left = m.left().node(); |
| if ((m.left().IsWord64Shr() || m.left().IsWord64Shl()) && |
| CanCover(node, left)) { |
| Int64BinopMatcher mleft(m.left().node()); |
| if (mleft.right().IsInRange(0, 63)) { |
| left = mleft.left().node(); |
| sh = mleft.right().ResolvedValue(); |
| if (m.left().IsWord64Shr()) { |
| // Adjust the mask such that it doesn't include any rotated bits. |
| if (mb > 63 - sh) mb = 63 - sh; |
| sh = (64 - sh) & 0x3F; |
| } else { |
| // Adjust the mask such that it doesn't include any rotated bits. |
| if (me < sh) me = sh; |
| } |
| } |
| } |
| if (mb >= me) { |
| bool match = false; |
| ArchOpcode opcode; |
| int mask; |
| if (me == 0) { |
| match = true; |
| opcode = kS390_RotLeftAndClearLeft64; |
| mask = mb; |
| } else if (mb == 63) { |
| match = true; |
| opcode = kS390_RotLeftAndClearRight64; |
| mask = me; |
| } else if (sh && me <= sh && m.left().IsWord64Shl()) { |
| match = true; |
| opcode = kS390_RotLeftAndClear64; |
| mask = mb; |
| } |
| if (match && CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) { |
| Emit(opcode, g.DefineAsRegister(node), g.UseRegister(left), |
| g.TempImmediate(sh), g.TempImmediate(mask)); |
| return; |
| } |
| } |
| } |
| VisitWord64BinOp(this, node, kS390_And64, And64OperandMode); |
| } |
| |
| void InstructionSelector::VisitWord64Shl(Node* node) { |
| S390OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| // TODO(mbrandy): eliminate left sign extension if right >= 32 |
| if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) { |
| Int64BinopMatcher mleft(m.left().node()); |
| int sh = m.right().ResolvedValue(); |
| int mb; |
| int me; |
| if (mleft.right().HasResolvedValue() && |
| IsContiguousMask64(mleft.right().ResolvedValue() << sh, &mb, &me)) { |
| // Adjust the mask such that it doesn't include any rotated bits. |
| if (me < sh) me = sh; |
| if (mb >= me) { |
| bool match = false; |
| ArchOpcode opcode; |
| int mask; |
| if (me == 0) { |
| match = true; |
| opcode = kS390_RotLeftAndClearLeft64; |
| mask = mb; |
| } else if (mb == 63) { |
| match = true; |
| opcode = kS390_RotLeftAndClearRight64; |
| mask = me; |
| } else if (sh && me <= sh) { |
| match = true; |
| opcode = kS390_RotLeftAndClear64; |
| mask = mb; |
| } |
| if (match && CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) { |
| Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(sh), |
| g.TempImmediate(mask)); |
| return; |
| } |
| } |
| } |
| } |
| VisitWord64BinOp(this, node, kS390_ShiftLeft64, Shift64OperandMode); |
| } |
| |
| void InstructionSelector::VisitWord64Shr(Node* node) { |
| S390OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) { |
| Int64BinopMatcher mleft(m.left().node()); |
| int sh = m.right().ResolvedValue(); |
| int mb; |
| int me; |
| if (mleft.right().HasResolvedValue() && |
| IsContiguousMask64((uint64_t)(mleft.right().ResolvedValue()) >> sh, &mb, |
| &me)) { |
| // Adjust the mask such that it doesn't include any rotated bits. |
| if (mb > 63 - sh) mb = 63 - sh; |
| sh = (64 - sh) & 0x3F; |
| if (mb >= me) { |
| bool match = false; |
| ArchOpcode opcode; |
| int mask; |
| if (me == 0) { |
| match = true; |
| opcode = kS390_RotLeftAndClearLeft64; |
| mask = mb; |
| } else if (mb == 63) { |
| match = true; |
| opcode = kS390_RotLeftAndClearRight64; |
| mask = me; |
| } |
| if (match) { |
| Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(sh), |
| g.TempImmediate(mask)); |
| return; |
| } |
| } |
| } |
| } |
| VisitWord64BinOp(this, node, kS390_ShiftRight64, Shift64OperandMode); |
| } |
| #endif |
| |
| static inline bool TryMatchSignExtInt16OrInt8FromWord32Sar( |
| InstructionSelector* selector, Node* node) { |
| S390OperandGenerator g(selector); |
| Int32BinopMatcher m(node); |
| if (selector->CanCover(node, m.left().node()) && m.left().IsWord32Shl()) { |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().Is(16) && m.right().Is(16)) { |
| bool canEliminateZeroExt = ProduceWord32Result(mleft.left().node()); |
| selector->Emit(kS390_SignExtendWord16ToInt32, |
| canEliminateZeroExt ? g.DefineSameAsFirst(node) |
| : g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.TempImmediate(!canEliminateZeroExt)); |
| return true; |
| } else if (mleft.right().Is(24) && m.right().Is(24)) { |
| bool canEliminateZeroExt = ProduceWord32Result(mleft.left().node()); |
| selector->Emit(kS390_SignExtendWord8ToInt32, |
| canEliminateZeroExt ? g.DefineSameAsFirst(node) |
| : g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.TempImmediate(!canEliminateZeroExt)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| #if !V8_TARGET_ARCH_S390X |
| void VisitPairBinop(InstructionSelector* selector, InstructionCode opcode, |
| InstructionCode opcode2, Node* node) { |
| S390OperandGenerator g(selector); |
| |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| if (projection1) { |
| // We use UseUniqueRegister here to avoid register sharing with the output |
| // registers. |
| InstructionOperand inputs[] = { |
| g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), |
| g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; |
| |
| InstructionOperand outputs[] = { |
| g.DefineAsRegister(node), |
| g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; |
| |
| selector->Emit(opcode, 2, outputs, 4, inputs); |
| } else { |
| // The high word of the result is not used, so we emit the standard 32 bit |
| // instruction. |
| selector->Emit(opcode2, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(2)), g.TempImmediate(0)); |
| } |
| } |
| |
| void InstructionSelector::VisitInt32PairAdd(Node* node) { |
| VisitPairBinop(this, kS390_AddPair, kS390_Add32, node); |
| } |
| |
| void InstructionSelector::VisitInt32PairSub(Node* node) { |
| VisitPairBinop(this, kS390_SubPair, kS390_Sub32, node); |
| } |
| |
| void InstructionSelector::VisitInt32PairMul(Node* node) { |
| S390OperandGenerator g(this); |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| if (projection1) { |
| InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)), |
| g.UseUniqueRegister(node->InputAt(1)), |
| g.UseUniqueRegister(node->InputAt(2)), |
| g.UseUniqueRegister(node->InputAt(3))}; |
| |
| InstructionOperand outputs[] = { |
| g.DefineAsRegister(node), |
| g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; |
| |
| Emit(kS390_MulPair, 2, outputs, 4, inputs); |
| } else { |
| // The high word of the result is not used, so we emit the standard 32 bit |
| // instruction. |
| Emit(kS390_Mul32, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(2)), |
| g.TempImmediate(0)); |
| } |
| } |
| |
| namespace { |
| // Shared routine for multiple shift operations. |
| void VisitPairShift(InstructionSelector* selector, InstructionCode opcode, |
| Node* node) { |
| S390OperandGenerator g(selector); |
| // We use g.UseUniqueRegister here to guarantee that there is |
| // no register aliasing of input registers with output registers. |
| Int32Matcher m(node->InputAt(2)); |
| InstructionOperand shift_operand; |
| if (m.HasResolvedValue()) { |
| shift_operand = g.UseImmediate(m.node()); |
| } else { |
| shift_operand = g.UseUniqueRegister(m.node()); |
| } |
| |
| InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)), |
| g.UseUniqueRegister(node->InputAt(1)), |
| shift_operand}; |
| |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| |
| InstructionOperand outputs[2]; |
| InstructionOperand temps[1]; |
| int32_t output_count = 0; |
| int32_t temp_count = 0; |
| |
| outputs[output_count++] = g.DefineAsRegister(node); |
| if (projection1) { |
| outputs[output_count++] = g.DefineAsRegister(projection1); |
| } else { |
| temps[temp_count++] = g.TempRegister(); |
| } |
| |
| selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps); |
| } |
| } // namespace |
| |
| void InstructionSelector::VisitWord32PairShl(Node* node) { |
| VisitPairShift(this, kS390_ShiftLeftPair, node); |
| } |
| |
| void InstructionSelector::VisitWord32PairShr(Node* node) { |
| VisitPairShift(this, kS390_ShiftRightPair, node); |
| } |
| |
| void InstructionSelector::VisitWord32PairSar(Node* node) { |
| VisitPairShift(this, kS390_ShiftRightArithPair, node); |
| } |
| #endif |
| |
| void InstructionSelector::VisitWord32Rol(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord64Rol(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); } |
| |
| #if V8_TARGET_ARCH_S390X |
| void InstructionSelector::VisitWord64Ctz(Node* node) { UNREACHABLE(); } |
| #endif |
| |
| void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); } |
| |
| #if V8_TARGET_ARCH_S390X |
| void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); } |
| #endif |
| |
| void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) { |
| VisitWord32UnaryOp(this, node, kS390_Abs32, OperandMode::kNone); |
| } |
| |
| void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) { |
| VisitWord64UnaryOp(this, node, kS390_Abs64, OperandMode::kNone); |
| } |
| |
| void InstructionSelector::VisitWord64ReverseBytes(Node* node) { |
| S390OperandGenerator g(this); |
| Emit(kS390_LoadReverse64RR, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitWord32ReverseBytes(Node* node) { |
| S390OperandGenerator g(this); |
| NodeMatcher input(node->InputAt(0)); |
| if (CanCover(node, input.node()) && input.IsLoad()) { |
| LoadRepresentation load_rep = LoadRepresentationOf(input.node()->op()); |
| if (load_rep.representation() == MachineRepresentation::kWord32) { |
| Node* base = input.node()->InputAt(0); |
| Node* offset = input.node()->InputAt(1); |
| Emit(kS390_LoadReverse32 | AddressingModeField::encode(kMode_MRR), |
| // TODO(john.yan): one of the base and offset can be imm. |
| g.DefineAsRegister(node), g.UseRegister(base), |
| g.UseRegister(offset)); |
| return; |
| } |
| } |
| Emit(kS390_LoadReverse32RR, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitSimd128ReverseBytes(Node* node) { |
| S390OperandGenerator g(this); |
| NodeMatcher input(node->InputAt(0)); |
| if (CanCover(node, input.node()) && input.IsLoad()) { |
| LoadRepresentation load_rep = LoadRepresentationOf(input.node()->op()); |
| if (load_rep.representation() == MachineRepresentation::kSimd128) { |
| Node* base = input.node()->InputAt(0); |
| Node* offset = input.node()->InputAt(1); |
| Emit(kS390_LoadReverseSimd128 | AddressingModeField::encode(kMode_MRR), |
| // TODO(miladfar): one of the base and offset can be imm. |
| g.DefineAsRegister(node), g.UseRegister(base), |
| g.UseRegister(offset)); |
| return; |
| } |
| } |
| Emit(kS390_LoadReverseSimd128RR, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| template <class Matcher, ArchOpcode neg_opcode> |
| static inline bool TryMatchNegFromSub(InstructionSelector* selector, |
| Node* node) { |
| S390OperandGenerator g(selector); |
| Matcher m(node); |
| static_assert(neg_opcode == kS390_Neg32 || neg_opcode == kS390_Neg64, |
| "Provided opcode is not a Neg opcode."); |
| if (m.left().Is(0)) { |
| Node* value = m.right().node(); |
| bool doZeroExt = DoZeroExtForResult(node); |
| bool canEliminateZeroExt = ProduceWord32Result(value); |
| if (doZeroExt) { |
| selector->Emit(neg_opcode, |
| canEliminateZeroExt ? g.DefineSameAsFirst(node) |
| : g.DefineAsRegister(node), |
| g.UseRegister(value), |
| g.TempImmediate(!canEliminateZeroExt)); |
| } else { |
| selector->Emit(neg_opcode, g.DefineAsRegister(node), |
| g.UseRegister(value)); |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| template <class Matcher, ArchOpcode shift_op> |
| bool TryMatchShiftFromMul(InstructionSelector* selector, Node* node) { |
| S390OperandGenerator g(selector); |
| Matcher m(node); |
| Node* left = m.left().node(); |
| Node* right = m.right().node(); |
| if (g.CanBeImmediate(right, OperandMode::kInt32Imm) && |
| base::bits::IsPowerOfTwo(g.GetImmediate(right))) { |
| int power = 63 - base::bits::CountLeadingZeros64(g.GetImmediate(right)); |
| bool doZeroExt = DoZeroExtForResult(node); |
| bool canEliminateZeroExt = ProduceWord32Result(left); |
| InstructionOperand dst = (doZeroExt && !canEliminateZeroExt && |
| CpuFeatures::IsSupported(DISTINCT_OPS)) |
| ? g.DefineAsRegister(node) |
| : g.DefineSameAsFirst(node); |
| |
| if (doZeroExt) { |
| selector->Emit(shift_op, dst, g.UseRegister(left), g.UseImmediate(power), |
| g.TempImmediate(!canEliminateZeroExt)); |
| } else { |
| selector->Emit(shift_op, dst, g.UseRegister(left), g.UseImmediate(power)); |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| template <ArchOpcode opcode> |
| static inline bool TryMatchInt32OpWithOverflow(InstructionSelector* selector, |
| Node* node, OperandModes mode) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| VisitWord32BinOp(selector, node, opcode, mode, &cont); |
| return true; |
| } |
| return false; |
| } |
| |
| static inline bool TryMatchInt32AddWithOverflow(InstructionSelector* selector, |
| Node* node) { |
| return TryMatchInt32OpWithOverflow<kS390_Add32>(selector, node, |
| AddOperandMode); |
| } |
| |
| static inline bool TryMatchInt32SubWithOverflow(InstructionSelector* selector, |
| Node* node) { |
| return TryMatchInt32OpWithOverflow<kS390_Sub32>(selector, node, |
| SubOperandMode); |
| } |
| |
| static inline bool TryMatchInt32MulWithOverflow(InstructionSelector* selector, |
| Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| if (CpuFeatures::IsSupported(MISC_INSTR_EXT2)) { |
| TryMatchInt32OpWithOverflow<kS390_Mul32>( |
| selector, node, OperandMode::kAllowRRR | OperandMode::kAllowRM); |
| } else { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, ovf); |
| VisitWord32BinOp(selector, node, kS390_Mul32WithOverflow, |
| OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps, |
| &cont); |
| } |
| return true; |
| } |
| return TryMatchShiftFromMul<Int32BinopMatcher, kS390_ShiftLeft32>(selector, |
| node); |
| } |
| |
| #if V8_TARGET_ARCH_S390X |
| template <ArchOpcode opcode> |
| static inline bool TryMatchInt64OpWithOverflow(InstructionSelector* selector, |
| Node* node, OperandModes mode) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| VisitWord64BinOp(selector, node, opcode, mode, &cont); |
| return true; |
| } |
| return false; |
| } |
| |
| static inline bool TryMatchInt64AddWithOverflow(InstructionSelector* selector, |
| Node* node) { |
| return TryMatchInt64OpWithOverflow<kS390_Add64>(selector, node, |
| AddOperandMode); |
| } |
| |
| static inline bool TryMatchInt64SubWithOverflow(InstructionSelector* selector, |
| Node* node) { |
| return TryMatchInt64OpWithOverflow<kS390_Sub64>(selector, node, |
| SubOperandMode); |
| } |
| #endif |
| |
| static inline bool TryMatchDoubleConstructFromInsert( |
| InstructionSelector* selector, Node* node) { |
| S390OperandGenerator g(selector); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| Node* lo32 = nullptr; |
| Node* hi32 = nullptr; |
| |
| if (node->opcode() == IrOpcode::kFloat64InsertLowWord32) { |
| lo32 = right; |
| } else if (node->opcode() == IrOpcode::kFloat64InsertHighWord32) { |
| hi32 = right; |
| } else { |
| return false; // doesn't match |
| } |
| |
| if (left->opcode() == IrOpcode::kFloat64InsertLowWord32) { |
| lo32 = left->InputAt(1); |
| } else if (left->opcode() == IrOpcode::kFloat64InsertHighWord32) { |
| hi32 = left->InputAt(1); |
| } else { |
| return false; // doesn't match |
| } |
| |
| if (!lo32 || !hi32) return false; // doesn't match |
| |
| selector->Emit(kS390_DoubleConstruct, g.DefineAsRegister(node), |
| g.UseRegister(hi32), g.UseRegister(lo32)); |
| return true; |
| } |
| |
| #define null ([]() { return false; }) |
| // TODO(john.yan): place kAllowRM where available |
| #define FLOAT_UNARY_OP_LIST_32(V) \ |
| V(Float32, ChangeFloat32ToFloat64, kS390_Float32ToDouble, \ |
| OperandMode::kAllowRM, null) \ |
| V(Float32, BitcastFloat32ToInt32, kS390_BitcastFloat32ToInt32, \ |
| OperandMode::kAllowRM, null) \ |
| V(Float64, TruncateFloat64ToFloat32, kS390_DoubleToFloat32, \ |
| OperandMode::kNone, null) \ |
| V(Float64, TruncateFloat64ToWord32, kArchTruncateDoubleToI, \ |
| OperandMode::kNone, null) \ |
| V(Float64, RoundFloat64ToInt32, kS390_DoubleToInt32, OperandMode::kNone, \ |
| null) \ |
| V(Float64, TruncateFloat64ToUint32, kS390_DoubleToUint32, \ |
| OperandMode::kNone, null) \ |
| V(Float64, ChangeFloat64ToInt32, kS390_DoubleToInt32, OperandMode::kNone, \ |
| null) \ |
| V(Float64, ChangeFloat64ToUint32, kS390_DoubleToUint32, OperandMode::kNone, \ |
| null) \ |
| V(Float64, Float64SilenceNaN, kS390_Float64SilenceNaN, OperandMode::kNone, \ |
| null) \ |
| V(Float32, Float32Abs, kS390_AbsFloat, OperandMode::kNone, null) \ |
| V(Float64, Float64Abs, kS390_AbsDouble, OperandMode::kNone, null) \ |
| V(Float32, Float32Sqrt, kS390_SqrtFloat, OperandMode::kNone, null) \ |
| V(Float64, Float64Sqrt, kS390_SqrtDouble, OperandMode::kNone, null) \ |
| V(Float32, Float32RoundDown, kS390_FloorFloat, OperandMode::kNone, null) \ |
| V(Float64, Float64RoundDown, kS390_FloorDouble, OperandMode::kNone, null) \ |
| V(Float32, Float32RoundUp, kS390_CeilFloat, OperandMode::kNone, null) \ |
| V(Float64, Float64RoundUp, kS390_CeilDouble, OperandMode::kNone, null) \ |
| V(Float32, Float32RoundTruncate, kS390_TruncateFloat, OperandMode::kNone, \ |
| null) \ |
| V(Float64, Float64RoundTruncate, kS390_TruncateDouble, OperandMode::kNone, \ |
| null) \ |
| V(Float64, Float64RoundTiesAway, kS390_RoundDouble, OperandMode::kNone, \ |
| null) \ |
| V(Float32, Float32Neg, kS390_NegFloat, OperandMode::kNone, null) \ |
| V(Float64, Float64Neg, kS390_NegDouble, OperandMode::kNone, null) \ |
| /* TODO(john.yan): can use kAllowRM */ \ |
| V(Word32, Float64ExtractLowWord32, kS390_DoubleExtractLowWord32, \ |
| OperandMode::kNone, null) \ |
| V(Word32, Float64ExtractHighWord32, kS390_DoubleExtractHighWord32, \ |
| OperandMode::kNone, null) |
| |
| #define FLOAT_BIN_OP_LIST(V) \ |
| V(Float32, Float32Add, kS390_AddFloat, OperandMode::kAllowRM, null) \ |
| V(Float64, Float64Add, kS390_AddDouble, OperandMode::kAllowRM, null) \ |
| V(Float32, Float32Sub, kS390_SubFloat, OperandMode::kAllowRM, null) \ |
| V(Float64, Float64Sub, kS390_SubDouble, OperandMode::kAllowRM, null) \ |
| V(Float32, Float32Mul, kS390_MulFloat, OperandMode::kAllowRM, null) \ |
| V(Float64, Float64Mul, kS390_MulDouble, OperandMode::kAllowRM, null) \ |
| V(Float32, Float32Div, kS390_DivFloat, OperandMode::kAllowRM, null) \ |
| V(Float64, Float64Div, kS390_DivDouble, OperandMode::kAllowRM, null) \ |
| V(Float32, Float32Max, kS390_MaxFloat, OperandMode::kNone, null) \ |
| V(Float64, Float64Max, kS390_MaxDouble, OperandMode::kNone, null) \ |
| V(Float32, Float32Min, kS390_MinFloat, OperandMode::kNone, null) \ |
| V(Float64, Float64Min, kS390_MinDouble, OperandMode::kNone, null) |
| |
| #define WORD32_UNARY_OP_LIST_32(V) \ |
| V(Word32, Word32Clz, kS390_Cntlz32, OperandMode::kNone, null) \ |
| V(Word32, Word32Popcnt, kS390_Popcnt32, OperandMode::kNone, null) \ |
| V(Word32, RoundInt32ToFloat32, kS390_Int32ToFloat32, OperandMode::kNone, \ |
| null) \ |
| V(Word32, RoundUint32ToFloat32, kS390_Uint32ToFloat32, OperandMode::kNone, \ |
| null) \ |
| V(Word32, ChangeInt32ToFloat64, kS390_Int32ToDouble, OperandMode::kNone, \ |
| null) \ |
| V(Word32, ChangeUint32ToFloat64, kS390_Uint32ToDouble, OperandMode::kNone, \ |
| null) \ |
| V(Word32, SignExtendWord8ToInt32, kS390_SignExtendWord8ToInt32, \ |
| OperandMode::kNone, null) \ |
| V(Word32, SignExtendWord16ToInt32, kS390_SignExtendWord16ToInt32, \ |
| OperandMode::kNone, null) \ |
| V(Word32, BitcastInt32ToFloat32, kS390_BitcastInt32ToFloat32, \ |
| OperandMode::kNone, null) |
| |
| #ifdef V8_TARGET_ARCH_S390X |
| #define FLOAT_UNARY_OP_LIST(V) \ |
| FLOAT_UNARY_OP_LIST_32(V) \ |
| V(Float64, ChangeFloat64ToUint64, kS390_DoubleToUint64, OperandMode::kNone, \ |
| null) \ |
| V(Float64, ChangeFloat64ToInt64, kS390_DoubleToInt64, OperandMode::kNone, \ |
| null) \ |
| V(Float64, TruncateFloat64ToInt64, kS390_DoubleToInt64, OperandMode::kNone, \ |
| null) \ |
| V(Float64, BitcastFloat64ToInt64, kS390_BitcastDoubleToInt64, \ |
| OperandMode::kNone, null) |
| |
| #define WORD32_UNARY_OP_LIST(V) \ |
| WORD32_UNARY_OP_LIST_32(V) \ |
| V(Word32, ChangeInt32ToInt64, kS390_SignExtendWord32ToInt64, \ |
| OperandMode::kNone, null) \ |
| V(Word32, SignExtendWord8ToInt64, kS390_SignExtendWord8ToInt64, \ |
| OperandMode::kNone, null) \ |
| V(Word32, SignExtendWord16ToInt64, kS390_SignExtendWord16ToInt64, \ |
| OperandMode::kNone, null) \ |
| V(Word32, SignExtendWord32ToInt64, kS390_SignExtendWord32ToInt64, \ |
| OperandMode::kNone, null) \ |
| V(Word32, ChangeUint32ToUint64, kS390_Uint32ToUint64, OperandMode::kNone, \ |
| [&]() -> bool { \ |
| if (ProduceWord32Result(node->InputAt(0))) { \ |
| EmitIdentity(node); \ |
| return true; \ |
| } \ |
| return false; \ |
| }) |
| |
| #else |
| #define FLOAT_UNARY_OP_LIST(V) FLOAT_UNARY_OP_LIST_32(V) |
| #define WORD32_UNARY_OP_LIST(V) WORD32_UNARY_OP_LIST_32(V) |
| #endif |
| |
| #define WORD32_BIN_OP_LIST(V) \ |
| V(Word32, Int32Add, kS390_Add32, AddOperandMode, null) \ |
| V(Word32, Int32Sub, kS390_Sub32, SubOperandMode, ([&]() { \ |
| return TryMatchNegFromSub<Int32BinopMatcher, kS390_Neg32>(this, node); \ |
| })) \ |
| V(Word32, Int32Mul, kS390_Mul32, MulOperandMode, ([&]() { \ |
| return TryMatchShiftFromMul<Int32BinopMatcher, kS390_ShiftLeft32>(this, \ |
| node); \ |
| })) \ |
| V(Word32, Int32AddWithOverflow, kS390_Add32, AddOperandMode, \ |
| ([&]() { return TryMatchInt32AddWithOverflow(this, node); })) \ |
| V(Word32, Int32SubWithOverflow, kS390_Sub32, SubOperandMode, \ |
| ([&]() { return TryMatchInt32SubWithOverflow(this, node); })) \ |
| V(Word32, Int32MulWithOverflow, kS390_Mul32, MulOperandMode, \ |
| ([&]() { return TryMatchInt32MulWithOverflow(this, node); })) \ |
| V(Word32, Int32MulHigh, kS390_MulHigh32, \ |
| OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps, null) \ |
| V(Word32, Uint32MulHigh, kS390_MulHighU32, \ |
| OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ |
| V(Word32, Int32Div, kS390_Div32, \ |
| OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ |
| V(Word32, Uint32Div, kS390_DivU32, \ |
| OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ |
| V(Word32, Int32Mod, kS390_Mod32, \ |
| OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ |
| V(Word32, Uint32Mod, kS390_ModU32, \ |
| OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ |
| V(Word32, Word32Ror, kS390_RotRight32, \ |
| OperandMode::kAllowRI | OperandMode::kAllowRRR | OperandMode::kAllowRRI | \ |
| OperandMode::kShift32Imm, \ |
| null) \ |
| V(Word32, Word32And, kS390_And32, And32OperandMode, null) \ |
| V(Word32, Word32Or, kS390_Or32, Or32OperandMode, null) \ |
| V(Word32, Word32Xor, kS390_Xor32, Xor32OperandMode, null) \ |
| V(Word32, Word32Shl, kS390_ShiftLeft32, Shift32OperandMode, null) \ |
| V(Word32, Word32Shr, kS390_ShiftRight32, Shift32OperandMode, null) \ |
| V(Word32, Word32Sar, kS390_ShiftRightArith32, Shift32OperandMode, \ |
| [&]() { return TryMatchSignExtInt16OrInt8FromWord32Sar(this, node); }) \ |
| V(Word32, Float64InsertLowWord32, kS390_DoubleInsertLowWord32, \ |
| OperandMode::kAllowRRR, \ |
| [&]() -> bool { return TryMatchDoubleConstructFromInsert(this, node); }) \ |
| V(Word32, Float64InsertHighWord32, kS390_DoubleInsertHighWord32, \ |
| OperandMode::kAllowRRR, \ |
| [&]() -> bool { return TryMatchDoubleConstructFromInsert(this, node); }) |
| |
| #define WORD64_UNARY_OP_LIST(V) \ |
| V(Word64, Word64Popcnt, kS390_Popcnt64, OperandMode::kNone, null) \ |
| V(Word64, Word64Clz, kS390_Cntlz64, OperandMode::kNone, null) \ |
| V(Word64, TruncateInt64ToInt32, kS390_Int64ToInt32, OperandMode::kNone, \ |
| null) \ |
| V(Word64, RoundInt64ToFloat32, kS390_Int64ToFloat32, OperandMode::kNone, \ |
| null) \ |
| V(Word64, RoundInt64ToFloat64, kS390_Int64ToDouble, OperandMode::kNone, \ |
| null) \ |
| V(Word64, ChangeInt64ToFloat64, kS390_Int64ToDouble, OperandMode::kNone, \ |
| null) \ |
| V(Word64, RoundUint64ToFloat32, kS390_Uint64ToFloat32, OperandMode::kNone, \ |
| null) \ |
| V(Word64, RoundUint64ToFloat64, kS390_Uint64ToDouble, OperandMode::kNone, \ |
| null) \ |
| V(Word64, BitcastInt64ToFloat64, kS390_BitcastInt64ToDouble, \ |
| OperandMode::kNone, null) |
| |
| #define WORD64_BIN_OP_LIST(V) \ |
| V(Word64, Int64Add, kS390_Add64, AddOperandMode, null) \ |
| V(Word64, Int64Sub, kS390_Sub64, SubOperandMode, ([&]() { \ |
| return TryMatchNegFromSub<Int64BinopMatcher, kS390_Neg64>(this, node); \ |
| })) \ |
| V(Word64, Int64AddWithOverflow, kS390_Add64, AddOperandMode, \ |
| ([&]() { return TryMatchInt64AddWithOverflow(this, node); })) \ |
| V(Word64, Int64SubWithOverflow, kS390_Sub64, SubOperandMode, \ |
| ([&]() { return TryMatchInt64SubWithOverflow(this, node); })) \ |
| V(Word64, Int64Mul, kS390_Mul64, MulOperandMode, ([&]() { \ |
| return TryMatchShiftFromMul<Int64BinopMatcher, kS390_ShiftLeft64>(this, \ |
| node); \ |
| })) \ |
| V(Word64, Int64Div, kS390_Div64, \ |
| OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ |
| V(Word64, Uint64Div, kS390_DivU64, \ |
| OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ |
| V(Word64, Int64Mod, kS390_Mod64, \ |
| OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ |
| V(Word64, Uint64Mod, kS390_ModU64, \ |
| OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ |
| V(Word64, Word64Sar, kS390_ShiftRightArith64, Shift64OperandMode, null) \ |
| V(Word64, Word64Ror, kS390_RotRight64, Shift64OperandMode, null) \ |
| V(Word64, Word64Or, kS390_Or64, Or64OperandMode, null) \ |
| V(Word64, Word64Xor, kS390_Xor64, Xor64OperandMode, null) |
| |
| #define DECLARE_UNARY_OP(type, name, op, mode, try_extra) \ |
| void InstructionSelector::Visit##name(Node* node) { \ |
| if (std::function<bool()>(try_extra)()) return; \ |
| Visit##type##UnaryOp(this, node, op, mode); \ |
| } |
| |
| #define DECLARE_BIN_OP(type, name, op, mode, try_extra) \ |
| void InstructionSelector::Visit##name(Node* node) { \ |
| if (std::function<bool()>(try_extra)()) return; \ |
| Visit##type##BinOp(this, node, op, mode); \ |
| } |
| |
| WORD32_BIN_OP_LIST(DECLARE_BIN_OP) |
| WORD32_UNARY_OP_LIST(DECLARE_UNARY_OP) |
| FLOAT_UNARY_OP_LIST(DECLARE_UNARY_OP) |
| FLOAT_BIN_OP_LIST(DECLARE_BIN_OP) |
| |
| #if V8_TARGET_ARCH_S390X |
| WORD64_UNARY_OP_LIST(DECLARE_UNARY_OP) |
| WORD64_BIN_OP_LIST(DECLARE_BIN_OP) |
| #endif |
| |
| #undef DECLARE_BIN_OP |
| #undef DECLARE_UNARY_OP |
| #undef WORD64_BIN_OP_LIST |
| #undef WORD64_UNARY_OP_LIST |
| #undef WORD32_BIN_OP_LIST |
| #undef WORD32_UNARY_OP_LIST |
| #undef FLOAT_UNARY_OP_LIST |
| #undef WORD32_UNARY_OP_LIST_32 |
| #undef FLOAT_BIN_OP_LIST |
| #undef FLOAT_BIN_OP_LIST_32 |
| #undef null |
| |
| #if V8_TARGET_ARCH_S390X |
| void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) { |
| VisitTryTruncateDouble(this, kS390_Float32ToInt64, node); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) { |
| VisitTryTruncateDouble(this, kS390_DoubleToInt64, node); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) { |
| VisitTryTruncateDouble(this, kS390_Float32ToUint64, node); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) { |
| VisitTryTruncateDouble(this, kS390_DoubleToUint64, node); |
| } |
| |
| #endif |
| |
| void InstructionSelector::VisitBitcastWord32ToWord64(Node* node) { |
| DCHECK(SmiValuesAre31Bits()); |
| DCHECK(COMPRESS_POINTERS_BOOL); |
| EmitIdentity(node); |
| } |
| |
| void InstructionSelector::VisitFloat64Mod(Node* node) { |
| S390OperandGenerator g(this); |
| Emit(kS390_ModDouble, g.DefineAsFixed(node, d1), |
| g.UseFixed(node->InputAt(0), d1), g.UseFixed(node->InputAt(1), d2)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, |
| InstructionCode opcode) { |
| S390OperandGenerator g(this); |
| Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, |
| InstructionCode opcode) { |
| S390OperandGenerator g(this); |
| Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1), |
| g.UseFixed(node->InputAt(1), d2)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| static bool CompareLogical(FlagsContinuation* cont) { |
| switch (cont->condition()) { |
| case kUnsignedLessThan: |
| case kUnsignedGreaterThanOrEqual: |
| case kUnsignedLessThanOrEqual: |
| case kUnsignedGreaterThan: |
| return true; |
| default: |
| return false; |
| } |
| UNREACHABLE(); |
| } |
| |
| namespace { |
| |
| // Shared routine for multiple compare operations. |
| void VisitCompare(InstructionSelector* selector, InstructionCode opcode, |
| InstructionOperand left, InstructionOperand right, |
| FlagsContinuation* cont) { |
| selector->EmitWithContinuation(opcode, left, right, cont); |
| } |
| |
| void VisitLoadAndTest(InstructionSelector* selector, InstructionCode opcode, |
| Node* node, Node* value, FlagsContinuation* cont, |
| bool discard_output = false); |
| |
| // Shared routine for multiple word compare operations. |
| void VisitWordCompare(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont, |
| OperandModes immediate_mode) { |
| S390OperandGenerator g(selector); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| |
| DCHECK(IrOpcode::IsComparisonOpcode(node->opcode()) || |
| node->opcode() == IrOpcode::kInt32Sub || |
| node->opcode() == IrOpcode::kInt64Sub); |
| |
| InstructionOperand inputs[8]; |
| InstructionOperand outputs[1]; |
| size_t input_count = 0; |
| size_t output_count = 0; |
| |
| // If one of the two inputs is an immediate, make sure it's on the right, or |
| // if one of the two inputs is a memory operand, make sure it's on the left. |
| int effect_level = selector->GetEffectLevel(node, cont); |
| |
| if ((!g.CanBeImmediate(right, immediate_mode) && |
| g.CanBeImmediate(left, immediate_mode)) || |
| (!g.CanBeMemoryOperand(opcode, node, right, effect_level) && |
| g.CanBeMemoryOperand(opcode, node, left, effect_level))) { |
| if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute(); |
| std::swap(left, right); |
| } |
| |
| // check if compare with 0 |
| if (g.CanBeImmediate(right, immediate_mode) && g.GetImmediate(right) == 0) { |
| DCHECK(opcode == kS390_Cmp32 || opcode == kS390_Cmp64); |
| ArchOpcode load_and_test = (opcode == kS390_Cmp32) |
| ? kS390_LoadAndTestWord32 |
| : kS390_LoadAndTestWord64; |
| return VisitLoadAndTest(selector, load_and_test, node, left, cont, true); |
| } |
| |
| inputs[input_count++] = g.UseRegister(left); |
| if (g.CanBeMemoryOperand(opcode, node, right, effect_level)) { |
| // generate memory operand |
| AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand( |
| right, inputs, &input_count, OpcodeImmMode(opcode)); |
| opcode |= AddressingModeField::encode(addressing_mode); |
| } else if (g.CanBeImmediate(right, immediate_mode)) { |
| inputs[input_count++] = g.UseImmediate(right); |
| } else { |
| inputs[input_count++] = g.UseAnyExceptImmediate(right); |
| } |
| |
| DCHECK(input_count <= 8 && output_count <= 1); |
| selector->EmitWithContinuation(opcode, output_count, outputs, input_count, |
| inputs, cont); |
| } |
| |
| void VisitWord32Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| OperandModes mode = |
| (CompareLogical(cont) ? OperandMode::kUint32Imm : OperandMode::kInt32Imm); |
| VisitWordCompare(selector, node, kS390_Cmp32, cont, mode); |
| } |
| |
| #if V8_TARGET_ARCH_S390X |
| void VisitWord64Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| OperandModes mode = |
| (CompareLogical(cont) ? OperandMode::kUint32Imm : OperandMode::kInt32Imm); |
| VisitWordCompare(selector, node, kS390_Cmp64, cont, mode); |
| } |
| #endif |
| |
| // Shared routine for multiple float32 compare operations. |
| void VisitFloat32Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| VisitWordCompare(selector, node, kS390_CmpFloat, cont, OperandMode::kNone); |
| } |
| |
| // Shared routine for multiple float64 compare operations. |
| void VisitFloat64Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| VisitWordCompare(selector, node, kS390_CmpDouble, cont, OperandMode::kNone); |
| } |
| |
| void VisitTestUnderMask(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| DCHECK(node->opcode() == IrOpcode::kWord32And || |
| node->opcode() == IrOpcode::kWord64And); |
| ArchOpcode opcode = |
| (node->opcode() == IrOpcode::kWord32And) ? kS390_Tst32 : kS390_Tst64; |
| S390OperandGenerator g(selector); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| if (!g.CanBeImmediate(right, OperandMode::kUint32Imm) && |
| g.CanBeImmediate(left, OperandMode::kUint32Imm)) { |
| std::swap(left, right); |
| } |
| VisitCompare(selector, opcode, g.UseRegister(left), |
| g.UseOperand(right, OperandMode::kUint32Imm), cont); |
| } |
| |
| void VisitLoadAndTest(InstructionSelector* selector, InstructionCode opcode, |
| Node* node, Node* value, FlagsContinuation* cont, |
| bool discard_output) { |
| static_assert(kS390_LoadAndTestFloat64 - kS390_LoadAndTestWord32 == 3, |
| "LoadAndTest Opcode shouldn't contain other opcodes."); |
| |
| // TODO(john.yan): Add support for Float32/Float64. |
| DCHECK(opcode >= kS390_LoadAndTestWord32 || |
| opcode <= kS390_LoadAndTestWord64); |
| |
| S390OperandGenerator g(selector); |
| InstructionOperand inputs[8]; |
| InstructionOperand outputs[2]; |
| size_t input_count = 0; |
| size_t output_count = 0; |
| bool use_value = false; |
| |
| int effect_level = selector->GetEffectLevel(node, cont); |
| |
| if (g.CanBeMemoryOperand(opcode, node, value, effect_level)) { |
| // generate memory operand |
| AddressingMode addressing_mode = |
| g.GetEffectiveAddressMemoryOperand(value, inputs, &input_count); |
| opcode |= AddressingModeField::encode(addressing_mode); |
| } else { |
| inputs[input_count++] = g.UseAnyExceptImmediate(value); |
| use_value = true; |
| } |
| |
| if (!discard_output && !use_value) { |
| outputs[output_count++] = g.DefineAsRegister(value); |
| } |
| |
| DCHECK(input_count <= 8 && output_count <= 2); |
| selector->EmitWithContinuation(opcode, output_count, outputs, input_count, |
| inputs, cont); |
| } |
| |
| } // namespace |
| |
| // Shared routine for word comparisons against zero. |
| void InstructionSelector::VisitWordCompareZero(Node* user, Node* value, |
| FlagsContinuation* cont) { |
| // Try to combine with comparisons against 0 by simply inverting the branch. |
| while (value->opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) { |
| Int32BinopMatcher m(value); |
| if (!m.right().Is(0)) break; |
| |
| user = value; |
| value = m.left().node(); |
| cont->Negate(); |
| } |
| |
| FlagsCondition fc = cont->condition(); |
| if (CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kWord32Equal: { |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| Int32BinopMatcher m(value); |
| if (m.right().Is(0)) { |
| // Try to combine the branch with a comparison. |
| Node* const user = m.node(); |
| Node* const value = m.left().node(); |
| if (CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kInt32Sub: |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kWord32And: |
| return VisitTestUnderMask(this, value, cont); |
| default: |
| break; |
| } |
| } |
| } |
| return VisitWord32Compare(this, value, cont); |
| } |
| case IrOpcode::kInt32LessThan: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThan); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kInt32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kUint32LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitWord32Compare(this, value, cont); |
| case IrOpcode::kUint32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitWord32Compare(this, value, cont); |
| #if V8_TARGET_ARCH_S390X |
| case IrOpcode::kWord64Equal: { |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| Int64BinopMatcher m(value); |
| if (m.right().Is(0)) { |
| // Try to combine the branch with a comparison. |
| Node* const user = m.node(); |
| Node* const value = m.left().node(); |
| if (CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kInt64Sub: |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kWord64And: |
| return VisitTestUnderMask(this, value, cont); |
| default: |
| break; |
| } |
| } |
| } |
| return VisitWord64Compare(this, value, cont); |
| } |
| case IrOpcode::kInt64LessThan: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThan); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kInt64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kUint64LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kUint64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitWord64Compare(this, value, cont); |
| #endif |
| case IrOpcode::kFloat32Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat32LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat64Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kFloat64LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kFloat64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kProjection: |
| // Check if this is the overflow output projection of an |
| // <Operation>WithOverflow node. |
| if (ProjectionIndexOf(value->op()) == 1u) { |
| // We cannot combine the <Operation>WithOverflow with this branch |
| // unless the 0th projection (the use of the actual value of the |
| // <Operation> is either nullptr, which means there's no use of the |
| // actual value, or was already defined, which means it is scheduled |
| // *AFTER* this branch). |
| Node* const node = value->InputAt(0); |
| Node* const result = NodeProperties::FindProjection(node, 0); |
| if (result == nullptr || IsDefined(result)) { |
| switch (node->opcode()) { |
| case IrOpcode::kInt32AddWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitWord32BinOp(this, node, kS390_Add32, AddOperandMode, |
| cont); |
| case IrOpcode::kInt32SubWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitWord32BinOp(this, node, kS390_Sub32, SubOperandMode, |
| cont); |
| case IrOpcode::kInt32MulWithOverflow: |
| if (CpuFeatures::IsSupported(MISC_INSTR_EXT2)) { |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitWord32BinOp( |
| this, node, kS390_Mul32, |
| OperandMode::kAllowRRR | OperandMode::kAllowRM, cont); |
| } else { |
| cont->OverwriteAndNegateIfEqual(kNotEqual); |
| return VisitWord32BinOp( |
| this, node, kS390_Mul32WithOverflow, |
| OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps, |
| cont); |
| } |
| case IrOpcode::kInt32AbsWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitWord32UnaryOp(this, node, kS390_Abs32, |
| OperandMode::kNone, cont); |
| #if V8_TARGET_ARCH_S390X |
| case IrOpcode::kInt64AbsWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitWord64UnaryOp(this, node, kS390_Abs64, |
| OperandMode::kNone, cont); |
| case IrOpcode::kInt64AddWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitWord64BinOp(this, node, kS390_Add64, AddOperandMode, |
| cont); |
| case IrOpcode::kInt64SubWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitWord64BinOp(this, node, kS390_Sub64, SubOperandMode, |
| cont); |
| #endif |
| default: |
| break; |
| } |
| } |
| } |
| break; |
| case IrOpcode::kInt32Sub: |
| if (fc == kNotEqual || fc == kEqual) |
| return VisitWord32Compare(this, value, cont); |
| break; |
| case IrOpcode::kWord32And: |
| return VisitTestUnderMask(this, value, cont); |
| case IrOpcode::kLoad: { |
| LoadRepresentation load_rep = LoadRepresentationOf(value->op()); |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kWord32: |
| return VisitLoadAndTest(this, kS390_LoadAndTestWord32, user, value, |
| cont); |
| default: |
| break; |
| } |
| break; |
| } |
| case IrOpcode::kInt32Add: |
| // can't handle overflow case. |
| break; |
| case IrOpcode::kWord32Or: |
| if (fc == kNotEqual || fc == kEqual) |
| return VisitWord32BinOp(this, value, kS390_Or32, Or32OperandMode, |
| cont); |
| break; |
| case IrOpcode::kWord32Xor: |
| if (fc == kNotEqual || fc == kEqual) |
| return VisitWord32BinOp(this, value, kS390_Xor32, Xor32OperandMode, |
| cont); |
| break; |
| case IrOpcode::kWord32Sar: |
| case IrOpcode::kWord32Shl: |
| case IrOpcode::kWord32Shr: |
| case IrOpcode::kWord32Ror: |
| // doesn't generate cc, so ignore. |
| break; |
| #if V8_TARGET_ARCH_S390X |
| case IrOpcode::kInt64Sub: |
| if (fc == kNotEqual || fc == kEqual) |
| return VisitWord64Compare(this, value, cont); |
| break; |
| case IrOpcode::kWord64And: |
| return VisitTestUnderMask(this, value, cont); |
| case IrOpcode::kInt64Add: |
| // can't handle overflow case. |
| break; |
| case IrOpcode::kWord64Or: |
| if (fc == kNotEqual || fc == kEqual) |
| return VisitWord64BinOp(this, value, kS390_Or64, Or64OperandMode, |
| cont); |
| break; |
| case IrOpcode::kWord64Xor: |
| if (fc == kNotEqual || fc == kEqual) |
| return VisitWord64BinOp(this, value, kS390_Xor64, Xor64OperandMode, |
| cont); |
| break; |
| case IrOpcode::kWord64Sar: |
| case IrOpcode::kWord64Shl: |
| case IrOpcode::kWord64Shr: |
| case IrOpcode::kWord64Ror: |
| // doesn't generate cc, so ignore |
| break; |
| #endif |
| case IrOpcode::kStackPointerGreaterThan: |
| cont->OverwriteAndNegateIfEqual(kStackPointerGreaterThanCondition); |
| return VisitStackPointerGreaterThan(value, cont); |
| default: |
| break; |
| } |
| } |
| |
| // Branch could not be combined with a compare, emit LoadAndTest |
| VisitLoadAndTest(this, kS390_LoadAndTestWord32, user, value, cont, true); |
| } |
| |
| void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { |
| S390OperandGenerator g(this); |
| InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); |
| |
| // Emit either ArchTableSwitch or ArchBinarySearchSwitch. |
| if (enable_switch_jump_table_ == kEnableSwitchJumpTable) { |
| static const size_t kMaxTableSwitchValueRange = 2 << 16; |
| size_t table_space_cost = 4 + sw.value_range(); |
| size_t table_time_cost = 3; |
| size_t lookup_space_cost = 3 + 2 * sw.case_count(); |
| size_t lookup_time_cost = sw.case_count(); |
| if (sw.case_count() > 0 && |
| table_space_cost + 3 * table_time_cost <= |
| lookup_space_cost + 3 * lookup_time_cost && |
| sw.min_value() > std::numeric_limits<int32_t>::min() && |
| sw.value_range() <= kMaxTableSwitchValueRange) { |
| InstructionOperand index_operand = value_operand; |
| if (sw.min_value()) { |
| index_operand = g.TempRegister(); |
| Emit(kS390_Lay | AddressingModeField::encode(kMode_MRI), index_operand, |
| value_operand, g.TempImmediate(-sw.min_value())); |
| } |
| #if V8_TARGET_ARCH_S390X |
| InstructionOperand index_operand_zero_ext = g.TempRegister(); |
| Emit(kS390_Uint32ToUint64, index_operand_zero_ext, index_operand); |
| index_operand = index_operand_zero_ext; |
| #endif |
| // Generate a table lookup. |
| return EmitTableSwitch(sw, index_operand); |
| } |
| } |
| |
| // Generate a tree of conditional jumps. |
| return EmitBinarySearchSwitch(sw, value_operand); |
| } |
| |
| void InstructionSelector::VisitWord32Equal(Node* const node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| Int32BinopMatcher m(node); |
| if (m.right().Is(0)) { |
| return VisitLoadAndTest(this, kS390_LoadAndTestWord32, m.node(), |
| m.left().node(), &cont, true); |
| } |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| #if V8_TARGET_ARCH_S390X |
| void InstructionSelector::VisitWord64Equal(Node* const node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| Int64BinopMatcher m(node); |
| if (m.right().Is(0)) { |
| return VisitLoadAndTest(this, kS390_LoadAndTestWord64, m.node(), |
| m.left().node(), &cont, true); |
| } |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| #endif |
| |
| void InstructionSelector::VisitFloat32Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| bool InstructionSelector::ZeroExtendsWord32ToWord64NoPhis(Node* node) { |
| UNIMPLEMENTED(); |
| } |
| |
| void InstructionSelector::EmitPrepareArguments( |
| ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor, |
| Node* node) { |
| S390OperandGenerator g(this); |
| |
| // Prepare for C function call. |
| if (call_descriptor->IsCFunctionCall()) { |
| Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>( |
| call_descriptor->ParameterCount())), |
| 0, nullptr, 0, nullptr); |
| |
| // Poke any stack arguments. |
| int slot = kStackFrameExtraParamSlot; |
| for (PushParameter input : (*arguments)) { |
| if (input.node == nullptr) continue; |
| Emit(kS390_StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), |
| g.TempImmediate(slot)); |
| ++slot; |
| } |
| } else { |
| // Push any stack arguments. |
| int num_slots = 0; |
| int slot = 0; |
| |
| #define INPUT_SWITCH(param) \ |
| switch (input.location.GetType().representation()) { \ |
| case MachineRepresentation::kSimd128: \ |
| param += kSimd128Size / kSystemPointerSize; \ |
| break; \ |
| case MachineRepresentation::kFloat64: \ |
| param += kDoubleSize / kSystemPointerSize; \ |
| break; \ |
| default: \ |
| param += 1; \ |
| break; \ |
| } |
| for (PushParameter input : *arguments) { |
| if (input.node == nullptr) continue; |
| INPUT_SWITCH(num_slots) |
| } |
| Emit(kS390_StackClaim, g.NoOutput(), g.TempImmediate(num_slots)); |
| for (PushParameter input : *arguments) { |
| // Skip any alignment holes in pushed nodes. |
| if (input.node) { |
| Emit(kS390_StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), |
| g.TempImmediate(slot)); |
| INPUT_SWITCH(slot) |
| } |
| } |
| #undef INPUT_SWITCH |
| DCHECK(num_slots == slot); |
| } |
| } |
| |
| void InstructionSelector::VisitMemoryBarrier(Node* node) { |
| S390OperandGenerator g(this); |
| Emit(kArchNop, g.NoOutput()); |
| } |
| |
| bool InstructionSelector::IsTailCallAddressImmediate() { return false; } |
| |
| int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; } |
| |
| void InstructionSelector::VisitWord32AtomicLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| DCHECK(load_rep.representation() == MachineRepresentation::kWord8 || |
| load_rep.representation() == MachineRepresentation::kWord16 || |
| load_rep.representation() == MachineRepresentation::kWord32); |
| USE(load_rep); |
| VisitLoad(node); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicStore(Node* node) { |
| MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); |
| VisitGeneralStore(this, node, rep); |
| } |
| |
| void VisitAtomicExchange(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| S390OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| AddressingMode addressing_mode = kMode_MRR; |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| inputs[input_count++] = g.UseUniqueRegister(value); |
| InstructionOperand outputs[1]; |
| outputs[0] = g.DefineAsRegister(node); |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| selector->Emit(code, 1, outputs, input_count, inputs); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicExchange(Node* node) { |
| ArchOpcode opcode; |
| MachineType type = AtomicOpType(node->op()); |
| if (type == MachineType::Int8()) { |
| opcode = kWord32AtomicExchangeInt8; |
| } else if (type == MachineType::Uint8()) { |
| opcode = kWord32AtomicExchangeUint8; |
| } else if (type == MachineType::Int16()) { |
| opcode = kWord32AtomicExchangeInt16; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kWord32AtomicExchangeUint16; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = kWord32AtomicExchangeWord32; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicExchange(Node* node) { |
| ArchOpcode opcode; |
| MachineType type = AtomicOpType(node->op()); |
| if (type == MachineType::Uint8()) { |
| opcode = kS390_Word64AtomicExchangeUint8; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kS390_Word64AtomicExchangeUint16; |
| } else if (type == MachineType::Uint32()) { |
| opcode = kS390_Word64AtomicExchangeUint32; |
| } else if (type == MachineType::Uint64()) { |
| opcode = kS390_Word64AtomicExchangeUint64; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicExchange(this, node, opcode); |
| } |
| |
| void VisitAtomicCompareExchange(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| S390OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* old_value = node->InputAt(2); |
| Node* new_value = node->InputAt(3); |
| |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(old_value); |
| inputs[input_count++] = g.UseUniqueRegister(new_value); |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| |
| AddressingMode addressing_mode; |
| if (g.CanBeImmediate(index, OperandMode::kInt20Imm)) { |
| inputs[input_count++] = g.UseImmediate(index); |
| addressing_mode = kMode_MRI; |
| } else { |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| addressing_mode = kMode_MRR; |
| } |
| |
| InstructionOperand outputs[1]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineSameAsFirst(node); |
| |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| selector->Emit(code, output_count, outputs, input_count, inputs); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) { |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode; |
| if (type == MachineType::Int8()) { |
| opcode = kWord32AtomicCompareExchangeInt8; |
| } else if (type == MachineType::Uint8()) { |
| opcode = kWord32AtomicCompareExchangeUint8; |
| } else if (type == MachineType::Int16()) { |
| opcode = kWord32AtomicCompareExchangeInt16; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kWord32AtomicCompareExchangeUint16; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = kWord32AtomicCompareExchangeWord32; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicCompareExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicCompareExchange(Node* node) { |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode; |
| if (type == MachineType::Uint8()) { |
| opcode = kS390_Word64AtomicCompareExchangeUint8; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kS390_Word64AtomicCompareExchangeUint16; |
| } else if (type == MachineType::Uint32()) { |
| opcode = kS390_Word64AtomicCompareExchangeUint32; |
| } else if (type == MachineType::Uint64()) { |
| opcode = kS390_Word64AtomicCompareExchangeUint64; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicCompareExchange(this, node, opcode); |
| } |
| |
| void VisitAtomicBinop(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| S390OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| |
| AddressingMode addressing_mode; |
| if (g.CanBeImmediate(index, OperandMode::kInt20Imm)) { |
| inputs[input_count++] = g.UseImmediate(index); |
| addressing_mode = kMode_MRI; |
| } else { |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| addressing_mode = kMode_MRR; |
| } |
| |
| inputs[input_count++] = g.UseUniqueRegister(value); |
| |
| InstructionOperand outputs[1]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| InstructionOperand temps[1]; |
| size_t temp_count = 0; |
| temps[temp_count++] = g.TempRegister(); |
| |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| selector->Emit(code, output_count, outputs, input_count, inputs, temp_count, |
| temps); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicBinaryOperation( |
| Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op, |
| ArchOpcode uint16_op, ArchOpcode word32_op) { |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode; |
| |
| if (type == MachineType::Int8()) { |
| opcode = int8_op; |
| } else if (type == MachineType::Uint8()) { |
| opcode = uint8_op; |
| } else if (type == MachineType::Int16()) { |
| opcode = int16_op; |
| } else if (type == MachineType::Uint16()) { |
| opcode = uint16_op; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = word32_op; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicBinop(this, node, opcode); |
| } |
| |
| #define VISIT_ATOMIC_BINOP(op) \ |
| void InstructionSelector::VisitWord32Atomic##op(Node* node) { \ |
| VisitWord32AtomicBinaryOperation( \ |
| node, kWord32Atomic##op##Int8, kWord32Atomic##op##Uint8, \ |
| kWord32Atomic##op##Int16, kWord32Atomic##op##Uint16, \ |
| kWord32Atomic##op##Word32); \ |
| } |
| VISIT_ATOMIC_BINOP(Add) |
| VISIT_ATOMIC_BINOP(Sub) |
| VISIT_ATOMIC_BINOP(And) |
| VISIT_ATOMIC_BINOP(Or) |
| VISIT_ATOMIC_BINOP(Xor) |
| #undef VISIT_ATOMIC_BINOP |
| |
| void InstructionSelector::VisitWord64AtomicBinaryOperation( |
| Node* node, ArchOpcode uint8_op, ArchOpcode uint16_op, ArchOpcode word32_op, |
| ArchOpcode word64_op) { |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode; |
| |
| if (type == MachineType::Uint8()) { |
| opcode = uint8_op; |
| } else if (type == MachineType::Uint16()) { |
| opcode = uint16_op; |
| } else if (type == MachineType::Uint32()) { |
| opcode = word32_op; |
| } else if (type == MachineType::Uint64()) { |
| opcode = word64_op; |
| } else { |
| UNREACHABLE(); |
| } |
| VisitAtomicBinop(this, node, opcode); |
| } |
| |
| #define VISIT_ATOMIC64_BINOP(op) \ |
| void InstructionSelector::VisitWord64Atomic##op(Node* node) { \ |
| VisitWord64AtomicBinaryOperation( \ |
| node, kS390_Word64Atomic##op##Uint8, kS390_Word64Atomic##op##Uint16, \ |
| kS390_Word64Atomic##op##Uint32, kS390_Word64Atomic##op##Uint64); \ |
| } |
| VISIT_ATOMIC64_BINOP(Add) |
| VISIT_ATOMIC64_BINOP(Sub) |
| VISIT_ATOMIC64_BINOP(And) |
| VISIT_ATOMIC64_BINOP(Or) |
| VISIT_ATOMIC64_BINOP(Xor) |
| #undef VISIT_ATOMIC64_BINOP |
| |
| void InstructionSelector::VisitWord64AtomicLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| USE(load_rep); |
| VisitLoad(node); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicStore(Node* node) { |
| MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); |
| VisitGeneralStore(this, node, rep); |
| } |
| |
| #define SIMD_TYPES(V) \ |
| V(F64x2) \ |
| V(F32x4) \ |
| V(I64x2) \ |
| V(I32x4) \ |
| V(I16x8) \ |
| V(I8x16) |
| |
| #define SIMD_BINOP_LIST(V) \ |
| V(F64x2Add) \ |
| V(F64x2Sub) \ |
| V(F64x2Mul) \ |
| V(F64x2Div) \ |
| V(F64x2Eq) \ |
| V(F64x2Ne) \ |
| V(F64x2Lt) \ |
| V(F64x2Le) \ |
| V(F64x2Min) \ |
| V(F64x2Max) \ |
| V(F32x4Add) \ |
| V(F32x4AddHoriz) \ |
| V(F32x4Sub) \ |
| V(F32x4Mul) \ |
| V(F32x4Eq) \ |
| V(F32x4Ne) \ |
| V(F32x4Lt) \ |
| V(F32x4Le) \ |
| V(F32x4Div) \ |
| V(F32x4Min) \ |
| V(F32x4Max) \ |
| V(I64x2Add) \ |
| V(I64x2Sub) \ |
| V(I64x2Mul) \ |
| V(I64x2Eq) \ |
| V(I32x4Add) \ |
| V(I32x4AddHoriz) \ |
| V(I32x4Sub) \ |
| V(I32x4Mul) \ |
| V(I32x4MinS) \ |
| V(I32x4MinU) \ |
| V(I32x4MaxS) \ |
| V(I32x4MaxU) \ |
| V(I32x4Eq) \ |
| V(I32x4Ne) \ |
| V(I32x4GtS) \ |
| V(I32x4GeS) \ |
| V(I32x4GtU) \ |
| V(I32x4GeU) \ |
| V(I32x4DotI16x8S) \ |
| V(I16x8Add) \ |
| V(I16x8AddHoriz) \ |
| V(I16x8Sub) \ |
| V(I16x8Mul) \ |
| V(I16x8MinS) \ |
| V(I16x8MinU) \ |
| V(I16x8MaxS) \ |
| V(I16x8MaxU) \ |
| V(I16x8Eq) \ |
| V(I16x8Ne) \ |
| V(I16x8GtS) \ |
| V(I16x8GeS) \ |
| V(I16x8GtU) \ |
| V(I16x8GeU) \ |
| V(I16x8SConvertI32x4) \ |
| V(I16x8UConvertI32x4) \ |
| V(I16x8AddSatS) \ |
| V(I16x8SubSatS) \ |
| V(I16x8AddSatU) \ |
| V(I16x8SubSatU) \ |
| V(I16x8RoundingAverageU) \ |
| V(I8x16Add) \ |
| V(I8x16Sub) \ |
| V(I8x16Mul) \ |
| V(I8x16MinS) \ |
| V(I8x16MinU) \ |
| V(I8x16MaxS) \ |
| V(I8x16MaxU) \ |
| V(I8x16Eq) \ |
| V(I8x16Ne) \ |
| V(I8x16GtS) \ |
| V(I8x16GeS) \ |
| V(I8x16GtU) \ |
| V(I8x16GeU) \ |
| V(I8x16SConvertI16x8) \ |
| V(I8x16UConvertI16x8) \ |
| V(I8x16AddSatS) \ |
| V(I8x16SubSatS) \ |
| V(I8x16AddSatU) \ |
| V(I8x16SubSatU) \ |
| V(I8x16RoundingAverageU) \ |
| V(S128And) \ |
| V(S128Or) \ |
| V(S128Xor) \ |
| V(S128AndNot) |
| |
| #define SIMD_UNOP_LIST(V) \ |
| V(F64x2Abs) \ |
| V(F64x2Neg) \ |
| V(F64x2Sqrt) \ |
| V(F64x2Ceil) \ |
| V(F64x2Floor) \ |
| V(F64x2Trunc) \ |
| V(F64x2NearestInt) \ |
| V(F32x4Abs) \ |
| V(F32x4Neg) \ |
| V(F32x4RecipApprox) \ |
| V(F32x4RecipSqrtApprox) \ |
| V(F32x4Sqrt) \ |
| V(F32x4Ceil) \ |
| V(F32x4Floor) \ |
| V(F32x4Trunc) \ |
| V(F32x4NearestInt) \ |
| V(I64x2Neg) \ |
| V(I16x8Abs) \ |
| V(I32x4Neg) \ |
| V(I32x4SConvertI16x8Low) \ |
| V(I32x4SConvertI16x8High) \ |
| V(I32x4UConvertI16x8Low) \ |
| V(I32x4UConvertI16x8High) \ |
| V(I32x4Abs) \ |
| V(I16x8Neg) \ |
| V(I16x8SConvertI8x16Low) \ |
| V(I16x8SConvertI8x16High) \ |
| V(I16x8UConvertI8x16Low) \ |
| V(I16x8UConvertI8x16High) \ |
| V(I8x16Neg) \ |
| V(I8x16Abs) \ |
| V(S128Not) |
| |
| #define SIMD_SHIFT_LIST(V) \ |
| V(I64x2Shl) \ |
| V(I64x2ShrS) \ |
| V(I64x2ShrU) \ |
| V(I32x4Shl) \ |
| V(I32x4ShrS) \ |
| V(I32x4ShrU) \ |
| V(I16x8Shl) \ |
| V(I16x8ShrS) \ |
| V(I16x8ShrU) \ |
| V(I8x16Shl) \ |
| V(I8x16ShrS) \ |
| V(I8x16ShrU) |
| |
| #define SIMD_BOOL_LIST(V) \ |
| V(V32x4AnyTrue) \ |
| V(V16x8AnyTrue) \ |
| V(V8x16AnyTrue) \ |
| V(V32x4AllTrue) \ |
| V(V16x8AllTrue) \ |
| V(V8x16AllTrue) |
| |
| #define SIMD_CONVERSION_LIST(V) \ |
| V(I32x4SConvertF32x4) \ |
| V(I32x4UConvertF32x4) \ |
| V(F32x4SConvertI32x4) \ |
| V(F32x4UConvertI32x4) |
| |
| #define SIMD_VISIT_SPLAT(Type) \ |
| void InstructionSelector::Visit##Type##Splat(Node* node) { \ |
| S390OperandGenerator g(this); \ |
| Emit(kS390_##Type##Splat, g.DefineAsRegister(node), \ |
| g.UseRegister(node->InputAt(0))); \ |
| } |
| SIMD_TYPES(SIMD_VISIT_SPLAT) |
| #undef SIMD_VISIT_SPLAT |
| |
| #define SIMD_VISIT_EXTRACT_LANE(Type, Sign) \ |
| void InstructionSelector::Visit##Type##ExtractLane##Sign(Node* node) { \ |
| S390OperandGenerator g(this); \ |
| int32_t lane = OpParameter<int32_t>(node->op()); \ |
| Emit(kS390_##Type##ExtractLane##Sign, g.DefineAsRegister(node), \ |
| g.UseRegister(node->InputAt(0)), g.UseImmediate(lane)); \ |
| } |
| SIMD_VISIT_EXTRACT_LANE(F64x2, ) |
| SIMD_VISIT_EXTRACT_LANE(F32x4, ) |
| SIMD_VISIT_EXTRACT_LANE(I64x2, ) |
| SIMD_VISIT_EXTRACT_LANE(I32x4, ) |
| SIMD_VISIT_EXTRACT_LANE(I16x8, U) |
| SIMD_VISIT_EXTRACT_LANE(I16x8, S) |
| SIMD_VISIT_EXTRACT_LANE(I8x16, U) |
| SIMD_VISIT_EXTRACT_LANE(I8x16, S) |
| #undef SIMD_VISIT_EXTRACT_LANE |
| |
| #define SIMD_VISIT_REPLACE_LANE(Type) \ |
| void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \ |
| S390OperandGenerator g(this); \ |
| int32_t lane = OpParameter<int32_t>(node->op()); \ |
| Emit(kS390_##Type##ReplaceLane, g.DefineAsRegister(node), \ |
| g.UseRegister(node->InputAt(0)), g.UseImmediate(lane), \ |
| g.UseRegister(node->InputAt(1))); \ |
| } |
| SIMD_TYPES(SIMD_VISIT_REPLACE_LANE) |
| #undef SIMD_VISIT_REPLACE_LANE |
| |
| #define SIMD_VISIT_BINOP(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| S390OperandGenerator g(this); \ |
| InstructionOperand temps[] = {g.TempSimd128Register(), \ |
| g.TempSimd128Register()}; \ |
| Emit(kS390_##Opcode, g.DefineAsRegister(node), \ |
| g.UseUniqueRegister(node->InputAt(0)), \ |
| g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); \ |
| } |
| SIMD_BINOP_LIST(SIMD_VISIT_BINOP) |
| #undef SIMD_VISIT_BINOP |
| #undef SIMD_BINOP_LIST |
| |
| #define SIMD_VISIT_UNOP(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| S390OperandGenerator g(this); \ |
| InstructionOperand temps[] = {g.TempSimd128Register()}; \ |
| Emit(kS390_##Opcode, g.DefineAsRegister(node), \ |
| g.UseRegister(node->InputAt(0)), arraysize(temps), temps); \ |
| } |
| SIMD_UNOP_LIST(SIMD_VISIT_UNOP) |
| #undef SIMD_VISIT_UNOP |
| #undef SIMD_UNOP_LIST |
| |
| #define SIMD_VISIT_SHIFT(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| S390OperandGenerator g(this); \ |
| Emit(kS390_##Opcode, g.DefineAsRegister(node), \ |
| g.UseUniqueRegister(node->InputAt(0)), \ |
| g.UseUniqueRegister(node->InputAt(1))); \ |
| } |
| SIMD_SHIFT_LIST(SIMD_VISIT_SHIFT) |
| #undef SIMD_VISIT_SHIFT |
| #undef SIMD_SHIFT_LIST |
| |
| #define SIMD_VISIT_BOOL(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| S390OperandGenerator g(this); \ |
| InstructionOperand temps[] = {g.TempRegister()}; \ |
| Emit(kS390_##Opcode, g.DefineAsRegister(node), \ |
| g.UseUniqueRegister(node->InputAt(0)), arraysize(temps), temps); \ |
| } |
| SIMD_BOOL_LIST(SIMD_VISIT_BOOL) |
| #undef SIMD_VISIT_BOOL |
| #undef SIMD_BOOL_LIST |
| |
| #define SIMD_VISIT_CONVERSION(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| S390OperandGenerator g(this); \ |
| InstructionOperand temps[] = {g.TempSimd128Register()}; \ |
| Emit(kS390_##Opcode, g.DefineAsRegister(node), \ |
| g.UseRegister(node->InputAt(0)), arraysize(temps), temps); \ |
| } |
| SIMD_CONVERSION_LIST(SIMD_VISIT_CONVERSION) |
| #undef SIMD_VISIT_CONVERSION |
| #undef SIMD_CONVERSION_LIST |
| |
| #define SIMD_VISIT_QFMOP(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| S390OperandGenerator g(this); \ |
| Emit(kS390_##Opcode, g.DefineSameAsFirst(node), \ |
| g.UseUniqueRegister(node->InputAt(0)), \ |
| g.UseUniqueRegister(node->InputAt(1)), \ |
| g.UseRegister(node->InputAt(2))); \ |
| } |
| SIMD_VISIT_QFMOP(F64x2Qfma) |
| SIMD_VISIT_QFMOP(F64x2Qfms) |
| SIMD_VISIT_QFMOP(F32x4Qfma) |
| SIMD_VISIT_QFMOP(F32x4Qfms) |
| #undef SIMD_VISIT_QFMOP |
| |
| #define SIMD_VISIT_BITMASK(Opcode) \ |
| void InstructionSelector::Visit##Opcode(Node* node) { \ |
| S390OperandGenerator g(this); \ |
| Emit(kS390_##Opcode, g.DefineAsRegister(node), \ |
| g.UseUniqueRegister(node->InputAt(0))); \ |
| } |
| SIMD_VISIT_BITMASK(I8x16BitMask) |
| SIMD_VISIT_BITMASK(I16x8BitMask) |
| SIMD_VISIT_BITMASK(I32x4BitMask) |
| #undef SIMD_VISIT_BITMASK |
| |
| #define SIMD_VISIT_PMIN_MAX(Type) \ |
| void InstructionSelector::Visit##Type(Node* node) { \ |
| S390OperandGenerator g(this); \ |
| Emit(kS390_##Type, g.DefineAsRegister(node), \ |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); \ |
| } |
| SIMD_VISIT_PMIN_MAX(F64x2Pmin) |
| SIMD_VISIT_PMIN_MAX(F32x4Pmin) |
| SIMD_VISIT_PMIN_MAX(F64x2Pmax) |
| SIMD_VISIT_PMIN_MAX(F32x4Pmax) |
| #undef SIMD_VISIT_PMIN_MAX |
| #undef SIMD_TYPES |
| |
| void InstructionSelector::VisitI8x16Shuffle(Node* node) { |
| uint8_t shuffle[kSimd128Size]; |
| uint8_t* shuffle_p = &shuffle[0]; |
| bool is_swizzle; |
| CanonicalizeShuffle(node, shuffle, &is_swizzle); |
| S390OperandGenerator g(this); |
| Node* input0 = node->InputAt(0); |
| Node* input1 = node->InputAt(1); |
| #ifdef V8_TARGET_BIG_ENDIAN |
| // Remap the shuffle indices to match IBM lane numbering. |
| int max_index = 15; |
| int total_lane_count = 2 * kSimd128Size; |
| uint8_t shuffle_remapped[kSimd128Size]; |
| for (int i = 0; i < kSimd128Size; i++) { |
| uint8_t current_index = shuffle[i]; |
| shuffle_remapped[i] = (current_index <= max_index |
| ? max_index - current_index |
| : total_lane_count - current_index + max_index); |
| } |
| shuffle_p = &shuffle_remapped[0]; |
| #endif |
| Emit(kS390_I8x16Shuffle, g.DefineAsRegister(node), |
| g.UseUniqueRegister(input0), g.UseUniqueRegister(input1), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_p)), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_p + 4)), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_p + 8)), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_p + 12))); |
| } |
| |
| void InstructionSelector::VisitI8x16Swizzle(Node* node) { |
| S390OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempSimd128Register()}; |
| Emit(kS390_I8x16Swizzle, g.DefineAsRegister(node), |
| g.UseUniqueRegister(node->InputAt(0)), |
| g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); |
| } |
| |
| void InstructionSelector::VisitS128Const(Node* node) { |
| S390OperandGenerator g(this); |
| uint32_t val[kSimd128Size / sizeof(uint32_t)]; |
| memcpy(val, S128ImmediateParameterOf(node->op()).data(), kSimd128Size); |
| // If all bytes are zeros, avoid emitting code for generic constants. |
| bool all_zeros = !(val[0] || val[1] || val[2] || val[3]); |
| bool all_ones = val[0] == UINT32_MAX && val[1] == UINT32_MAX && |
| val[2] == UINT32_MAX && val[3] == UINT32_MAX; |
| InstructionOperand dst = g.DefineAsRegister(node); |
| if (all_zeros) { |
| Emit(kS390_S128Zero, dst); |
| } else if (all_ones) { |
| Emit(kS390_S128AllOnes, dst); |
| } else { |
| // We have to use Pack4Lanes to reverse the bytes (lanes) on BE, |
| // Which in this case is ineffective on LE. |
| Emit(kS390_S128Const, g.DefineAsRegister(node), |
| g.UseImmediate( |
| wasm::SimdShuffle::Pack4Lanes(reinterpret_cast<uint8_t*>(val))), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes( |
| reinterpret_cast<uint8_t*>(val) + 4)), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes( |
| reinterpret_cast<uint8_t*>(val) + 8)), |
| g.UseImmediate(wasm::SimdShuffle::Pack4Lanes( |
| reinterpret_cast<uint8_t*>(val) + 12))); |
| } |
| } |
| |
| void InstructionSelector::VisitS128Zero(Node* node) { |
| S390OperandGenerator g(this); |
| Emit(kS390_S128Zero, g.DefineAsRegister(node)); |
| } |
| |
| void InstructionSelector::VisitS128Select(Node* node) { |
| S390OperandGenerator g(this); |
| Emit(kS390_S128Select, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), |
| g.UseRegister(node->InputAt(2))); |
| } |
| |
| void InstructionSelector::EmitPrepareResults( |
| ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor, |
| Node* node) { |
| S390OperandGenerator g(this); |
| |
| int reverse_slot = 1; |
| for (PushParameter output : *results) { |
| if (!output.location.IsCallerFrameSlot()) continue; |
| // Skip any alignment holes in nodes. |
| if (output.node != nullptr) { |
| DCHECK(!call_descriptor->IsCFunctionCall()); |
| if (output.location.GetType() == MachineType::Float32()) { |
| MarkAsFloat32(output.node); |
| } else if (output.location.GetType() == MachineType::Float64()) { |
| MarkAsFloat64(output.node); |
| } else if (output.location.GetType() == MachineType::Simd128()) { |
| MarkAsSimd128(output.node); |
| } |
| Emit(kS390_Peek, g.DefineAsRegister(output.node), |
| g.UseImmediate(reverse_slot)); |
| } |
| reverse_slot += output.location.GetSizeInPointers(); |
| } |
| } |
| |
| void InstructionSelector::VisitLoadTransform(Node* node) { |
| // We should never reach here, see http://crrev.com/c/2050811 |
| UNREACHABLE(); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) { |
| S390OperandGenerator g(this); |
| |
| InstructionCode opcode = kS390_Float32ToInt32; |
| TruncateKind kind = OpParameter<TruncateKind>(node->op()); |
| if (kind == TruncateKind::kSetOverflowToMin) { |
| opcode |= MiscField::encode(true); |
| } |
| |
| Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) { |
| S390OperandGenerator g(this); |
| |
| InstructionCode opcode = kS390_Float32ToUint32; |
| TruncateKind kind = OpParameter<TruncateKind>(node->op()); |
| if (kind == TruncateKind::kSetOverflowToMin) { |
| opcode |= MiscField::encode(true); |
| } |
| |
| Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); |
| } |
| |
| // static |
| MachineOperatorBuilder::Flags |
| InstructionSelector::SupportedMachineOperatorFlags() { |
| return MachineOperatorBuilder::kFloat32RoundDown | |
| MachineOperatorBuilder::kFloat64RoundDown | |
| MachineOperatorBuilder::kFloat32RoundUp | |
| MachineOperatorBuilder::kFloat64RoundUp | |
| MachineOperatorBuilder::kFloat32RoundTruncate | |
| MachineOperatorBuilder::kFloat64RoundTruncate | |
| MachineOperatorBuilder::kFloat64RoundTiesAway | |
| MachineOperatorBuilder::kWord32Popcnt | |
| MachineOperatorBuilder::kInt32AbsWithOverflow | |
| MachineOperatorBuilder::kInt64AbsWithOverflow | |
| MachineOperatorBuilder::kWord64Popcnt; |
| } |
| |
| // static |
| MachineOperatorBuilder::AlignmentRequirements |
| InstructionSelector::AlignmentRequirements() { |
| return MachineOperatorBuilder::AlignmentRequirements:: |
| FullUnalignedAccessSupport(); |
| } |
| |
| } // namespace compiler |
| } // namespace internal |
| } // namespace v8 |