blob: 124193f50b651eb7470c90946d6cac050215cce7 [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/backend/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/execution/frame-constants.h"
namespace v8 {
namespace internal {
namespace compiler {
enum class OperandMode : uint32_t {
kNone = 0u,
// Immediate mode
kShift32Imm = 1u << 0,
kShift64Imm = 1u << 1,
kInt32Imm = 1u << 2,
kInt32Imm_Negate = 1u << 3,
kUint32Imm = 1u << 4,
kInt20Imm = 1u << 5,
kUint12Imm = 1u << 6,
// Instr format
kAllowRRR = 1u << 7,
kAllowRM = 1u << 8,
kAllowRI = 1u << 9,
kAllowRRI = 1u << 10,
kAllowRRM = 1u << 11,
// Useful combination
kAllowImmediate = kAllowRI | kAllowRRI,
kAllowMemoryOperand = kAllowRM | kAllowRRM,
kAllowDistinctOps = kAllowRRR | kAllowRRI | kAllowRRM,
kBitWiseCommonMode = kAllowRI,
kArithmeticCommonMode = kAllowRM | kAllowRI
};
using OperandModes = base::Flags<OperandMode, uint32_t>;
DEFINE_OPERATORS_FOR_FLAGS(OperandModes)
OperandModes immediateModeMask =
OperandMode::kShift32Imm | OperandMode::kShift64Imm |
OperandMode::kInt32Imm | OperandMode::kInt32Imm_Negate |
OperandMode::kUint32Imm | OperandMode::kInt20Imm;
#define AndCommonMode \
((OperandMode::kAllowRM | \
(CpuFeatures::IsSupported(DISTINCT_OPS) ? OperandMode::kAllowRRR \
: OperandMode::kNone)))
#define And64OperandMode AndCommonMode
#define Or64OperandMode And64OperandMode
#define Xor64OperandMode And64OperandMode
#define And32OperandMode \
(AndCommonMode | OperandMode::kAllowRI | OperandMode::kUint32Imm)
#define Or32OperandMode And32OperandMode
#define Xor32OperandMode And32OperandMode
#define Shift32OperandMode \
((OperandMode::kAllowRI | OperandMode::kShift64Imm | \
(CpuFeatures::IsSupported(DISTINCT_OPS) \
? (OperandMode::kAllowRRR | OperandMode::kAllowRRI) \
: OperandMode::kNone)))
#define Shift64OperandMode \
((OperandMode::kAllowRI | OperandMode::kShift64Imm | \
OperandMode::kAllowRRR | OperandMode::kAllowRRI))
#define AddOperandMode \
((OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm | \
(CpuFeatures::IsSupported(DISTINCT_OPS) \
? (OperandMode::kAllowRRR | OperandMode::kAllowRRI) \
: OperandMode::kArithmeticCommonMode)))
#define SubOperandMode \
((OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm_Negate | \
(CpuFeatures::IsSupported(DISTINCT_OPS) \
? (OperandMode::kAllowRRR | OperandMode::kAllowRRI) \
: OperandMode::kArithmeticCommonMode)))
#define MulOperandMode \
(OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm)
// Adds S390-specific methods for generating operands.
class S390OperandGenerator final : public OperandGenerator {
public:
explicit S390OperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
InstructionOperand UseOperand(Node* node, OperandModes mode) {
if (CanBeImmediate(node, mode)) {
return UseImmediate(node);
}
return UseRegister(node);
}
InstructionOperand UseAnyExceptImmediate(Node* node) {
if (NodeProperties::IsConstant(node))
return UseRegister(node);
else
return Use(node);
}
int64_t GetImmediate(Node* node) {
if (node->opcode() == IrOpcode::kInt32Constant)
return OpParameter<int32_t>(node->op());
else if (node->opcode() == IrOpcode::kInt64Constant)
return OpParameter<int64_t>(node->op());
else
UNIMPLEMENTED();
return 0L;
}
bool CanBeImmediate(Node* node, OperandModes mode) {
int64_t value;
if (node->opcode() == IrOpcode::kInt32Constant)
value = OpParameter<int32_t>(node->op());
else if (node->opcode() == IrOpcode::kInt64Constant)
value = OpParameter<int64_t>(node->op());
else
return false;
return CanBeImmediate(value, mode);
}
bool CanBeImmediate(int64_t value, OperandModes mode) {
if (mode & OperandMode::kShift32Imm)
return 0 <= value && value < 32;
else if (mode & OperandMode::kShift64Imm)
return 0 <= value && value < 64;
else if (mode & OperandMode::kInt32Imm)
return is_int32(value);
else if (mode & OperandMode::kInt32Imm_Negate)
return is_int32(-value);
else if (mode & OperandMode::kUint32Imm)
return is_uint32(value);
else if (mode & OperandMode::kInt20Imm)
return is_int20(value);
else if (mode & OperandMode::kUint12Imm)
return is_uint12(value);
else
return false;
}
bool CanBeMemoryOperand(InstructionCode opcode, Node* user, Node* input,
int effect_level) {
if (input->opcode() != IrOpcode::kLoad ||
!selector()->CanCover(user, input)) {
return false;
}
if (effect_level != selector()->GetEffectLevel(input)) {
return false;
}
MachineRepresentation rep =
LoadRepresentationOf(input->op()).representation();
switch (opcode) {
case kS390_Cmp64:
case kS390_LoadAndTestWord64:
return rep == MachineRepresentation::kWord64 ||
(!COMPRESS_POINTERS_BOOL && IsAnyTagged(rep));
case kS390_LoadAndTestWord32:
case kS390_Cmp32:
return rep == MachineRepresentation::kWord32 ||
(COMPRESS_POINTERS_BOOL && IsAnyTagged(rep));
default:
break;
}
return false;
}
AddressingMode GenerateMemoryOperandInputs(Node* index, Node* base,
Node* displacement,
DisplacementMode displacement_mode,
InstructionOperand inputs[],
size_t* input_count) {
AddressingMode mode = kMode_MRI;
if (base != nullptr) {
inputs[(*input_count)++] = UseRegister(base);
if (index != nullptr) {
inputs[(*input_count)++] = UseRegister(index);
if (displacement != nullptr) {
inputs[(*input_count)++] = displacement_mode
? UseNegatedImmediate(displacement)
: UseImmediate(displacement);
mode = kMode_MRRI;
} else {
mode = kMode_MRR;
}
} else {
if (displacement == nullptr) {
mode = kMode_MR;
} else {
inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement
? UseNegatedImmediate(displacement)
: UseImmediate(displacement);
mode = kMode_MRI;
}
}
} else {
DCHECK_NOT_NULL(index);
inputs[(*input_count)++] = UseRegister(index);
if (displacement != nullptr) {
inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement
? UseNegatedImmediate(displacement)
: UseImmediate(displacement);
mode = kMode_MRI;
} else {
mode = kMode_MR;
}
}
return mode;
}
AddressingMode GetEffectiveAddressMemoryOperand(
Node* operand, InstructionOperand inputs[], size_t* input_count,
OperandModes immediate_mode = OperandMode::kInt20Imm) {
#if V8_TARGET_ARCH_S390X
BaseWithIndexAndDisplacement64Matcher m(operand,
AddressOption::kAllowInputSwap);
#else
BaseWithIndexAndDisplacement32Matcher m(operand,
AddressOption::kAllowInputSwap);
#endif
DCHECK(m.matches());
if ((m.displacement() == nullptr ||
CanBeImmediate(m.displacement(), immediate_mode))) {
DCHECK_EQ(0, m.scale());
return GenerateMemoryOperandInputs(m.index(), m.base(), m.displacement(),
m.displacement_mode(), inputs,
input_count);
} else {
inputs[(*input_count)++] = UseRegister(operand->InputAt(0));
inputs[(*input_count)++] = UseRegister(operand->InputAt(1));
return kMode_MRR;
}
}
bool CanBeBetterLeftOperand(Node* node) const {
return !selector()->IsLive(node);
}
MachineRepresentation GetRepresentation(Node* node) {
return sequence()->GetRepresentation(selector()->GetVirtualRegister(node));
}
bool Is64BitOperand(Node* node) {
return MachineRepresentation::kWord64 == GetRepresentation(node);
}
};
namespace {
bool S390OpcodeOnlySupport12BitDisp(ArchOpcode opcode) {
switch (opcode) {
case kS390_AddFloat:
case kS390_AddDouble:
case kS390_CmpFloat:
case kS390_CmpDouble:
case kS390_Float32ToDouble:
return true;
default:
return false;
}
}
bool S390OpcodeOnlySupport12BitDisp(InstructionCode op) {
ArchOpcode opcode = ArchOpcodeField::decode(op);
return S390OpcodeOnlySupport12BitDisp(opcode);
}
#define OpcodeImmMode(op) \
(S390OpcodeOnlySupport12BitDisp(op) ? OperandMode::kUint12Imm \
: OperandMode::kInt20Imm)
ArchOpcode SelectLoadOpcode(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
ArchOpcode opcode;
switch (load_rep.representation()) {
case MachineRepresentation::kFloat32:
opcode = kS390_LoadFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kS390_LoadDouble;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kS390_LoadWordS8 : kS390_LoadWordU8;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kS390_LoadWordS16 : kS390_LoadWordU16;
break;
case MachineRepresentation::kWord32:
opcode = kS390_LoadWordU32;
break;
case MachineRepresentation::kCompressedPointer: // Fall through.
case MachineRepresentation::kCompressed:
#ifdef V8_COMPRESS_POINTERS
opcode = kS390_LoadWordS32;
break;
#else
UNREACHABLE();
#endif
#ifdef V8_COMPRESS_POINTERS
case MachineRepresentation::kTaggedSigned:
opcode = kS390_LoadDecompressTaggedSigned;
break;
case MachineRepresentation::kTaggedPointer:
opcode = kS390_LoadDecompressTaggedPointer;
break;
case MachineRepresentation::kTagged:
opcode = kS390_LoadDecompressAnyTagged;
break;
#else
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
#endif
case MachineRepresentation::kWord64:
opcode = kS390_LoadWord64;
break;
case MachineRepresentation::kSimd128:
opcode = kS390_LoadSimd128;
break;
case MachineRepresentation::kNone:
default:
UNREACHABLE();
}
return opcode;
}
#define RESULT_IS_WORD32_LIST(V) \
/* Float unary op*/ \
V(BitcastFloat32ToInt32) \
/* V(TruncateFloat64ToWord32) */ \
V(RoundFloat64ToInt32) \
V(TruncateFloat32ToInt32) \
V(TruncateFloat32ToUint32) \
V(TruncateFloat64ToUint32) \
V(ChangeFloat64ToInt32) \
V(ChangeFloat64ToUint32) \
/* Word32 unary op */ \
V(Word32Clz) \
V(Word32Popcnt) \
V(Float64ExtractLowWord32) \
V(Float64ExtractHighWord32) \
V(SignExtendWord8ToInt32) \
V(SignExtendWord16ToInt32) \
/* Word32 bin op */ \
V(Int32Add) \
V(Int32Sub) \
V(Int32Mul) \
V(Int32AddWithOverflow) \
V(Int32SubWithOverflow) \
V(Int32MulWithOverflow) \
V(Int32MulHigh) \
V(Uint32MulHigh) \
V(Int32Div) \
V(Uint32Div) \
V(Int32Mod) \
V(Uint32Mod) \
V(Word32Ror) \
V(Word32And) \
V(Word32Or) \
V(Word32Xor) \
V(Word32Shl) \
V(Word32Shr) \
V(Word32Sar)
bool ProduceWord32Result(Node* node) {
#if !V8_TARGET_ARCH_S390X
return true;
#else
switch (node->opcode()) {
#define VISITOR(name) case IrOpcode::k##name:
RESULT_IS_WORD32_LIST(VISITOR)
#undef VISITOR
return true;
// TODO(john.yan): consider the following case to be valid
// case IrOpcode::kWord32Equal:
// case IrOpcode::kInt32LessThan:
// case IrOpcode::kInt32LessThanOrEqual:
// case IrOpcode::kUint32LessThan:
// case IrOpcode::kUint32LessThanOrEqual:
// case IrOpcode::kUint32MulHigh:
// // These 32-bit operations implicitly zero-extend to 64-bit on x64, so
// the
// // zero-extension is a no-op.
// return true;
// case IrOpcode::kProjection: {
// Node* const value = node->InputAt(0);
// switch (value->opcode()) {
// case IrOpcode::kInt32AddWithOverflow:
// case IrOpcode::kInt32SubWithOverflow:
// case IrOpcode::kInt32MulWithOverflow:
// return true;
// default:
// return false;
// }
// }
case IrOpcode::kLoad: {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
switch (load_rep.representation()) {
case MachineRepresentation::kWord32:
return true;
case MachineRepresentation::kWord8:
if (load_rep.IsSigned())
return false;
else
return true;
default:
return false;
}
}
default:
return false;
}
#endif
}
static inline bool DoZeroExtForResult(Node* node) {
#if V8_TARGET_ARCH_S390X
return ProduceWord32Result(node);
#else
return false;
#endif
}
// TODO(john.yan): Create VisiteShift to match dst = src shift (R+I)
#if 0
void VisitShift() { }
#endif
#if V8_TARGET_ARCH_S390X
void VisitTryTruncateDouble(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
S390OperandGenerator g(selector);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
selector->Emit(opcode, output_count, outputs, 1, inputs);
}
#endif
template <class CanCombineWithLoad>
void GenerateRightOperands(InstructionSelector* selector, Node* node,
Node* right, InstructionCode* opcode,
OperandModes* operand_mode,
InstructionOperand* inputs, size_t* input_count,
CanCombineWithLoad canCombineWithLoad) {
S390OperandGenerator g(selector);
if ((*operand_mode & OperandMode::kAllowImmediate) &&
g.CanBeImmediate(right, *operand_mode)) {
inputs[(*input_count)++] = g.UseImmediate(right);
// Can only be RI or RRI
*operand_mode &= OperandMode::kAllowImmediate;
} else if (*operand_mode & OperandMode::kAllowMemoryOperand) {
NodeMatcher mright(right);
if (mright.IsLoad() && selector->CanCover(node, right) &&
canCombineWithLoad(SelectLoadOpcode(right))) {
AddressingMode mode = g.GetEffectiveAddressMemoryOperand(
right, inputs, input_count, OpcodeImmMode(*opcode));
*opcode |= AddressingModeField::encode(mode);
*operand_mode &= ~OperandMode::kAllowImmediate;
if (*operand_mode & OperandMode::kAllowRM)
*operand_mode &= ~OperandMode::kAllowDistinctOps;
} else if (*operand_mode & OperandMode::kAllowRM) {
DCHECK(!(*operand_mode & OperandMode::kAllowRRM));
inputs[(*input_count)++] = g.UseAnyExceptImmediate(right);
// Can not be Immediate
*operand_mode &=
~OperandMode::kAllowImmediate & ~OperandMode::kAllowDistinctOps;
} else if (*operand_mode & OperandMode::kAllowRRM) {
DCHECK(!(*operand_mode & OperandMode::kAllowRM));
inputs[(*input_count)++] = g.UseAnyExceptImmediate(right);
// Can not be Immediate
*operand_mode &= ~OperandMode::kAllowImmediate;
} else {
UNREACHABLE();
}
} else {
inputs[(*input_count)++] = g.UseRegister(right);
// Can only be RR or RRR
*operand_mode &= OperandMode::kAllowRRR;
}
}
template <class CanCombineWithLoad>
void GenerateBinOpOperands(InstructionSelector* selector, Node* node,
Node* left, Node* right, InstructionCode* opcode,
OperandModes* operand_mode,
InstructionOperand* inputs, size_t* input_count,
CanCombineWithLoad canCombineWithLoad) {
S390OperandGenerator g(selector);
// left is always register
InstructionOperand const left_input = g.UseRegister(left);
inputs[(*input_count)++] = left_input;
if (left == right) {
inputs[(*input_count)++] = left_input;
// Can only be RR or RRR
*operand_mode &= OperandMode::kAllowRRR;
} else {
GenerateRightOperands(selector, node, right, opcode, operand_mode, inputs,
input_count, canCombineWithLoad);
}
}
template <class CanCombineWithLoad>
void VisitUnaryOp(InstructionSelector* selector, Node* node,
InstructionCode opcode, OperandModes operand_mode,
FlagsContinuation* cont,
CanCombineWithLoad canCombineWithLoad);
template <class CanCombineWithLoad>
void VisitBinOp(InstructionSelector* selector, Node* node,
InstructionCode opcode, OperandModes operand_mode,
FlagsContinuation* cont, CanCombineWithLoad canCombineWithLoad);
// Generate The following variations:
// VisitWord32UnaryOp, VisitWord32BinOp,
// VisitWord64UnaryOp, VisitWord64BinOp,
// VisitFloat32UnaryOp, VisitFloat32BinOp,
// VisitFloat64UnaryOp, VisitFloat64BinOp
#define VISIT_OP_LIST_32(V) \
V(Word32, Unary, [](ArchOpcode opcode) { \
return opcode == kS390_LoadWordS32 || opcode == kS390_LoadWordU32; \
}) \
V(Word64, Unary, \
[](ArchOpcode opcode) { return opcode == kS390_LoadWord64; }) \
V(Float32, Unary, \
[](ArchOpcode opcode) { return opcode == kS390_LoadFloat32; }) \
V(Float64, Unary, \
[](ArchOpcode opcode) { return opcode == kS390_LoadDouble; }) \
V(Word32, Bin, [](ArchOpcode opcode) { \
return opcode == kS390_LoadWordS32 || opcode == kS390_LoadWordU32; \
}) \
V(Float32, Bin, \
[](ArchOpcode opcode) { return opcode == kS390_LoadFloat32; }) \
V(Float64, Bin, [](ArchOpcode opcode) { return opcode == kS390_LoadDouble; })
#if V8_TARGET_ARCH_S390X
#define VISIT_OP_LIST(V) \
VISIT_OP_LIST_32(V) \
V(Word64, Bin, [](ArchOpcode opcode) { return opcode == kS390_LoadWord64; })
#else
#define VISIT_OP_LIST VISIT_OP_LIST_32
#endif
#define DECLARE_VISIT_HELPER_FUNCTIONS(type1, type2, canCombineWithLoad) \
static inline void Visit##type1##type2##Op( \
InstructionSelector* selector, Node* node, InstructionCode opcode, \
OperandModes operand_mode, FlagsContinuation* cont) { \
Visit##type2##Op(selector, node, opcode, operand_mode, cont, \
canCombineWithLoad); \
} \
static inline void Visit##type1##type2##Op( \
InstructionSelector* selector, Node* node, InstructionCode opcode, \
OperandModes operand_mode) { \
FlagsContinuation cont; \
Visit##type1##type2##Op(selector, node, opcode, operand_mode, &cont); \
}
VISIT_OP_LIST(DECLARE_VISIT_HELPER_FUNCTIONS)
#undef DECLARE_VISIT_HELPER_FUNCTIONS
#undef VISIT_OP_LIST_32
#undef VISIT_OP_LIST
template <class CanCombineWithLoad>
void VisitUnaryOp(InstructionSelector* selector, Node* node,
InstructionCode opcode, OperandModes operand_mode,
FlagsContinuation* cont,
CanCombineWithLoad canCombineWithLoad) {
S390OperandGenerator g(selector);
InstructionOperand inputs[8];
size_t input_count = 0;
InstructionOperand outputs[2];
size_t output_count = 0;
Node* input = node->InputAt(0);
GenerateRightOperands(selector, node, input, &opcode, &operand_mode, inputs,
&input_count, canCombineWithLoad);
bool input_is_word32 = ProduceWord32Result(input);
bool doZeroExt = DoZeroExtForResult(node);
bool canEliminateZeroExt = input_is_word32;
if (doZeroExt) {
// Add zero-ext indication
inputs[input_count++] = g.TempImmediate(!canEliminateZeroExt);
}
if (!cont->IsDeoptimize()) {
// If we can deoptimize as a result of the binop, we need to make sure
// that the deopt inputs are not overwritten by the binop result. One way
// to achieve that is to declare the output register as same-as-first.
if (doZeroExt && canEliminateZeroExt) {
// we have to make sure result and left use the same register
outputs[output_count++] = g.DefineSameAsFirst(node);
} else {
outputs[output_count++] = g.DefineAsRegister(node);
}
} else {
outputs[output_count++] = g.DefineSameAsFirst(node);
}
DCHECK_NE(0u, input_count);
DCHECK_NE(0u, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
selector->EmitWithContinuation(opcode, output_count, outputs, input_count,
inputs, cont);
}
template <class CanCombineWithLoad>
void VisitBinOp(InstructionSelector* selector, Node* node,
InstructionCode opcode, OperandModes operand_mode,
FlagsContinuation* cont,
CanCombineWithLoad canCombineWithLoad) {
S390OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
InstructionOperand inputs[8];
size_t input_count = 0;
InstructionOperand outputs[2];
size_t output_count = 0;
if (node->op()->HasProperty(Operator::kCommutative) &&
!g.CanBeImmediate(right, operand_mode) &&
(g.CanBeBetterLeftOperand(right))) {
std::swap(left, right);
}
GenerateBinOpOperands(selector, node, left, right, &opcode, &operand_mode,
inputs, &input_count, canCombineWithLoad);
bool left_is_word32 = ProduceWord32Result(left);
bool doZeroExt = DoZeroExtForResult(node);
bool canEliminateZeroExt = left_is_word32;
if (doZeroExt) {
// Add zero-ext indication
inputs[input_count++] = g.TempImmediate(!canEliminateZeroExt);
}
if ((operand_mode & OperandMode::kAllowDistinctOps) &&
// If we can deoptimize as a result of the binop, we need to make sure
// that the deopt inputs are not overwritten by the binop result. One way
// to achieve that is to declare the output register as same-as-first.
!cont->IsDeoptimize()) {
if (doZeroExt && canEliminateZeroExt) {
// we have to make sure result and left use the same register
outputs[output_count++] = g.DefineSameAsFirst(node);
} else {
outputs[output_count++] = g.DefineAsRegister(node);
}
} else {
outputs[output_count++] = g.DefineSameAsFirst(node);
}
DCHECK_NE(0u, input_count);
DCHECK_NE(0u, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
selector->EmitWithContinuation(opcode, output_count, outputs, input_count,
inputs, cont);
}
} // namespace
void InstructionSelector::VisitStackSlot(Node* node) {
StackSlotRepresentation rep = StackSlotRepresentationOf(node->op());
int slot = frame_->AllocateSpillSlot(rep.size());
OperandGenerator g(this);
Emit(kArchStackSlot, g.DefineAsRegister(node),
sequence()->AddImmediate(Constant(slot)), 0, nullptr);
}
void InstructionSelector::VisitAbortCSAAssert(Node* node) {
S390OperandGenerator g(this);
Emit(kArchAbortCSAAssert, g.NoOutput(), g.UseFixed(node->InputAt(0), r3));
}
void InstructionSelector::VisitLoad(Node* node) {
S390OperandGenerator g(this);
InstructionCode opcode = SelectLoadOpcode(node);
InstructionOperand outputs[] = {g.DefineAsRegister(node)};
InstructionOperand inputs[3];
size_t input_count = 0;
AddressingMode mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
opcode |= AddressingModeField::encode(mode);
if (node->opcode() == IrOpcode::kPoisonedLoad) {
CHECK_NE(poisoning_level_, PoisoningMitigationLevel::kDontPoison);
opcode |= MiscField::encode(kMemoryAccessPoisoned);
}
Emit(opcode, 1, outputs, input_count, inputs);
}
void InstructionSelector::VisitPoisonedLoad(Node* node) { VisitLoad(node); }
void InstructionSelector::VisitProtectedLoad(Node* node) {
// TODO(eholk)
UNIMPLEMENTED();
}
static void VisitGeneralStore(
InstructionSelector* selector, Node* node, MachineRepresentation rep,
WriteBarrierKind write_barrier_kind = kNoWriteBarrier) {
S390OperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* offset = node->InputAt(1);
Node* value = node->InputAt(2);
if (write_barrier_kind != kNoWriteBarrier &&
V8_LIKELY(!FLAG_disable_write_barriers)) {
DCHECK(CanBeTaggedOrCompressedPointer(rep));
AddressingMode addressing_mode;
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
// OutOfLineRecordWrite uses the offset in an 'AddP' instruction as well as
// for the store itself, so we must check compatibility with both.
if (g.CanBeImmediate(offset, OperandMode::kInt20Imm)) {
inputs[input_count++] = g.UseImmediate(offset);
addressing_mode = kMode_MRI;
} else {
inputs[input_count++] = g.UseUniqueRegister(offset);
addressing_mode = kMode_MRR;
}
inputs[input_count++] = g.UseUniqueRegister(value);
RecordWriteMode record_write_mode =
WriteBarrierKindToRecordWriteMode(write_barrier_kind);
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
size_t const temp_count = arraysize(temps);
InstructionCode code = kArchStoreWithWriteBarrier;
code |= AddressingModeField::encode(addressing_mode);
code |= MiscField::encode(static_cast<int>(record_write_mode));
selector->Emit(code, 0, nullptr, input_count, inputs, temp_count, temps);
} else {
ArchOpcode opcode;
NodeMatcher m(value);
switch (rep) {
case MachineRepresentation::kFloat32:
opcode = kS390_StoreFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kS390_StoreDouble;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = kS390_StoreWord8;
break;
case MachineRepresentation::kWord16:
opcode = kS390_StoreWord16;
break;
case MachineRepresentation::kWord32:
opcode = kS390_StoreWord32;
if (m.IsWord32ReverseBytes()) {
opcode = kS390_StoreReverse32;
value = value->InputAt(0);
}
break;
case MachineRepresentation::kCompressedPointer: // Fall through.
case MachineRepresentation::kCompressed:
#ifdef V8_COMPRESS_POINTERS
opcode = kS390_StoreCompressTagged;
break;
#else
UNREACHABLE();
#endif
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged:
opcode = kS390_StoreCompressTagged;
break;
case MachineRepresentation::kWord64:
opcode = kS390_StoreWord64;
if (m.IsWord64ReverseBytes()) {
opcode = kS390_StoreReverse64;
value = value->InputAt(0);
}
break;
case MachineRepresentation::kSimd128:
opcode = kS390_StoreSimd128;
if (m.IsSimd128ReverseBytes()) {
opcode = kS390_StoreReverseSimd128;
value = value->InputAt(0);
}
break;
case MachineRepresentation::kNone:
UNREACHABLE();
}
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
InstructionCode code =
opcode | AddressingModeField::encode(addressing_mode);
InstructionOperand value_operand = g.UseRegister(value);
inputs[input_count++] = value_operand;
selector->Emit(code, 0, static_cast<InstructionOperand*>(nullptr),
input_count, inputs);
}
}
void InstructionSelector::VisitStore(Node* node) {
StoreRepresentation store_rep = StoreRepresentationOf(node->op());
WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
MachineRepresentation rep = store_rep.representation();
if (FLAG_enable_unconditional_write_barriers &&
CanBeTaggedOrCompressedPointer(rep)) {
write_barrier_kind = kFullWriteBarrier;
}
VisitGeneralStore(this, node, rep, write_barrier_kind);
}
void InstructionSelector::VisitProtectedStore(Node* node) {
// TODO(eholk)
UNIMPLEMENTED();
}
// Architecture supports unaligned access, therefore VisitLoad is used instead
void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); }
// Architecture supports unaligned access, therefore VisitStore is used instead
void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitStackPointerGreaterThan(
Node* node, FlagsContinuation* cont) {
StackCheckKind kind = StackCheckKindOf(node->op());
InstructionCode opcode =
kArchStackPointerGreaterThan | MiscField::encode(static_cast<int>(kind));
S390OperandGenerator g(this);
// No outputs.
InstructionOperand* const outputs = nullptr;
const int output_count = 0;
// Applying an offset to this stack check requires a temp register. Offsets
// are only applied to the first stack check. If applying an offset, we must
// ensure the input and temp registers do not alias, thus kUniqueRegister.
InstructionOperand temps[] = {g.TempRegister()};
const int temp_count = (kind == StackCheckKind::kJSFunctionEntry) ? 1 : 0;
const auto register_mode = (kind == StackCheckKind::kJSFunctionEntry)
? OperandGenerator::kUniqueRegister
: OperandGenerator::kRegister;
Node* const value = node->InputAt(0);
InstructionOperand inputs[] = {g.UseRegisterWithMode(value, register_mode)};
static constexpr int input_count = arraysize(inputs);
EmitWithContinuation(opcode, output_count, outputs, input_count, inputs,
temp_count, temps, cont);
}
#if 0
static inline bool IsContiguousMask32(uint32_t value, int* mb, int* me) {
int mask_width = base::bits::CountPopulation(value);
int mask_msb = base::bits::CountLeadingZeros32(value);
int mask_lsb = base::bits::CountTrailingZeros32(value);
if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 32))
return false;
*mb = mask_lsb + mask_width - 1;
*me = mask_lsb;
return true;
}
#endif
#if V8_TARGET_ARCH_S390X
static inline bool IsContiguousMask64(uint64_t value, int* mb, int* me) {
int mask_width = base::bits::CountPopulation(value);
int mask_msb = base::bits::CountLeadingZeros64(value);
int mask_lsb = base::bits::CountTrailingZeros64(value);
if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 64))
return false;
*mb = mask_lsb + mask_width - 1;
*me = mask_lsb;
return true;
}
#endif
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64And(Node* node) {
S390OperandGenerator g(this);
Int64BinopMatcher m(node);
int mb = 0;
int me = 0;
if (m.right().HasResolvedValue() &&
IsContiguousMask64(m.right().ResolvedValue(), &mb, &me)) {
int sh = 0;
Node* left = m.left().node();
if ((m.left().IsWord64Shr() || m.left().IsWord64Shl()) &&
CanCover(node, left)) {
Int64BinopMatcher mleft(m.left().node());
if (mleft.right().IsInRange(0, 63)) {
left = mleft.left().node();
sh = mleft.right().ResolvedValue();
if (m.left().IsWord64Shr()) {
// Adjust the mask such that it doesn't include any rotated bits.
if (mb > 63 - sh) mb = 63 - sh;
sh = (64 - sh) & 0x3F;
} else {
// Adjust the mask such that it doesn't include any rotated bits.
if (me < sh) me = sh;
}
}
}
if (mb >= me) {
bool match = false;
ArchOpcode opcode;
int mask;
if (me == 0) {
match = true;
opcode = kS390_RotLeftAndClearLeft64;
mask = mb;
} else if (mb == 63) {
match = true;
opcode = kS390_RotLeftAndClearRight64;
mask = me;
} else if (sh && me <= sh && m.left().IsWord64Shl()) {
match = true;
opcode = kS390_RotLeftAndClear64;
mask = mb;
}
if (match && CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
Emit(opcode, g.DefineAsRegister(node), g.UseRegister(left),
g.TempImmediate(sh), g.TempImmediate(mask));
return;
}
}
}
VisitWord64BinOp(this, node, kS390_And64, And64OperandMode);
}
void InstructionSelector::VisitWord64Shl(Node* node) {
S390OperandGenerator g(this);
Int64BinopMatcher m(node);
// TODO(mbrandy): eliminate left sign extension if right >= 32
if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) {
Int64BinopMatcher mleft(m.left().node());
int sh = m.right().ResolvedValue();
int mb;
int me;
if (mleft.right().HasResolvedValue() &&
IsContiguousMask64(mleft.right().ResolvedValue() << sh, &mb, &me)) {
// Adjust the mask such that it doesn't include any rotated bits.
if (me < sh) me = sh;
if (mb >= me) {
bool match = false;
ArchOpcode opcode;
int mask;
if (me == 0) {
match = true;
opcode = kS390_RotLeftAndClearLeft64;
mask = mb;
} else if (mb == 63) {
match = true;
opcode = kS390_RotLeftAndClearRight64;
mask = me;
} else if (sh && me <= sh) {
match = true;
opcode = kS390_RotLeftAndClear64;
mask = mb;
}
if (match && CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(sh),
g.TempImmediate(mask));
return;
}
}
}
}
VisitWord64BinOp(this, node, kS390_ShiftLeft64, Shift64OperandMode);
}
void InstructionSelector::VisitWord64Shr(Node* node) {
S390OperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) {
Int64BinopMatcher mleft(m.left().node());
int sh = m.right().ResolvedValue();
int mb;
int me;
if (mleft.right().HasResolvedValue() &&
IsContiguousMask64((uint64_t)(mleft.right().ResolvedValue()) >> sh, &mb,
&me)) {
// Adjust the mask such that it doesn't include any rotated bits.
if (mb > 63 - sh) mb = 63 - sh;
sh = (64 - sh) & 0x3F;
if (mb >= me) {
bool match = false;
ArchOpcode opcode;
int mask;
if (me == 0) {
match = true;
opcode = kS390_RotLeftAndClearLeft64;
mask = mb;
} else if (mb == 63) {
match = true;
opcode = kS390_RotLeftAndClearRight64;
mask = me;
}
if (match) {
Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(sh),
g.TempImmediate(mask));
return;
}
}
}
}
VisitWord64BinOp(this, node, kS390_ShiftRight64, Shift64OperandMode);
}
#endif
static inline bool TryMatchSignExtInt16OrInt8FromWord32Sar(
InstructionSelector* selector, Node* node) {
S390OperandGenerator g(selector);
Int32BinopMatcher m(node);
if (selector->CanCover(node, m.left().node()) && m.left().IsWord32Shl()) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().Is(16) && m.right().Is(16)) {
bool canEliminateZeroExt = ProduceWord32Result(mleft.left().node());
selector->Emit(kS390_SignExtendWord16ToInt32,
canEliminateZeroExt ? g.DefineSameAsFirst(node)
: g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.TempImmediate(!canEliminateZeroExt));
return true;
} else if (mleft.right().Is(24) && m.right().Is(24)) {
bool canEliminateZeroExt = ProduceWord32Result(mleft.left().node());
selector->Emit(kS390_SignExtendWord8ToInt32,
canEliminateZeroExt ? g.DefineSameAsFirst(node)
: g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.TempImmediate(!canEliminateZeroExt));
return true;
}
}
return false;
}
#if !V8_TARGET_ARCH_S390X
void VisitPairBinop(InstructionSelector* selector, InstructionCode opcode,
InstructionCode opcode2, Node* node) {
S390OperandGenerator g(selector);
Node* projection1 = NodeProperties::FindProjection(node, 1);
if (projection1) {
// We use UseUniqueRegister here to avoid register sharing with the output
// registers.
InstructionOperand inputs[] = {
g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)),
g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))};
InstructionOperand outputs[] = {
g.DefineAsRegister(node),
g.DefineAsRegister(NodeProperties::FindProjection(node, 1))};
selector->Emit(opcode, 2, outputs, 4, inputs);
} else {
// The high word of the result is not used, so we emit the standard 32 bit
// instruction.
selector->Emit(opcode2, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(2)), g.TempImmediate(0));
}
}
void InstructionSelector::VisitInt32PairAdd(Node* node) {
VisitPairBinop(this, kS390_AddPair, kS390_Add32, node);
}
void InstructionSelector::VisitInt32PairSub(Node* node) {
VisitPairBinop(this, kS390_SubPair, kS390_Sub32, node);
}
void InstructionSelector::VisitInt32PairMul(Node* node) {
S390OperandGenerator g(this);
Node* projection1 = NodeProperties::FindProjection(node, 1);
if (projection1) {
InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
g.UseUniqueRegister(node->InputAt(1)),
g.UseUniqueRegister(node->InputAt(2)),
g.UseUniqueRegister(node->InputAt(3))};
InstructionOperand outputs[] = {
g.DefineAsRegister(node),
g.DefineAsRegister(NodeProperties::FindProjection(node, 1))};
Emit(kS390_MulPair, 2, outputs, 4, inputs);
} else {
// The high word of the result is not used, so we emit the standard 32 bit
// instruction.
Emit(kS390_Mul32, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(2)),
g.TempImmediate(0));
}
}
namespace {
// Shared routine for multiple shift operations.
void VisitPairShift(InstructionSelector* selector, InstructionCode opcode,
Node* node) {
S390OperandGenerator g(selector);
// We use g.UseUniqueRegister here to guarantee that there is
// no register aliasing of input registers with output registers.
Int32Matcher m(node->InputAt(2));
InstructionOperand shift_operand;
if (m.HasResolvedValue()) {
shift_operand = g.UseImmediate(m.node());
} else {
shift_operand = g.UseUniqueRegister(m.node());
}
InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
g.UseUniqueRegister(node->InputAt(1)),
shift_operand};
Node* projection1 = NodeProperties::FindProjection(node, 1);
InstructionOperand outputs[2];
InstructionOperand temps[1];
int32_t output_count = 0;
int32_t temp_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
if (projection1) {
outputs[output_count++] = g.DefineAsRegister(projection1);
} else {
temps[temp_count++] = g.TempRegister();
}
selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps);
}
} // namespace
void InstructionSelector::VisitWord32PairShl(Node* node) {
VisitPairShift(this, kS390_ShiftLeftPair, node);
}
void InstructionSelector::VisitWord32PairShr(Node* node) {
VisitPairShift(this, kS390_ShiftRightPair, node);
}
void InstructionSelector::VisitWord32PairSar(Node* node) {
VisitPairShift(this, kS390_ShiftRightArithPair, node);
}
#endif
void InstructionSelector::VisitWord32Rol(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord64Rol(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); }
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Ctz(Node* node) { UNREACHABLE(); }
#endif
void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); }
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); }
#endif
void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) {
VisitWord32UnaryOp(this, node, kS390_Abs32, OperandMode::kNone);
}
void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) {
VisitWord64UnaryOp(this, node, kS390_Abs64, OperandMode::kNone);
}
void InstructionSelector::VisitWord64ReverseBytes(Node* node) {
S390OperandGenerator g(this);
Emit(kS390_LoadReverse64RR, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitWord32ReverseBytes(Node* node) {
S390OperandGenerator g(this);
NodeMatcher input(node->InputAt(0));
if (CanCover(node, input.node()) && input.IsLoad()) {
LoadRepresentation load_rep = LoadRepresentationOf(input.node()->op());
if (load_rep.representation() == MachineRepresentation::kWord32) {
Node* base = input.node()->InputAt(0);
Node* offset = input.node()->InputAt(1);
Emit(kS390_LoadReverse32 | AddressingModeField::encode(kMode_MRR),
// TODO(john.yan): one of the base and offset can be imm.
g.DefineAsRegister(node), g.UseRegister(base),
g.UseRegister(offset));
return;
}
}
Emit(kS390_LoadReverse32RR, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitSimd128ReverseBytes(Node* node) {
S390OperandGenerator g(this);
NodeMatcher input(node->InputAt(0));
if (CanCover(node, input.node()) && input.IsLoad()) {
LoadRepresentation load_rep = LoadRepresentationOf(input.node()->op());
if (load_rep.representation() == MachineRepresentation::kSimd128) {
Node* base = input.node()->InputAt(0);
Node* offset = input.node()->InputAt(1);
Emit(kS390_LoadReverseSimd128 | AddressingModeField::encode(kMode_MRR),
// TODO(miladfar): one of the base and offset can be imm.
g.DefineAsRegister(node), g.UseRegister(base),
g.UseRegister(offset));
return;
}
}
Emit(kS390_LoadReverseSimd128RR, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
template <class Matcher, ArchOpcode neg_opcode>
static inline bool TryMatchNegFromSub(InstructionSelector* selector,
Node* node) {
S390OperandGenerator g(selector);
Matcher m(node);
static_assert(neg_opcode == kS390_Neg32 || neg_opcode == kS390_Neg64,
"Provided opcode is not a Neg opcode.");
if (m.left().Is(0)) {
Node* value = m.right().node();
bool doZeroExt = DoZeroExtForResult(node);
bool canEliminateZeroExt = ProduceWord32Result(value);
if (doZeroExt) {
selector->Emit(neg_opcode,
canEliminateZeroExt ? g.DefineSameAsFirst(node)
: g.DefineAsRegister(node),
g.UseRegister(value),
g.TempImmediate(!canEliminateZeroExt));
} else {
selector->Emit(neg_opcode, g.DefineAsRegister(node),
g.UseRegister(value));
}
return true;
}
return false;
}
template <class Matcher, ArchOpcode shift_op>
bool TryMatchShiftFromMul(InstructionSelector* selector, Node* node) {
S390OperandGenerator g(selector);
Matcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
if (g.CanBeImmediate(right, OperandMode::kInt32Imm) &&
base::bits::IsPowerOfTwo(g.GetImmediate(right))) {
int power = 63 - base::bits::CountLeadingZeros64(g.GetImmediate(right));
bool doZeroExt = DoZeroExtForResult(node);
bool canEliminateZeroExt = ProduceWord32Result(left);
InstructionOperand dst = (doZeroExt && !canEliminateZeroExt &&
CpuFeatures::IsSupported(DISTINCT_OPS))
? g.DefineAsRegister(node)
: g.DefineSameAsFirst(node);
if (doZeroExt) {
selector->Emit(shift_op, dst, g.UseRegister(left), g.UseImmediate(power),
g.TempImmediate(!canEliminateZeroExt));
} else {
selector->Emit(shift_op, dst, g.UseRegister(left), g.UseImmediate(power));
}
return true;
}
return false;
}
template <ArchOpcode opcode>
static inline bool TryMatchInt32OpWithOverflow(InstructionSelector* selector,
Node* node, OperandModes mode) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
VisitWord32BinOp(selector, node, opcode, mode, &cont);
return true;
}
return false;
}
static inline bool TryMatchInt32AddWithOverflow(InstructionSelector* selector,
Node* node) {
return TryMatchInt32OpWithOverflow<kS390_Add32>(selector, node,
AddOperandMode);
}
static inline bool TryMatchInt32SubWithOverflow(InstructionSelector* selector,
Node* node) {
return TryMatchInt32OpWithOverflow<kS390_Sub32>(selector, node,
SubOperandMode);
}
static inline bool TryMatchInt32MulWithOverflow(InstructionSelector* selector,
Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
if (CpuFeatures::IsSupported(MISC_INSTR_EXT2)) {
TryMatchInt32OpWithOverflow<kS390_Mul32>(
selector, node, OperandMode::kAllowRRR | OperandMode::kAllowRM);
} else {
FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, ovf);
VisitWord32BinOp(selector, node, kS390_Mul32WithOverflow,
OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps,
&cont);
}
return true;
}
return TryMatchShiftFromMul<Int32BinopMatcher, kS390_ShiftLeft32>(selector,
node);
}
#if V8_TARGET_ARCH_S390X
template <ArchOpcode opcode>
static inline bool TryMatchInt64OpWithOverflow(InstructionSelector* selector,
Node* node, OperandModes mode) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
VisitWord64BinOp(selector, node, opcode, mode, &cont);
return true;
}
return false;
}
static inline bool TryMatchInt64AddWithOverflow(InstructionSelector* selector,
Node* node) {
return TryMatchInt64OpWithOverflow<kS390_Add64>(selector, node,
AddOperandMode);
}
static inline bool TryMatchInt64SubWithOverflow(InstructionSelector* selector,
Node* node) {
return TryMatchInt64OpWithOverflow<kS390_Sub64>(selector, node,
SubOperandMode);
}
#endif
static inline bool TryMatchDoubleConstructFromInsert(
InstructionSelector* selector, Node* node) {
S390OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
Node* lo32 = nullptr;
Node* hi32 = nullptr;
if (node->opcode() == IrOpcode::kFloat64InsertLowWord32) {
lo32 = right;
} else if (node->opcode() == IrOpcode::kFloat64InsertHighWord32) {
hi32 = right;
} else {
return false; // doesn't match
}
if (left->opcode() == IrOpcode::kFloat64InsertLowWord32) {
lo32 = left->InputAt(1);
} else if (left->opcode() == IrOpcode::kFloat64InsertHighWord32) {
hi32 = left->InputAt(1);
} else {
return false; // doesn't match
}
if (!lo32 || !hi32) return false; // doesn't match
selector->Emit(kS390_DoubleConstruct, g.DefineAsRegister(node),
g.UseRegister(hi32), g.UseRegister(lo32));
return true;
}
#define null ([]() { return false; })
// TODO(john.yan): place kAllowRM where available
#define FLOAT_UNARY_OP_LIST_32(V) \
V(Float32, ChangeFloat32ToFloat64, kS390_Float32ToDouble, \
OperandMode::kAllowRM, null) \
V(Float32, BitcastFloat32ToInt32, kS390_BitcastFloat32ToInt32, \
OperandMode::kAllowRM, null) \
V(Float64, TruncateFloat64ToFloat32, kS390_DoubleToFloat32, \
OperandMode::kNone, null) \
V(Float64, TruncateFloat64ToWord32, kArchTruncateDoubleToI, \
OperandMode::kNone, null) \
V(Float64, RoundFloat64ToInt32, kS390_DoubleToInt32, OperandMode::kNone, \
null) \
V(Float64, TruncateFloat64ToUint32, kS390_DoubleToUint32, \
OperandMode::kNone, null) \
V(Float64, ChangeFloat64ToInt32, kS390_DoubleToInt32, OperandMode::kNone, \
null) \
V(Float64, ChangeFloat64ToUint32, kS390_DoubleToUint32, OperandMode::kNone, \
null) \
V(Float64, Float64SilenceNaN, kS390_Float64SilenceNaN, OperandMode::kNone, \
null) \
V(Float32, Float32Abs, kS390_AbsFloat, OperandMode::kNone, null) \
V(Float64, Float64Abs, kS390_AbsDouble, OperandMode::kNone, null) \
V(Float32, Float32Sqrt, kS390_SqrtFloat, OperandMode::kNone, null) \
V(Float64, Float64Sqrt, kS390_SqrtDouble, OperandMode::kNone, null) \
V(Float32, Float32RoundDown, kS390_FloorFloat, OperandMode::kNone, null) \
V(Float64, Float64RoundDown, kS390_FloorDouble, OperandMode::kNone, null) \
V(Float32, Float32RoundUp, kS390_CeilFloat, OperandMode::kNone, null) \
V(Float64, Float64RoundUp, kS390_CeilDouble, OperandMode::kNone, null) \
V(Float32, Float32RoundTruncate, kS390_TruncateFloat, OperandMode::kNone, \
null) \
V(Float64, Float64RoundTruncate, kS390_TruncateDouble, OperandMode::kNone, \
null) \
V(Float64, Float64RoundTiesAway, kS390_RoundDouble, OperandMode::kNone, \
null) \
V(Float32, Float32Neg, kS390_NegFloat, OperandMode::kNone, null) \
V(Float64, Float64Neg, kS390_NegDouble, OperandMode::kNone, null) \
/* TODO(john.yan): can use kAllowRM */ \
V(Word32, Float64ExtractLowWord32, kS390_DoubleExtractLowWord32, \
OperandMode::kNone, null) \
V(Word32, Float64ExtractHighWord32, kS390_DoubleExtractHighWord32, \
OperandMode::kNone, null)
#define FLOAT_BIN_OP_LIST(V) \
V(Float32, Float32Add, kS390_AddFloat, OperandMode::kAllowRM, null) \
V(Float64, Float64Add, kS390_AddDouble, OperandMode::kAllowRM, null) \
V(Float32, Float32Sub, kS390_SubFloat, OperandMode::kAllowRM, null) \
V(Float64, Float64Sub, kS390_SubDouble, OperandMode::kAllowRM, null) \
V(Float32, Float32Mul, kS390_MulFloat, OperandMode::kAllowRM, null) \
V(Float64, Float64Mul, kS390_MulDouble, OperandMode::kAllowRM, null) \
V(Float32, Float32Div, kS390_DivFloat, OperandMode::kAllowRM, null) \
V(Float64, Float64Div, kS390_DivDouble, OperandMode::kAllowRM, null) \
V(Float32, Float32Max, kS390_MaxFloat, OperandMode::kNone, null) \
V(Float64, Float64Max, kS390_MaxDouble, OperandMode::kNone, null) \
V(Float32, Float32Min, kS390_MinFloat, OperandMode::kNone, null) \
V(Float64, Float64Min, kS390_MinDouble, OperandMode::kNone, null)
#define WORD32_UNARY_OP_LIST_32(V) \
V(Word32, Word32Clz, kS390_Cntlz32, OperandMode::kNone, null) \
V(Word32, Word32Popcnt, kS390_Popcnt32, OperandMode::kNone, null) \
V(Word32, RoundInt32ToFloat32, kS390_Int32ToFloat32, OperandMode::kNone, \
null) \
V(Word32, RoundUint32ToFloat32, kS390_Uint32ToFloat32, OperandMode::kNone, \
null) \
V(Word32, ChangeInt32ToFloat64, kS390_Int32ToDouble, OperandMode::kNone, \
null) \
V(Word32, ChangeUint32ToFloat64, kS390_Uint32ToDouble, OperandMode::kNone, \
null) \
V(Word32, SignExtendWord8ToInt32, kS390_SignExtendWord8ToInt32, \
OperandMode::kNone, null) \
V(Word32, SignExtendWord16ToInt32, kS390_SignExtendWord16ToInt32, \
OperandMode::kNone, null) \
V(Word32, BitcastInt32ToFloat32, kS390_BitcastInt32ToFloat32, \
OperandMode::kNone, null)
#ifdef V8_TARGET_ARCH_S390X
#define FLOAT_UNARY_OP_LIST(V) \
FLOAT_UNARY_OP_LIST_32(V) \
V(Float64, ChangeFloat64ToUint64, kS390_DoubleToUint64, OperandMode::kNone, \
null) \
V(Float64, ChangeFloat64ToInt64, kS390_DoubleToInt64, OperandMode::kNone, \
null) \
V(Float64, TruncateFloat64ToInt64, kS390_DoubleToInt64, OperandMode::kNone, \
null) \
V(Float64, BitcastFloat64ToInt64, kS390_BitcastDoubleToInt64, \
OperandMode::kNone, null)
#define WORD32_UNARY_OP_LIST(V) \
WORD32_UNARY_OP_LIST_32(V) \
V(Word32, ChangeInt32ToInt64, kS390_SignExtendWord32ToInt64, \
OperandMode::kNone, null) \
V(Word32, SignExtendWord8ToInt64, kS390_SignExtendWord8ToInt64, \
OperandMode::kNone, null) \
V(Word32, SignExtendWord16ToInt64, kS390_SignExtendWord16ToInt64, \
OperandMode::kNone, null) \
V(Word32, SignExtendWord32ToInt64, kS390_SignExtendWord32ToInt64, \
OperandMode::kNone, null) \
V(Word32, ChangeUint32ToUint64, kS390_Uint32ToUint64, OperandMode::kNone, \
[&]() -> bool { \
if (ProduceWord32Result(node->InputAt(0))) { \
EmitIdentity(node); \
return true; \
} \
return false; \
})
#else
#define FLOAT_UNARY_OP_LIST(V) FLOAT_UNARY_OP_LIST_32(V)
#define WORD32_UNARY_OP_LIST(V) WORD32_UNARY_OP_LIST_32(V)
#endif
#define WORD32_BIN_OP_LIST(V) \
V(Word32, Int32Add, kS390_Add32, AddOperandMode, null) \
V(Word32, Int32Sub, kS390_Sub32, SubOperandMode, ([&]() { \
return TryMatchNegFromSub<Int32BinopMatcher, kS390_Neg32>(this, node); \
})) \
V(Word32, Int32Mul, kS390_Mul32, MulOperandMode, ([&]() { \
return TryMatchShiftFromMul<Int32BinopMatcher, kS390_ShiftLeft32>(this, \
node); \
})) \
V(Word32, Int32AddWithOverflow, kS390_Add32, AddOperandMode, \
([&]() { return TryMatchInt32AddWithOverflow(this, node); })) \
V(Word32, Int32SubWithOverflow, kS390_Sub32, SubOperandMode, \
([&]() { return TryMatchInt32SubWithOverflow(this, node); })) \
V(Word32, Int32MulWithOverflow, kS390_Mul32, MulOperandMode, \
([&]() { return TryMatchInt32MulWithOverflow(this, node); })) \
V(Word32, Int32MulHigh, kS390_MulHigh32, \
OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps, null) \
V(Word32, Uint32MulHigh, kS390_MulHighU32, \
OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \
V(Word32, Int32Div, kS390_Div32, \
OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \
V(Word32, Uint32Div, kS390_DivU32, \
OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \
V(Word32, Int32Mod, kS390_Mod32, \
OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \
V(Word32, Uint32Mod, kS390_ModU32, \
OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \
V(Word32, Word32Ror, kS390_RotRight32, \
OperandMode::kAllowRI | OperandMode::kAllowRRR | OperandMode::kAllowRRI | \
OperandMode::kShift32Imm, \
null) \
V(Word32, Word32And, kS390_And32, And32OperandMode, null) \
V(Word32, Word32Or, kS390_Or32, Or32OperandMode, null) \
V(Word32, Word32Xor, kS390_Xor32, Xor32OperandMode, null) \
V(Word32, Word32Shl, kS390_ShiftLeft32, Shift32OperandMode, null) \
V(Word32, Word32Shr, kS390_ShiftRight32, Shift32OperandMode, null) \
V(Word32, Word32Sar, kS390_ShiftRightArith32, Shift32OperandMode, \
[&]() { return TryMatchSignExtInt16OrInt8FromWord32Sar(this, node); }) \
V(Word32, Float64InsertLowWord32, kS390_DoubleInsertLowWord32, \
OperandMode::kAllowRRR, \
[&]() -> bool { return TryMatchDoubleConstructFromInsert(this, node); }) \
V(Word32, Float64InsertHighWord32, kS390_DoubleInsertHighWord32, \
OperandMode::kAllowRRR, \
[&]() -> bool { return TryMatchDoubleConstructFromInsert(this, node); })
#define WORD64_UNARY_OP_LIST(V) \
V(Word64, Word64Popcnt, kS390_Popcnt64, OperandMode::kNone, null) \
V(Word64, Word64Clz, kS390_Cntlz64, OperandMode::kNone, null) \
V(Word64, TruncateInt64ToInt32, kS390_Int64ToInt32, OperandMode::kNone, \
null) \
V(Word64, RoundInt64ToFloat32, kS390_Int64ToFloat32, OperandMode::kNone, \
null) \
V(Word64, RoundInt64ToFloat64, kS390_Int64ToDouble, OperandMode::kNone, \
null) \
V(Word64, ChangeInt64ToFloat64, kS390_Int64ToDouble, OperandMode::kNone, \
null) \
V(Word64, RoundUint64ToFloat32, kS390_Uint64ToFloat32, OperandMode::kNone, \
null) \
V(Word64, RoundUint64ToFloat64, kS390_Uint64ToDouble, OperandMode::kNone, \
null) \
V(Word64, BitcastInt64ToFloat64, kS390_BitcastInt64ToDouble, \
OperandMode::kNone, null)
#define WORD64_BIN_OP_LIST(V) \
V(Word64, Int64Add, kS390_Add64, AddOperandMode, null) \
V(Word64, Int64Sub, kS390_Sub64, SubOperandMode, ([&]() { \
return TryMatchNegFromSub<Int64BinopMatcher, kS390_Neg64>(this, node); \
})) \
V(Word64, Int64AddWithOverflow, kS390_Add64, AddOperandMode, \
([&]() { return TryMatchInt64AddWithOverflow(this, node); })) \
V(Word64, Int64SubWithOverflow, kS390_Sub64, SubOperandMode, \
([&]() { return TryMatchInt64SubWithOverflow(this, node); })) \
V(Word64, Int64Mul, kS390_Mul64, MulOperandMode, ([&]() { \
return TryMatchShiftFromMul<Int64BinopMatcher, kS390_ShiftLeft64>(this, \
node); \
})) \
V(Word64, Int64Div, kS390_Div64, \
OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \
V(Word64, Uint64Div, kS390_DivU64, \
OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \
V(Word64, Int64Mod, kS390_Mod64, \
OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \
V(Word64, Uint64Mod, kS390_ModU64, \
OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \
V(Word64, Word64Sar, kS390_ShiftRightArith64, Shift64OperandMode, null) \
V(Word64, Word64Ror, kS390_RotRight64, Shift64OperandMode, null) \
V(Word64, Word64Or, kS390_Or64, Or64OperandMode, null) \
V(Word64, Word64Xor, kS390_Xor64, Xor64OperandMode, null)
#define DECLARE_UNARY_OP(type, name, op, mode, try_extra) \
void InstructionSelector::Visit##name(Node* node) { \
if (std::function<bool()>(try_extra)()) return; \
Visit##type##UnaryOp(this, node, op, mode); \
}
#define DECLARE_BIN_OP(type, name, op, mode, try_extra) \
void InstructionSelector::Visit##name(Node* node) { \
if (std::function<bool()>(try_extra)()) return; \
Visit##type##BinOp(this, node, op, mode); \
}
WORD32_BIN_OP_LIST(DECLARE_BIN_OP)
WORD32_UNARY_OP_LIST(DECLARE_UNARY_OP)
FLOAT_UNARY_OP_LIST(DECLARE_UNARY_OP)
FLOAT_BIN_OP_LIST(DECLARE_BIN_OP)
#if V8_TARGET_ARCH_S390X
WORD64_UNARY_OP_LIST(DECLARE_UNARY_OP)
WORD64_BIN_OP_LIST(DECLARE_BIN_OP)
#endif
#undef DECLARE_BIN_OP
#undef DECLARE_UNARY_OP
#undef WORD64_BIN_OP_LIST
#undef WORD64_UNARY_OP_LIST
#undef WORD32_BIN_OP_LIST
#undef WORD32_UNARY_OP_LIST
#undef FLOAT_UNARY_OP_LIST
#undef WORD32_UNARY_OP_LIST_32
#undef FLOAT_BIN_OP_LIST
#undef FLOAT_BIN_OP_LIST_32
#undef null
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) {
VisitTryTruncateDouble(this, kS390_Float32ToInt64, node);
}
void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) {
VisitTryTruncateDouble(this, kS390_DoubleToInt64, node);
}
void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) {
VisitTryTruncateDouble(this, kS390_Float32ToUint64, node);
}
void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) {
VisitTryTruncateDouble(this, kS390_DoubleToUint64, node);
}
#endif
void InstructionSelector::VisitBitcastWord32ToWord64(Node* node) {
DCHECK(SmiValuesAre31Bits());
DCHECK(COMPRESS_POINTERS_BOOL);
EmitIdentity(node);
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
S390OperandGenerator g(this);
Emit(kS390_ModDouble, g.DefineAsFixed(node, d1),
g.UseFixed(node->InputAt(0), d1), g.UseFixed(node->InputAt(1), d2))
->MarkAsCall();
}
void InstructionSelector::VisitFloat64Ieee754Unop(Node* node,
InstructionCode opcode) {
S390OperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1))
->MarkAsCall();
}
void InstructionSelector::VisitFloat64Ieee754Binop(Node* node,
InstructionCode opcode) {
S390OperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1),
g.UseFixed(node->InputAt(1), d2))
->MarkAsCall();
}
void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) {
UNREACHABLE();
}
static bool CompareLogical(FlagsContinuation* cont) {
switch (cont->condition()) {
case kUnsignedLessThan:
case kUnsignedGreaterThanOrEqual:
case kUnsignedLessThanOrEqual:
case kUnsignedGreaterThan:
return true;
default:
return false;
}
UNREACHABLE();
}
namespace {
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont) {
selector->EmitWithContinuation(opcode, left, right, cont);
}
void VisitLoadAndTest(InstructionSelector* selector, InstructionCode opcode,
Node* node, Node* value, FlagsContinuation* cont,
bool discard_output = false);
// Shared routine for multiple word compare operations.
void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont,
OperandModes immediate_mode) {
S390OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
DCHECK(IrOpcode::IsComparisonOpcode(node->opcode()) ||
node->opcode() == IrOpcode::kInt32Sub ||
node->opcode() == IrOpcode::kInt64Sub);
InstructionOperand inputs[8];
InstructionOperand outputs[1];
size_t input_count = 0;
size_t output_count = 0;
// If one of the two inputs is an immediate, make sure it's on the right, or
// if one of the two inputs is a memory operand, make sure it's on the left.
int effect_level = selector->GetEffectLevel(node, cont);
if ((!g.CanBeImmediate(right, immediate_mode) &&
g.CanBeImmediate(left, immediate_mode)) ||
(!g.CanBeMemoryOperand(opcode, node, right, effect_level) &&
g.CanBeMemoryOperand(opcode, node, left, effect_level))) {
if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
std::swap(left, right);
}
// check if compare with 0
if (g.CanBeImmediate(right, immediate_mode) && g.GetImmediate(right) == 0) {
DCHECK(opcode == kS390_Cmp32 || opcode == kS390_Cmp64);
ArchOpcode load_and_test = (opcode == kS390_Cmp32)
? kS390_LoadAndTestWord32
: kS390_LoadAndTestWord64;
return VisitLoadAndTest(selector, load_and_test, node, left, cont, true);
}
inputs[input_count++] = g.UseRegister(left);
if (g.CanBeMemoryOperand(opcode, node, right, effect_level)) {
// generate memory operand
AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand(
right, inputs, &input_count, OpcodeImmMode(opcode));
opcode |= AddressingModeField::encode(addressing_mode);
} else if (g.CanBeImmediate(right, immediate_mode)) {
inputs[input_count++] = g.UseImmediate(right);
} else {
inputs[input_count++] = g.UseAnyExceptImmediate(right);
}
DCHECK(input_count <= 8 && output_count <= 1);
selector->EmitWithContinuation(opcode, output_count, outputs, input_count,
inputs, cont);
}
void VisitWord32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
OperandModes mode =
(CompareLogical(cont) ? OperandMode::kUint32Imm : OperandMode::kInt32Imm);
VisitWordCompare(selector, node, kS390_Cmp32, cont, mode);
}
#if V8_TARGET_ARCH_S390X
void VisitWord64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
OperandModes mode =
(CompareLogical(cont) ? OperandMode::kUint32Imm : OperandMode::kInt32Imm);
VisitWordCompare(selector, node, kS390_Cmp64, cont, mode);
}
#endif
// Shared routine for multiple float32 compare operations.
void VisitFloat32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
VisitWordCompare(selector, node, kS390_CmpFloat, cont, OperandMode::kNone);
}
// Shared routine for multiple float64 compare operations.
void VisitFloat64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
VisitWordCompare(selector, node, kS390_CmpDouble, cont, OperandMode::kNone);
}
void VisitTestUnderMask(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
DCHECK(node->opcode() == IrOpcode::kWord32And ||
node->opcode() == IrOpcode::kWord64And);
ArchOpcode opcode =
(node->opcode() == IrOpcode::kWord32And) ? kS390_Tst32 : kS390_Tst64;
S390OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (!g.CanBeImmediate(right, OperandMode::kUint32Imm) &&
g.CanBeImmediate(left, OperandMode::kUint32Imm)) {
std::swap(left, right);
}
VisitCompare(selector, opcode, g.UseRegister(left),
g.UseOperand(right, OperandMode::kUint32Imm), cont);
}
void VisitLoadAndTest(InstructionSelector* selector, InstructionCode opcode,
Node* node, Node* value, FlagsContinuation* cont,
bool discard_output) {
static_assert(kS390_LoadAndTestFloat64 - kS390_LoadAndTestWord32 == 3,
"LoadAndTest Opcode shouldn't contain other opcodes.");
// TODO(john.yan): Add support for Float32/Float64.
DCHECK(opcode >= kS390_LoadAndTestWord32 ||
opcode <= kS390_LoadAndTestWord64);
S390OperandGenerator g(selector);
InstructionOperand inputs[8];
InstructionOperand outputs[2];
size_t input_count = 0;
size_t output_count = 0;
bool use_value = false;
int effect_level = selector->GetEffectLevel(node, cont);
if (g.CanBeMemoryOperand(opcode, node, value, effect_level)) {
// generate memory operand
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(value, inputs, &input_count);
opcode |= AddressingModeField::encode(addressing_mode);
} else {
inputs[input_count++] = g.UseAnyExceptImmediate(value);
use_value = true;
}
if (!discard_output && !use_value) {
outputs[output_count++] = g.DefineAsRegister(value);
}
DCHECK(input_count <= 8 && output_count <= 2);
selector->EmitWithContinuation(opcode, output_count, outputs, input_count,
inputs, cont);
}
} // namespace
// Shared routine for word comparisons against zero.
void InstructionSelector::VisitWordCompareZero(Node* user, Node* value,
FlagsContinuation* cont) {
// Try to combine with comparisons against 0 by simply inverting the branch.
while (value->opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) {
Int32BinopMatcher m(value);
if (!m.right().Is(0)) break;
user = value;
value = m.left().node();
cont->Negate();
}
FlagsCondition fc = cont->condition();
if (CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord32Equal: {
cont->OverwriteAndNegateIfEqual(kEqual);
Int32BinopMatcher m(value);
if (m.right().Is(0)) {
// Try to combine the branch with a comparison.
Node* const user = m.node();
Node* const value = m.left().node();
if (CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kInt32Sub:
return VisitWord32Compare(this, value, cont);
case IrOpcode::kWord32And:
return VisitTestUnderMask(this, value, cont);
default:
break;
}
}
}
return VisitWord32Compare(this, value, cont);
}
case IrOpcode::kInt32LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWord32Compare(this, value, cont);
case IrOpcode::kInt32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWord32Compare(this, value, cont);
case IrOpcode::kUint32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWord32Compare(this, value, cont);
case IrOpcode::kUint32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWord32Compare(this, value, cont);
#if V8_TARGET_ARCH_S390X
case IrOpcode::kWord64Equal: {
cont->OverwriteAndNegateIfEqual(kEqual);
Int64BinopMatcher m(value);
if (m.right().Is(0)) {
// Try to combine the branch with a comparison.
Node* const user = m.node();
Node* const value = m.left().node();
if (CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kInt64Sub:
return VisitWord64Compare(this, value, cont);
case IrOpcode::kWord64And:
return VisitTestUnderMask(this, value, cont);
default:
break;
}
}
}
return VisitWord64Compare(this, value, cont);
}
case IrOpcode::kInt64LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWord64Compare(this, value, cont);
case IrOpcode::kInt64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWord64Compare(this, value, cont);
case IrOpcode::kUint64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWord64Compare(this, value, cont);
case IrOpcode::kUint64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWord64Compare(this, value, cont);
#endif
case IrOpcode::kFloat32Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitFloat32Compare(this, value, cont);
case IrOpcode::kFloat32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitFloat32Compare(this, value, cont);
case IrOpcode::kFloat32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitFloat32Compare(this, value, cont);
case IrOpcode::kFloat64Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitFloat64Compare(this, value, cont);
case IrOpcode::kFloat64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitFloat64Compare(this, value, cont);
case IrOpcode::kFloat64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitFloat64Compare(this, value, cont);
case IrOpcode::kProjection:
// Check if this is the overflow output projection of an
// <Operation>WithOverflow node.
if (ProjectionIndexOf(value->op()) == 1u) {
// We cannot combine the <Operation>WithOverflow with this branch
// unless the 0th projection (the use of the actual value of the
// <Operation> is either nullptr, which means there's no use of the
// actual value, or was already defined, which means it is scheduled
// *AFTER* this branch).
Node* const node = value->InputAt(0);
Node* const result = NodeProperties::FindProjection(node, 0);
if (result == nullptr || IsDefined(result)) {
switch (node->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitWord32BinOp(this, node, kS390_Add32, AddOperandMode,
cont);
case IrOpcode::kInt32SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitWord32BinOp(this, node, kS390_Sub32, SubOperandMode,
cont);
case IrOpcode::kInt32MulWithOverflow:
if (CpuFeatures::IsSupported(MISC_INSTR_EXT2)) {
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitWord32BinOp(
this, node, kS390_Mul32,
OperandMode::kAllowRRR | OperandMode::kAllowRM, cont);
} else {
cont->OverwriteAndNegateIfEqual(kNotEqual);
return VisitWord32BinOp(
this, node, kS390_Mul32WithOverflow,
OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps,
cont);
}
case IrOpcode::kInt32AbsWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitWord32UnaryOp(this, node, kS390_Abs32,
OperandMode::kNone, cont);
#if V8_TARGET_ARCH_S390X
case IrOpcode::kInt64AbsWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitWord64UnaryOp(this, node, kS390_Abs64,
OperandMode::kNone, cont);
case IrOpcode::kInt64AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitWord64BinOp(this, node, kS390_Add64, AddOperandMode,
cont);
case IrOpcode::kInt64SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitWord64BinOp(this, node, kS390_Sub64, SubOperandMode,
cont);
#endif
default:
break;
}
}
}
break;
case IrOpcode::kInt32Sub:
if (fc == kNotEqual || fc == kEqual)
return VisitWord32Compare(this, value, cont);
break;
case IrOpcode::kWord32And:
return VisitTestUnderMask(this, value, cont);
case IrOpcode::kLoad: {
LoadRepresentation load_rep = LoadRepresentationOf(value->op());
switch (load_rep.representation()) {
case MachineRepresentation::kWord32:
return VisitLoadAndTest(this, kS390_LoadAndTestWord32, user, value,
cont);
default:
break;
}
break;
}
case IrOpcode::kInt32Add:
// can't handle overflow case.
break;
case IrOpcode::kWord32Or:
if (fc == kNotEqual || fc == kEqual)
return VisitWord32BinOp(this, value, kS390_Or32, Or32OperandMode,
cont);
break;
case IrOpcode::kWord32Xor:
if (fc == kNotEqual || fc == kEqual)
return VisitWord32BinOp(this, value, kS390_Xor32, Xor32OperandMode,
cont);
break;
case IrOpcode::kWord32Sar:
case IrOpcode::kWord32Shl:
case IrOpcode::kWord32Shr:
case IrOpcode::kWord32Ror:
// doesn't generate cc, so ignore.
break;
#if V8_TARGET_ARCH_S390X
case IrOpcode::kInt64Sub:
if (fc == kNotEqual || fc == kEqual)
return VisitWord64Compare(this, value, cont);
break;
case IrOpcode::kWord64And:
return VisitTestUnderMask(this, value, cont);
case IrOpcode::kInt64Add:
// can't handle overflow case.
break;
case IrOpcode::kWord64Or:
if (fc == kNotEqual || fc == kEqual)
return VisitWord64BinOp(this, value, kS390_Or64, Or64OperandMode,
cont);
break;
case IrOpcode::kWord64Xor:
if (fc == kNotEqual || fc == kEqual)
return VisitWord64BinOp(this, value, kS390_Xor64, Xor64OperandMode,
cont);
break;
case IrOpcode::kWord64Sar:
case IrOpcode::kWord64Shl:
case IrOpcode::kWord64Shr:
case IrOpcode::kWord64Ror:
// doesn't generate cc, so ignore
break;
#endif
case IrOpcode::kStackPointerGreaterThan:
cont->OverwriteAndNegateIfEqual(kStackPointerGreaterThanCondition);
return VisitStackPointerGreaterThan(value, cont);
default:
break;
}
}
// Branch could not be combined with a compare, emit LoadAndTest
VisitLoadAndTest(this, kS390_LoadAndTestWord32, user, value, cont, true);
}
void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
S390OperandGenerator g(this);
InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
// Emit either ArchTableSwitch or ArchBinarySearchSwitch.
if (enable_switch_jump_table_ == kEnableSwitchJumpTable) {
static const size_t kMaxTableSwitchValueRange = 2 << 16;
size_t table_space_cost = 4 + sw.value_range();
size_t table_time_cost = 3;
size_t lookup_space_cost = 3 + 2 * sw.case_count();
size_t lookup_time_cost = sw.case_count();
if (sw.case_count() > 0 &&
table_space_cost + 3 * table_time_cost <=
lookup_space_cost + 3 * lookup_time_cost &&
sw.min_value() > std::numeric_limits<int32_t>::min() &&
sw.value_range() <= kMaxTableSwitchValueRange) {
InstructionOperand index_operand = value_operand;
if (sw.min_value()) {
index_operand = g.TempRegister();
Emit(kS390_Lay | AddressingModeField::encode(kMode_MRI), index_operand,
value_operand, g.TempImmediate(-sw.min_value()));
}
#if V8_TARGET_ARCH_S390X
InstructionOperand index_operand_zero_ext = g.TempRegister();
Emit(kS390_Uint32ToUint64, index_operand_zero_ext, index_operand);
index_operand = index_operand_zero_ext;
#endif
// Generate a table lookup.
return EmitTableSwitch(sw, index_operand);
}
}
// Generate a tree of conditional jumps.
return EmitBinarySearchSwitch(sw, value_operand);
}
void InstructionSelector::VisitWord32Equal(Node* const node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
Int32BinopMatcher m(node);
if (m.right().Is(0)) {
return VisitLoadAndTest(this, kS390_LoadAndTestWord32, m.node(),
m.left().node(), &cont, true);
}
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWord32Compare(this, node, &cont);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Equal(Node* const node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
Int64BinopMatcher m(node);
if (m.right().Is(0)) {
return VisitLoadAndTest(this, kS390_LoadAndTestWord64, m.node(),
m.left().node(), &cont, true);
}
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitInt64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitUint64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWord64Compare(this, node, &cont);
}
#endif
void InstructionSelector::VisitFloat32Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitFloat64Compare(this, node, &cont);
}
bool InstructionSelector::ZeroExtendsWord32ToWord64NoPhis(Node* node) {
UNIMPLEMENTED();
}
void InstructionSelector::EmitPrepareArguments(
ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor,
Node* node) {
S390OperandGenerator g(this);
// Prepare for C function call.
if (call_descriptor->IsCFunctionCall()) {
Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>(
call_descriptor->ParameterCount())),
0, nullptr, 0, nullptr);
// Poke any stack arguments.
int slot = kStackFrameExtraParamSlot;
for (PushParameter input : (*arguments)) {
if (input.node == nullptr) continue;
Emit(kS390_StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node),
g.TempImmediate(slot));
++slot;
}
} else {
// Push any stack arguments.
int num_slots = 0;
int slot = 0;
#define INPUT_SWITCH(param) \
switch (input.location.GetType().representation()) { \
case MachineRepresentation::kSimd128: \
param += kSimd128Size / kSystemPointerSize; \
break; \
case MachineRepresentation::kFloat64: \
param += kDoubleSize / kSystemPointerSize; \
break; \
default: \
param += 1; \
break; \
}
for (PushParameter input : *arguments) {
if (input.node == nullptr) continue;
INPUT_SWITCH(num_slots)
}
Emit(kS390_StackClaim, g.NoOutput(), g.TempImmediate(num_slots));
for (PushParameter input : *arguments) {
// Skip any alignment holes in pushed nodes.
if (input.node) {
Emit(kS390_StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node),
g.TempImmediate(slot));
INPUT_SWITCH(slot)
}
}
#undef INPUT_SWITCH
DCHECK(num_slots == slot);
}
}
void InstructionSelector::VisitMemoryBarrier(Node* node) {
S390OperandGenerator g(this);
Emit(kArchNop, g.NoOutput());
}
bool InstructionSelector::IsTailCallAddressImmediate() { return false; }
int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; }
void InstructionSelector::VisitWord32AtomicLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
DCHECK(load_rep.representation() == MachineRepresentation::kWord8 ||
load_rep.representation() == MachineRepresentation::kWord16 ||
load_rep.representation() == MachineRepresentation::kWord32);
USE(load_rep);
VisitLoad(node);
}
void InstructionSelector::VisitWord32AtomicStore(Node* node) {
MachineRepresentation rep = AtomicStoreRepresentationOf(node->op());
VisitGeneralStore(this, node, rep);
}
void VisitAtomicExchange(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
S390OperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
AddressingMode addressing_mode = kMode_MRR;
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] = g.UseUniqueRegister(index);
inputs[input_count++] = g.UseUniqueRegister(value);
InstructionOperand outputs[1];
outputs[0] = g.DefineAsRegister(node);
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
selector->Emit(code, 1, outputs, input_count, inputs);
}
void InstructionSelector::VisitWord32AtomicExchange(Node* node) {
ArchOpcode opcode;
MachineType type = AtomicOpType(node->op());
if (type == MachineType::Int8()) {
opcode = kWord32AtomicExchangeInt8;
} else if (type == MachineType::Uint8()) {
opcode = kWord32AtomicExchangeUint8;
} else if (type == MachineType::Int16()) {
opcode = kWord32AtomicExchangeInt16;
} else if (type == MachineType::Uint16()) {
opcode = kWord32AtomicExchangeUint16;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = kWord32AtomicExchangeWord32;
} else {
UNREACHABLE();
}
VisitAtomicExchange(this, node, opcode);
}
void InstructionSelector::VisitWord64AtomicExchange(Node* node) {
ArchOpcode opcode;
MachineType type = AtomicOpType(node->op());
if (type == MachineType::Uint8()) {
opcode = kS390_Word64AtomicExchangeUint8;
} else if (type == MachineType::Uint16()) {
opcode = kS390_Word64AtomicExchangeUint16;
} else if (type == MachineType::Uint32()) {
opcode = kS390_Word64AtomicExchangeUint32;
} else if (type == MachineType::Uint64()) {
opcode = kS390_Word64AtomicExchangeUint64;
} else {
UNREACHABLE();
}
VisitAtomicExchange(this, node, opcode);
}
void VisitAtomicCompareExchange(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
S390OperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* old_value = node->InputAt(2);
Node* new_value = node->InputAt(3);
InstructionOperand inputs[4];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(old_value);
inputs[input_count++] = g.UseUniqueRegister(new_value);
inputs[input_count++] = g.UseUniqueRegister(base);
AddressingMode addressing_mode;
if (g.CanBeImmediate(index, OperandMode::kInt20Imm)) {
inputs[input_count++] = g.UseImmediate(index);
addressing_mode = kMode_MRI;
} else {
inputs[input_count++] = g.UseUniqueRegister(index);
addressing_mode = kMode_MRR;
}
InstructionOperand outputs[1];
size_t output_count = 0;
outputs[output_count++] = g.DefineSameAsFirst(node);
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
selector->Emit(code, output_count, outputs, input_count, inputs);
}
void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) {
MachineType type = AtomicOpType(node->op());
ArchOpcode opcode;
if (type == MachineType::Int8()) {
opcode = kWord32AtomicCompareExchangeInt8;
} else if (type == MachineType::Uint8()) {
opcode = kWord32AtomicCompareExchangeUint8;
} else if (type == MachineType::Int16()) {
opcode = kWord32AtomicCompareExchangeInt16;
} else if (type == MachineType::Uint16()) {
opcode = kWord32AtomicCompareExchangeUint16;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = kWord32AtomicCompareExchangeWord32;
} else {
UNREACHABLE();
}
VisitAtomicCompareExchange(this, node, opcode);
}
void InstructionSelector::VisitWord64AtomicCompareExchange(Node* node) {
MachineType type = AtomicOpType(node->op());
ArchOpcode opcode;
if (type == MachineType::Uint8()) {
opcode = kS390_Word64AtomicCompareExchangeUint8;
} else if (type == MachineType::Uint16()) {
opcode = kS390_Word64AtomicCompareExchangeUint16;
} else if (type == MachineType::Uint32()) {
opcode = kS390_Word64AtomicCompareExchangeUint32;
} else if (type == MachineType::Uint64()) {
opcode = kS390_Word64AtomicCompareExchangeUint64;
} else {
UNREACHABLE();
}
VisitAtomicCompareExchange(this, node, opcode);
}
void VisitAtomicBinop(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
S390OperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
AddressingMode addressing_mode;
if (g.CanBeImmediate(index, OperandMode::kInt20Imm)) {
inputs[input_count++] = g.UseImmediate(index);
addressing_mode = kMode_MRI;
} else {
inputs[input_count++] = g.UseUniqueRegister(index);
addressing_mode = kMode_MRR;
}
inputs[input_count++] = g.UseUniqueRegister(value);
InstructionOperand outputs[1];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
InstructionOperand temps[1];
size_t temp_count = 0;
temps[temp_count++] = g.TempRegister();
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
selector->Emit(code, output_count, outputs, input_count, inputs, temp_count,
temps);
}
void InstructionSelector::VisitWord32AtomicBinaryOperation(
Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op,
ArchOpcode uint16_op, ArchOpcode word32_op) {
MachineType type = AtomicOpType(node->op());
ArchOpcode opcode;
if (type == MachineType::Int8()) {
opcode = int8_op;
} else if (type == MachineType::Uint8()) {
opcode = uint8_op;
} else if (type == MachineType::Int16()) {
opcode = int16_op;
} else if (type == MachineType::Uint16()) {
opcode = uint16_op;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = word32_op;
} else {
UNREACHABLE();
}
VisitAtomicBinop(this, node, opcode);
}
#define VISIT_ATOMIC_BINOP(op) \
void InstructionSelector::VisitWord32Atomic##op(Node* node) { \
VisitWord32AtomicBinaryOperation( \
node, kWord32Atomic##op##Int8, kWord32Atomic##op##Uint8, \
kWord32Atomic##op##Int16, kWord32Atomic##op##Uint16, \
kWord32Atomic##op##Word32); \
}
VISIT_ATOMIC_BINOP(Add)
VISIT_ATOMIC_BINOP(Sub)
VISIT_ATOMIC_BINOP(And)
VISIT_ATOMIC_BINOP(Or)
VISIT_ATOMIC_BINOP(Xor)
#undef VISIT_ATOMIC_BINOP
void InstructionSelector::VisitWord64AtomicBinaryOperation(
Node* node, ArchOpcode uint8_op, ArchOpcode uint16_op, ArchOpcode word32_op,
ArchOpcode word64_op) {
MachineType type = AtomicOpType(node->op());
ArchOpcode opcode;
if (type == MachineType::Uint8()) {
opcode = uint8_op;
} else if (type == MachineType::Uint16()) {
opcode = uint16_op;
} else if (type == MachineType::Uint32()) {
opcode = word32_op;
} else if (type == MachineType::Uint64()) {
opcode = word64_op;
} else {
UNREACHABLE();
}
VisitAtomicBinop(this, node, opcode);
}
#define VISIT_ATOMIC64_BINOP(op) \
void InstructionSelector::VisitWord64Atomic##op(Node* node) { \
VisitWord64AtomicBinaryOperation( \
node, kS390_Word64Atomic##op##Uint8, kS390_Word64Atomic##op##Uint16, \
kS390_Word64Atomic##op##Uint32, kS390_Word64Atomic##op##Uint64); \
}
VISIT_ATOMIC64_BINOP(Add)
VISIT_ATOMIC64_BINOP(Sub)
VISIT_ATOMIC64_BINOP(And)
VISIT_ATOMIC64_BINOP(Or)
VISIT_ATOMIC64_BINOP(Xor)
#undef VISIT_ATOMIC64_BINOP
void InstructionSelector::VisitWord64AtomicLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
USE(load_rep);
VisitLoad(node);
}
void InstructionSelector::VisitWord64AtomicStore(Node* node) {
MachineRepresentation rep = AtomicStoreRepresentationOf(node->op());
VisitGeneralStore(this, node, rep);
}
#define SIMD_TYPES(V) \
V(F64x2) \
V(F32x4) \
V(I64x2) \
V(I32x4) \
V(I16x8) \
V(I8x16)
#define SIMD_BINOP_LIST(V) \
V(F64x2Add) \
V(F64x2Sub) \
V(F64x2Mul) \
V(F64x2Div) \
V(F64x2Eq) \
V(F64x2Ne) \
V(F64x2Lt) \
V(F64x2Le) \
V(F64x2Min) \
V(F64x2Max) \
V(F32x4Add) \
V(F32x4AddHoriz) \
V(F32x4Sub) \
V(F32x4Mul) \
V(F32x4Eq) \
V(F32x4Ne) \
V(F32x4Lt) \
V(F32x4Le) \
V(F32x4Div) \
V(F32x4Min) \
V(F32x4Max) \
V(I64x2Add) \
V(I64x2Sub) \
V(I64x2Mul) \
V(I64x2Eq) \
V(I32x4Add) \
V(I32x4AddHoriz) \
V(I32x4Sub) \
V(I32x4Mul) \
V(I32x4MinS) \
V(I32x4MinU) \
V(I32x4MaxS) \
V(I32x4MaxU) \
V(I32x4Eq) \
V(I32x4Ne) \
V(I32x4GtS) \
V(I32x4GeS) \
V(I32x4GtU) \
V(I32x4GeU) \
V(I32x4DotI16x8S) \
V(I16x8Add) \
V(I16x8AddHoriz) \
V(I16x8Sub) \
V(I16x8Mul) \
V(I16x8MinS) \
V(I16x8MinU) \
V(I16x8MaxS) \
V(I16x8MaxU) \
V(I16x8Eq) \
V(I16x8Ne) \
V(I16x8GtS) \
V(I16x8GeS) \
V(I16x8GtU) \
V(I16x8GeU) \
V(I16x8SConvertI32x4) \
V(I16x8UConvertI32x4) \
V(I16x8AddSatS) \
V(I16x8SubSatS) \
V(I16x8AddSatU) \
V(I16x8SubSatU) \
V(I16x8RoundingAverageU) \
V(I8x16Add) \
V(I8x16Sub) \
V(I8x16Mul) \
V(I8x16MinS) \
V(I8x16MinU) \
V(I8x16MaxS) \
V(I8x16MaxU) \
V(I8x16Eq) \
V(I8x16Ne) \
V(I8x16GtS) \
V(I8x16GeS) \
V(I8x16GtU) \
V(I8x16GeU) \
V(I8x16SConvertI16x8) \
V(I8x16UConvertI16x8) \
V(I8x16AddSatS) \
V(I8x16SubSatS) \
V(I8x16AddSatU) \
V(I8x16SubSatU) \
V(I8x16RoundingAverageU) \
V(S128And) \
V(S128Or) \
V(S128Xor) \
V(S128AndNot)
#define SIMD_UNOP_LIST(V) \
V(F64x2Abs) \
V(F64x2Neg) \
V(F64x2Sqrt) \
V(F64x2Ceil) \
V(F64x2Floor) \
V(F64x2Trunc) \
V(F64x2NearestInt) \
V(F32x4Abs) \
V(F32x4Neg) \
V(F32x4RecipApprox) \
V(F32x4RecipSqrtApprox) \
V(F32x4Sqrt) \
V(F32x4Ceil) \
V(F32x4Floor) \
V(F32x4Trunc) \
V(F32x4NearestInt) \
V(I64x2Neg) \
V(I16x8Abs) \
V(I32x4Neg) \
V(I32x4SConvertI16x8Low) \
V(I32x4SConvertI16x8High) \
V(I32x4UConvertI16x8Low) \
V(I32x4UConvertI16x8High) \
V(I32x4Abs) \
V(I16x8Neg) \
V(I16x8SConvertI8x16Low) \
V(I16x8SConvertI8x16High) \
V(I16x8UConvertI8x16Low) \
V(I16x8UConvertI8x16High) \
V(I8x16Neg) \
V(I8x16Abs) \
V(S128Not)
#define SIMD_SHIFT_LIST(V) \
V(I64x2Shl) \
V(I64x2ShrS) \
V(I64x2ShrU) \
V(I32x4Shl) \
V(I32x4ShrS) \
V(I32x4ShrU) \
V(I16x8Shl) \
V(I16x8ShrS) \
V(I16x8ShrU) \
V(I8x16Shl) \
V(I8x16ShrS) \
V(I8x16ShrU)
#define SIMD_BOOL_LIST(V) \
V(V32x4AnyTrue) \
V(V16x8AnyTrue) \
V(V8x16AnyTrue) \
V(V32x4AllTrue) \
V(V16x8AllTrue) \
V(V8x16AllTrue)
#define SIMD_CONVERSION_LIST(V) \
V(I32x4SConvertF32x4) \
V(I32x4UConvertF32x4) \
V(F32x4SConvertI32x4) \
V(F32x4UConvertI32x4)
#define SIMD_VISIT_SPLAT(Type) \
void InstructionSelector::Visit##Type##Splat(Node* node) { \
S390OperandGenerator g(this); \
Emit(kS390_##Type##Splat, g.DefineAsRegister(node), \
g.UseRegister(node->InputAt(0))); \
}
SIMD_TYPES(SIMD_VISIT_SPLAT)
#undef SIMD_VISIT_SPLAT
#define SIMD_VISIT_EXTRACT_LANE(Type, Sign) \
void InstructionSelector::Visit##Type##ExtractLane##Sign(Node* node) { \
S390OperandGenerator g(this); \
int32_t lane = OpParameter<int32_t>(node->op()); \
Emit(kS390_##Type##ExtractLane##Sign, g.DefineAsRegister(node), \
g.UseRegister(node->InputAt(0)), g.UseImmediate(lane)); \
}
SIMD_VISIT_EXTRACT_LANE(F64x2, )
SIMD_VISIT_EXTRACT_LANE(F32x4, )
SIMD_VISIT_EXTRACT_LANE(I64x2, )
SIMD_VISIT_EXTRACT_LANE(I32x4, )
SIMD_VISIT_EXTRACT_LANE(I16x8, U)
SIMD_VISIT_EXTRACT_LANE(I16x8, S)
SIMD_VISIT_EXTRACT_LANE(I8x16, U)
SIMD_VISIT_EXTRACT_LANE(I8x16, S)
#undef SIMD_VISIT_EXTRACT_LANE
#define SIMD_VISIT_REPLACE_LANE(Type) \
void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \
S390OperandGenerator g(this); \
int32_t lane = OpParameter<int32_t>(node->op()); \
Emit(kS390_##Type##ReplaceLane, g.DefineAsRegister(node), \
g.UseRegister(node->InputAt(0)), g.UseImmediate(lane), \
g.UseRegister(node->InputAt(1))); \
}
SIMD_TYPES(SIMD_VISIT_REPLACE_LANE)
#undef SIMD_VISIT_REPLACE_LANE
#define SIMD_VISIT_BINOP(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
S390OperandGenerator g(this); \
InstructionOperand temps[] = {g.TempSimd128Register(), \
g.TempSimd128Register()}; \
Emit(kS390_##Opcode, g.DefineAsRegister(node), \
g.UseUniqueRegister(node->InputAt(0)), \
g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); \
}
SIMD_BINOP_LIST(SIMD_VISIT_BINOP)
#undef SIMD_VISIT_BINOP
#undef SIMD_BINOP_LIST
#define SIMD_VISIT_UNOP(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
S390OperandGenerator g(this); \
InstructionOperand temps[] = {g.TempSimd128Register()}; \
Emit(kS390_##Opcode, g.DefineAsRegister(node), \
g.UseRegister(node->InputAt(0)), arraysize(temps), temps); \
}
SIMD_UNOP_LIST(SIMD_VISIT_UNOP)
#undef SIMD_VISIT_UNOP
#undef SIMD_UNOP_LIST
#define SIMD_VISIT_SHIFT(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
S390OperandGenerator g(this); \
Emit(kS390_##Opcode, g.DefineAsRegister(node), \
g.UseUniqueRegister(node->InputAt(0)), \
g.UseUniqueRegister(node->InputAt(1))); \
}
SIMD_SHIFT_LIST(SIMD_VISIT_SHIFT)
#undef SIMD_VISIT_SHIFT
#undef SIMD_SHIFT_LIST
#define SIMD_VISIT_BOOL(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
S390OperandGenerator g(this); \
InstructionOperand temps[] = {g.TempRegister()}; \
Emit(kS390_##Opcode, g.DefineAsRegister(node), \
g.UseUniqueRegister(node->InputAt(0)), arraysize(temps), temps); \
}
SIMD_BOOL_LIST(SIMD_VISIT_BOOL)
#undef SIMD_VISIT_BOOL
#undef SIMD_BOOL_LIST
#define SIMD_VISIT_CONVERSION(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
S390OperandGenerator g(this); \
InstructionOperand temps[] = {g.TempSimd128Register()}; \
Emit(kS390_##Opcode, g.DefineAsRegister(node), \
g.UseRegister(node->InputAt(0)), arraysize(temps), temps); \
}
SIMD_CONVERSION_LIST(SIMD_VISIT_CONVERSION)
#undef SIMD_VISIT_CONVERSION
#undef SIMD_CONVERSION_LIST
#define SIMD_VISIT_QFMOP(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
S390OperandGenerator g(this); \
Emit(kS390_##Opcode, g.DefineSameAsFirst(node), \
g.UseUniqueRegister(node->InputAt(0)), \
g.UseUniqueRegister(node->InputAt(1)), \
g.UseRegister(node->InputAt(2))); \
}
SIMD_VISIT_QFMOP(F64x2Qfma)
SIMD_VISIT_QFMOP(F64x2Qfms)
SIMD_VISIT_QFMOP(F32x4Qfma)
SIMD_VISIT_QFMOP(F32x4Qfms)
#undef SIMD_VISIT_QFMOP
#define SIMD_VISIT_BITMASK(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
S390OperandGenerator g(this); \
Emit(kS390_##Opcode, g.DefineAsRegister(node), \
g.UseUniqueRegister(node->InputAt(0))); \
}
SIMD_VISIT_BITMASK(I8x16BitMask)
SIMD_VISIT_BITMASK(I16x8BitMask)
SIMD_VISIT_BITMASK(I32x4BitMask)
#undef SIMD_VISIT_BITMASK
#define SIMD_VISIT_PMIN_MAX(Type) \
void InstructionSelector::Visit##Type(Node* node) { \
S390OperandGenerator g(this); \
Emit(kS390_##Type, g.DefineAsRegister(node), \
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); \
}
SIMD_VISIT_PMIN_MAX(F64x2Pmin)
SIMD_VISIT_PMIN_MAX(F32x4Pmin)
SIMD_VISIT_PMIN_MAX(F64x2Pmax)
SIMD_VISIT_PMIN_MAX(F32x4Pmax)
#undef SIMD_VISIT_PMIN_MAX
#undef SIMD_TYPES
void InstructionSelector::VisitI8x16Shuffle(Node* node) {
uint8_t shuffle[kSimd128Size];
uint8_t* shuffle_p = &shuffle[0];
bool is_swizzle;
CanonicalizeShuffle(node, shuffle, &is_swizzle);
S390OperandGenerator g(this);
Node* input0 = node->InputAt(0);
Node* input1 = node->InputAt(1);
#ifdef V8_TARGET_BIG_ENDIAN
// Remap the shuffle indices to match IBM lane numbering.
int max_index = 15;
int total_lane_count = 2 * kSimd128Size;
uint8_t shuffle_remapped[kSimd128Size];
for (int i = 0; i < kSimd128Size; i++) {
uint8_t current_index = shuffle[i];
shuffle_remapped[i] = (current_index <= max_index
? max_index - current_index
: total_lane_count - current_index + max_index);
}
shuffle_p = &shuffle_remapped[0];
#endif
Emit(kS390_I8x16Shuffle, g.DefineAsRegister(node),
g.UseUniqueRegister(input0), g.UseUniqueRegister(input1),
g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_p)),
g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_p + 4)),
g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_p + 8)),
g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_p + 12)));
}
void InstructionSelector::VisitI8x16Swizzle(Node* node) {
S390OperandGenerator g(this);
InstructionOperand temps[] = {g.TempSimd128Register()};
Emit(kS390_I8x16Swizzle, g.DefineAsRegister(node),
g.UseUniqueRegister(node->InputAt(0)),
g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps);
}
void InstructionSelector::VisitS128Const(Node* node) {
S390OperandGenerator g(this);
uint32_t val[kSimd128Size / sizeof(uint32_t)];
memcpy(val, S128ImmediateParameterOf(node->op()).data(), kSimd128Size);
// If all bytes are zeros, avoid emitting code for generic constants.
bool all_zeros = !(val[0] || val[1] || val[2] || val[3]);
bool all_ones = val[0] == UINT32_MAX && val[1] == UINT32_MAX &&
val[2] == UINT32_MAX && val[3] == UINT32_MAX;
InstructionOperand dst = g.DefineAsRegister(node);
if (all_zeros) {
Emit(kS390_S128Zero, dst);
} else if (all_ones) {
Emit(kS390_S128AllOnes, dst);
} else {
// We have to use Pack4Lanes to reverse the bytes (lanes) on BE,
// Which in this case is ineffective on LE.
Emit(kS390_S128Const, g.DefineAsRegister(node),
g.UseImmediate(
wasm::SimdShuffle::Pack4Lanes(reinterpret_cast<uint8_t*>(val))),
g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(
reinterpret_cast<uint8_t*>(val) + 4)),
g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(
reinterpret_cast<uint8_t*>(val) + 8)),
g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(
reinterpret_cast<uint8_t*>(val) + 12)));
}
}
void InstructionSelector::VisitS128Zero(Node* node) {
S390OperandGenerator g(this);
Emit(kS390_S128Zero, g.DefineAsRegister(node));
}
void InstructionSelector::VisitS128Select(Node* node) {
S390OperandGenerator g(this);
Emit(kS390_S128Select, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)),
g.UseRegister(node->InputAt(2)));
}
void InstructionSelector::EmitPrepareResults(
ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor,
Node* node) {
S390OperandGenerator g(this);
int reverse_slot = 1;
for (PushParameter output : *results) {
if (!output.location.IsCallerFrameSlot()) continue;
// Skip any alignment holes in nodes.
if (output.node != nullptr) {
DCHECK(!call_descriptor->IsCFunctionCall());
if (output.location.GetType() == MachineType::Float32()) {
MarkAsFloat32(output.node);
} else if (output.location.GetType() == MachineType::Float64()) {
MarkAsFloat64(output.node);
} else if (output.location.GetType() == MachineType::Simd128()) {
MarkAsSimd128(output.node);
}
Emit(kS390_Peek, g.DefineAsRegister(output.node),
g.UseImmediate(reverse_slot));
}
reverse_slot += output.location.GetSizeInPointers();
}
}
void InstructionSelector::VisitLoadTransform(Node* node) {
// We should never reach here, see http://crrev.com/c/2050811
UNREACHABLE();
}
void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) {
S390OperandGenerator g(this);
InstructionCode opcode = kS390_Float32ToInt32;
TruncateKind kind = OpParameter<TruncateKind>(node->op());
if (kind == TruncateKind::kSetOverflowToMin) {
opcode |= MiscField::encode(true);
}
Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) {
S390OperandGenerator g(this);
InstructionCode opcode = kS390_Float32ToUint32;
TruncateKind kind = OpParameter<TruncateKind>(node->op());
if (kind == TruncateKind::kSetOverflowToMin) {
opcode |= MiscField::encode(true);
}
Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
// static
MachineOperatorBuilder::Flags
InstructionSelector::SupportedMachineOperatorFlags() {
return MachineOperatorBuilder::kFloat32RoundDown |
MachineOperatorBuilder::kFloat64RoundDown |
MachineOperatorBuilder::kFloat32RoundUp |
MachineOperatorBuilder::kFloat64RoundUp |
MachineOperatorBuilder::kFloat32RoundTruncate |
MachineOperatorBuilder::kFloat64RoundTruncate |
MachineOperatorBuilder::kFloat64RoundTiesAway |
MachineOperatorBuilder::kWord32Popcnt |
MachineOperatorBuilder::kInt32AbsWithOverflow |
MachineOperatorBuilder::kInt64AbsWithOverflow |
MachineOperatorBuilder::kWord64Popcnt;
}
// static
MachineOperatorBuilder::AlignmentRequirements
InstructionSelector::AlignmentRequirements() {
return MachineOperatorBuilder::AlignmentRequirements::
FullUnalignedAccessSupport();
}
} // namespace compiler
} // namespace internal
} // namespace v8