| //===- DependenceInfo.cpp - Calculate dependency information for a Scop. --===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Calculate the data dependency relations for a Scop using ISL. |
| // |
| // The integer set library (ISL) from Sven, has a integrated dependency analysis |
| // to calculate data dependences. This pass takes advantage of this and |
| // calculate those dependences a Scop. |
| // |
| // The dependences in this pass are exact in terms that for a specific read |
| // statement instance only the last write statement instance is returned. In |
| // case of may writes a set of possible write instances is returned. This |
| // analysis will never produce redundant dependences. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| #include "polly/DependenceInfo.h" |
| #include "polly/LinkAllPasses.h" |
| #include "polly/Options.h" |
| #include "polly/ScopInfo.h" |
| #include "polly/Support/GICHelper.h" |
| #include "polly/Support/ISLTools.h" |
| #include "llvm/Support/Debug.h" |
| #include <isl/aff.h> |
| #include <isl/ctx.h> |
| #include <isl/flow.h> |
| #include <isl/map.h> |
| #include <isl/options.h> |
| #include <isl/schedule.h> |
| #include <isl/set.h> |
| #include <isl/union_map.h> |
| #include <isl/union_set.h> |
| |
| using namespace polly; |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "polly-dependence" |
| |
| static cl::opt<int> OptComputeOut( |
| "polly-dependences-computeout", |
| cl::desc("Bound the dependence analysis by a maximal amount of " |
| "computational steps (0 means no bound)"), |
| cl::Hidden, cl::init(500000), cl::ZeroOrMore, cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> LegalityCheckDisabled( |
| "disable-polly-legality", cl::desc("Disable polly legality check"), |
| cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> |
| UseReductions("polly-dependences-use-reductions", |
| cl::desc("Exploit reductions in dependence analysis"), |
| cl::Hidden, cl::init(true), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| |
| enum AnalysisType { VALUE_BASED_ANALYSIS, MEMORY_BASED_ANALYSIS }; |
| |
| static cl::opt<enum AnalysisType> OptAnalysisType( |
| "polly-dependences-analysis-type", |
| cl::desc("The kind of dependence analysis to use"), |
| cl::values(clEnumValN(VALUE_BASED_ANALYSIS, "value-based", |
| "Exact dependences without transitive dependences"), |
| clEnumValN(MEMORY_BASED_ANALYSIS, "memory-based", |
| "Overapproximation of dependences")), |
| cl::Hidden, cl::init(VALUE_BASED_ANALYSIS), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| |
| static cl::opt<Dependences::AnalysisLevel> OptAnalysisLevel( |
| "polly-dependences-analysis-level", |
| cl::desc("The level of dependence analysis"), |
| cl::values(clEnumValN(Dependences::AL_Statement, "statement-wise", |
| "Statement-level analysis"), |
| clEnumValN(Dependences::AL_Reference, "reference-wise", |
| "Memory reference level analysis that distinguish" |
| " accessed references in the same statement"), |
| clEnumValN(Dependences::AL_Access, "access-wise", |
| "Memory reference level analysis that distinguish" |
| " access instructions in the same statement")), |
| cl::Hidden, cl::init(Dependences::AL_Statement), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| |
| //===----------------------------------------------------------------------===// |
| |
| /// Tag the @p Relation domain with @p TagId |
| static __isl_give isl_map *tag(__isl_take isl_map *Relation, |
| __isl_take isl_id *TagId) { |
| isl_space *Space = isl_map_get_space(Relation); |
| Space = isl_space_drop_dims(Space, isl_dim_out, 0, |
| isl_map_dim(Relation, isl_dim_out)); |
| Space = isl_space_set_tuple_id(Space, isl_dim_out, TagId); |
| isl_multi_aff *Tag = isl_multi_aff_domain_map(Space); |
| Relation = isl_map_preimage_domain_multi_aff(Relation, Tag); |
| return Relation; |
| } |
| |
| /// Tag the @p Relation domain with either MA->getArrayId() or |
| /// MA->getId() based on @p TagLevel |
| static __isl_give isl_map *tag(__isl_take isl_map *Relation, MemoryAccess *MA, |
| Dependences::AnalysisLevel TagLevel) { |
| if (TagLevel == Dependences::AL_Reference) |
| return tag(Relation, MA->getArrayId().release()); |
| |
| if (TagLevel == Dependences::AL_Access) |
| return tag(Relation, MA->getId().release()); |
| |
| // No need to tag at the statement level. |
| return Relation; |
| } |
| |
| /// Collect information about the SCoP @p S. |
| static void collectInfo(Scop &S, isl_union_map *&Read, |
| isl_union_map *&MustWrite, isl_union_map *&MayWrite, |
| isl_union_map *&ReductionTagMap, |
| isl_union_set *&TaggedStmtDomain, |
| Dependences::AnalysisLevel Level) { |
| isl_space *Space = S.getParamSpace().release(); |
| Read = isl_union_map_empty(isl_space_copy(Space)); |
| MustWrite = isl_union_map_empty(isl_space_copy(Space)); |
| MayWrite = isl_union_map_empty(isl_space_copy(Space)); |
| ReductionTagMap = isl_union_map_empty(isl_space_copy(Space)); |
| isl_union_map *StmtSchedule = isl_union_map_empty(Space); |
| |
| SmallPtrSet<const ScopArrayInfo *, 8> ReductionArrays; |
| if (UseReductions) |
| for (ScopStmt &Stmt : S) |
| for (MemoryAccess *MA : Stmt) |
| if (MA->isReductionLike()) |
| ReductionArrays.insert(MA->getScopArrayInfo()); |
| |
| for (ScopStmt &Stmt : S) { |
| for (MemoryAccess *MA : Stmt) { |
| isl_set *domcp = Stmt.getDomain().release(); |
| isl_map *accdom = MA->getAccessRelation().release(); |
| |
| accdom = isl_map_intersect_domain(accdom, domcp); |
| |
| if (ReductionArrays.count(MA->getScopArrayInfo())) { |
| // Wrap the access domain and adjust the schedule accordingly. |
| // |
| // An access domain like |
| // Stmt[i0, i1] -> MemAcc_A[i0 + i1] |
| // will be transformed into |
| // [Stmt[i0, i1] -> MemAcc_A[i0 + i1]] -> MemAcc_A[i0 + i1] |
| // |
| // We collect all the access domains in the ReductionTagMap. |
| // This is used in Dependences::calculateDependences to create |
| // a tagged Schedule tree. |
| |
| ReductionTagMap = |
| isl_union_map_add_map(ReductionTagMap, isl_map_copy(accdom)); |
| accdom = isl_map_range_map(accdom); |
| } else { |
| accdom = tag(accdom, MA, Level); |
| if (Level > Dependences::AL_Statement) { |
| isl_map *StmtScheduleMap = Stmt.getSchedule().release(); |
| assert(StmtScheduleMap && |
| "Schedules that contain extension nodes require special " |
| "handling."); |
| isl_map *Schedule = tag(StmtScheduleMap, MA, Level); |
| StmtSchedule = isl_union_map_add_map(StmtSchedule, Schedule); |
| } |
| } |
| |
| if (MA->isRead()) |
| Read = isl_union_map_add_map(Read, accdom); |
| else if (MA->isMayWrite()) |
| MayWrite = isl_union_map_add_map(MayWrite, accdom); |
| else |
| MustWrite = isl_union_map_add_map(MustWrite, accdom); |
| } |
| |
| if (!ReductionArrays.empty() && Level == Dependences::AL_Statement) |
| StmtSchedule = |
| isl_union_map_add_map(StmtSchedule, Stmt.getSchedule().release()); |
| } |
| |
| StmtSchedule = isl_union_map_intersect_params( |
| StmtSchedule, S.getAssumedContext().release()); |
| TaggedStmtDomain = isl_union_map_domain(StmtSchedule); |
| |
| ReductionTagMap = isl_union_map_coalesce(ReductionTagMap); |
| Read = isl_union_map_coalesce(Read); |
| MustWrite = isl_union_map_coalesce(MustWrite); |
| MayWrite = isl_union_map_coalesce(MayWrite); |
| } |
| |
| /// Fix all dimension of @p Zero to 0 and add it to @p user |
| static void fixSetToZero(isl::set Zero, isl::union_set *User) { |
| for (unsigned i = 0; i < Zero.dim(isl::dim::set); i++) |
| Zero = Zero.fix_si(isl::dim::set, i, 0); |
| *User = User->add_set(Zero); |
| } |
| |
| /// Compute the privatization dependences for a given dependency @p Map |
| /// |
| /// Privatization dependences are widened original dependences which originate |
| /// or end in a reduction access. To compute them we apply the transitive close |
| /// of the reduction dependences (which maps each iteration of a reduction |
| /// statement to all following ones) on the RAW/WAR/WAW dependences. The |
| /// dependences which start or end at a reduction statement will be extended to |
| /// depend on all following reduction statement iterations as well. |
| /// Note: "Following" here means according to the reduction dependences. |
| /// |
| /// For the input: |
| /// |
| /// S0: *sum = 0; |
| /// for (int i = 0; i < 1024; i++) |
| /// S1: *sum += i; |
| /// S2: *sum = *sum * 3; |
| /// |
| /// we have the following dependences before we add privatization dependences: |
| /// |
| /// RAW: |
| /// { S0[] -> S1[0]; S1[1023] -> S2[] } |
| /// WAR: |
| /// { } |
| /// WAW: |
| /// { S0[] -> S1[0]; S1[1024] -> S2[] } |
| /// RED: |
| /// { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 } |
| /// |
| /// and afterwards: |
| /// |
| /// RAW: |
| /// { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023; |
| /// S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023} |
| /// WAR: |
| /// { } |
| /// WAW: |
| /// { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023; |
| /// S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023} |
| /// RED: |
| /// { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 } |
| /// |
| /// Note: This function also computes the (reverse) transitive closure of the |
| /// reduction dependences. |
| void Dependences::addPrivatizationDependences() { |
| isl_union_map *PrivRAW, *PrivWAW, *PrivWAR; |
| |
| // The transitive closure might be over approximated, thus could lead to |
| // dependency cycles in the privatization dependences. To make sure this |
| // will not happen we remove all negative dependences after we computed |
| // the transitive closure. |
| TC_RED = isl_union_map_transitive_closure(isl_union_map_copy(RED), nullptr); |
| |
| // FIXME: Apply the current schedule instead of assuming the identity schedule |
| // here. The current approach is only valid as long as we compute the |
| // dependences only with the initial (identity schedule). Any other |
| // schedule could change "the direction of the backward dependences" we |
| // want to eliminate here. |
| isl_union_set *UDeltas = isl_union_map_deltas(isl_union_map_copy(TC_RED)); |
| isl_union_set *Universe = isl_union_set_universe(isl_union_set_copy(UDeltas)); |
| isl::union_set Zero = |
| isl::manage(isl_union_set_empty(isl_union_set_get_space(Universe))); |
| |
| for (isl::set Set : isl::manage_copy(Universe).get_set_list()) |
| fixSetToZero(Set, &Zero); |
| |
| isl_union_map *NonPositive = |
| isl_union_set_lex_le_union_set(UDeltas, Zero.release()); |
| |
| TC_RED = isl_union_map_subtract(TC_RED, NonPositive); |
| |
| TC_RED = isl_union_map_union( |
| TC_RED, isl_union_map_reverse(isl_union_map_copy(TC_RED))); |
| TC_RED = isl_union_map_coalesce(TC_RED); |
| |
| isl_union_map **Maps[] = {&RAW, &WAW, &WAR}; |
| isl_union_map **PrivMaps[] = {&PrivRAW, &PrivWAW, &PrivWAR}; |
| for (unsigned u = 0; u < 3; u++) { |
| isl_union_map **Map = Maps[u], **PrivMap = PrivMaps[u]; |
| |
| *PrivMap = isl_union_map_apply_range(isl_union_map_copy(*Map), |
| isl_union_map_copy(TC_RED)); |
| *PrivMap = isl_union_map_union( |
| *PrivMap, isl_union_map_apply_range(isl_union_map_copy(TC_RED), |
| isl_union_map_copy(*Map))); |
| |
| *Map = isl_union_map_union(*Map, *PrivMap); |
| } |
| |
| isl_union_set_free(Universe); |
| } |
| |
| static __isl_give isl_union_flow *buildFlow(__isl_keep isl_union_map *Snk, |
| __isl_keep isl_union_map *Src, |
| __isl_keep isl_union_map *MaySrc, |
| __isl_keep isl_schedule *Schedule) { |
| isl_union_access_info *AI; |
| |
| AI = isl_union_access_info_from_sink(isl_union_map_copy(Snk)); |
| if (MaySrc) |
| AI = isl_union_access_info_set_may_source(AI, isl_union_map_copy(MaySrc)); |
| if (Src) |
| AI = isl_union_access_info_set_must_source(AI, isl_union_map_copy(Src)); |
| AI = isl_union_access_info_set_schedule(AI, isl_schedule_copy(Schedule)); |
| auto Flow = isl_union_access_info_compute_flow(AI); |
| LLVM_DEBUG(if (!Flow) dbgs() |
| << "last error: " |
| << isl_ctx_last_error(isl_schedule_get_ctx(Schedule)) |
| << '\n';); |
| return Flow; |
| } |
| |
| /// Compute exact WAR dependences |
| /// We need exact WAR dependences. That is, if there are |
| /// dependences of the form: |
| /// must-W2 (sink) <- must-W1 (sink) <- R (source) |
| /// We wish to generate *ONLY*: |
| /// { R -> W1 }, |
| /// NOT: |
| /// { R -> W2, R -> W1 } |
| /// |
| /// However, in the case of may-writes, we do *not* wish to allow |
| /// may-writes to block must-writes. This makes sense, since perhaps the |
| /// may-write will not happen. In that case, the exact dependence will |
| /// be the (read -> must-write). |
| /// Example: |
| /// must-W2 (sink) <- may-W1 (sink) <- R (source) |
| /// We wish to generate: |
| /// { R-> W1, R -> W2 } |
| /// |
| /// We use the fact that may dependences are not allowed to flow |
| /// through a must source. That way, reads will be stopped by intermediate |
| /// must-writes. |
| /// However, may-sources may not interfere with one another. Hence, reads |
| /// will not block each other from generating dependences. |
| /// |
| /// Write (Sink) <- MustWrite (Must-Source) <- Read (MaySource) is |
| /// present, then the dependence |
| /// { Write <- Read } |
| /// is not tracked. |
| /// |
| /// We would like to specify the Must-Write as kills, source as Read |
| /// and sink as Write. |
| /// ISL does not have the functionality currently to support "kills". |
| /// Use the Must-Source as a way to specify "kills". |
| /// The drawback is that we will have both |
| /// { Write <- MustWrite, Write <- Read } |
| /// |
| /// We need to filter this to track only { Write <- Read }. |
| /// |
| /// Filtering { Write <- Read } from WAROverestimated: |
| /// -------------------------------------------------- |
| /// isl_union_flow_get_full_may_dependence gives us dependences of the form |
| /// WAROverestimated = { Read+MustWrite -> [Write -> MemoryAccess]} |
| /// |
| /// We need to intersect the domain with Read to get only |
| /// Read dependences. |
| /// Read = { Read -> MemoryAccess } |
| /// |
| /// |
| /// 1. Construct: |
| /// WARMemAccesses = { Read+Write -> [Read+Write -> MemoryAccess] } |
| /// This takes a Read+Write from WAROverestimated and maps it to the |
| /// corresponding wrapped memory access from WAROverestimated. |
| /// |
| /// 2. Apply WARMemAcesses to the domain of WAR Overestimated to give: |
| /// WAR = { [Read+Write -> MemoryAccess] -> [Write -> MemoryAccess] } |
| /// |
| /// WAR is in a state where we can intersect with Read, since they |
| /// have the same structure. |
| /// |
| /// 3. Intersect this with a wrapped Read. Read is wrapped |
| /// to ensure the domains look the same. |
| /// WAR = WAR \intersect (wrapped Read) |
| /// WAR = { [Read -> MemoryAccesss] -> [Write -> MemoryAccess] } |
| /// |
| /// 4. Project out the memory access in the domain to get |
| /// WAR = { Read -> Write } |
| static isl_union_map *buildWAR(isl_union_map *Write, isl_union_map *MustWrite, |
| isl_union_map *Read, isl_schedule *Schedule) { |
| isl_union_flow *Flow = buildFlow(Write, MustWrite, Read, Schedule); |
| auto *WAROverestimated = isl_union_flow_get_full_may_dependence(Flow); |
| |
| // 1. Constructing WARMemAccesses |
| // WarMemAccesses = { Read+Write -> [Write -> MemAccess] } |
| // Range factor of range product |
| // { Read+Write -> MemAcesss } |
| // Domain projection |
| // { [Read+Write -> MemAccess] -> Read+Write } |
| // Reverse |
| // { Read+Write -> [Read+Write -> MemAccess] } |
| auto WARMemAccesses = isl_union_map_copy(WAROverestimated); |
| WARMemAccesses = isl_union_map_range_factor_range(WAROverestimated); |
| WARMemAccesses = isl_union_map_domain_map(WARMemAccesses); |
| WARMemAccesses = isl_union_map_reverse(WARMemAccesses); |
| |
| // 2. Apply to get domain tagged with memory accesses |
| isl_union_map *WAR = |
| isl_union_map_apply_domain(WAROverestimated, WARMemAccesses); |
| |
| // 3. Intersect with Read to extract only reads |
| auto ReadWrapped = isl_union_map_wrap(isl_union_map_copy(Read)); |
| WAR = isl_union_map_intersect_domain(WAR, ReadWrapped); |
| |
| // 4. Project out memory accesses to get usual style dependences |
| WAR = isl_union_map_range_factor_domain(WAR); |
| WAR = isl_union_map_domain_factor_domain(WAR); |
| |
| isl_union_flow_free(Flow); |
| return WAR; |
| } |
| |
| void Dependences::calculateDependences(Scop &S) { |
| isl_union_map *Read, *MustWrite, *MayWrite, *ReductionTagMap; |
| isl_schedule *Schedule; |
| isl_union_set *TaggedStmtDomain; |
| |
| LLVM_DEBUG(dbgs() << "Scop: \n" << S << "\n"); |
| |
| collectInfo(S, Read, MustWrite, MayWrite, ReductionTagMap, TaggedStmtDomain, |
| Level); |
| |
| bool HasReductions = !isl_union_map_is_empty(ReductionTagMap); |
| |
| LLVM_DEBUG(dbgs() << "Read: " << Read << '\n'; |
| dbgs() << "MustWrite: " << MustWrite << '\n'; |
| dbgs() << "MayWrite: " << MayWrite << '\n'; |
| dbgs() << "ReductionTagMap: " << ReductionTagMap << '\n'; |
| dbgs() << "TaggedStmtDomain: " << TaggedStmtDomain << '\n';); |
| |
| Schedule = S.getScheduleTree().release(); |
| |
| if (!HasReductions) { |
| isl_union_map_free(ReductionTagMap); |
| // Tag the schedule tree if we want fine-grain dependence info |
| if (Level > AL_Statement) { |
| auto TaggedMap = |
| isl_union_set_unwrap(isl_union_set_copy(TaggedStmtDomain)); |
| auto Tags = isl_union_map_domain_map_union_pw_multi_aff(TaggedMap); |
| Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags); |
| } |
| } else { |
| isl_union_map *IdentityMap; |
| isl_union_pw_multi_aff *ReductionTags, *IdentityTags, *Tags; |
| |
| // Extract Reduction tags from the combined access domains in the given |
| // SCoP. The result is a map that maps each tagged element in the domain to |
| // the memory location it accesses. ReductionTags = {[Stmt[i] -> |
| // Array[f(i)]] -> Stmt[i] } |
| ReductionTags = |
| isl_union_map_domain_map_union_pw_multi_aff(ReductionTagMap); |
| |
| // Compute an identity map from each statement in domain to itself. |
| // IdentityTags = { [Stmt[i] -> Stmt[i] } |
| IdentityMap = isl_union_set_identity(isl_union_set_copy(TaggedStmtDomain)); |
| IdentityTags = isl_union_pw_multi_aff_from_union_map(IdentityMap); |
| |
| Tags = isl_union_pw_multi_aff_union_add(ReductionTags, IdentityTags); |
| |
| // By pulling back Tags from Schedule, we have a schedule tree that can |
| // be used to compute normal dependences, as well as 'tagged' reduction |
| // dependences. |
| Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Read: " << Read << "\n"; |
| dbgs() << "MustWrite: " << MustWrite << "\n"; |
| dbgs() << "MayWrite: " << MayWrite << "\n"; |
| dbgs() << "Schedule: " << Schedule << "\n"); |
| |
| isl_union_map *StrictWAW = nullptr; |
| { |
| IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), OptComputeOut); |
| |
| RAW = WAW = WAR = RED = nullptr; |
| isl_union_map *Write = isl_union_map_union(isl_union_map_copy(MustWrite), |
| isl_union_map_copy(MayWrite)); |
| |
| // We are interested in detecting reductions that do not have intermediate |
| // computations that are captured by other statements. |
| // |
| // Example: |
| // void f(int *A, int *B) { |
| // for(int i = 0; i <= 100; i++) { |
| // |
| // *-WAR (S0[i] -> S0[i + 1] 0 <= i <= 100)------------* |
| // | | |
| // *-WAW (S0[i] -> S0[i + 1] 0 <= i <= 100)------------* |
| // | | |
| // v | |
| // S0: *A += i; >------------------*-----------------------* |
| // | |
| // if (i >= 98) { WAR (S0[i] -> S1[i]) 98 <= i <= 100 |
| // | |
| // S1: *B = *A; <--------------* |
| // } |
| // } |
| // } |
| // |
| // S0[0 <= i <= 100] has a reduction. However, the values in |
| // S0[98 <= i <= 100] is captured in S1[98 <= i <= 100]. |
| // Since we allow free reordering on our reduction dependences, we need to |
| // remove all instances of a reduction statement that have data dependences |
| // originating from them. |
| // In the case of the example, we need to remove S0[98 <= i <= 100] from |
| // our reduction dependences. |
| // |
| // When we build up the WAW dependences that are used to detect reductions, |
| // we consider only **Writes that have no intermediate Reads**. |
| // |
| // `isl_union_flow_get_must_dependence` gives us dependences of the form: |
| // (sink <- must_source). |
| // |
| // It *will not give* dependences of the form: |
| // 1. (sink <- ... <- may_source <- ... <- must_source) |
| // 2. (sink <- ... <- must_source <- ... <- must_source) |
| // |
| // For a detailed reference on ISL's flow analysis, see: |
| // "Presburger Formulas and Polyhedral Compilation" - Approximate Dataflow |
| // Analysis. |
| // |
| // Since we set "Write" as a must-source, "Read" as a may-source, and ask |
| // for must dependences, we get all Writes to Writes that **do not flow |
| // through a Read**. |
| // |
| // ScopInfo::checkForReductions makes sure that if something captures |
| // the reduction variable in the same basic block, then it is rejected |
| // before it is even handed here. This makes sure that there is exactly |
| // one read and one write to a reduction variable in a Statement. |
| // Example: |
| // void f(int *sum, int A[N], int B[N]) { |
| // for (int i = 0; i < N; i++) { |
| // *sum += A[i]; < the store and the load is not tagged as a |
| // B[i] = *sum; < reduction-like access due to the overlap. |
| // } |
| // } |
| |
| isl_union_flow *Flow = buildFlow(Write, Write, Read, Schedule); |
| StrictWAW = isl_union_flow_get_must_dependence(Flow); |
| isl_union_flow_free(Flow); |
| |
| if (OptAnalysisType == VALUE_BASED_ANALYSIS) { |
| Flow = buildFlow(Read, MustWrite, MayWrite, Schedule); |
| RAW = isl_union_flow_get_may_dependence(Flow); |
| isl_union_flow_free(Flow); |
| |
| Flow = buildFlow(Write, MustWrite, MayWrite, Schedule); |
| WAW = isl_union_flow_get_may_dependence(Flow); |
| isl_union_flow_free(Flow); |
| |
| WAR = buildWAR(Write, MustWrite, Read, Schedule); |
| isl_union_map_free(Write); |
| isl_schedule_free(Schedule); |
| } else { |
| isl_union_flow *Flow; |
| |
| Flow = buildFlow(Read, nullptr, Write, Schedule); |
| RAW = isl_union_flow_get_may_dependence(Flow); |
| isl_union_flow_free(Flow); |
| |
| Flow = buildFlow(Write, nullptr, Read, Schedule); |
| WAR = isl_union_flow_get_may_dependence(Flow); |
| isl_union_flow_free(Flow); |
| |
| Flow = buildFlow(Write, nullptr, Write, Schedule); |
| WAW = isl_union_flow_get_may_dependence(Flow); |
| isl_union_flow_free(Flow); |
| |
| isl_union_map_free(Write); |
| isl_schedule_free(Schedule); |
| } |
| |
| isl_union_map_free(MustWrite); |
| isl_union_map_free(MayWrite); |
| isl_union_map_free(Read); |
| |
| RAW = isl_union_map_coalesce(RAW); |
| WAW = isl_union_map_coalesce(WAW); |
| WAR = isl_union_map_coalesce(WAR); |
| |
| // End of max_operations scope. |
| } |
| |
| if (isl_ctx_last_error(IslCtx.get()) == isl_error_quota) { |
| isl_union_map_free(RAW); |
| isl_union_map_free(WAW); |
| isl_union_map_free(WAR); |
| isl_union_map_free(StrictWAW); |
| RAW = WAW = WAR = StrictWAW = nullptr; |
| isl_ctx_reset_error(IslCtx.get()); |
| } |
| |
| // Drop out early, as the remaining computations are only needed for |
| // reduction dependences or dependences that are finer than statement |
| // level dependences. |
| if (!HasReductions && Level == AL_Statement) { |
| RED = isl_union_map_empty(isl_union_map_get_space(RAW)); |
| TC_RED = isl_union_map_empty(isl_union_set_get_space(TaggedStmtDomain)); |
| isl_union_set_free(TaggedStmtDomain); |
| isl_union_map_free(StrictWAW); |
| return; |
| } |
| |
| isl_union_map *STMT_RAW, *STMT_WAW, *STMT_WAR; |
| STMT_RAW = isl_union_map_intersect_domain( |
| isl_union_map_copy(RAW), isl_union_set_copy(TaggedStmtDomain)); |
| STMT_WAW = isl_union_map_intersect_domain( |
| isl_union_map_copy(WAW), isl_union_set_copy(TaggedStmtDomain)); |
| STMT_WAR = |
| isl_union_map_intersect_domain(isl_union_map_copy(WAR), TaggedStmtDomain); |
| LLVM_DEBUG({ |
| dbgs() << "Wrapped Dependences:\n"; |
| dump(); |
| dbgs() << "\n"; |
| }); |
| |
| // To handle reduction dependences we proceed as follows: |
| // 1) Aggregate all possible reduction dependences, namely all self |
| // dependences on reduction like statements. |
| // 2) Intersect them with the actual RAW & WAW dependences to the get the |
| // actual reduction dependences. This will ensure the load/store memory |
| // addresses were __identical__ in the two iterations of the statement. |
| // 3) Relax the original RAW, WAW and WAR dependences by subtracting the |
| // actual reduction dependences. Binary reductions (sum += A[i]) cause |
| // the same, RAW, WAW and WAR dependences. |
| // 4) Add the privatization dependences which are widened versions of |
| // already present dependences. They model the effect of manual |
| // privatization at the outermost possible place (namely after the last |
| // write and before the first access to a reduction location). |
| |
| // Step 1) |
| RED = isl_union_map_empty(isl_union_map_get_space(RAW)); |
| for (ScopStmt &Stmt : S) { |
| for (MemoryAccess *MA : Stmt) { |
| if (!MA->isReductionLike()) |
| continue; |
| isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release()); |
| isl_map *Identity = |
| isl_map_from_domain_and_range(isl_set_copy(AccDomW), AccDomW); |
| RED = isl_union_map_add_map(RED, Identity); |
| } |
| } |
| |
| // Step 2) |
| RED = isl_union_map_intersect(RED, isl_union_map_copy(RAW)); |
| RED = isl_union_map_intersect(RED, StrictWAW); |
| |
| if (!isl_union_map_is_empty(RED)) { |
| |
| // Step 3) |
| RAW = isl_union_map_subtract(RAW, isl_union_map_copy(RED)); |
| WAW = isl_union_map_subtract(WAW, isl_union_map_copy(RED)); |
| WAR = isl_union_map_subtract(WAR, isl_union_map_copy(RED)); |
| |
| // Step 4) |
| addPrivatizationDependences(); |
| } else |
| TC_RED = isl_union_map_empty(isl_union_map_get_space(RED)); |
| |
| LLVM_DEBUG({ |
| dbgs() << "Final Wrapped Dependences:\n"; |
| dump(); |
| dbgs() << "\n"; |
| }); |
| |
| // RED_SIN is used to collect all reduction dependences again after we |
| // split them according to the causing memory accesses. The current assumption |
| // is that our method of splitting will not have any leftovers. In the end |
| // we validate this assumption until we have more confidence in this method. |
| isl_union_map *RED_SIN = isl_union_map_empty(isl_union_map_get_space(RAW)); |
| |
| // For each reduction like memory access, check if there are reduction |
| // dependences with the access relation of the memory access as a domain |
| // (wrapped space!). If so these dependences are caused by this memory access. |
| // We then move this portion of reduction dependences back to the statement -> |
| // statement space and add a mapping from the memory access to these |
| // dependences. |
| for (ScopStmt &Stmt : S) { |
| for (MemoryAccess *MA : Stmt) { |
| if (!MA->isReductionLike()) |
| continue; |
| |
| isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release()); |
| isl_union_map *AccRedDepU = isl_union_map_intersect_domain( |
| isl_union_map_copy(TC_RED), isl_union_set_from_set(AccDomW)); |
| if (isl_union_map_is_empty(AccRedDepU)) { |
| isl_union_map_free(AccRedDepU); |
| continue; |
| } |
| |
| isl_map *AccRedDep = isl_map_from_union_map(AccRedDepU); |
| RED_SIN = isl_union_map_add_map(RED_SIN, isl_map_copy(AccRedDep)); |
| AccRedDep = isl_map_zip(AccRedDep); |
| AccRedDep = isl_set_unwrap(isl_map_domain(AccRedDep)); |
| setReductionDependences(MA, AccRedDep); |
| } |
| } |
| |
| assert(isl_union_map_is_equal(RED_SIN, TC_RED) && |
| "Intersecting the reduction dependence domain with the wrapped access " |
| "relation is not enough, we need to loosen the access relation also"); |
| isl_union_map_free(RED_SIN); |
| |
| RAW = isl_union_map_zip(RAW); |
| WAW = isl_union_map_zip(WAW); |
| WAR = isl_union_map_zip(WAR); |
| RED = isl_union_map_zip(RED); |
| TC_RED = isl_union_map_zip(TC_RED); |
| |
| LLVM_DEBUG({ |
| dbgs() << "Zipped Dependences:\n"; |
| dump(); |
| dbgs() << "\n"; |
| }); |
| |
| RAW = isl_union_set_unwrap(isl_union_map_domain(RAW)); |
| WAW = isl_union_set_unwrap(isl_union_map_domain(WAW)); |
| WAR = isl_union_set_unwrap(isl_union_map_domain(WAR)); |
| RED = isl_union_set_unwrap(isl_union_map_domain(RED)); |
| TC_RED = isl_union_set_unwrap(isl_union_map_domain(TC_RED)); |
| |
| LLVM_DEBUG({ |
| dbgs() << "Unwrapped Dependences:\n"; |
| dump(); |
| dbgs() << "\n"; |
| }); |
| |
| RAW = isl_union_map_union(RAW, STMT_RAW); |
| WAW = isl_union_map_union(WAW, STMT_WAW); |
| WAR = isl_union_map_union(WAR, STMT_WAR); |
| |
| RAW = isl_union_map_coalesce(RAW); |
| WAW = isl_union_map_coalesce(WAW); |
| WAR = isl_union_map_coalesce(WAR); |
| RED = isl_union_map_coalesce(RED); |
| TC_RED = isl_union_map_coalesce(TC_RED); |
| |
| LLVM_DEBUG(dump()); |
| } |
| |
| bool Dependences::isValidSchedule(Scop &S, |
| StatementToIslMapTy *NewSchedule) const { |
| if (LegalityCheckDisabled) |
| return true; |
| |
| isl_union_map *Dependences = |
| (getDependences(TYPE_RAW | TYPE_WAW | TYPE_WAR)).release(); |
| isl_space *Space = S.getParamSpace().release(); |
| isl_union_map *Schedule = isl_union_map_empty(Space); |
| |
| isl_space *ScheduleSpace = nullptr; |
| |
| for (ScopStmt &Stmt : S) { |
| isl_map *StmtScat; |
| |
| if (NewSchedule->find(&Stmt) == NewSchedule->end()) |
| StmtScat = Stmt.getSchedule().release(); |
| else |
| StmtScat = isl_map_copy((*NewSchedule)[&Stmt]); |
| assert(StmtScat && |
| "Schedules that contain extension nodes require special handling."); |
| |
| if (!ScheduleSpace) |
| ScheduleSpace = isl_space_range(isl_map_get_space(StmtScat)); |
| |
| Schedule = isl_union_map_add_map(Schedule, StmtScat); |
| } |
| |
| Dependences = |
| isl_union_map_apply_domain(Dependences, isl_union_map_copy(Schedule)); |
| Dependences = isl_union_map_apply_range(Dependences, Schedule); |
| |
| isl_set *Zero = isl_set_universe(isl_space_copy(ScheduleSpace)); |
| for (unsigned i = 0; i < isl_set_dim(Zero, isl_dim_set); i++) |
| Zero = isl_set_fix_si(Zero, isl_dim_set, i, 0); |
| |
| isl_union_set *UDeltas = isl_union_map_deltas(Dependences); |
| isl_set *Deltas = isl_union_set_extract_set(UDeltas, ScheduleSpace); |
| isl_union_set_free(UDeltas); |
| |
| isl_map *NonPositive = isl_set_lex_le_set(Deltas, Zero); |
| bool IsValid = isl_map_is_empty(NonPositive); |
| isl_map_free(NonPositive); |
| |
| return IsValid; |
| } |
| |
| // Check if the current scheduling dimension is parallel. |
| // |
| // We check for parallelism by verifying that the loop does not carry any |
| // dependences. |
| // |
| // Parallelism test: if the distance is zero in all outer dimensions, then it |
| // has to be zero in the current dimension as well. |
| // |
| // Implementation: first, translate dependences into time space, then force |
| // outer dimensions to be equal. If the distance is zero in the current |
| // dimension, then the loop is parallel. The distance is zero in the current |
| // dimension if it is a subset of a map with equal values for the current |
| // dimension. |
| bool Dependences::isParallel(isl_union_map *Schedule, isl_union_map *Deps, |
| isl_pw_aff **MinDistancePtr) const { |
| isl_set *Deltas, *Distance; |
| isl_map *ScheduleDeps; |
| unsigned Dimension; |
| bool IsParallel; |
| |
| Deps = isl_union_map_apply_range(Deps, isl_union_map_copy(Schedule)); |
| Deps = isl_union_map_apply_domain(Deps, isl_union_map_copy(Schedule)); |
| |
| if (isl_union_map_is_empty(Deps)) { |
| isl_union_map_free(Deps); |
| return true; |
| } |
| |
| ScheduleDeps = isl_map_from_union_map(Deps); |
| Dimension = isl_map_dim(ScheduleDeps, isl_dim_out) - 1; |
| |
| for (unsigned i = 0; i < Dimension; i++) |
| ScheduleDeps = isl_map_equate(ScheduleDeps, isl_dim_out, i, isl_dim_in, i); |
| |
| Deltas = isl_map_deltas(ScheduleDeps); |
| Distance = isl_set_universe(isl_set_get_space(Deltas)); |
| |
| // [0, ..., 0, +] - All zeros and last dimension larger than zero |
| for (unsigned i = 0; i < Dimension; i++) |
| Distance = isl_set_fix_si(Distance, isl_dim_set, i, 0); |
| |
| Distance = isl_set_lower_bound_si(Distance, isl_dim_set, Dimension, 1); |
| Distance = isl_set_intersect(Distance, Deltas); |
| |
| IsParallel = isl_set_is_empty(Distance); |
| if (IsParallel || !MinDistancePtr) { |
| isl_set_free(Distance); |
| return IsParallel; |
| } |
| |
| Distance = isl_set_project_out(Distance, isl_dim_set, 0, Dimension); |
| Distance = isl_set_coalesce(Distance); |
| |
| // This last step will compute a expression for the minimal value in the |
| // distance polyhedron Distance with regards to the first (outer most) |
| // dimension. |
| *MinDistancePtr = isl_pw_aff_coalesce(isl_set_dim_min(Distance, 0)); |
| |
| return false; |
| } |
| |
| static void printDependencyMap(raw_ostream &OS, __isl_keep isl_union_map *DM) { |
| if (DM) |
| OS << DM << "\n"; |
| else |
| OS << "n/a\n"; |
| } |
| |
| void Dependences::print(raw_ostream &OS) const { |
| OS << "\tRAW dependences:\n\t\t"; |
| printDependencyMap(OS, RAW); |
| OS << "\tWAR dependences:\n\t\t"; |
| printDependencyMap(OS, WAR); |
| OS << "\tWAW dependences:\n\t\t"; |
| printDependencyMap(OS, WAW); |
| OS << "\tReduction dependences:\n\t\t"; |
| printDependencyMap(OS, RED); |
| OS << "\tTransitive closure of reduction dependences:\n\t\t"; |
| printDependencyMap(OS, TC_RED); |
| } |
| |
| void Dependences::dump() const { print(dbgs()); } |
| |
| void Dependences::releaseMemory() { |
| isl_union_map_free(RAW); |
| isl_union_map_free(WAR); |
| isl_union_map_free(WAW); |
| isl_union_map_free(RED); |
| isl_union_map_free(TC_RED); |
| |
| RED = RAW = WAR = WAW = TC_RED = nullptr; |
| |
| for (auto &ReductionDeps : ReductionDependences) |
| isl_map_free(ReductionDeps.second); |
| ReductionDependences.clear(); |
| } |
| |
| isl::union_map Dependences::getDependences(int Kinds) const { |
| assert(hasValidDependences() && "No valid dependences available"); |
| isl::space Space = isl::manage_copy(RAW).get_space(); |
| isl::union_map Deps = Deps.empty(Space); |
| |
| if (Kinds & TYPE_RAW) |
| Deps = Deps.unite(isl::manage_copy(RAW)); |
| |
| if (Kinds & TYPE_WAR) |
| Deps = Deps.unite(isl::manage_copy(WAR)); |
| |
| if (Kinds & TYPE_WAW) |
| Deps = Deps.unite(isl::manage_copy(WAW)); |
| |
| if (Kinds & TYPE_RED) |
| Deps = Deps.unite(isl::manage_copy(RED)); |
| |
| if (Kinds & TYPE_TC_RED) |
| Deps = Deps.unite(isl::manage_copy(TC_RED)); |
| |
| Deps = Deps.coalesce(); |
| Deps = Deps.detect_equalities(); |
| return Deps; |
| } |
| |
| bool Dependences::hasValidDependences() const { |
| return (RAW != nullptr) && (WAR != nullptr) && (WAW != nullptr); |
| } |
| |
| __isl_give isl_map * |
| Dependences::getReductionDependences(MemoryAccess *MA) const { |
| return isl_map_copy(ReductionDependences.lookup(MA)); |
| } |
| |
| void Dependences::setReductionDependences(MemoryAccess *MA, isl_map *D) { |
| assert(ReductionDependences.count(MA) == 0 && |
| "Reduction dependences set twice!"); |
| ReductionDependences[MA] = D; |
| } |
| |
| const Dependences & |
| DependenceAnalysis::Result::getDependences(Dependences::AnalysisLevel Level) { |
| if (Dependences *d = D[Level].get()) |
| return *d; |
| |
| return recomputeDependences(Level); |
| } |
| |
| const Dependences &DependenceAnalysis::Result::recomputeDependences( |
| Dependences::AnalysisLevel Level) { |
| D[Level].reset(new Dependences(S.getSharedIslCtx(), Level)); |
| D[Level]->calculateDependences(S); |
| return *D[Level]; |
| } |
| |
| DependenceAnalysis::Result |
| DependenceAnalysis::run(Scop &S, ScopAnalysisManager &SAM, |
| ScopStandardAnalysisResults &SAR) { |
| return {S, {}}; |
| } |
| |
| AnalysisKey DependenceAnalysis::Key; |
| |
| PreservedAnalyses |
| DependenceInfoPrinterPass::run(Scop &S, ScopAnalysisManager &SAM, |
| ScopStandardAnalysisResults &SAR, |
| SPMUpdater &U) { |
| auto &DI = SAM.getResult<DependenceAnalysis>(S, SAR); |
| |
| if (auto d = DI.D[OptAnalysisLevel].get()) { |
| d->print(OS); |
| return PreservedAnalyses::all(); |
| } |
| |
| // Otherwise create the dependences on-the-fly and print them |
| Dependences D(S.getSharedIslCtx(), OptAnalysisLevel); |
| D.calculateDependences(S); |
| D.print(OS); |
| |
| return PreservedAnalyses::all(); |
| } |
| |
| const Dependences & |
| DependenceInfo::getDependences(Dependences::AnalysisLevel Level) { |
| if (Dependences *d = D[Level].get()) |
| return *d; |
| |
| return recomputeDependences(Level); |
| } |
| |
| const Dependences & |
| DependenceInfo::recomputeDependences(Dependences::AnalysisLevel Level) { |
| D[Level].reset(new Dependences(S->getSharedIslCtx(), Level)); |
| D[Level]->calculateDependences(*S); |
| return *D[Level]; |
| } |
| |
| bool DependenceInfo::runOnScop(Scop &ScopVar) { |
| S = &ScopVar; |
| return false; |
| } |
| |
| /// Print the dependences for the given SCoP to @p OS. |
| |
| void polly::DependenceInfo::printScop(raw_ostream &OS, Scop &S) const { |
| if (auto d = D[OptAnalysisLevel].get()) { |
| d->print(OS); |
| return; |
| } |
| |
| // Otherwise create the dependences on-the-fly and print it |
| Dependences D(S.getSharedIslCtx(), OptAnalysisLevel); |
| D.calculateDependences(S); |
| D.print(OS); |
| } |
| |
| void DependenceInfo::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequiredTransitive<ScopInfoRegionPass>(); |
| AU.setPreservesAll(); |
| } |
| |
| char DependenceInfo::ID = 0; |
| |
| Pass *polly::createDependenceInfoPass() { return new DependenceInfo(); } |
| |
| INITIALIZE_PASS_BEGIN(DependenceInfo, "polly-dependences", |
| "Polly - Calculate dependences", false, false); |
| INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass); |
| INITIALIZE_PASS_END(DependenceInfo, "polly-dependences", |
| "Polly - Calculate dependences", false, false) |
| |
| //===----------------------------------------------------------------------===// |
| const Dependences & |
| DependenceInfoWrapperPass::getDependences(Scop *S, |
| Dependences::AnalysisLevel Level) { |
| auto It = ScopToDepsMap.find(S); |
| if (It != ScopToDepsMap.end()) |
| if (It->second) { |
| if (It->second->getDependenceLevel() == Level) |
| return *It->second.get(); |
| } |
| return recomputeDependences(S, Level); |
| } |
| |
| const Dependences &DependenceInfoWrapperPass::recomputeDependences( |
| Scop *S, Dependences::AnalysisLevel Level) { |
| std::unique_ptr<Dependences> D(new Dependences(S->getSharedIslCtx(), Level)); |
| D->calculateDependences(*S); |
| auto Inserted = ScopToDepsMap.insert(std::make_pair(S, std::move(D))); |
| return *Inserted.first->second; |
| } |
| |
| bool DependenceInfoWrapperPass::runOnFunction(Function &F) { |
| auto &SI = *getAnalysis<ScopInfoWrapperPass>().getSI(); |
| for (auto &It : SI) { |
| assert(It.second && "Invalid SCoP object!"); |
| recomputeDependences(It.second.get(), Dependences::AL_Access); |
| } |
| return false; |
| } |
| |
| void DependenceInfoWrapperPass::print(raw_ostream &OS, const Module *M) const { |
| for (auto &It : ScopToDepsMap) { |
| assert((It.first && It.second) && "Invalid Scop or Dependence object!\n"); |
| It.second->print(OS); |
| } |
| } |
| |
| void DependenceInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequiredTransitive<ScopInfoWrapperPass>(); |
| AU.setPreservesAll(); |
| } |
| |
| char DependenceInfoWrapperPass::ID = 0; |
| |
| Pass *polly::createDependenceInfoWrapperPassPass() { |
| return new DependenceInfoWrapperPass(); |
| } |
| |
| INITIALIZE_PASS_BEGIN( |
| DependenceInfoWrapperPass, "polly-function-dependences", |
| "Polly - Calculate dependences for all the SCoPs of a function", false, |
| false) |
| INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass); |
| INITIALIZE_PASS_END( |
| DependenceInfoWrapperPass, "polly-function-dependences", |
| "Polly - Calculate dependences for all the SCoPs of a function", false, |
| false) |