| //===- ScopDetection.cpp - Detect Scops -----------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Detect the maximal Scops of a function. |
| // |
| // A static control part (Scop) is a subgraph of the control flow graph (CFG) |
| // that only has statically known control flow and can therefore be described |
| // within the polyhedral model. |
| // |
| // Every Scop fulfills these restrictions: |
| // |
| // * It is a single entry single exit region |
| // |
| // * Only affine linear bounds in the loops |
| // |
| // Every natural loop in a Scop must have a number of loop iterations that can |
| // be described as an affine linear function in surrounding loop iterators or |
| // parameters. (A parameter is a scalar that does not change its value during |
| // execution of the Scop). |
| // |
| // * Only comparisons of affine linear expressions in conditions |
| // |
| // * All loops and conditions perfectly nested |
| // |
| // The control flow needs to be structured such that it could be written using |
| // just 'for' and 'if' statements, without the need for any 'goto', 'break' or |
| // 'continue'. |
| // |
| // * Side effect free functions call |
| // |
| // Function calls and intrinsics that do not have side effects (readnone) |
| // or memory intrinsics (memset, memcpy, memmove) are allowed. |
| // |
| // The Scop detection finds the largest Scops by checking if the largest |
| // region is a Scop. If this is not the case, its canonical subregions are |
| // checked until a region is a Scop. It is now tried to extend this Scop by |
| // creating a larger non canonical region. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "polly/ScopDetection.h" |
| #include "polly/LinkAllPasses.h" |
| #include "polly/Options.h" |
| #include "polly/ScopDetectionDiagnostic.h" |
| #include "polly/Support/SCEVValidator.h" |
| #include "polly/Support/ScopHelper.h" |
| #include "polly/Support/ScopLocation.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/RegionInfo.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/DiagnosticPrinter.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Regex.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <memory> |
| #include <stack> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace polly; |
| |
| #define DEBUG_TYPE "polly-detect" |
| |
| // This option is set to a very high value, as analyzing such loops increases |
| // compile time on several cases. For experiments that enable this option, |
| // a value of around 40 has been working to avoid run-time regressions with |
| // Polly while still exposing interesting optimization opportunities. |
| static cl::opt<int> ProfitabilityMinPerLoopInstructions( |
| "polly-detect-profitability-min-per-loop-insts", |
| cl::desc("The minimal number of per-loop instructions before a single loop " |
| "region is considered profitable"), |
| cl::Hidden, cl::ValueRequired, cl::init(100000000), cl::cat(PollyCategory)); |
| |
| bool polly::PollyProcessUnprofitable; |
| |
| static cl::opt<bool, true> XPollyProcessUnprofitable( |
| "polly-process-unprofitable", |
| cl::desc( |
| "Process scops that are unlikely to benefit from Polly optimizations."), |
| cl::location(PollyProcessUnprofitable), cl::init(false), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| |
| static cl::list<std::string> OnlyFunctions( |
| "polly-only-func", |
| cl::desc("Only run on functions that match a regex. " |
| "Multiple regexes can be comma separated. " |
| "Scop detection will run on all functions that match " |
| "ANY of the regexes provided."), |
| cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); |
| |
| static cl::list<std::string> IgnoredFunctions( |
| "polly-ignore-func", |
| cl::desc("Ignore functions that match a regex. " |
| "Multiple regexes can be comma separated. " |
| "Scop detection will ignore all functions that match " |
| "ANY of the regexes provided."), |
| cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); |
| |
| bool polly::PollyAllowFullFunction; |
| |
| static cl::opt<bool, true> |
| XAllowFullFunction("polly-detect-full-functions", |
| cl::desc("Allow the detection of full functions"), |
| cl::location(polly::PollyAllowFullFunction), |
| cl::init(false), cl::cat(PollyCategory)); |
| |
| static cl::opt<std::string> OnlyRegion( |
| "polly-only-region", |
| cl::desc("Only run on certain regions (The provided identifier must " |
| "appear in the name of the region's entry block"), |
| cl::value_desc("identifier"), cl::ValueRequired, cl::init(""), |
| cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> |
| IgnoreAliasing("polly-ignore-aliasing", |
| cl::desc("Ignore possible aliasing of the array bases"), |
| cl::Hidden, cl::init(false), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| |
| bool polly::PollyAllowUnsignedOperations; |
| |
| static cl::opt<bool, true> XPollyAllowUnsignedOperations( |
| "polly-allow-unsigned-operations", |
| cl::desc("Allow unsigned operations such as comparisons or zero-extends."), |
| cl::location(PollyAllowUnsignedOperations), cl::Hidden, cl::ZeroOrMore, |
| cl::init(true), cl::cat(PollyCategory)); |
| |
| bool polly::PollyUseRuntimeAliasChecks; |
| |
| static cl::opt<bool, true> XPollyUseRuntimeAliasChecks( |
| "polly-use-runtime-alias-checks", |
| cl::desc("Use runtime alias checks to resolve possible aliasing."), |
| cl::location(PollyUseRuntimeAliasChecks), cl::Hidden, cl::ZeroOrMore, |
| cl::init(true), cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> |
| ReportLevel("polly-report", |
| cl::desc("Print information about the activities of Polly"), |
| cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> AllowDifferentTypes( |
| "polly-allow-differing-element-types", |
| cl::desc("Allow different element types for array accesses"), cl::Hidden, |
| cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> |
| AllowNonAffine("polly-allow-nonaffine", |
| cl::desc("Allow non affine access functions in arrays"), |
| cl::Hidden, cl::init(false), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> |
| AllowModrefCall("polly-allow-modref-calls", |
| cl::desc("Allow functions with known modref behavior"), |
| cl::Hidden, cl::init(false), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> AllowNonAffineSubRegions( |
| "polly-allow-nonaffine-branches", |
| cl::desc("Allow non affine conditions for branches"), cl::Hidden, |
| cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> |
| AllowNonAffineSubLoops("polly-allow-nonaffine-loops", |
| cl::desc("Allow non affine conditions for loops"), |
| cl::Hidden, cl::init(false), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| |
| static cl::opt<bool, true> |
| TrackFailures("polly-detect-track-failures", |
| cl::desc("Track failure strings in detecting scop regions"), |
| cl::location(PollyTrackFailures), cl::Hidden, cl::ZeroOrMore, |
| cl::init(true), cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> KeepGoing("polly-detect-keep-going", |
| cl::desc("Do not fail on the first error."), |
| cl::Hidden, cl::ZeroOrMore, cl::init(false), |
| cl::cat(PollyCategory)); |
| |
| static cl::opt<bool, true> |
| PollyDelinearizeX("polly-delinearize", |
| cl::desc("Delinearize array access functions"), |
| cl::location(PollyDelinearize), cl::Hidden, |
| cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> |
| VerifyScops("polly-detect-verify", |
| cl::desc("Verify the detected SCoPs after each transformation"), |
| cl::Hidden, cl::init(false), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| |
| bool polly::PollyInvariantLoadHoisting; |
| |
| static cl::opt<bool, true> XPollyInvariantLoadHoisting( |
| "polly-invariant-load-hoisting", cl::desc("Hoist invariant loads."), |
| cl::location(PollyInvariantLoadHoisting), cl::Hidden, cl::ZeroOrMore, |
| cl::init(false), cl::cat(PollyCategory)); |
| |
| /// The minimal trip count under which loops are considered unprofitable. |
| static const unsigned MIN_LOOP_TRIP_COUNT = 8; |
| |
| bool polly::PollyTrackFailures = false; |
| bool polly::PollyDelinearize = false; |
| StringRef polly::PollySkipFnAttr = "polly.skip.fn"; |
| |
| //===----------------------------------------------------------------------===// |
| // Statistics. |
| |
| STATISTIC(NumScopRegions, "Number of scops"); |
| STATISTIC(NumLoopsInScop, "Number of loops in scops"); |
| STATISTIC(NumScopsDepthZero, "Number of scops with maximal loop depth 0"); |
| STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1"); |
| STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2"); |
| STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3"); |
| STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4"); |
| STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5"); |
| STATISTIC(NumScopsDepthLarger, |
| "Number of scops with maximal loop depth 6 and larger"); |
| STATISTIC(NumProfScopRegions, "Number of scops (profitable scops only)"); |
| STATISTIC(NumLoopsInProfScop, |
| "Number of loops in scops (profitable scops only)"); |
| STATISTIC(NumLoopsOverall, "Number of total loops"); |
| STATISTIC(NumProfScopsDepthZero, |
| "Number of scops with maximal loop depth 0 (profitable scops only)"); |
| STATISTIC(NumProfScopsDepthOne, |
| "Number of scops with maximal loop depth 1 (profitable scops only)"); |
| STATISTIC(NumProfScopsDepthTwo, |
| "Number of scops with maximal loop depth 2 (profitable scops only)"); |
| STATISTIC(NumProfScopsDepthThree, |
| "Number of scops with maximal loop depth 3 (profitable scops only)"); |
| STATISTIC(NumProfScopsDepthFour, |
| "Number of scops with maximal loop depth 4 (profitable scops only)"); |
| STATISTIC(NumProfScopsDepthFive, |
| "Number of scops with maximal loop depth 5 (profitable scops only)"); |
| STATISTIC(NumProfScopsDepthLarger, |
| "Number of scops with maximal loop depth 6 and larger " |
| "(profitable scops only)"); |
| STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops"); |
| STATISTIC(MaxNumLoopsInProfScop, |
| "Maximal number of loops in scops (profitable scops only)"); |
| |
| static void updateLoopCountStatistic(ScopDetection::LoopStats Stats, |
| bool OnlyProfitable); |
| |
| namespace { |
| |
| class DiagnosticScopFound : public DiagnosticInfo { |
| private: |
| static int PluginDiagnosticKind; |
| |
| Function &F; |
| std::string FileName; |
| unsigned EntryLine, ExitLine; |
| |
| public: |
| DiagnosticScopFound(Function &F, std::string FileName, unsigned EntryLine, |
| unsigned ExitLine) |
| : DiagnosticInfo(PluginDiagnosticKind, DS_Note), F(F), FileName(FileName), |
| EntryLine(EntryLine), ExitLine(ExitLine) {} |
| |
| void print(DiagnosticPrinter &DP) const override; |
| |
| static bool classof(const DiagnosticInfo *DI) { |
| return DI->getKind() == PluginDiagnosticKind; |
| } |
| }; |
| } // namespace |
| |
| int DiagnosticScopFound::PluginDiagnosticKind = |
| getNextAvailablePluginDiagnosticKind(); |
| |
| void DiagnosticScopFound::print(DiagnosticPrinter &DP) const { |
| DP << "Polly detected an optimizable loop region (scop) in function '" << F |
| << "'\n"; |
| |
| if (FileName.empty()) { |
| DP << "Scop location is unknown. Compile with debug info " |
| "(-g) to get more precise information. "; |
| return; |
| } |
| |
| DP << FileName << ":" << EntryLine << ": Start of scop\n"; |
| DP << FileName << ":" << ExitLine << ": End of scop"; |
| } |
| |
| /// Check if a string matches any regex in a list of regexes. |
| /// @param Str the input string to match against. |
| /// @param RegexList a list of strings that are regular expressions. |
| static bool doesStringMatchAnyRegex(StringRef Str, |
| const cl::list<std::string> &RegexList) { |
| for (auto RegexStr : RegexList) { |
| Regex R(RegexStr); |
| |
| std::string Err; |
| if (!R.isValid(Err)) |
| report_fatal_error("invalid regex given as input to polly: " + Err, true); |
| |
| if (R.match(Str)) |
| return true; |
| } |
| return false; |
| } |
| //===----------------------------------------------------------------------===// |
| // ScopDetection. |
| |
| ScopDetection::ScopDetection(Function &F, const DominatorTree &DT, |
| ScalarEvolution &SE, LoopInfo &LI, RegionInfo &RI, |
| AliasAnalysis &AA, OptimizationRemarkEmitter &ORE) |
| : DT(DT), SE(SE), LI(LI), RI(RI), AA(AA), ORE(ORE) { |
| if (!PollyProcessUnprofitable && LI.empty()) |
| return; |
| |
| Region *TopRegion = RI.getTopLevelRegion(); |
| |
| if (!OnlyFunctions.empty() && |
| !doesStringMatchAnyRegex(F.getName(), OnlyFunctions)) |
| return; |
| |
| if (doesStringMatchAnyRegex(F.getName(), IgnoredFunctions)) |
| return; |
| |
| if (!isValidFunction(F)) |
| return; |
| |
| findScops(*TopRegion); |
| |
| NumScopRegions += ValidRegions.size(); |
| |
| // Prune non-profitable regions. |
| for (auto &DIt : DetectionContextMap) { |
| auto &DC = DIt.getSecond(); |
| if (DC.Log.hasErrors()) |
| continue; |
| if (!ValidRegions.count(&DC.CurRegion)) |
| continue; |
| LoopStats Stats = countBeneficialLoops(&DC.CurRegion, SE, LI, 0); |
| updateLoopCountStatistic(Stats, false /* OnlyProfitable */); |
| if (isProfitableRegion(DC)) { |
| updateLoopCountStatistic(Stats, true /* OnlyProfitable */); |
| continue; |
| } |
| |
| ValidRegions.remove(&DC.CurRegion); |
| } |
| |
| NumProfScopRegions += ValidRegions.size(); |
| NumLoopsOverall += countBeneficialLoops(TopRegion, SE, LI, 0).NumLoops; |
| |
| // Only makes sense when we tracked errors. |
| if (PollyTrackFailures) |
| emitMissedRemarks(F); |
| |
| if (ReportLevel) |
| printLocations(F); |
| |
| assert(ValidRegions.size() <= DetectionContextMap.size() && |
| "Cached more results than valid regions"); |
| } |
| |
| template <class RR, typename... Args> |
| inline bool ScopDetection::invalid(DetectionContext &Context, bool Assert, |
| Args &&... Arguments) const { |
| if (!Context.Verifying) { |
| RejectLog &Log = Context.Log; |
| std::shared_ptr<RR> RejectReason = std::make_shared<RR>(Arguments...); |
| |
| if (PollyTrackFailures) |
| Log.report(RejectReason); |
| |
| LLVM_DEBUG(dbgs() << RejectReason->getMessage()); |
| LLVM_DEBUG(dbgs() << "\n"); |
| } else { |
| assert(!Assert && "Verification of detected scop failed"); |
| } |
| |
| return false; |
| } |
| |
| bool ScopDetection::isMaxRegionInScop(const Region &R, bool Verify) const { |
| if (!ValidRegions.count(&R)) |
| return false; |
| |
| if (Verify) { |
| DetectionContextMap.erase(getBBPairForRegion(&R)); |
| const auto &It = DetectionContextMap.insert(std::make_pair( |
| getBBPairForRegion(&R), |
| DetectionContext(const_cast<Region &>(R), AA, false /*verifying*/))); |
| DetectionContext &Context = It.first->second; |
| return isValidRegion(Context); |
| } |
| |
| return true; |
| } |
| |
| std::string ScopDetection::regionIsInvalidBecause(const Region *R) const { |
| // Get the first error we found. Even in keep-going mode, this is the first |
| // reason that caused the candidate to be rejected. |
| auto *Log = lookupRejectionLog(R); |
| |
| // This can happen when we marked a region invalid, but didn't track |
| // an error for it. |
| if (!Log || !Log->hasErrors()) |
| return ""; |
| |
| RejectReasonPtr RR = *Log->begin(); |
| return RR->getMessage(); |
| } |
| |
| bool ScopDetection::addOverApproximatedRegion(Region *AR, |
| DetectionContext &Context) const { |
| // If we already know about Ar we can exit. |
| if (!Context.NonAffineSubRegionSet.insert(AR)) |
| return true; |
| |
| // All loops in the region have to be overapproximated too if there |
| // are accesses that depend on the iteration count. |
| |
| for (BasicBlock *BB : AR->blocks()) { |
| Loop *L = LI.getLoopFor(BB); |
| if (AR->contains(L)) |
| Context.BoxedLoopsSet.insert(L); |
| } |
| |
| return (AllowNonAffineSubLoops || Context.BoxedLoopsSet.empty()); |
| } |
| |
| bool ScopDetection::onlyValidRequiredInvariantLoads( |
| InvariantLoadsSetTy &RequiredILS, DetectionContext &Context) const { |
| Region &CurRegion = Context.CurRegion; |
| const DataLayout &DL = CurRegion.getEntry()->getModule()->getDataLayout(); |
| |
| if (!PollyInvariantLoadHoisting && !RequiredILS.empty()) |
| return false; |
| |
| for (LoadInst *Load : RequiredILS) { |
| // If we already know a load has been accepted as required invariant, we |
| // already run the validation below once and consequently don't need to |
| // run it again. Hence, we return early. For certain test cases (e.g., |
| // COSMO this avoids us spending 50% of scop-detection time in this |
| // very function (and its children). |
| if (Context.RequiredILS.count(Load)) |
| continue; |
| if (!isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS)) |
| return false; |
| |
| for (auto NonAffineRegion : Context.NonAffineSubRegionSet) { |
| if (isSafeToLoadUnconditionally(Load->getPointerOperand(), |
| Load->getAlignment(), DL)) |
| continue; |
| |
| if (NonAffineRegion->contains(Load) && |
| Load->getParent() != NonAffineRegion->getEntry()) |
| return false; |
| } |
| } |
| |
| Context.RequiredILS.insert(RequiredILS.begin(), RequiredILS.end()); |
| |
| return true; |
| } |
| |
| bool ScopDetection::involvesMultiplePtrs(const SCEV *S0, const SCEV *S1, |
| Loop *Scope) const { |
| SetVector<Value *> Values; |
| findValues(S0, SE, Values); |
| if (S1) |
| findValues(S1, SE, Values); |
| |
| SmallPtrSet<Value *, 8> PtrVals; |
| for (auto *V : Values) { |
| if (auto *P2I = dyn_cast<PtrToIntInst>(V)) |
| V = P2I->getOperand(0); |
| |
| if (!V->getType()->isPointerTy()) |
| continue; |
| |
| auto *PtrSCEV = SE.getSCEVAtScope(V, Scope); |
| if (isa<SCEVConstant>(PtrSCEV)) |
| continue; |
| |
| auto *BasePtr = dyn_cast<SCEVUnknown>(SE.getPointerBase(PtrSCEV)); |
| if (!BasePtr) |
| return true; |
| |
| auto *BasePtrVal = BasePtr->getValue(); |
| if (PtrVals.insert(BasePtrVal).second) { |
| for (auto *PtrVal : PtrVals) |
| if (PtrVal != BasePtrVal && !AA.isNoAlias(PtrVal, BasePtrVal)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool ScopDetection::isAffine(const SCEV *S, Loop *Scope, |
| DetectionContext &Context) const { |
| InvariantLoadsSetTy AccessILS; |
| if (!isAffineExpr(&Context.CurRegion, Scope, S, SE, &AccessILS)) |
| return false; |
| |
| if (!onlyValidRequiredInvariantLoads(AccessILS, Context)) |
| return false; |
| |
| return true; |
| } |
| |
| bool ScopDetection::isValidSwitch(BasicBlock &BB, SwitchInst *SI, |
| Value *Condition, bool IsLoopBranch, |
| DetectionContext &Context) const { |
| Loop *L = LI.getLoopFor(&BB); |
| const SCEV *ConditionSCEV = SE.getSCEVAtScope(Condition, L); |
| |
| if (IsLoopBranch && L->isLoopLatch(&BB)) |
| return false; |
| |
| // Check for invalid usage of different pointers in one expression. |
| if (involvesMultiplePtrs(ConditionSCEV, nullptr, L)) |
| return false; |
| |
| if (isAffine(ConditionSCEV, L, Context)) |
| return true; |
| |
| if (AllowNonAffineSubRegions && |
| addOverApproximatedRegion(RI.getRegionFor(&BB), Context)) |
| return true; |
| |
| return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB, |
| ConditionSCEV, ConditionSCEV, SI); |
| } |
| |
| bool ScopDetection::isValidBranch(BasicBlock &BB, BranchInst *BI, |
| Value *Condition, bool IsLoopBranch, |
| DetectionContext &Context) const { |
| // Constant integer conditions are always affine. |
| if (isa<ConstantInt>(Condition)) |
| return true; |
| |
| if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) { |
| auto Opcode = BinOp->getOpcode(); |
| if (Opcode == Instruction::And || Opcode == Instruction::Or) { |
| Value *Op0 = BinOp->getOperand(0); |
| Value *Op1 = BinOp->getOperand(1); |
| return isValidBranch(BB, BI, Op0, IsLoopBranch, Context) && |
| isValidBranch(BB, BI, Op1, IsLoopBranch, Context); |
| } |
| } |
| |
| if (auto PHI = dyn_cast<PHINode>(Condition)) { |
| auto *Unique = dyn_cast_or_null<ConstantInt>( |
| getUniqueNonErrorValue(PHI, &Context.CurRegion, LI, DT)); |
| if (Unique && (Unique->isZero() || Unique->isOne())) |
| return true; |
| } |
| |
| if (auto Load = dyn_cast<LoadInst>(Condition)) |
| if (!IsLoopBranch && Context.CurRegion.contains(Load)) { |
| Context.RequiredILS.insert(Load); |
| return true; |
| } |
| |
| // Non constant conditions of branches need to be ICmpInst. |
| if (!isa<ICmpInst>(Condition)) { |
| if (!IsLoopBranch && AllowNonAffineSubRegions && |
| addOverApproximatedRegion(RI.getRegionFor(&BB), Context)) |
| return true; |
| return invalid<ReportInvalidCond>(Context, /*Assert=*/true, BI, &BB); |
| } |
| |
| ICmpInst *ICmp = cast<ICmpInst>(Condition); |
| |
| // Are both operands of the ICmp affine? |
| if (isa<UndefValue>(ICmp->getOperand(0)) || |
| isa<UndefValue>(ICmp->getOperand(1))) |
| return invalid<ReportUndefOperand>(Context, /*Assert=*/true, &BB, ICmp); |
| |
| Loop *L = LI.getLoopFor(&BB); |
| const SCEV *LHS = SE.getSCEVAtScope(ICmp->getOperand(0), L); |
| const SCEV *RHS = SE.getSCEVAtScope(ICmp->getOperand(1), L); |
| |
| LHS = tryForwardThroughPHI(LHS, Context.CurRegion, SE, LI, DT); |
| RHS = tryForwardThroughPHI(RHS, Context.CurRegion, SE, LI, DT); |
| |
| // If unsigned operations are not allowed try to approximate the region. |
| if (ICmp->isUnsigned() && !PollyAllowUnsignedOperations) |
| return !IsLoopBranch && AllowNonAffineSubRegions && |
| addOverApproximatedRegion(RI.getRegionFor(&BB), Context); |
| |
| // Check for invalid usage of different pointers in one expression. |
| if (ICmp->isEquality() && involvesMultiplePtrs(LHS, nullptr, L) && |
| involvesMultiplePtrs(RHS, nullptr, L)) |
| return false; |
| |
| // Check for invalid usage of different pointers in a relational comparison. |
| if (ICmp->isRelational() && involvesMultiplePtrs(LHS, RHS, L)) |
| return false; |
| |
| if (isAffine(LHS, L, Context) && isAffine(RHS, L, Context)) |
| return true; |
| |
| if (!IsLoopBranch && AllowNonAffineSubRegions && |
| addOverApproximatedRegion(RI.getRegionFor(&BB), Context)) |
| return true; |
| |
| if (IsLoopBranch) |
| return false; |
| |
| return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB, LHS, RHS, |
| ICmp); |
| } |
| |
| bool ScopDetection::isValidCFG(BasicBlock &BB, bool IsLoopBranch, |
| bool AllowUnreachable, |
| DetectionContext &Context) const { |
| Region &CurRegion = Context.CurRegion; |
| |
| TerminatorInst *TI = BB.getTerminator(); |
| |
| if (AllowUnreachable && isa<UnreachableInst>(TI)) |
| return true; |
| |
| // Return instructions are only valid if the region is the top level region. |
| if (isa<ReturnInst>(TI) && CurRegion.isTopLevelRegion()) |
| return true; |
| |
| Value *Condition = getConditionFromTerminator(TI); |
| |
| if (!Condition) |
| return invalid<ReportInvalidTerminator>(Context, /*Assert=*/true, &BB); |
| |
| // UndefValue is not allowed as condition. |
| if (isa<UndefValue>(Condition)) |
| return invalid<ReportUndefCond>(Context, /*Assert=*/true, TI, &BB); |
| |
| if (BranchInst *BI = dyn_cast<BranchInst>(TI)) |
| return isValidBranch(BB, BI, Condition, IsLoopBranch, Context); |
| |
| SwitchInst *SI = dyn_cast<SwitchInst>(TI); |
| assert(SI && "Terminator was neither branch nor switch"); |
| |
| return isValidSwitch(BB, SI, Condition, IsLoopBranch, Context); |
| } |
| |
| bool ScopDetection::isValidCallInst(CallInst &CI, |
| DetectionContext &Context) const { |
| if (CI.doesNotReturn()) |
| return false; |
| |
| if (CI.doesNotAccessMemory()) |
| return true; |
| |
| if (auto *II = dyn_cast<IntrinsicInst>(&CI)) |
| if (isValidIntrinsicInst(*II, Context)) |
| return true; |
| |
| Function *CalledFunction = CI.getCalledFunction(); |
| |
| // Indirect calls are not supported. |
| if (CalledFunction == nullptr) |
| return false; |
| |
| if (isDebugCall(&CI)) { |
| LLVM_DEBUG(dbgs() << "Allow call to debug function: " |
| << CalledFunction->getName() << '\n'); |
| return true; |
| } |
| |
| if (AllowModrefCall) { |
| switch (AA.getModRefBehavior(CalledFunction)) { |
| case FMRB_UnknownModRefBehavior: |
| return false; |
| case FMRB_DoesNotAccessMemory: |
| case FMRB_OnlyReadsMemory: |
| // Implicitly disable delinearization since we have an unknown |
| // accesses with an unknown access function. |
| Context.HasUnknownAccess = true; |
| Context.AST.add(&CI); |
| return true; |
| case FMRB_OnlyReadsArgumentPointees: |
| case FMRB_OnlyAccessesArgumentPointees: |
| for (const auto &Arg : CI.arg_operands()) { |
| if (!Arg->getType()->isPointerTy()) |
| continue; |
| |
| // Bail if a pointer argument has a base address not known to |
| // ScalarEvolution. Note that a zero pointer is acceptable. |
| auto *ArgSCEV = SE.getSCEVAtScope(Arg, LI.getLoopFor(CI.getParent())); |
| if (ArgSCEV->isZero()) |
| continue; |
| |
| auto *BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV)); |
| if (!BP) |
| return false; |
| |
| // Implicitly disable delinearization since we have an unknown |
| // accesses with an unknown access function. |
| Context.HasUnknownAccess = true; |
| } |
| |
| Context.AST.add(&CI); |
| return true; |
| case FMRB_DoesNotReadMemory: |
| case FMRB_OnlyAccessesInaccessibleMem: |
| case FMRB_OnlyAccessesInaccessibleOrArgMem: |
| return false; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool ScopDetection::isValidIntrinsicInst(IntrinsicInst &II, |
| DetectionContext &Context) const { |
| if (isIgnoredIntrinsic(&II)) |
| return true; |
| |
| // The closest loop surrounding the call instruction. |
| Loop *L = LI.getLoopFor(II.getParent()); |
| |
| // The access function and base pointer for memory intrinsics. |
| const SCEV *AF; |
| const SCEVUnknown *BP; |
| |
| switch (II.getIntrinsicID()) { |
| // Memory intrinsics that can be represented are supported. |
| case Intrinsic::memmove: |
| case Intrinsic::memcpy: |
| AF = SE.getSCEVAtScope(cast<MemTransferInst>(II).getSource(), L); |
| if (!AF->isZero()) { |
| BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF)); |
| // Bail if the source pointer is not valid. |
| if (!isValidAccess(&II, AF, BP, Context)) |
| return false; |
| } |
| // Fall through |
| case Intrinsic::memset: |
| AF = SE.getSCEVAtScope(cast<MemIntrinsic>(II).getDest(), L); |
| if (!AF->isZero()) { |
| BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF)); |
| // Bail if the destination pointer is not valid. |
| if (!isValidAccess(&II, AF, BP, Context)) |
| return false; |
| } |
| |
| // Bail if the length is not affine. |
| if (!isAffine(SE.getSCEVAtScope(cast<MemIntrinsic>(II).getLength(), L), L, |
| Context)) |
| return false; |
| |
| return true; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool ScopDetection::isInvariant(Value &Val, const Region &Reg, |
| DetectionContext &Ctx) const { |
| // A reference to function argument or constant value is invariant. |
| if (isa<Argument>(Val) || isa<Constant>(Val)) |
| return true; |
| |
| Instruction *I = dyn_cast<Instruction>(&Val); |
| if (!I) |
| return false; |
| |
| if (!Reg.contains(I)) |
| return true; |
| |
| // Loads within the SCoP may read arbitrary values, need to hoist them. If it |
| // is not hoistable, it will be rejected later, but here we assume it is and |
| // that makes the value invariant. |
| if (auto LI = dyn_cast<LoadInst>(I)) { |
| Ctx.RequiredILS.insert(LI); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| namespace { |
| |
| /// Remove smax of smax(0, size) expressions from a SCEV expression and |
| /// register the '...' components. |
| /// |
| /// Array access expressions as they are generated by GFortran contain smax(0, |
| /// size) expressions that confuse the 'normal' delinearization algorithm. |
| /// However, if we extract such expressions before the normal delinearization |
| /// takes place they can actually help to identify array size expressions in |
| /// Fortran accesses. For the subsequently following delinearization the smax(0, |
| /// size) component can be replaced by just 'size'. This is correct as we will |
| /// always add and verify the assumption that for all subscript expressions |
| /// 'exp' the inequality 0 <= exp < size holds. Hence, we will also verify |
| /// that 0 <= size, which means smax(0, size) == size. |
| class SCEVRemoveMax : public SCEVRewriteVisitor<SCEVRemoveMax> { |
| public: |
| SCEVRemoveMax(ScalarEvolution &SE, std::vector<const SCEV *> *Terms) |
| : SCEVRewriteVisitor(SE), Terms(Terms) {} |
| |
| static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, |
| std::vector<const SCEV *> *Terms = nullptr) { |
| SCEVRemoveMax Rewriter(SE, Terms); |
| return Rewriter.visit(Scev); |
| } |
| |
| const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { |
| if ((Expr->getNumOperands() == 2) && Expr->getOperand(0)->isZero()) { |
| auto Res = visit(Expr->getOperand(1)); |
| if (Terms) |
| (*Terms).push_back(Res); |
| return Res; |
| } |
| |
| return Expr; |
| } |
| |
| private: |
| std::vector<const SCEV *> *Terms; |
| }; |
| } // namespace |
| |
| SmallVector<const SCEV *, 4> |
| ScopDetection::getDelinearizationTerms(DetectionContext &Context, |
| const SCEVUnknown *BasePointer) const { |
| SmallVector<const SCEV *, 4> Terms; |
| for (const auto &Pair : Context.Accesses[BasePointer]) { |
| std::vector<const SCEV *> MaxTerms; |
| SCEVRemoveMax::rewrite(Pair.second, SE, &MaxTerms); |
| if (!MaxTerms.empty()) { |
| Terms.insert(Terms.begin(), MaxTerms.begin(), MaxTerms.end()); |
| continue; |
| } |
| // In case the outermost expression is a plain add, we check if any of its |
| // terms has the form 4 * %inst * %param * %param ..., aka a term that |
| // contains a product between a parameter and an instruction that is |
| // inside the scop. Such instructions, if allowed at all, are instructions |
| // SCEV can not represent, but Polly is still looking through. As a |
| // result, these instructions can depend on induction variables and are |
| // most likely no array sizes. However, terms that are multiplied with |
| // them are likely candidates for array sizes. |
| if (auto *AF = dyn_cast<SCEVAddExpr>(Pair.second)) { |
| for (auto Op : AF->operands()) { |
| if (auto *AF2 = dyn_cast<SCEVAddRecExpr>(Op)) |
| SE.collectParametricTerms(AF2, Terms); |
| if (auto *AF2 = dyn_cast<SCEVMulExpr>(Op)) { |
| SmallVector<const SCEV *, 0> Operands; |
| |
| for (auto *MulOp : AF2->operands()) { |
| if (auto *Const = dyn_cast<SCEVConstant>(MulOp)) |
| Operands.push_back(Const); |
| if (auto *Unknown = dyn_cast<SCEVUnknown>(MulOp)) { |
| if (auto *Inst = dyn_cast<Instruction>(Unknown->getValue())) { |
| if (!Context.CurRegion.contains(Inst)) |
| Operands.push_back(MulOp); |
| |
| } else { |
| Operands.push_back(MulOp); |
| } |
| } |
| } |
| if (Operands.size()) |
| Terms.push_back(SE.getMulExpr(Operands)); |
| } |
| } |
| } |
| if (Terms.empty()) |
| SE.collectParametricTerms(Pair.second, Terms); |
| } |
| return Terms; |
| } |
| |
| bool ScopDetection::hasValidArraySizes(DetectionContext &Context, |
| SmallVectorImpl<const SCEV *> &Sizes, |
| const SCEVUnknown *BasePointer, |
| Loop *Scope) const { |
| // If no sizes were found, all sizes are trivially valid. We allow this case |
| // to make it possible to pass known-affine accesses to the delinearization to |
| // try to recover some interesting multi-dimensional accesses, but to still |
| // allow the already known to be affine access in case the delinearization |
| // fails. In such situations, the delinearization will just return a Sizes |
| // array of size zero. |
| if (Sizes.size() == 0) |
| return true; |
| |
| Value *BaseValue = BasePointer->getValue(); |
| Region &CurRegion = Context.CurRegion; |
| for (const SCEV *DelinearizedSize : Sizes) { |
| if (!isAffine(DelinearizedSize, Scope, Context)) { |
| Sizes.clear(); |
| break; |
| } |
| if (auto *Unknown = dyn_cast<SCEVUnknown>(DelinearizedSize)) { |
| auto *V = dyn_cast<Value>(Unknown->getValue()); |
| if (auto *Load = dyn_cast<LoadInst>(V)) { |
| if (Context.CurRegion.contains(Load) && |
| isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS)) |
| Context.RequiredILS.insert(Load); |
| continue; |
| } |
| } |
| if (hasScalarDepsInsideRegion(DelinearizedSize, &CurRegion, Scope, false, |
| Context.RequiredILS)) |
| return invalid<ReportNonAffineAccess>( |
| Context, /*Assert=*/true, DelinearizedSize, |
| Context.Accesses[BasePointer].front().first, BaseValue); |
| } |
| |
| // No array shape derived. |
| if (Sizes.empty()) { |
| if (AllowNonAffine) |
| return true; |
| |
| for (const auto &Pair : Context.Accesses[BasePointer]) { |
| const Instruction *Insn = Pair.first; |
| const SCEV *AF = Pair.second; |
| |
| if (!isAffine(AF, Scope, Context)) { |
| invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Insn, |
| BaseValue); |
| if (!KeepGoing) |
| return false; |
| } |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| // We first store the resulting memory accesses in TempMemoryAccesses. Only |
| // if the access functions for all memory accesses have been successfully |
| // delinearized we continue. Otherwise, we either report a failure or, if |
| // non-affine accesses are allowed, we drop the information. In case the |
| // information is dropped the memory accesses need to be overapproximated |
| // when translated to a polyhedral representation. |
| bool ScopDetection::computeAccessFunctions( |
| DetectionContext &Context, const SCEVUnknown *BasePointer, |
| std::shared_ptr<ArrayShape> Shape) const { |
| Value *BaseValue = BasePointer->getValue(); |
| bool BasePtrHasNonAffine = false; |
| MapInsnToMemAcc TempMemoryAccesses; |
| for (const auto &Pair : Context.Accesses[BasePointer]) { |
| const Instruction *Insn = Pair.first; |
| auto *AF = Pair.second; |
| AF = SCEVRemoveMax::rewrite(AF, SE); |
| bool IsNonAffine = false; |
| TempMemoryAccesses.insert(std::make_pair(Insn, MemAcc(Insn, Shape))); |
| MemAcc *Acc = &TempMemoryAccesses.find(Insn)->second; |
| auto *Scope = LI.getLoopFor(Insn->getParent()); |
| |
| if (!AF) { |
| if (isAffine(Pair.second, Scope, Context)) |
| Acc->DelinearizedSubscripts.push_back(Pair.second); |
| else |
| IsNonAffine = true; |
| } else { |
| if (Shape->DelinearizedSizes.size() == 0) { |
| Acc->DelinearizedSubscripts.push_back(AF); |
| } else { |
| SE.computeAccessFunctions(AF, Acc->DelinearizedSubscripts, |
| Shape->DelinearizedSizes); |
| if (Acc->DelinearizedSubscripts.size() == 0) |
| IsNonAffine = true; |
| } |
| for (const SCEV *S : Acc->DelinearizedSubscripts) |
| if (!isAffine(S, Scope, Context)) |
| IsNonAffine = true; |
| } |
| |
| // (Possibly) report non affine access |
| if (IsNonAffine) { |
| BasePtrHasNonAffine = true; |
| if (!AllowNonAffine) |
| invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, Pair.second, |
| Insn, BaseValue); |
| if (!KeepGoing && !AllowNonAffine) |
| return false; |
| } |
| } |
| |
| if (!BasePtrHasNonAffine) |
| Context.InsnToMemAcc.insert(TempMemoryAccesses.begin(), |
| TempMemoryAccesses.end()); |
| |
| return true; |
| } |
| |
| bool ScopDetection::hasBaseAffineAccesses(DetectionContext &Context, |
| const SCEVUnknown *BasePointer, |
| Loop *Scope) const { |
| auto Shape = std::shared_ptr<ArrayShape>(new ArrayShape(BasePointer)); |
| |
| auto Terms = getDelinearizationTerms(Context, BasePointer); |
| |
| SE.findArrayDimensions(Terms, Shape->DelinearizedSizes, |
| Context.ElementSize[BasePointer]); |
| |
| if (!hasValidArraySizes(Context, Shape->DelinearizedSizes, BasePointer, |
| Scope)) |
| return false; |
| |
| return computeAccessFunctions(Context, BasePointer, Shape); |
| } |
| |
| bool ScopDetection::hasAffineMemoryAccesses(DetectionContext &Context) const { |
| // TODO: If we have an unknown access and other non-affine accesses we do |
| // not try to delinearize them for now. |
| if (Context.HasUnknownAccess && !Context.NonAffineAccesses.empty()) |
| return AllowNonAffine; |
| |
| for (auto &Pair : Context.NonAffineAccesses) { |
| auto *BasePointer = Pair.first; |
| auto *Scope = Pair.second; |
| if (!hasBaseAffineAccesses(Context, BasePointer, Scope)) { |
| if (KeepGoing) |
| continue; |
| else |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool ScopDetection::isValidAccess(Instruction *Inst, const SCEV *AF, |
| const SCEVUnknown *BP, |
| DetectionContext &Context) const { |
| |
| if (!BP) |
| return invalid<ReportNoBasePtr>(Context, /*Assert=*/true, Inst); |
| |
| auto *BV = BP->getValue(); |
| if (isa<UndefValue>(BV)) |
| return invalid<ReportUndefBasePtr>(Context, /*Assert=*/true, Inst); |
| |
| // FIXME: Think about allowing IntToPtrInst |
| if (IntToPtrInst *Inst = dyn_cast<IntToPtrInst>(BV)) |
| return invalid<ReportIntToPtr>(Context, /*Assert=*/true, Inst); |
| |
| // Check that the base address of the access is invariant in the current |
| // region. |
| if (!isInvariant(*BV, Context.CurRegion, Context)) |
| return invalid<ReportVariantBasePtr>(Context, /*Assert=*/true, BV, Inst); |
| |
| AF = SE.getMinusSCEV(AF, BP); |
| |
| const SCEV *Size; |
| if (!isa<MemIntrinsic>(Inst)) { |
| Size = SE.getElementSize(Inst); |
| } else { |
| auto *SizeTy = |
| SE.getEffectiveSCEVType(PointerType::getInt8PtrTy(SE.getContext())); |
| Size = SE.getConstant(SizeTy, 8); |
| } |
| |
| if (Context.ElementSize[BP]) { |
| if (!AllowDifferentTypes && Context.ElementSize[BP] != Size) |
| return invalid<ReportDifferentArrayElementSize>(Context, /*Assert=*/true, |
| Inst, BV); |
| |
| Context.ElementSize[BP] = SE.getSMinExpr(Size, Context.ElementSize[BP]); |
| } else { |
| Context.ElementSize[BP] = Size; |
| } |
| |
| bool IsVariantInNonAffineLoop = false; |
| SetVector<const Loop *> Loops; |
| findLoops(AF, Loops); |
| for (const Loop *L : Loops) |
| if (Context.BoxedLoopsSet.count(L)) |
| IsVariantInNonAffineLoop = true; |
| |
| auto *Scope = LI.getLoopFor(Inst->getParent()); |
| bool IsAffine = !IsVariantInNonAffineLoop && isAffine(AF, Scope, Context); |
| // Do not try to delinearize memory intrinsics and force them to be affine. |
| if (isa<MemIntrinsic>(Inst) && !IsAffine) { |
| return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst, |
| BV); |
| } else if (PollyDelinearize && !IsVariantInNonAffineLoop) { |
| Context.Accesses[BP].push_back({Inst, AF}); |
| |
| if (!IsAffine || hasIVParams(AF)) |
| Context.NonAffineAccesses.insert( |
| std::make_pair(BP, LI.getLoopFor(Inst->getParent()))); |
| } else if (!AllowNonAffine && !IsAffine) { |
| return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst, |
| BV); |
| } |
| |
| if (IgnoreAliasing) |
| return true; |
| |
| // Check if the base pointer of the memory access does alias with |
| // any other pointer. This cannot be handled at the moment. |
| AAMDNodes AATags; |
| Inst->getAAMetadata(AATags); |
| AliasSet &AS = Context.AST.getAliasSetForPointer( |
| BP->getValue(), MemoryLocation::UnknownSize, AATags); |
| |
| if (!AS.isMustAlias()) { |
| if (PollyUseRuntimeAliasChecks) { |
| bool CanBuildRunTimeCheck = true; |
| // The run-time alias check places code that involves the base pointer at |
| // the beginning of the SCoP. This breaks if the base pointer is defined |
| // inside the scop. Hence, we can only create a run-time check if we are |
| // sure the base pointer is not an instruction defined inside the scop. |
| // However, we can ignore loads that will be hoisted. |
| |
| InvariantLoadsSetTy VariantLS, InvariantLS; |
| // In order to detect loads which are dependent on other invariant loads |
| // as invariant, we use fixed-point iteration method here i.e we iterate |
| // over the alias set for arbitrary number of times until it is safe to |
| // assume that all the invariant loads have been detected |
| while (1) { |
| const unsigned int VariantSize = VariantLS.size(), |
| InvariantSize = InvariantLS.size(); |
| |
| for (const auto &Ptr : AS) { |
| Instruction *Inst = dyn_cast<Instruction>(Ptr.getValue()); |
| if (Inst && Context.CurRegion.contains(Inst)) { |
| auto *Load = dyn_cast<LoadInst>(Inst); |
| if (Load && InvariantLS.count(Load)) |
| continue; |
| if (Load && isHoistableLoad(Load, Context.CurRegion, LI, SE, DT, |
| InvariantLS)) { |
| if (VariantLS.count(Load)) |
| VariantLS.remove(Load); |
| Context.RequiredILS.insert(Load); |
| InvariantLS.insert(Load); |
| } else { |
| CanBuildRunTimeCheck = false; |
| VariantLS.insert(Load); |
| } |
| } |
| } |
| |
| if (InvariantSize == InvariantLS.size() && |
| VariantSize == VariantLS.size()) |
| break; |
| } |
| |
| if (CanBuildRunTimeCheck) |
| return true; |
| } |
| return invalid<ReportAlias>(Context, /*Assert=*/true, Inst, AS); |
| } |
| |
| return true; |
| } |
| |
| bool ScopDetection::isValidMemoryAccess(MemAccInst Inst, |
| DetectionContext &Context) const { |
| Value *Ptr = Inst.getPointerOperand(); |
| Loop *L = LI.getLoopFor(Inst->getParent()); |
| const SCEV *AccessFunction = SE.getSCEVAtScope(Ptr, L); |
| const SCEVUnknown *BasePointer; |
| |
| BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction)); |
| |
| return isValidAccess(Inst, AccessFunction, BasePointer, Context); |
| } |
| |
| bool ScopDetection::isValidInstruction(Instruction &Inst, |
| DetectionContext &Context) const { |
| for (auto &Op : Inst.operands()) { |
| auto *OpInst = dyn_cast<Instruction>(&Op); |
| |
| if (!OpInst) |
| continue; |
| |
| if (isErrorBlock(*OpInst->getParent(), Context.CurRegion, LI, DT)) { |
| auto *PHI = dyn_cast<PHINode>(OpInst); |
| if (PHI) { |
| for (User *U : PHI->users()) { |
| if (!isa<TerminatorInst>(U)) |
| return false; |
| } |
| } else { |
| return false; |
| } |
| } |
| } |
| |
| if (isa<LandingPadInst>(&Inst) || isa<ResumeInst>(&Inst)) |
| return false; |
| |
| // We only check the call instruction but not invoke instruction. |
| if (CallInst *CI = dyn_cast<CallInst>(&Inst)) { |
| if (isValidCallInst(*CI, Context)) |
| return true; |
| |
| return invalid<ReportFuncCall>(Context, /*Assert=*/true, &Inst); |
| } |
| |
| if (!Inst.mayReadOrWriteMemory()) { |
| if (!isa<AllocaInst>(Inst)) |
| return true; |
| |
| return invalid<ReportAlloca>(Context, /*Assert=*/true, &Inst); |
| } |
| |
| // Check the access function. |
| if (auto MemInst = MemAccInst::dyn_cast(Inst)) { |
| Context.hasStores |= isa<StoreInst>(MemInst); |
| Context.hasLoads |= isa<LoadInst>(MemInst); |
| if (!MemInst.isSimple()) |
| return invalid<ReportNonSimpleMemoryAccess>(Context, /*Assert=*/true, |
| &Inst); |
| |
| return isValidMemoryAccess(MemInst, Context); |
| } |
| |
| // We do not know this instruction, therefore we assume it is invalid. |
| return invalid<ReportUnknownInst>(Context, /*Assert=*/true, &Inst); |
| } |
| |
| /// Check whether @p L has exiting blocks. |
| /// |
| /// @param L The loop of interest |
| /// |
| /// @return True if the loop has exiting blocks, false otherwise. |
| static bool hasExitingBlocks(Loop *L) { |
| SmallVector<BasicBlock *, 4> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| return !ExitingBlocks.empty(); |
| } |
| |
| bool ScopDetection::canUseISLTripCount(Loop *L, |
| DetectionContext &Context) const { |
| // Ensure the loop has valid exiting blocks as well as latches, otherwise we |
| // need to overapproximate it as a boxed loop. |
| SmallVector<BasicBlock *, 4> LoopControlBlocks; |
| L->getExitingBlocks(LoopControlBlocks); |
| L->getLoopLatches(LoopControlBlocks); |
| for (BasicBlock *ControlBB : LoopControlBlocks) { |
| if (!isValidCFG(*ControlBB, true, false, Context)) |
| return false; |
| } |
| |
| // We can use ISL to compute the trip count of L. |
| return true; |
| } |
| |
| bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) const { |
| // Loops that contain part but not all of the blocks of a region cannot be |
| // handled by the schedule generation. Such loop constructs can happen |
| // because a region can contain BBs that have no path to the exit block |
| // (Infinite loops, UnreachableInst), but such blocks are never part of a |
| // loop. |
| // |
| // _______________ |
| // | Loop Header | <-----------. |
| // --------------- | |
| // | | |
| // _______________ ______________ |
| // | RegionEntry |-----> | RegionExit |-----> |
| // --------------- -------------- |
| // | |
| // _______________ |
| // | EndlessLoop | <--. |
| // --------------- | |
| // | | |
| // \------------/ |
| // |
| // In the example above, the loop (LoopHeader,RegionEntry,RegionExit) is |
| // neither entirely contained in the region RegionEntry->RegionExit |
| // (containing RegionEntry,EndlessLoop) nor is the region entirely contained |
| // in the loop. |
| // The block EndlessLoop is contained in the region because Region::contains |
| // tests whether it is not dominated by RegionExit. This is probably to not |
| // having to query the PostdominatorTree. Instead of an endless loop, a dead |
| // end can also be formed by an UnreachableInst. This case is already caught |
| // by isErrorBlock(). We hence only have to reject endless loops here. |
| if (!hasExitingBlocks(L)) |
| return invalid<ReportLoopHasNoExit>(Context, /*Assert=*/true, L); |
| |
| // The algorithm for domain construction assumes that loops has only a single |
| // exit block (and hence corresponds to a subregion). Note that we cannot use |
| // L->getExitBlock() because it does not check whether all exiting edges point |
| // to the same BB. |
| SmallVector<BasicBlock *, 4> ExitBlocks; |
| L->getExitBlocks(ExitBlocks); |
| BasicBlock *TheExitBlock = ExitBlocks[0]; |
| for (BasicBlock *ExitBB : ExitBlocks) { |
| if (TheExitBlock != ExitBB) |
| return invalid<ReportLoopHasMultipleExits>(Context, /*Assert=*/true, L); |
| } |
| |
| if (canUseISLTripCount(L, Context)) |
| return true; |
| |
| if (AllowNonAffineSubLoops && AllowNonAffineSubRegions) { |
| Region *R = RI.getRegionFor(L->getHeader()); |
| while (R != &Context.CurRegion && !R->contains(L)) |
| R = R->getParent(); |
| |
| if (addOverApproximatedRegion(R, Context)) |
| return true; |
| } |
| |
| const SCEV *LoopCount = SE.getBackedgeTakenCount(L); |
| return invalid<ReportLoopBound>(Context, /*Assert=*/true, L, LoopCount); |
| } |
| |
| /// Return the number of loops in @p L (incl. @p L) that have a trip |
| /// count that is not known to be less than @MinProfitableTrips. |
| ScopDetection::LoopStats |
| ScopDetection::countBeneficialSubLoops(Loop *L, ScalarEvolution &SE, |
| unsigned MinProfitableTrips) { |
| auto *TripCount = SE.getBackedgeTakenCount(L); |
| |
| int NumLoops = 1; |
| int MaxLoopDepth = 1; |
| if (MinProfitableTrips > 0) |
| if (auto *TripCountC = dyn_cast<SCEVConstant>(TripCount)) |
| if (TripCountC->getType()->getScalarSizeInBits() <= 64) |
| if (TripCountC->getValue()->getZExtValue() <= MinProfitableTrips) |
| NumLoops -= 1; |
| |
| for (auto &SubLoop : *L) { |
| LoopStats Stats = countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips); |
| NumLoops += Stats.NumLoops; |
| MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth + 1); |
| } |
| |
| return {NumLoops, MaxLoopDepth}; |
| } |
| |
| ScopDetection::LoopStats |
| ScopDetection::countBeneficialLoops(Region *R, ScalarEvolution &SE, |
| LoopInfo &LI, unsigned MinProfitableTrips) { |
| int LoopNum = 0; |
| int MaxLoopDepth = 0; |
| |
| auto L = LI.getLoopFor(R->getEntry()); |
| |
| // If L is fully contained in R, move to first loop surrounding R. Otherwise, |
| // L is either nullptr or already surrounding R. |
| if (L && R->contains(L)) { |
| L = R->outermostLoopInRegion(L); |
| L = L->getParentLoop(); |
| } |
| |
| auto SubLoops = |
| L ? L->getSubLoopsVector() : std::vector<Loop *>(LI.begin(), LI.end()); |
| |
| for (auto &SubLoop : SubLoops) |
| if (R->contains(SubLoop)) { |
| LoopStats Stats = |
| countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips); |
| LoopNum += Stats.NumLoops; |
| MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth); |
| } |
| |
| return {LoopNum, MaxLoopDepth}; |
| } |
| |
| Region *ScopDetection::expandRegion(Region &R) { |
| // Initial no valid region was found (greater than R) |
| std::unique_ptr<Region> LastValidRegion; |
| auto ExpandedRegion = std::unique_ptr<Region>(R.getExpandedRegion()); |
| |
| LLVM_DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n"); |
| |
| while (ExpandedRegion) { |
| const auto &It = DetectionContextMap.insert(std::make_pair( |
| getBBPairForRegion(ExpandedRegion.get()), |
| DetectionContext(*ExpandedRegion, AA, false /*verifying*/))); |
| DetectionContext &Context = It.first->second; |
| LLVM_DEBUG(dbgs() << "\t\tTrying " << ExpandedRegion->getNameStr() << "\n"); |
| // Only expand when we did not collect errors. |
| |
| if (!Context.Log.hasErrors()) { |
| // If the exit is valid check all blocks |
| // - if true, a valid region was found => store it + keep expanding |
| // - if false, .tbd. => stop (should this really end the loop?) |
| if (!allBlocksValid(Context) || Context.Log.hasErrors()) { |
| removeCachedResults(*ExpandedRegion); |
| DetectionContextMap.erase(It.first); |
| break; |
| } |
| |
| // Store this region, because it is the greatest valid (encountered so |
| // far). |
| if (LastValidRegion) { |
| removeCachedResults(*LastValidRegion); |
| DetectionContextMap.erase(getBBPairForRegion(LastValidRegion.get())); |
| } |
| LastValidRegion = std::move(ExpandedRegion); |
| |
| // Create and test the next greater region (if any) |
| ExpandedRegion = |
| std::unique_ptr<Region>(LastValidRegion->getExpandedRegion()); |
| |
| } else { |
| // Create and test the next greater region (if any) |
| removeCachedResults(*ExpandedRegion); |
| DetectionContextMap.erase(It.first); |
| ExpandedRegion = |
| std::unique_ptr<Region>(ExpandedRegion->getExpandedRegion()); |
| } |
| } |
| |
| LLVM_DEBUG({ |
| if (LastValidRegion) |
| dbgs() << "\tto " << LastValidRegion->getNameStr() << "\n"; |
| else |
| dbgs() << "\tExpanding " << R.getNameStr() << " failed\n"; |
| }); |
| |
| return LastValidRegion.release(); |
| } |
| |
| static bool regionWithoutLoops(Region &R, LoopInfo &LI) { |
| for (const BasicBlock *BB : R.blocks()) |
| if (R.contains(LI.getLoopFor(BB))) |
| return false; |
| |
| return true; |
| } |
| |
| void ScopDetection::removeCachedResultsRecursively(const Region &R) { |
| for (auto &SubRegion : R) { |
| if (ValidRegions.count(SubRegion.get())) { |
| removeCachedResults(*SubRegion.get()); |
| } else |
| removeCachedResultsRecursively(*SubRegion); |
| } |
| } |
| |
| void ScopDetection::removeCachedResults(const Region &R) { |
| ValidRegions.remove(&R); |
| } |
| |
| void ScopDetection::findScops(Region &R) { |
| const auto &It = DetectionContextMap.insert(std::make_pair( |
| getBBPairForRegion(&R), DetectionContext(R, AA, false /*verifying*/))); |
| DetectionContext &Context = It.first->second; |
| |
| bool RegionIsValid = false; |
| if (!PollyProcessUnprofitable && regionWithoutLoops(R, LI)) |
| invalid<ReportUnprofitable>(Context, /*Assert=*/true, &R); |
| else |
| RegionIsValid = isValidRegion(Context); |
| |
| bool HasErrors = !RegionIsValid || Context.Log.size() > 0; |
| |
| if (HasErrors) { |
| removeCachedResults(R); |
| } else { |
| ValidRegions.insert(&R); |
| return; |
| } |
| |
| for (auto &SubRegion : R) |
| findScops(*SubRegion); |
| |
| // Try to expand regions. |
| // |
| // As the region tree normally only contains canonical regions, non canonical |
| // regions that form a Scop are not found. Therefore, those non canonical |
| // regions are checked by expanding the canonical ones. |
| |
| std::vector<Region *> ToExpand; |
| |
| for (auto &SubRegion : R) |
| ToExpand.push_back(SubRegion.get()); |
| |
| for (Region *CurrentRegion : ToExpand) { |
| // Skip invalid regions. Regions may become invalid, if they are element of |
| // an already expanded region. |
| if (!ValidRegions.count(CurrentRegion)) |
| continue; |
| |
| // Skip regions that had errors. |
| bool HadErrors = lookupRejectionLog(CurrentRegion)->hasErrors(); |
| if (HadErrors) |
| continue; |
| |
| Region *ExpandedR = expandRegion(*CurrentRegion); |
| |
| if (!ExpandedR) |
| continue; |
| |
| R.addSubRegion(ExpandedR, true); |
| ValidRegions.insert(ExpandedR); |
| removeCachedResults(*CurrentRegion); |
| removeCachedResultsRecursively(*ExpandedR); |
| } |
| } |
| |
| bool ScopDetection::allBlocksValid(DetectionContext &Context) const { |
| Region &CurRegion = Context.CurRegion; |
| |
| for (const BasicBlock *BB : CurRegion.blocks()) { |
| Loop *L = LI.getLoopFor(BB); |
| if (L && L->getHeader() == BB) { |
| if (CurRegion.contains(L)) { |
| if (!isValidLoop(L, Context) && !KeepGoing) |
| return false; |
| } else { |
| SmallVector<BasicBlock *, 1> Latches; |
| L->getLoopLatches(Latches); |
| for (BasicBlock *Latch : Latches) |
| if (CurRegion.contains(Latch)) |
| return invalid<ReportLoopOnlySomeLatches>(Context, /*Assert=*/true, |
| L); |
| } |
| } |
| } |
| |
| for (BasicBlock *BB : CurRegion.blocks()) { |
| bool IsErrorBlock = isErrorBlock(*BB, CurRegion, LI, DT); |
| |
| // Also check exception blocks (and possibly register them as non-affine |
| // regions). Even though exception blocks are not modeled, we use them |
| // to forward-propagate domain constraints during ScopInfo construction. |
| if (!isValidCFG(*BB, false, IsErrorBlock, Context) && !KeepGoing) |
| return false; |
| |
| if (IsErrorBlock) |
| continue; |
| |
| for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ++I) |
| if (!isValidInstruction(*I, Context) && !KeepGoing) |
| return false; |
| } |
| |
| if (!hasAffineMemoryAccesses(Context)) |
| return false; |
| |
| return true; |
| } |
| |
| bool ScopDetection::hasSufficientCompute(DetectionContext &Context, |
| int NumLoops) const { |
| int InstCount = 0; |
| |
| if (NumLoops == 0) |
| return false; |
| |
| for (auto *BB : Context.CurRegion.blocks()) |
| if (Context.CurRegion.contains(LI.getLoopFor(BB))) |
| InstCount += BB->size(); |
| |
| InstCount = InstCount / NumLoops; |
| |
| return InstCount >= ProfitabilityMinPerLoopInstructions; |
| } |
| |
| bool ScopDetection::hasPossiblyDistributableLoop( |
| DetectionContext &Context) const { |
| for (auto *BB : Context.CurRegion.blocks()) { |
| auto *L = LI.getLoopFor(BB); |
| if (!Context.CurRegion.contains(L)) |
| continue; |
| if (Context.BoxedLoopsSet.count(L)) |
| continue; |
| unsigned StmtsWithStoresInLoops = 0; |
| for (auto *LBB : L->blocks()) { |
| bool MemStore = false; |
| for (auto &I : *LBB) |
| MemStore |= isa<StoreInst>(&I); |
| StmtsWithStoresInLoops += MemStore; |
| } |
| return (StmtsWithStoresInLoops > 1); |
| } |
| return false; |
| } |
| |
| bool ScopDetection::isProfitableRegion(DetectionContext &Context) const { |
| Region &CurRegion = Context.CurRegion; |
| |
| if (PollyProcessUnprofitable) |
| return true; |
| |
| // We can probably not do a lot on scops that only write or only read |
| // data. |
| if (!Context.hasStores || !Context.hasLoads) |
| return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion); |
| |
| int NumLoops = |
| countBeneficialLoops(&CurRegion, SE, LI, MIN_LOOP_TRIP_COUNT).NumLoops; |
| int NumAffineLoops = NumLoops - Context.BoxedLoopsSet.size(); |
| |
| // Scops with at least two loops may allow either loop fusion or tiling and |
| // are consequently interesting to look at. |
| if (NumAffineLoops >= 2) |
| return true; |
| |
| // A loop with multiple non-trivial blocks might be amendable to distribution. |
| if (NumAffineLoops == 1 && hasPossiblyDistributableLoop(Context)) |
| return true; |
| |
| // Scops that contain a loop with a non-trivial amount of computation per |
| // loop-iteration are interesting as we may be able to parallelize such |
| // loops. Individual loops that have only a small amount of computation |
| // per-iteration are performance-wise very fragile as any change to the |
| // loop induction variables may affect performance. To not cause spurious |
| // performance regressions, we do not consider such loops. |
| if (NumAffineLoops == 1 && hasSufficientCompute(Context, NumLoops)) |
| return true; |
| |
| return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion); |
| } |
| |
| bool ScopDetection::isValidRegion(DetectionContext &Context) const { |
| Region &CurRegion = Context.CurRegion; |
| |
| LLVM_DEBUG(dbgs() << "Checking region: " << CurRegion.getNameStr() << "\n\t"); |
| |
| if (!PollyAllowFullFunction && CurRegion.isTopLevelRegion()) { |
| LLVM_DEBUG(dbgs() << "Top level region is invalid\n"); |
| return false; |
| } |
| |
| DebugLoc DbgLoc; |
| if (CurRegion.getExit() && |
| isa<UnreachableInst>(CurRegion.getExit()->getTerminator())) { |
| LLVM_DEBUG(dbgs() << "Unreachable in exit\n"); |
| return invalid<ReportUnreachableInExit>(Context, /*Assert=*/true, |
| CurRegion.getExit(), DbgLoc); |
| } |
| |
| if (!CurRegion.getEntry()->getName().count(OnlyRegion)) { |
| LLVM_DEBUG({ |
| dbgs() << "Region entry does not match -polly-region-only"; |
| dbgs() << "\n"; |
| }); |
| return false; |
| } |
| |
| // SCoP cannot contain the entry block of the function, because we need |
| // to insert alloca instruction there when translate scalar to array. |
| if (!PollyAllowFullFunction && |
| CurRegion.getEntry() == |
| &(CurRegion.getEntry()->getParent()->getEntryBlock())) |
| return invalid<ReportEntry>(Context, /*Assert=*/true, CurRegion.getEntry()); |
| |
| if (!allBlocksValid(Context)) |
| return false; |
| |
| if (!isReducibleRegion(CurRegion, DbgLoc)) |
| return invalid<ReportIrreducibleRegion>(Context, /*Assert=*/true, |
| &CurRegion, DbgLoc); |
| |
| LLVM_DEBUG(dbgs() << "OK\n"); |
| return true; |
| } |
| |
| void ScopDetection::markFunctionAsInvalid(Function *F) { |
| F->addFnAttr(PollySkipFnAttr); |
| } |
| |
| bool ScopDetection::isValidFunction(Function &F) { |
| return !F.hasFnAttribute(PollySkipFnAttr); |
| } |
| |
| void ScopDetection::printLocations(Function &F) { |
| for (const Region *R : *this) { |
| unsigned LineEntry, LineExit; |
| std::string FileName; |
| |
| getDebugLocation(R, LineEntry, LineExit, FileName); |
| DiagnosticScopFound Diagnostic(F, FileName, LineEntry, LineExit); |
| F.getContext().diagnose(Diagnostic); |
| } |
| } |
| |
| void ScopDetection::emitMissedRemarks(const Function &F) { |
| for (auto &DIt : DetectionContextMap) { |
| auto &DC = DIt.getSecond(); |
| if (DC.Log.hasErrors()) |
| emitRejectionRemarks(DIt.getFirst(), DC.Log, ORE); |
| } |
| } |
| |
| bool ScopDetection::isReducibleRegion(Region &R, DebugLoc &DbgLoc) const { |
| /// Enum for coloring BBs in Region. |
| /// |
| /// WHITE - Unvisited BB in DFS walk. |
| /// GREY - BBs which are currently on the DFS stack for processing. |
| /// BLACK - Visited and completely processed BB. |
| enum Color { WHITE, GREY, BLACK }; |
| |
| BasicBlock *REntry = R.getEntry(); |
| BasicBlock *RExit = R.getExit(); |
| // Map to match the color of a BasicBlock during the DFS walk. |
| DenseMap<const BasicBlock *, Color> BBColorMap; |
| // Stack keeping track of current BB and index of next child to be processed. |
| std::stack<std::pair<BasicBlock *, unsigned>> DFSStack; |
| |
| unsigned AdjacentBlockIndex = 0; |
| BasicBlock *CurrBB, *SuccBB; |
| CurrBB = REntry; |
| |
| // Initialize the map for all BB with WHITE color. |
| for (auto *BB : R.blocks()) |
| BBColorMap[BB] = WHITE; |
| |
| // Process the entry block of the Region. |
| BBColorMap[CurrBB] = GREY; |
| DFSStack.push(std::make_pair(CurrBB, 0)); |
| |
| while (!DFSStack.empty()) { |
| // Get next BB on stack to be processed. |
| CurrBB = DFSStack.top().first; |
| AdjacentBlockIndex = DFSStack.top().second; |
| DFSStack.pop(); |
| |
| // Loop to iterate over the successors of current BB. |
| const TerminatorInst *TInst = CurrBB->getTerminator(); |
| unsigned NSucc = TInst->getNumSuccessors(); |
| for (unsigned I = AdjacentBlockIndex; I < NSucc; |
| ++I, ++AdjacentBlockIndex) { |
| SuccBB = TInst->getSuccessor(I); |
| |
| // Checks for region exit block and self-loops in BB. |
| if (SuccBB == RExit || SuccBB == CurrBB) |
| continue; |
| |
| // WHITE indicates an unvisited BB in DFS walk. |
| if (BBColorMap[SuccBB] == WHITE) { |
| // Push the current BB and the index of the next child to be visited. |
| DFSStack.push(std::make_pair(CurrBB, I + 1)); |
| // Push the next BB to be processed. |
| DFSStack.push(std::make_pair(SuccBB, 0)); |
| // First time the BB is being processed. |
| BBColorMap[SuccBB] = GREY; |
| break; |
| } else if (BBColorMap[SuccBB] == GREY) { |
| // GREY indicates a loop in the control flow. |
| // If the destination dominates the source, it is a natural loop |
| // else, an irreducible control flow in the region is detected. |
| if (!DT.dominates(SuccBB, CurrBB)) { |
| // Get debug info of instruction which causes irregular control flow. |
| DbgLoc = TInst->getDebugLoc(); |
| return false; |
| } |
| } |
| } |
| |
| // If all children of current BB have been processed, |
| // then mark that BB as fully processed. |
| if (AdjacentBlockIndex == NSucc) |
| BBColorMap[CurrBB] = BLACK; |
| } |
| |
| return true; |
| } |
| |
| static void updateLoopCountStatistic(ScopDetection::LoopStats Stats, |
| bool OnlyProfitable) { |
| if (!OnlyProfitable) { |
| NumLoopsInScop += Stats.NumLoops; |
| MaxNumLoopsInScop = |
| std::max(MaxNumLoopsInScop.getValue(), (unsigned)Stats.NumLoops); |
| if (Stats.MaxDepth == 0) |
| NumScopsDepthZero++; |
| else if (Stats.MaxDepth == 1) |
| NumScopsDepthOne++; |
| else if (Stats.MaxDepth == 2) |
| NumScopsDepthTwo++; |
| else if (Stats.MaxDepth == 3) |
| NumScopsDepthThree++; |
| else if (Stats.MaxDepth == 4) |
| NumScopsDepthFour++; |
| else if (Stats.MaxDepth == 5) |
| NumScopsDepthFive++; |
| else |
| NumScopsDepthLarger++; |
| } else { |
| NumLoopsInProfScop += Stats.NumLoops; |
| MaxNumLoopsInProfScop = |
| std::max(MaxNumLoopsInProfScop.getValue(), (unsigned)Stats.NumLoops); |
| if (Stats.MaxDepth == 0) |
| NumProfScopsDepthZero++; |
| else if (Stats.MaxDepth == 1) |
| NumProfScopsDepthOne++; |
| else if (Stats.MaxDepth == 2) |
| NumProfScopsDepthTwo++; |
| else if (Stats.MaxDepth == 3) |
| NumProfScopsDepthThree++; |
| else if (Stats.MaxDepth == 4) |
| NumProfScopsDepthFour++; |
| else if (Stats.MaxDepth == 5) |
| NumProfScopsDepthFive++; |
| else |
| NumProfScopsDepthLarger++; |
| } |
| } |
| |
| ScopDetection::DetectionContext * |
| ScopDetection::getDetectionContext(const Region *R) const { |
| auto DCMIt = DetectionContextMap.find(getBBPairForRegion(R)); |
| if (DCMIt == DetectionContextMap.end()) |
| return nullptr; |
| return &DCMIt->second; |
| } |
| |
| const RejectLog *ScopDetection::lookupRejectionLog(const Region *R) const { |
| const DetectionContext *DC = getDetectionContext(R); |
| return DC ? &DC->Log : nullptr; |
| } |
| |
| void ScopDetection::verifyRegion(const Region &R) const { |
| assert(isMaxRegionInScop(R) && "Expect R is a valid region."); |
| |
| DetectionContext Context(const_cast<Region &>(R), AA, true /*verifying*/); |
| isValidRegion(Context); |
| } |
| |
| void ScopDetection::verifyAnalysis() const { |
| if (!VerifyScops) |
| return; |
| |
| for (const Region *R : ValidRegions) |
| verifyRegion(*R); |
| } |
| |
| bool ScopDetectionWrapperPass::runOnFunction(Function &F) { |
| auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| auto &RI = getAnalysis<RegionInfoPass>().getRegionInfo(); |
| auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); |
| Result.reset(new ScopDetection(F, DT, SE, LI, RI, AA, ORE)); |
| return false; |
| } |
| |
| void ScopDetectionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<LoopInfoWrapperPass>(); |
| AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); |
| // We also need AA and RegionInfo when we are verifying analysis. |
| AU.addRequiredTransitive<AAResultsWrapperPass>(); |
| AU.addRequiredTransitive<RegionInfoPass>(); |
| AU.setPreservesAll(); |
| } |
| |
| void ScopDetectionWrapperPass::print(raw_ostream &OS, const Module *) const { |
| for (const Region *R : Result->ValidRegions) |
| OS << "Valid Region for Scop: " << R->getNameStr() << '\n'; |
| |
| OS << "\n"; |
| } |
| |
| ScopDetectionWrapperPass::ScopDetectionWrapperPass() : FunctionPass(ID) { |
| // Disable runtime alias checks if we ignore aliasing all together. |
| if (IgnoreAliasing) |
| PollyUseRuntimeAliasChecks = false; |
| } |
| |
| ScopAnalysis::ScopAnalysis() { |
| // Disable runtime alias checks if we ignore aliasing all together. |
| if (IgnoreAliasing) |
| PollyUseRuntimeAliasChecks = false; |
| } |
| |
| void ScopDetectionWrapperPass::releaseMemory() { Result.reset(); } |
| |
| char ScopDetectionWrapperPass::ID; |
| |
| AnalysisKey ScopAnalysis::Key; |
| |
| ScopDetection ScopAnalysis::run(Function &F, FunctionAnalysisManager &FAM) { |
| auto &LI = FAM.getResult<LoopAnalysis>(F); |
| auto &RI = FAM.getResult<RegionInfoAnalysis>(F); |
| auto &AA = FAM.getResult<AAManager>(F); |
| auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F); |
| auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); |
| auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); |
| return {F, DT, SE, LI, RI, AA, ORE}; |
| } |
| |
| PreservedAnalyses ScopAnalysisPrinterPass::run(Function &F, |
| FunctionAnalysisManager &FAM) { |
| OS << "Detected Scops in Function " << F.getName() << "\n"; |
| auto &SD = FAM.getResult<ScopAnalysis>(F); |
| for (const Region *R : SD.ValidRegions) |
| OS << "Valid Region for Scop: " << R->getNameStr() << '\n'; |
| |
| OS << "\n"; |
| return PreservedAnalyses::all(); |
| } |
| |
| Pass *polly::createScopDetectionWrapperPassPass() { |
| return new ScopDetectionWrapperPass(); |
| } |
| |
| INITIALIZE_PASS_BEGIN(ScopDetectionWrapperPass, "polly-detect", |
| "Polly - Detect static control parts (SCoPs)", false, |
| false); |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass); |
| INITIALIZE_PASS_END(ScopDetectionWrapperPass, "polly-detect", |
| "Polly - Detect static control parts (SCoPs)", false, false) |