| // Copyright 2018 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Flags: --allow-natives-syntax --opt |
| |
| // Test the RedundancyElimination::ReduceSpeculativeNumberOperation() |
| // TurboFan optimization for the case of SpeculativeNumberAdd with |
| // Number feedback. |
| (function() { |
| function bar(i) { |
| return ++i; |
| } |
| bar(0.1); |
| |
| function foo(a, i) { |
| const x = a[i]; |
| const y = a[bar(i)]; |
| return x + y; |
| } |
| |
| %PrepareFunctionForOptimization(foo); |
| assertEquals(3, foo([1, 2], 0)); |
| assertEquals(3, foo([1, 2], 0)); |
| %OptimizeFunctionOnNextCall(foo); |
| assertEquals(3, foo([1, 2], 0)); |
| })(); |
| |
| // Test the RedundancyElimination::ReduceSpeculativeNumberOperation() |
| // TurboFan optimization for the case of SpeculativeNumberAdd with |
| // NumberOrOddball feedback. |
| (function() { |
| function bar(i) { |
| return ++i; |
| } |
| assertEquals(NaN, bar(undefined)); |
| |
| function foo(a, i) { |
| const x = a[i]; |
| const y = a[bar(i)]; |
| return x + y; |
| } |
| |
| %PrepareFunctionForOptimization(foo); |
| assertEquals(3, foo([1, 2], 0)); |
| assertEquals(3, foo([1, 2], 0)); |
| %OptimizeFunctionOnNextCall(foo); |
| assertEquals(3, foo([1, 2], 0)); |
| })(); |
| |
| // Test the RedundancyElimination::ReduceSpeculativeNumberOperation() |
| // TurboFan optimization for the case of SpeculativeNumberSubtract with |
| // Number feedback. |
| (function() { |
| function bar(i) { |
| return --i; |
| } |
| assertEquals(-0.9, bar(0.1)); |
| |
| function foo(a, i) { |
| const x = a[i]; |
| const y = a[bar(i)]; |
| return x + y; |
| } |
| |
| %PrepareFunctionForOptimization(foo); |
| assertEquals(3, foo([1, 2], 1)); |
| assertEquals(3, foo([1, 2], 1)); |
| %OptimizeFunctionOnNextCall(foo); |
| assertEquals(3, foo([1, 2], 1)); |
| })(); |
| |
| // Test the RedundancyElimination::ReduceSpeculativeNumberOperation() |
| // TurboFan optimization for the case of SpeculativeNumberSubtract with |
| // NumberOrOddball feedback. |
| (function() { |
| function bar(i) { |
| return --i; |
| } |
| assertEquals(NaN, bar(undefined)); |
| |
| function foo(a, i) { |
| const x = a[i]; |
| const y = a[bar(i)]; |
| return x + y; |
| } |
| |
| %PrepareFunctionForOptimization(foo); |
| assertEquals(3, foo([1, 2], 1)); |
| assertEquals(3, foo([1, 2], 1)); |
| %OptimizeFunctionOnNextCall(foo); |
| assertEquals(3, foo([1, 2], 1)); |
| })(); |
| |
| // Test the RedundancyElimination::ReduceSpeculativeNumberOperation() |
| // TurboFan optimization for the case of SpeculativeToNumber. |
| (function() { |
| function foo(a, i) { |
| const x = a[i]; |
| const y = i++; |
| return x + y; |
| } |
| |
| %PrepareFunctionForOptimization(foo); |
| assertEquals(1, foo([1, 2], 0)); |
| assertEquals(1, foo([1, 2], 0)); |
| %OptimizeFunctionOnNextCall(foo); |
| assertEquals(1, foo([1, 2], 0)); |
| })(); |
| |
| // Test the RedundancyElimination::ReduceSpeculativeNumberOperation() |
| // TurboFan optimization for the case of SpeculativeSafeIntegerAdd. |
| (function() { |
| function foo(a, i) { |
| const x = a[i]; |
| const y = a[++i]; |
| return x + y; |
| } |
| |
| %PrepareFunctionForOptimization(foo); |
| assertEquals(3, foo([1, 2], 0)); |
| assertEquals(3, foo([1, 2], 0)); |
| %OptimizeFunctionOnNextCall(foo); |
| assertEquals(3, foo([1, 2], 0)); |
| })(); |
| |
| // Test the RedundancyElimination::ReduceSpeculativeNumberOperation() |
| // TurboFan optimization for the case of SpeculativeSafeIntegerSubtract. |
| (function() { |
| function foo(a, i) { |
| const x = a[i]; |
| const y = a[--i]; |
| return x + y; |
| } |
| |
| %PrepareFunctionForOptimization(foo); |
| assertEquals(3, foo([1, 2], 1)); |
| assertEquals(3, foo([1, 2], 1)); |
| %OptimizeFunctionOnNextCall(foo); |
| assertEquals(3, foo([1, 2], 1)); |
| })(); |
| |
| // Test the RedundancyElimination::ReduceSpeculativeNumberComparison() |
| // TurboFan optimization for the case of SpeculativeNumberEqual. |
| (function() { |
| function foo(a, i) { |
| const x = a[i]; |
| if (i === 0) return x; |
| return i; |
| } |
| |
| %PrepareFunctionForOptimization(foo); |
| assertEquals(1, foo([1, 2], 0)); |
| assertEquals(1, foo([1, 2], 1)); |
| %OptimizeFunctionOnNextCall(foo); |
| assertEquals(1, foo([1, 2], 0)); |
| assertEquals(1, foo([1, 2], 1)); |
| // Even passing -0 should not deoptimize and |
| // of course still pass the equality test above. |
| assertEquals(9, foo([9, 2], -0)); |
| assertOptimized(foo); |
| })(); |
| |
| // Test the RedundancyElimination::ReduceSpeculativeNumberComparison() |
| // TurboFan optimization for the case of SpeculativeNumberLessThan. |
| (function() { |
| function foo(a, i) { |
| const x = a[i]; |
| if (i < 1) return x; |
| return i; |
| } |
| |
| %PrepareFunctionForOptimization(foo); |
| assertEquals(1, foo([1, 2], 0)); |
| assertEquals(1, foo([1, 2], 1)); |
| %OptimizeFunctionOnNextCall(foo); |
| assertEquals(1, foo([1, 2], 0)); |
| assertEquals(1, foo([1, 2], 1)); |
| // Even passing -0 should not deoptimize and |
| // of course still pass the equality test above. |
| assertEquals(9, foo([9, 2], -0)); |
| assertOptimized(foo); |
| })(); |
| |
| // Test the RedundancyElimination::ReduceSpeculativeNumberComparison() |
| // TurboFan optimization for the case of SpeculativeNumberLessThanOrEqual. |
| (function() { |
| function foo(a, i) { |
| const x = a[i]; |
| if (i <= 0) return x; |
| return i; |
| } |
| |
| %PrepareFunctionForOptimization(foo); |
| assertEquals(1, foo([1, 2], 0)); |
| assertEquals(1, foo([1, 2], 1)); |
| %OptimizeFunctionOnNextCall(foo); |
| assertEquals(1, foo([1, 2], 0)); |
| assertEquals(1, foo([1, 2], 1)); |
| // Even passing -0 should not deoptimize and |
| // of course still pass the equality test above. |
| assertEquals(9, foo([9, 2], -0)); |
| assertOptimized(foo); |
| })(); |