blob: 1d61a440e25d115200e8e39369e65b4c999f754b [file] [log] [blame]
//
// Copyright 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// copyvertex.inc.h: Implementation of vertex buffer copying and conversion functions
namespace rx
{
template <typename T,
size_t inputComponentCount,
size_t outputComponentCount,
uint32_t alphaDefaultValueBits>
inline void CopyNativeVertexData(const uint8_t *input, size_t stride, size_t count, uint8_t *output)
{
const size_t attribSize = sizeof(T) * inputComponentCount;
if (attribSize == stride && inputComponentCount == outputComponentCount)
{
memcpy(output, input, count * attribSize);
return;
}
if (inputComponentCount == outputComponentCount)
{
for (size_t i = 0; i < count; i++)
{
const T *offsetInput = reinterpret_cast<const T *>(input + (i * stride));
T *offsetOutput = reinterpret_cast<T *>(output) + i * outputComponentCount;
memcpy(offsetOutput, offsetInput, attribSize);
}
return;
}
const T defaultAlphaValue = gl::bitCast<T>(alphaDefaultValueBits);
const size_t lastNonAlphaOutputComponent = std::min<size_t>(outputComponentCount, 3);
for (size_t i = 0; i < count; i++)
{
const T *offsetInput = reinterpret_cast<const T *>(input + (i * stride));
T *offsetOutput = reinterpret_cast<T *>(output) + i * outputComponentCount;
memcpy(offsetOutput, offsetInput, attribSize);
if (inputComponentCount < lastNonAlphaOutputComponent)
{
// Set the remaining G/B channels to 0.
size_t numComponents = (lastNonAlphaOutputComponent - inputComponentCount);
memset(&offsetOutput[inputComponentCount], 0, numComponents * sizeof(T));
}
if (inputComponentCount < outputComponentCount && outputComponentCount == 4)
{
// Set the remaining alpha channel to the defaultAlphaValue.
offsetOutput[3] = defaultAlphaValue;
}
}
}
template <size_t inputComponentCount, size_t outputComponentCount>
inline void Copy8SintTo16SintVertexData(const uint8_t *input,
size_t stride,
size_t count,
uint8_t *output)
{
const size_t lastNonAlphaOutputComponent = std::min<size_t>(outputComponentCount, 3);
for (size_t i = 0; i < count; i++)
{
const GLbyte *offsetInput = reinterpret_cast<const GLbyte *>(input + i * stride);
GLshort *offsetOutput = reinterpret_cast<GLshort *>(output) + i * outputComponentCount;
for (size_t j = 0; j < inputComponentCount; j++)
{
offsetOutput[j] = static_cast<GLshort>(offsetInput[j]);
}
for (size_t j = inputComponentCount; j < lastNonAlphaOutputComponent; j++)
{
// Set remaining G/B channels to 0.
offsetOutput[j] = 0;
}
if (inputComponentCount < outputComponentCount && outputComponentCount == 4)
{
// On integer formats, we must set the Alpha channel to 1 if it's unused.
offsetOutput[3] = 1;
}
}
}
template <size_t inputComponentCount, size_t outputComponentCount>
inline void Copy8SnormTo16SnormVertexData(const uint8_t *input,
size_t stride,
size_t count,
uint8_t *output)
{
for (size_t i = 0; i < count; i++)
{
const GLbyte *offsetInput = reinterpret_cast<const GLbyte *>(input + i * stride);
GLshort *offsetOutput = reinterpret_cast<GLshort *>(output) + i * outputComponentCount;
for (size_t j = 0; j < inputComponentCount; j++)
{
// The original GLbyte value ranges from -128 to +127 (INT8_MAX).
// When converted to GLshort, the value must be scaled to between -32768 and +32767
// (INT16_MAX).
if (offsetInput[j] > 0)
{
offsetOutput[j] =
offsetInput[j] << 8 | offsetInput[j] << 1 | ((offsetInput[j] & 0x40) >> 6);
}
else
{
offsetOutput[j] = offsetInput[j] << 8;
}
}
for (size_t j = inputComponentCount; j < std::min<size_t>(outputComponentCount, 3); j++)
{
// Set remaining G/B channels to 0.
offsetOutput[j] = 0;
}
if (inputComponentCount < outputComponentCount && outputComponentCount == 4)
{
// On normalized formats, we must set the Alpha channel to the max value if it's unused.
offsetOutput[3] = INT16_MAX;
}
}
}
template <size_t inputComponentCount, size_t outputComponentCount>
inline void Copy32FixedTo32FVertexData(const uint8_t *input,
size_t stride,
size_t count,
uint8_t *output)
{
static const float divisor = 1.0f / (1 << 16);
for (size_t i = 0; i < count; i++)
{
const uint8_t *offsetInput = input + i * stride;
float *offsetOutput = reinterpret_cast<float *>(output) + i * outputComponentCount;
// GLfixed access must be 4-byte aligned on arm32, input and stride sometimes are not
if (reinterpret_cast<uintptr_t>(offsetInput) % sizeof(GLfixed) == 0)
{
for (size_t j = 0; j < inputComponentCount; j++)
{
offsetOutput[j] =
static_cast<float>(reinterpret_cast<const GLfixed *>(offsetInput)[j]) * divisor;
}
}
else
{
for (size_t j = 0; j < inputComponentCount; j++)
{
GLfixed alignedInput;
memcpy(&alignedInput, offsetInput + j * sizeof(GLfixed), sizeof(GLfixed));
offsetOutput[j] = static_cast<float>(alignedInput) * divisor;
}
}
// 4-component output formats would need special padding in the alpha channel.
static_assert(!(inputComponentCount < 4 && outputComponentCount == 4),
"An inputComponentCount less than 4 and an outputComponentCount equal to 4 "
"is not supported.");
for (size_t j = inputComponentCount; j < outputComponentCount; j++)
{
offsetOutput[j] = 0.0f;
}
}
}
template <typename T, size_t inputComponentCount, size_t outputComponentCount, bool normalized>
inline void CopyTo32FVertexData(const uint8_t *input, size_t stride, size_t count, uint8_t *output)
{
typedef std::numeric_limits<T> NL;
for (size_t i = 0; i < count; i++)
{
const T *offsetInput = reinterpret_cast<const T *>(input + (stride * i));
float *offsetOutput = reinterpret_cast<float *>(output) + i * outputComponentCount;
for (size_t j = 0; j < inputComponentCount; j++)
{
if (normalized)
{
if (NL::is_signed)
{
offsetOutput[j] = static_cast<float>(offsetInput[j]) / NL::max();
offsetOutput[j] = (offsetOutput[j] >= -1.0f) ? (offsetOutput[j]) : (-1.0f);
}
else
{
offsetOutput[j] = static_cast<float>(offsetInput[j]) / NL::max();
}
}
else
{
offsetOutput[j] = static_cast<float>(offsetInput[j]);
}
}
// This would require special padding.
static_assert(!(inputComponentCount < 4 && outputComponentCount == 4),
"An inputComponentCount less than 4 and an outputComponentCount equal to 4 "
"is not supported.");
for (size_t j = inputComponentCount; j < outputComponentCount; j++)
{
offsetOutput[j] = 0.0f;
}
}
}
namespace priv
{
template <bool isSigned, bool normalized, bool toFloat>
static inline void CopyPackedRGB(uint32_t data, uint8_t *output)
{
const uint32_t rgbSignMask = 0x200; // 1 set at the 9 bit
const uint32_t negativeMask = 0xFFFFFC00; // All bits from 10 to 31 set to 1
if (toFloat)
{
GLfloat *floatOutput = reinterpret_cast<GLfloat *>(output);
if (isSigned)
{
GLfloat finalValue = 0;
if (data & rgbSignMask)
{
int negativeNumber = data | negativeMask;
finalValue = static_cast<GLfloat>(negativeNumber);
}
else
{
finalValue = static_cast<GLfloat>(data);
}
if (normalized)
{
const int32_t maxValue = 0x1FF; // 1 set in bits 0 through 8
const int32_t minValue = 0xFFFFFE01; // Inverse of maxValue
// A 10-bit two's complement number has the possibility of being minValue - 1 but
// OpenGL's normalization rules dictate that it should be clamped to minValue in
// this case.
if (finalValue < minValue)
{
finalValue = minValue;
}
const int32_t halfRange = (maxValue - minValue) >> 1;
*floatOutput = ((finalValue - minValue) / halfRange) - 1.0f;
}
else
{
*floatOutput = finalValue;
}
}
else
{
if (normalized)
{
const uint32_t maxValue = 0x3FF; // 1 set in bits 0 through 9
*floatOutput = static_cast<GLfloat>(data) / static_cast<GLfloat>(maxValue);
}
else
{
*floatOutput = static_cast<GLfloat>(data);
}
}
}
else
{
if (isSigned)
{
GLshort *intOutput = reinterpret_cast<GLshort *>(output);
if (data & rgbSignMask)
{
*intOutput = static_cast<GLshort>(data | negativeMask);
}
else
{
*intOutput = static_cast<GLshort>(data);
}
}
else
{
GLushort *uintOutput = reinterpret_cast<GLushort *>(output);
*uintOutput = static_cast<GLushort>(data);
}
}
}
template <bool isSigned, bool normalized, bool toFloat>
inline void CopyPackedAlpha(uint32_t data, uint8_t *output)
{
if (toFloat)
{
GLfloat *floatOutput = reinterpret_cast<GLfloat *>(output);
if (isSigned)
{
if (normalized)
{
switch (data)
{
case 0x0:
*floatOutput = 0.0f;
break;
case 0x1:
*floatOutput = 1.0f;
break;
case 0x2:
*floatOutput = -1.0f;
break;
case 0x3:
*floatOutput = -1.0f;
break;
default:
UNREACHABLE();
}
}
else
{
switch (data)
{
case 0x0:
*floatOutput = 0.0f;
break;
case 0x1:
*floatOutput = 1.0f;
break;
case 0x2:
*floatOutput = -2.0f;
break;
case 0x3:
*floatOutput = -1.0f;
break;
default:
UNREACHABLE();
}
}
}
else
{
if (normalized)
{
switch (data)
{
case 0x0:
*floatOutput = 0.0f / 3.0f;
break;
case 0x1:
*floatOutput = 1.0f / 3.0f;
break;
case 0x2:
*floatOutput = 2.0f / 3.0f;
break;
case 0x3:
*floatOutput = 3.0f / 3.0f;
break;
default:
UNREACHABLE();
}
}
else
{
switch (data)
{
case 0x0:
*floatOutput = 0.0f;
break;
case 0x1:
*floatOutput = 1.0f;
break;
case 0x2:
*floatOutput = 2.0f;
break;
case 0x3:
*floatOutput = 3.0f;
break;
default:
UNREACHABLE();
}
}
}
}
else
{
if (isSigned)
{
GLshort *intOutput = reinterpret_cast<GLshort *>(output);
switch (data)
{
case 0x0:
*intOutput = 0;
break;
case 0x1:
*intOutput = 1;
break;
case 0x2:
*intOutput = -2;
break;
case 0x3:
*intOutput = -1;
break;
default:
UNREACHABLE();
}
}
else
{
GLushort *uintOutput = reinterpret_cast<GLushort *>(output);
switch (data)
{
case 0x0:
*uintOutput = 0;
break;
case 0x1:
*uintOutput = 1;
break;
case 0x2:
*uintOutput = 2;
break;
case 0x3:
*uintOutput = 3;
break;
default:
UNREACHABLE();
}
}
}
}
} // namespace priv
template <bool isSigned, bool normalized, bool toFloat>
inline void CopyXYZ10W2ToXYZW32FVertexData(const uint8_t *input,
size_t stride,
size_t count,
uint8_t *output)
{
const size_t outputComponentSize = toFloat ? 4 : 2;
const size_t componentCount = 4;
const uint32_t rgbMask = 0x3FF; // 1 set in bits 0 through 9
const size_t redShift = 0; // red is bits 0 through 9
const size_t greenShift = 10; // green is bits 10 through 19
const size_t blueShift = 20; // blue is bits 20 through 29
const uint32_t alphaMask = 0x3; // 1 set in bits 0 and 1
const size_t alphaShift = 30; // Alpha is the 30 and 31 bits
for (size_t i = 0; i < count; i++)
{
GLuint packedValue = *reinterpret_cast<const GLuint *>(input + (i * stride));
uint8_t *offsetOutput = output + (i * outputComponentSize * componentCount);
priv::CopyPackedRGB<isSigned, normalized, toFloat>(
(packedValue >> redShift) & rgbMask, offsetOutput + (0 * outputComponentSize));
priv::CopyPackedRGB<isSigned, normalized, toFloat>(
(packedValue >> greenShift) & rgbMask, offsetOutput + (1 * outputComponentSize));
priv::CopyPackedRGB<isSigned, normalized, toFloat>(
(packedValue >> blueShift) & rgbMask, offsetOutput + (2 * outputComponentSize));
priv::CopyPackedAlpha<isSigned, normalized, toFloat>(
(packedValue >> alphaShift) & alphaMask, offsetOutput + (3 * outputComponentSize));
}
}
template <bool isSigned, bool normalized>
inline void CopyXYZ10ToXYZW32FVertexData(const uint8_t *input,
size_t stride,
size_t count,
uint8_t *output)
{
const size_t outputComponentSize = 4;
const size_t componentCount = 4;
const uint32_t rgbMask = 0x3FF; // 1 set in bits 0 through 9
const size_t redShift = 22; // red is bits 22 through 31
const size_t greenShift = 12; // green is bits 12 through 21
const size_t blueShift = 2; // blue is bits 2 through 11
const uint32_t alphaDefaultValueBits = normalized ? (isSigned ? 0x1 : 0x3) : 0x1;
for (size_t i = 0; i < count; i++)
{
GLuint packedValue = *reinterpret_cast<const GLuint *>(input + (i * stride));
uint8_t *offsetOutput = output + (i * outputComponentSize * componentCount);
priv::CopyPackedRGB<isSigned, normalized, true>((packedValue >> redShift) & rgbMask,
offsetOutput + (0 * outputComponentSize));
priv::CopyPackedRGB<isSigned, normalized, true>((packedValue >> greenShift) & rgbMask,
offsetOutput + (1 * outputComponentSize));
priv::CopyPackedRGB<isSigned, normalized, true>((packedValue >> blueShift) & rgbMask,
offsetOutput + (2 * outputComponentSize));
priv::CopyPackedAlpha<isSigned, normalized, true>(alphaDefaultValueBits,
offsetOutput + (3 * outputComponentSize));
}
}
template <bool isSigned, bool normalized>
inline void CopyW2XYZ10ToXYZW32FVertexData(const uint8_t *input,
size_t stride,
size_t count,
uint8_t *output)
{
const size_t outputComponentSize = 4;
const size_t componentCount = 4;
const uint32_t rgbMask = 0x3FF; // 1 set in bits 0 through 9
const size_t redShift = 22; // red is bits 22 through 31
const size_t greenShift = 12; // green is bits 12 through 21
const size_t blueShift = 2; // blue is bits 2 through 11
const uint32_t alphaMask = 0x3; // 1 set in bits 0 and 1
const size_t alphaShift = 0; // Alpha is the 30 and 31 bits
for (size_t i = 0; i < count; i++)
{
GLuint packedValue = *reinterpret_cast<const GLuint *>(input + (i * stride));
uint8_t *offsetOutput = output + (i * outputComponentSize * componentCount);
priv::CopyPackedRGB<isSigned, normalized, true>((packedValue >> redShift) & rgbMask,
offsetOutput + (0 * outputComponentSize));
priv::CopyPackedRGB<isSigned, normalized, true>((packedValue >> greenShift) & rgbMask,
offsetOutput + (1 * outputComponentSize));
priv::CopyPackedRGB<isSigned, normalized, true>((packedValue >> blueShift) & rgbMask,
offsetOutput + (2 * outputComponentSize));
priv::CopyPackedAlpha<isSigned, normalized, true>((packedValue >> alphaShift) & alphaMask,
offsetOutput + (3 * outputComponentSize));
}
}
} // namespace rx