| /* |
| * Copyright (c) 2014 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include "./vpx_config.h" |
| #include "vpx_dsp/vpx_dsp_common.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_thread_common.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/common/vp9_loopfilter.h" |
| |
| #if CONFIG_MULTITHREAD |
| static INLINE void mutex_lock(pthread_mutex_t *const mutex) { |
| const int kMaxTryLocks = 4000; |
| int locked = 0; |
| int i; |
| |
| for (i = 0; i < kMaxTryLocks; ++i) { |
| if (!pthread_mutex_trylock(mutex)) { |
| locked = 1; |
| break; |
| } |
| } |
| |
| if (!locked) pthread_mutex_lock(mutex); |
| } |
| #endif // CONFIG_MULTITHREAD |
| |
| static INLINE void sync_read(VP9LfSync *const lf_sync, int r, int c) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = lf_sync->sync_range; |
| |
| if (r && !(c & (nsync - 1))) { |
| pthread_mutex_t *const mutex = &lf_sync->mutex[r - 1]; |
| mutex_lock(mutex); |
| |
| while (c > lf_sync->cur_sb_col[r - 1] - nsync) { |
| pthread_cond_wait(&lf_sync->cond[r - 1], mutex); |
| } |
| pthread_mutex_unlock(mutex); |
| } |
| #else |
| (void)lf_sync; |
| (void)r; |
| (void)c; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static INLINE void sync_write(VP9LfSync *const lf_sync, int r, int c, |
| const int sb_cols) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = lf_sync->sync_range; |
| int cur; |
| // Only signal when there are enough filtered SB for next row to run. |
| int sig = 1; |
| |
| if (c < sb_cols - 1) { |
| cur = c; |
| if (c % nsync) sig = 0; |
| } else { |
| cur = sb_cols + nsync; |
| } |
| |
| if (sig) { |
| mutex_lock(&lf_sync->mutex[r]); |
| |
| lf_sync->cur_sb_col[r] = cur; |
| |
| pthread_cond_signal(&lf_sync->cond[r]); |
| pthread_mutex_unlock(&lf_sync->mutex[r]); |
| } |
| #else |
| (void)lf_sync; |
| (void)r; |
| (void)c; |
| (void)sb_cols; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| // Implement row loopfiltering for each thread. |
| static INLINE void thread_loop_filter_rows( |
| const YV12_BUFFER_CONFIG *const frame_buffer, VP9_COMMON *const cm, |
| struct macroblockd_plane planes[MAX_MB_PLANE], int start, int stop, |
| int y_only, VP9LfSync *const lf_sync) { |
| const int num_planes = y_only ? 1 : MAX_MB_PLANE; |
| const int sb_cols = mi_cols_aligned_to_sb(cm->mi_cols) >> MI_BLOCK_SIZE_LOG2; |
| const int num_active_workers = lf_sync->num_active_workers; |
| int mi_row, mi_col; |
| enum lf_path path; |
| if (y_only) |
| path = LF_PATH_444; |
| else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1) |
| path = LF_PATH_420; |
| else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0) |
| path = LF_PATH_444; |
| else |
| path = LF_PATH_SLOW; |
| |
| assert(num_active_workers > 0); |
| |
| for (mi_row = start; mi_row < stop; |
| mi_row += num_active_workers * MI_BLOCK_SIZE) { |
| MODE_INFO **const mi = cm->mi_grid_visible + mi_row * cm->mi_stride; |
| LOOP_FILTER_MASK *lfm = get_lfm(&cm->lf, mi_row, 0); |
| |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE, ++lfm) { |
| const int r = mi_row >> MI_BLOCK_SIZE_LOG2; |
| const int c = mi_col >> MI_BLOCK_SIZE_LOG2; |
| int plane; |
| |
| sync_read(lf_sync, r, c); |
| |
| vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col); |
| |
| vp9_adjust_mask(cm, mi_row, mi_col, lfm); |
| |
| vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, lfm); |
| for (plane = 1; plane < num_planes; ++plane) { |
| switch (path) { |
| case LF_PATH_420: |
| vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, lfm); |
| break; |
| case LF_PATH_444: |
| vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, lfm); |
| break; |
| case LF_PATH_SLOW: |
| vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col, |
| mi_row, mi_col); |
| break; |
| } |
| } |
| |
| sync_write(lf_sync, r, c, sb_cols); |
| } |
| } |
| } |
| |
| // Row-based multi-threaded loopfilter hook |
| static int loop_filter_row_worker(void *arg1, void *arg2) { |
| VP9LfSync *const lf_sync = (VP9LfSync *)arg1; |
| LFWorkerData *const lf_data = (LFWorkerData *)arg2; |
| thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, |
| lf_data->start, lf_data->stop, lf_data->y_only, |
| lf_sync); |
| return 1; |
| } |
| |
| static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, VP9_COMMON *cm, |
| struct macroblockd_plane planes[MAX_MB_PLANE], |
| int start, int stop, int y_only, |
| VPxWorker *workers, int nworkers, |
| VP9LfSync *lf_sync) { |
| const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); |
| // Number of superblock rows and cols |
| const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2; |
| const int num_tile_cols = 1 << cm->log2_tile_cols; |
| // Limit the number of workers to prevent changes in frame dimensions from |
| // causing incorrect sync calculations when sb_rows < threads/tile_cols. |
| // Further restrict them by the number of tile columns should the user |
| // request more as this implementation doesn't scale well beyond that. |
| const int num_workers = VPXMIN(nworkers, VPXMIN(num_tile_cols, sb_rows)); |
| int i; |
| |
| if (!lf_sync->sync_range || sb_rows != lf_sync->rows || |
| num_workers > lf_sync->num_workers) { |
| vp9_loop_filter_dealloc(lf_sync); |
| vp9_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers); |
| } |
| lf_sync->num_active_workers = num_workers; |
| |
| // Initialize cur_sb_col to -1 for all SB rows. |
| memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows); |
| |
| // Set up loopfilter thread data. |
| // The decoder is capping num_workers because it has been observed that using |
| // more threads on the loopfilter than there are cores will hurt performance |
| // on Android. This is because the system will only schedule the tile decode |
| // workers on cores equal to the number of tile columns. Then if the decoder |
| // tries to use more threads for the loopfilter, it will hurt performance |
| // because of contention. If the multithreading code changes in the future |
| // then the number of workers used by the loopfilter should be revisited. |
| for (i = 0; i < num_workers; ++i) { |
| VPxWorker *const worker = &workers[i]; |
| LFWorkerData *const lf_data = &lf_sync->lfdata[i]; |
| |
| worker->hook = loop_filter_row_worker; |
| worker->data1 = lf_sync; |
| worker->data2 = lf_data; |
| |
| // Loopfilter data |
| vp9_loop_filter_data_reset(lf_data, frame, cm, planes); |
| lf_data->start = start + i * MI_BLOCK_SIZE; |
| lf_data->stop = stop; |
| lf_data->y_only = y_only; |
| |
| // Start loopfiltering |
| if (i == num_workers - 1) { |
| winterface->execute(worker); |
| } else { |
| winterface->launch(worker); |
| } |
| } |
| |
| // Wait till all rows are finished |
| for (i = 0; i < num_workers; ++i) { |
| winterface->sync(&workers[i]); |
| } |
| } |
| |
| void vp9_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, VP9_COMMON *cm, |
| struct macroblockd_plane planes[MAX_MB_PLANE], |
| int frame_filter_level, int y_only, |
| int partial_frame, VPxWorker *workers, |
| int num_workers, VP9LfSync *lf_sync) { |
| int start_mi_row, end_mi_row, mi_rows_to_filter; |
| |
| if (!frame_filter_level) return; |
| |
| start_mi_row = 0; |
| mi_rows_to_filter = cm->mi_rows; |
| if (partial_frame && cm->mi_rows > 8) { |
| start_mi_row = cm->mi_rows >> 1; |
| start_mi_row &= 0xfffffff8; |
| mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8); |
| } |
| end_mi_row = start_mi_row + mi_rows_to_filter; |
| vp9_loop_filter_frame_init(cm, frame_filter_level); |
| |
| loop_filter_rows_mt(frame, cm, planes, start_mi_row, end_mi_row, y_only, |
| workers, num_workers, lf_sync); |
| } |
| |
| void vp9_lpf_mt_init(VP9LfSync *lf_sync, VP9_COMMON *cm, int frame_filter_level, |
| int num_workers) { |
| const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2; |
| |
| if (!frame_filter_level) return; |
| |
| if (!lf_sync->sync_range || sb_rows != lf_sync->rows || |
| num_workers > lf_sync->num_workers) { |
| vp9_loop_filter_dealloc(lf_sync); |
| vp9_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers); |
| } |
| |
| // Initialize cur_sb_col to -1 for all SB rows. |
| memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows); |
| |
| lf_sync->corrupted = 0; |
| |
| memset(lf_sync->num_tiles_done, 0, |
| sizeof(*lf_sync->num_tiles_done) * sb_rows); |
| cm->lf_row = 0; |
| } |
| |
| // Set up nsync by width. |
| static INLINE int get_sync_range(int width) { |
| // nsync numbers are picked by testing. For example, for 4k |
| // video, using 4 gives best performance. |
| if (width < 640) |
| return 1; |
| else if (width <= 1280) |
| return 2; |
| else if (width <= 4096) |
| return 4; |
| else |
| return 8; |
| } |
| |
| // Allocate memory for lf row synchronization |
| void vp9_loop_filter_alloc(VP9LfSync *lf_sync, VP9_COMMON *cm, int rows, |
| int width, int num_workers) { |
| lf_sync->rows = rows; |
| #if CONFIG_MULTITHREAD |
| { |
| int i; |
| |
| CHECK_MEM_ERROR(cm, lf_sync->mutex, |
| vpx_malloc(sizeof(*lf_sync->mutex) * rows)); |
| if (lf_sync->mutex) { |
| for (i = 0; i < rows; ++i) { |
| pthread_mutex_init(&lf_sync->mutex[i], NULL); |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, lf_sync->cond, |
| vpx_malloc(sizeof(*lf_sync->cond) * rows)); |
| if (lf_sync->cond) { |
| for (i = 0; i < rows; ++i) { |
| pthread_cond_init(&lf_sync->cond[i], NULL); |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, lf_sync->lf_mutex, |
| vpx_malloc(sizeof(*lf_sync->lf_mutex))); |
| pthread_mutex_init(lf_sync->lf_mutex, NULL); |
| |
| CHECK_MEM_ERROR(cm, lf_sync->recon_done_mutex, |
| vpx_malloc(sizeof(*lf_sync->recon_done_mutex) * rows)); |
| if (lf_sync->recon_done_mutex) { |
| int i; |
| for (i = 0; i < rows; ++i) { |
| pthread_mutex_init(&lf_sync->recon_done_mutex[i], NULL); |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, lf_sync->recon_done_cond, |
| vpx_malloc(sizeof(*lf_sync->recon_done_cond) * rows)); |
| if (lf_sync->recon_done_cond) { |
| int i; |
| for (i = 0; i < rows; ++i) { |
| pthread_cond_init(&lf_sync->recon_done_cond[i], NULL); |
| } |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| |
| CHECK_MEM_ERROR(cm, lf_sync->lfdata, |
| vpx_malloc(num_workers * sizeof(*lf_sync->lfdata))); |
| lf_sync->num_workers = num_workers; |
| lf_sync->num_active_workers = lf_sync->num_workers; |
| |
| CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col, |
| vpx_malloc(sizeof(*lf_sync->cur_sb_col) * rows)); |
| |
| CHECK_MEM_ERROR(cm, lf_sync->num_tiles_done, |
| vpx_malloc(sizeof(*lf_sync->num_tiles_done) * |
| mi_cols_aligned_to_sb(cm->mi_rows) >> |
| MI_BLOCK_SIZE_LOG2)); |
| |
| // Set up nsync. |
| lf_sync->sync_range = get_sync_range(width); |
| } |
| |
| // Deallocate lf synchronization related mutex and data |
| void vp9_loop_filter_dealloc(VP9LfSync *lf_sync) { |
| assert(lf_sync != NULL); |
| |
| #if CONFIG_MULTITHREAD |
| if (lf_sync->mutex != NULL) { |
| int i; |
| for (i = 0; i < lf_sync->rows; ++i) { |
| pthread_mutex_destroy(&lf_sync->mutex[i]); |
| } |
| vpx_free(lf_sync->mutex); |
| } |
| if (lf_sync->cond != NULL) { |
| int i; |
| for (i = 0; i < lf_sync->rows; ++i) { |
| pthread_cond_destroy(&lf_sync->cond[i]); |
| } |
| vpx_free(lf_sync->cond); |
| } |
| if (lf_sync->recon_done_mutex != NULL) { |
| int i; |
| for (i = 0; i < lf_sync->rows; ++i) { |
| pthread_mutex_destroy(&lf_sync->recon_done_mutex[i]); |
| } |
| vpx_free(lf_sync->recon_done_mutex); |
| } |
| |
| if (lf_sync->lf_mutex != NULL) { |
| pthread_mutex_destroy(lf_sync->lf_mutex); |
| vpx_free(lf_sync->lf_mutex); |
| } |
| if (lf_sync->recon_done_cond != NULL) { |
| int i; |
| for (i = 0; i < lf_sync->rows; ++i) { |
| pthread_cond_destroy(&lf_sync->recon_done_cond[i]); |
| } |
| vpx_free(lf_sync->recon_done_cond); |
| } |
| #endif // CONFIG_MULTITHREAD |
| |
| vpx_free(lf_sync->lfdata); |
| vpx_free(lf_sync->cur_sb_col); |
| vpx_free(lf_sync->num_tiles_done); |
| // clear the structure as the source of this call may be a resize in which |
| // case this call will be followed by an _alloc() which may fail. |
| vp9_zero(*lf_sync); |
| } |
| |
| static int get_next_row(VP9_COMMON *cm, VP9LfSync *lf_sync) { |
| int return_val = -1; |
| int cur_row; |
| const int max_rows = cm->mi_rows; |
| |
| #if CONFIG_MULTITHREAD |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| |
| pthread_mutex_lock(lf_sync->lf_mutex); |
| if (cm->lf_row < max_rows) { |
| cur_row = cm->lf_row >> MI_BLOCK_SIZE_LOG2; |
| return_val = cm->lf_row; |
| cm->lf_row += MI_BLOCK_SIZE; |
| if (cm->lf_row < max_rows) { |
| /* If this is not the last row, make sure the next row is also decoded. |
| * This is because the intra predict has to happen before loop filter */ |
| cur_row += 1; |
| } |
| } |
| pthread_mutex_unlock(lf_sync->lf_mutex); |
| |
| if (return_val == -1) return return_val; |
| |
| pthread_mutex_lock(&lf_sync->recon_done_mutex[cur_row]); |
| if (lf_sync->num_tiles_done[cur_row] < tile_cols) { |
| pthread_cond_wait(&lf_sync->recon_done_cond[cur_row], |
| &lf_sync->recon_done_mutex[cur_row]); |
| } |
| pthread_mutex_unlock(&lf_sync->recon_done_mutex[cur_row]); |
| pthread_mutex_lock(lf_sync->lf_mutex); |
| if (lf_sync->corrupted) { |
| int row = return_val >> MI_BLOCK_SIZE_LOG2; |
| pthread_mutex_lock(&lf_sync->mutex[row]); |
| lf_sync->cur_sb_col[row] = INT_MAX; |
| pthread_cond_signal(&lf_sync->cond[row]); |
| pthread_mutex_unlock(&lf_sync->mutex[row]); |
| return_val = -1; |
| } |
| pthread_mutex_unlock(lf_sync->lf_mutex); |
| #else |
| (void)lf_sync; |
| if (cm->lf_row < max_rows) { |
| cur_row = cm->lf_row >> MI_BLOCK_SIZE_LOG2; |
| return_val = cm->lf_row; |
| cm->lf_row += MI_BLOCK_SIZE; |
| if (cm->lf_row < max_rows) { |
| /* If this is not the last row, make sure the next row is also decoded. |
| * This is because the intra predict has to happen before loop filter */ |
| cur_row += 1; |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| |
| return return_val; |
| } |
| |
| void vp9_loopfilter_rows(LFWorkerData *lf_data, VP9LfSync *lf_sync) { |
| int mi_row; |
| VP9_COMMON *cm = lf_data->cm; |
| |
| while ((mi_row = get_next_row(cm, lf_sync)) != -1 && mi_row < cm->mi_rows) { |
| lf_data->start = mi_row; |
| lf_data->stop = mi_row + MI_BLOCK_SIZE; |
| |
| thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, |
| lf_data->start, lf_data->stop, lf_data->y_only, |
| lf_sync); |
| } |
| } |
| |
| void vp9_set_row(VP9LfSync *lf_sync, int num_tiles, int row, int is_last_row, |
| int corrupted) { |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(lf_sync->lf_mutex); |
| lf_sync->corrupted |= corrupted; |
| pthread_mutex_unlock(lf_sync->lf_mutex); |
| pthread_mutex_lock(&lf_sync->recon_done_mutex[row]); |
| lf_sync->num_tiles_done[row] += 1; |
| if (num_tiles == lf_sync->num_tiles_done[row]) { |
| if (is_last_row) { |
| /* The last 2 rows wait on the last row to be done. |
| * So, we have to broadcast the signal in this case. |
| */ |
| pthread_cond_broadcast(&lf_sync->recon_done_cond[row]); |
| } else { |
| pthread_cond_signal(&lf_sync->recon_done_cond[row]); |
| } |
| } |
| pthread_mutex_unlock(&lf_sync->recon_done_mutex[row]); |
| #else |
| (void)lf_sync; |
| (void)num_tiles; |
| (void)row; |
| (void)is_last_row; |
| (void)corrupted; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| void vp9_loopfilter_job(LFWorkerData *lf_data, VP9LfSync *lf_sync) { |
| thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, |
| lf_data->start, lf_data->stop, lf_data->y_only, |
| lf_sync); |
| } |
| |
| // Accumulate frame counts. |
| void vp9_accumulate_frame_counts(FRAME_COUNTS *accum, |
| const FRAME_COUNTS *counts, int is_dec) { |
| int i, j, k, l, m; |
| |
| for (i = 0; i < BLOCK_SIZE_GROUPS; i++) |
| for (j = 0; j < INTRA_MODES; j++) |
| accum->y_mode[i][j] += counts->y_mode[i][j]; |
| |
| for (i = 0; i < INTRA_MODES; i++) |
| for (j = 0; j < INTRA_MODES; j++) |
| accum->uv_mode[i][j] += counts->uv_mode[i][j]; |
| |
| for (i = 0; i < PARTITION_CONTEXTS; i++) |
| for (j = 0; j < PARTITION_TYPES; j++) |
| accum->partition[i][j] += counts->partition[i][j]; |
| |
| if (is_dec) { |
| int n; |
| for (i = 0; i < TX_SIZES; i++) |
| for (j = 0; j < PLANE_TYPES; j++) |
| for (k = 0; k < REF_TYPES; k++) |
| for (l = 0; l < COEF_BANDS; l++) |
| for (m = 0; m < COEFF_CONTEXTS; m++) { |
| accum->eob_branch[i][j][k][l][m] += |
| counts->eob_branch[i][j][k][l][m]; |
| for (n = 0; n < UNCONSTRAINED_NODES + 1; n++) |
| accum->coef[i][j][k][l][m][n] += counts->coef[i][j][k][l][m][n]; |
| } |
| } else { |
| for (i = 0; i < TX_SIZES; i++) |
| for (j = 0; j < PLANE_TYPES; j++) |
| for (k = 0; k < REF_TYPES; k++) |
| for (l = 0; l < COEF_BANDS; l++) |
| for (m = 0; m < COEFF_CONTEXTS; m++) |
| accum->eob_branch[i][j][k][l][m] += |
| counts->eob_branch[i][j][k][l][m]; |
| // In the encoder, coef is only updated at frame |
| // level, so not need to accumulate it here. |
| // for (n = 0; n < UNCONSTRAINED_NODES + 1; n++) |
| // accum->coef[i][j][k][l][m][n] += |
| // counts->coef[i][j][k][l][m][n]; |
| } |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) |
| for (j = 0; j < SWITCHABLE_FILTERS; j++) |
| accum->switchable_interp[i][j] += counts->switchable_interp[i][j]; |
| |
| for (i = 0; i < INTER_MODE_CONTEXTS; i++) |
| for (j = 0; j < INTER_MODES; j++) |
| accum->inter_mode[i][j] += counts->inter_mode[i][j]; |
| |
| for (i = 0; i < INTRA_INTER_CONTEXTS; i++) |
| for (j = 0; j < 2; j++) |
| accum->intra_inter[i][j] += counts->intra_inter[i][j]; |
| |
| for (i = 0; i < COMP_INTER_CONTEXTS; i++) |
| for (j = 0; j < 2; j++) accum->comp_inter[i][j] += counts->comp_inter[i][j]; |
| |
| for (i = 0; i < REF_CONTEXTS; i++) |
| for (j = 0; j < 2; j++) |
| for (k = 0; k < 2; k++) |
| accum->single_ref[i][j][k] += counts->single_ref[i][j][k]; |
| |
| for (i = 0; i < REF_CONTEXTS; i++) |
| for (j = 0; j < 2; j++) accum->comp_ref[i][j] += counts->comp_ref[i][j]; |
| |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| for (j = 0; j < TX_SIZES; j++) |
| accum->tx.p32x32[i][j] += counts->tx.p32x32[i][j]; |
| |
| for (j = 0; j < TX_SIZES - 1; j++) |
| accum->tx.p16x16[i][j] += counts->tx.p16x16[i][j]; |
| |
| for (j = 0; j < TX_SIZES - 2; j++) |
| accum->tx.p8x8[i][j] += counts->tx.p8x8[i][j]; |
| } |
| |
| for (i = 0; i < TX_SIZES; i++) |
| accum->tx.tx_totals[i] += counts->tx.tx_totals[i]; |
| |
| for (i = 0; i < SKIP_CONTEXTS; i++) |
| for (j = 0; j < 2; j++) accum->skip[i][j] += counts->skip[i][j]; |
| |
| for (i = 0; i < MV_JOINTS; i++) accum->mv.joints[i] += counts->mv.joints[i]; |
| |
| for (k = 0; k < 2; k++) { |
| nmv_component_counts *const comps = &accum->mv.comps[k]; |
| const nmv_component_counts *const comps_t = &counts->mv.comps[k]; |
| |
| for (i = 0; i < 2; i++) { |
| comps->sign[i] += comps_t->sign[i]; |
| comps->class0_hp[i] += comps_t->class0_hp[i]; |
| comps->hp[i] += comps_t->hp[i]; |
| } |
| |
| for (i = 0; i < MV_CLASSES; i++) comps->classes[i] += comps_t->classes[i]; |
| |
| for (i = 0; i < CLASS0_SIZE; i++) { |
| comps->class0[i] += comps_t->class0[i]; |
| for (j = 0; j < MV_FP_SIZE; j++) |
| comps->class0_fp[i][j] += comps_t->class0_fp[i][j]; |
| } |
| |
| for (i = 0; i < MV_OFFSET_BITS; i++) |
| for (j = 0; j < 2; j++) comps->bits[i][j] += comps_t->bits[i][j]; |
| |
| for (i = 0; i < MV_FP_SIZE; i++) comps->fp[i] += comps_t->fp[i]; |
| } |
| } |