| //===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| //===----------------------------------------------------------------------===/ |
| // |
| // This file implements C++ template instantiation for declarations. |
| // |
| //===----------------------------------------------------------------------===/ |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTMutationListener.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/DeclVisitor.h" |
| #include "clang/AST/DependentDiagnostic.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/PrettyDeclStackTrace.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Template.h" |
| #include "clang/Sema/TemplateInstCallback.h" |
| |
| using namespace clang; |
| |
| static bool isDeclWithinFunction(const Decl *D) { |
| const DeclContext *DC = D->getDeclContext(); |
| if (DC->isFunctionOrMethod()) |
| return true; |
| |
| if (DC->isRecord()) |
| return cast<CXXRecordDecl>(DC)->isLocalClass(); |
| |
| return false; |
| } |
| |
| template<typename DeclT> |
| static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| if (!OldDecl->getQualifierLoc()) |
| return false; |
| |
| assert((NewDecl->getFriendObjectKind() || |
| !OldDecl->getLexicalDeclContext()->isDependentContext()) && |
| "non-friend with qualified name defined in dependent context"); |
| Sema::ContextRAII SavedContext( |
| SemaRef, |
| const_cast<DeclContext *>(NewDecl->getFriendObjectKind() |
| ? NewDecl->getLexicalDeclContext() |
| : OldDecl->getLexicalDeclContext())); |
| |
| NestedNameSpecifierLoc NewQualifierLoc |
| = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), |
| TemplateArgs); |
| |
| if (!NewQualifierLoc) |
| return true; |
| |
| NewDecl->setQualifierInfo(NewQualifierLoc); |
| return false; |
| } |
| |
| bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl, |
| DeclaratorDecl *NewDecl) { |
| return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); |
| } |
| |
| bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl, |
| TagDecl *NewDecl) { |
| return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); |
| } |
| |
| // Include attribute instantiation code. |
| #include "clang/Sema/AttrTemplateInstantiate.inc" |
| |
| static void instantiateDependentAlignedAttr( |
| Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, |
| const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) { |
| if (Aligned->isAlignmentExpr()) { |
| // The alignment expression is a constant expression. |
| EnterExpressionEvaluationContext Unevaluated( |
| S, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs); |
| if (!Result.isInvalid()) |
| S.AddAlignedAttr(Aligned->getLocation(), New, Result.getAs<Expr>(), |
| Aligned->getSpellingListIndex(), IsPackExpansion); |
| } else { |
| TypeSourceInfo *Result = S.SubstType(Aligned->getAlignmentType(), |
| TemplateArgs, Aligned->getLocation(), |
| DeclarationName()); |
| if (Result) |
| S.AddAlignedAttr(Aligned->getLocation(), New, Result, |
| Aligned->getSpellingListIndex(), IsPackExpansion); |
| } |
| } |
| |
| static void instantiateDependentAlignedAttr( |
| Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, |
| const AlignedAttr *Aligned, Decl *New) { |
| if (!Aligned->isPackExpansion()) { |
| instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); |
| return; |
| } |
| |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| if (Aligned->isAlignmentExpr()) |
| S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(), |
| Unexpanded); |
| else |
| S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(), |
| Unexpanded); |
| assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); |
| |
| // Determine whether we can expand this attribute pack yet. |
| bool Expand = true, RetainExpansion = false; |
| Optional<unsigned> NumExpansions; |
| // FIXME: Use the actual location of the ellipsis. |
| SourceLocation EllipsisLoc = Aligned->getLocation(); |
| if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(), |
| Unexpanded, TemplateArgs, Expand, |
| RetainExpansion, NumExpansions)) |
| return; |
| |
| if (!Expand) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1); |
| instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true); |
| } else { |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I); |
| instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); |
| } |
| } |
| } |
| |
| static void instantiateDependentAssumeAlignedAttr( |
| Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, |
| const AssumeAlignedAttr *Aligned, Decl *New) { |
| // The alignment expression is a constant expression. |
| EnterExpressionEvaluationContext Unevaluated( |
| S, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| Expr *E, *OE = nullptr; |
| ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); |
| if (Result.isInvalid()) |
| return; |
| E = Result.getAs<Expr>(); |
| |
| if (Aligned->getOffset()) { |
| Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs); |
| if (Result.isInvalid()) |
| return; |
| OE = Result.getAs<Expr>(); |
| } |
| |
| S.AddAssumeAlignedAttr(Aligned->getLocation(), New, E, OE, |
| Aligned->getSpellingListIndex()); |
| } |
| |
| static void instantiateDependentAlignValueAttr( |
| Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, |
| const AlignValueAttr *Aligned, Decl *New) { |
| // The alignment expression is a constant expression. |
| EnterExpressionEvaluationContext Unevaluated( |
| S, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); |
| if (!Result.isInvalid()) |
| S.AddAlignValueAttr(Aligned->getLocation(), New, Result.getAs<Expr>(), |
| Aligned->getSpellingListIndex()); |
| } |
| |
| static void instantiateDependentAllocAlignAttr( |
| Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, |
| const AllocAlignAttr *Align, Decl *New) { |
| Expr *Param = IntegerLiteral::Create( |
| S.getASTContext(), |
| llvm::APInt(64, Align->getParamIndex().getSourceIndex()), |
| S.getASTContext().UnsignedLongLongTy, Align->getLocation()); |
| S.AddAllocAlignAttr(Align->getLocation(), New, Param, |
| Align->getSpellingListIndex()); |
| } |
| |
| static Expr *instantiateDependentFunctionAttrCondition( |
| Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, |
| const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) { |
| Expr *Cond = nullptr; |
| { |
| Sema::ContextRAII SwitchContext(S, New); |
| EnterExpressionEvaluationContext Unevaluated( |
| S, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| ExprResult Result = S.SubstExpr(OldCond, TemplateArgs); |
| if (Result.isInvalid()) |
| return nullptr; |
| Cond = Result.getAs<Expr>(); |
| } |
| if (!Cond->isTypeDependent()) { |
| ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); |
| if (Converted.isInvalid()) |
| return nullptr; |
| Cond = Converted.get(); |
| } |
| |
| SmallVector<PartialDiagnosticAt, 8> Diags; |
| if (OldCond->isValueDependent() && !Cond->isValueDependent() && |
| !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) { |
| S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A; |
| for (const auto &P : Diags) |
| S.Diag(P.first, P.second); |
| return nullptr; |
| } |
| return Cond; |
| } |
| |
| static void instantiateDependentEnableIfAttr( |
| Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, |
| const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) { |
| Expr *Cond = instantiateDependentFunctionAttrCondition( |
| S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New); |
| |
| if (Cond) |
| New->addAttr(new (S.getASTContext()) EnableIfAttr( |
| EIA->getLocation(), S.getASTContext(), Cond, EIA->getMessage(), |
| EIA->getSpellingListIndex())); |
| } |
| |
| static void instantiateDependentDiagnoseIfAttr( |
| Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, |
| const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) { |
| Expr *Cond = instantiateDependentFunctionAttrCondition( |
| S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New); |
| |
| if (Cond) |
| New->addAttr(new (S.getASTContext()) DiagnoseIfAttr( |
| DIA->getLocation(), S.getASTContext(), Cond, DIA->getMessage(), |
| DIA->getDiagnosticType(), DIA->getArgDependent(), New, |
| DIA->getSpellingListIndex())); |
| } |
| |
| // Constructs and adds to New a new instance of CUDALaunchBoundsAttr using |
| // template A as the base and arguments from TemplateArgs. |
| static void instantiateDependentCUDALaunchBoundsAttr( |
| Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, |
| const CUDALaunchBoundsAttr &Attr, Decl *New) { |
| // The alignment expression is a constant expression. |
| EnterExpressionEvaluationContext Unevaluated( |
| S, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs); |
| if (Result.isInvalid()) |
| return; |
| Expr *MaxThreads = Result.getAs<Expr>(); |
| |
| Expr *MinBlocks = nullptr; |
| if (Attr.getMinBlocks()) { |
| Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs); |
| if (Result.isInvalid()) |
| return; |
| MinBlocks = Result.getAs<Expr>(); |
| } |
| |
| S.AddLaunchBoundsAttr(Attr.getLocation(), New, MaxThreads, MinBlocks, |
| Attr.getSpellingListIndex()); |
| } |
| |
| static void |
| instantiateDependentModeAttr(Sema &S, |
| const MultiLevelTemplateArgumentList &TemplateArgs, |
| const ModeAttr &Attr, Decl *New) { |
| S.AddModeAttr(Attr.getRange(), New, Attr.getMode(), |
| Attr.getSpellingListIndex(), /*InInstantiation=*/true); |
| } |
| |
| /// Instantiation of 'declare simd' attribute and its arguments. |
| static void instantiateOMPDeclareSimdDeclAttr( |
| Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, |
| const OMPDeclareSimdDeclAttr &Attr, Decl *New) { |
| // Allow 'this' in clauses with varlists. |
| if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New)) |
| New = FTD->getTemplatedDecl(); |
| auto *FD = cast<FunctionDecl>(New); |
| auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext()); |
| SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps; |
| SmallVector<unsigned, 4> LinModifiers; |
| |
| auto &&Subst = [&](Expr *E) -> ExprResult { |
| if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) |
| if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { |
| Sema::ContextRAII SavedContext(S, FD); |
| LocalInstantiationScope Local(S); |
| if (FD->getNumParams() > PVD->getFunctionScopeIndex()) |
| Local.InstantiatedLocal( |
| PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); |
| return S.SubstExpr(E, TemplateArgs); |
| } |
| Sema::CXXThisScopeRAII ThisScope(S, ThisContext, /*TypeQuals=*/0, |
| FD->isCXXInstanceMember()); |
| return S.SubstExpr(E, TemplateArgs); |
| }; |
| |
| ExprResult Simdlen; |
| if (auto *E = Attr.getSimdlen()) |
| Simdlen = Subst(E); |
| |
| if (Attr.uniforms_size() > 0) { |
| for(auto *E : Attr.uniforms()) { |
| ExprResult Inst = Subst(E); |
| if (Inst.isInvalid()) |
| continue; |
| Uniforms.push_back(Inst.get()); |
| } |
| } |
| |
| auto AI = Attr.alignments_begin(); |
| for (auto *E : Attr.aligneds()) { |
| ExprResult Inst = Subst(E); |
| if (Inst.isInvalid()) |
| continue; |
| Aligneds.push_back(Inst.get()); |
| Inst = ExprEmpty(); |
| if (*AI) |
| Inst = S.SubstExpr(*AI, TemplateArgs); |
| Alignments.push_back(Inst.get()); |
| ++AI; |
| } |
| |
| auto SI = Attr.steps_begin(); |
| for (auto *E : Attr.linears()) { |
| ExprResult Inst = Subst(E); |
| if (Inst.isInvalid()) |
| continue; |
| Linears.push_back(Inst.get()); |
| Inst = ExprEmpty(); |
| if (*SI) |
| Inst = S.SubstExpr(*SI, TemplateArgs); |
| Steps.push_back(Inst.get()); |
| ++SI; |
| } |
| LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end()); |
| (void)S.ActOnOpenMPDeclareSimdDirective( |
| S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(), |
| Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps, |
| Attr.getRange()); |
| } |
| |
| void Sema::InstantiateAttrsForDecl( |
| const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl, |
| Decl *New, LateInstantiatedAttrVec *LateAttrs, |
| LocalInstantiationScope *OuterMostScope) { |
| if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) { |
| for (const auto *TmplAttr : Tmpl->attrs()) { |
| // FIXME: If any of the special case versions from InstantiateAttrs become |
| // applicable to template declaration, we'll need to add them here. |
| CXXThisScopeRAII ThisScope( |
| *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()), |
| /*TypeQuals*/ 0, ND->isCXXInstanceMember()); |
| |
| Attr *NewAttr = sema::instantiateTemplateAttributeForDecl( |
| TmplAttr, Context, *this, TemplateArgs); |
| if (NewAttr) |
| New->addAttr(NewAttr); |
| } |
| } |
| } |
| |
| void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, |
| const Decl *Tmpl, Decl *New, |
| LateInstantiatedAttrVec *LateAttrs, |
| LocalInstantiationScope *OuterMostScope) { |
| for (const auto *TmplAttr : Tmpl->attrs()) { |
| // FIXME: This should be generalized to more than just the AlignedAttr. |
| const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr); |
| if (Aligned && Aligned->isAlignmentDependent()) { |
| instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New); |
| continue; |
| } |
| |
| const AssumeAlignedAttr *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr); |
| if (AssumeAligned) { |
| instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New); |
| continue; |
| } |
| |
| const AlignValueAttr *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr); |
| if (AlignValue) { |
| instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New); |
| continue; |
| } |
| |
| if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) { |
| instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New); |
| continue; |
| } |
| |
| |
| if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) { |
| instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl, |
| cast<FunctionDecl>(New)); |
| continue; |
| } |
| |
| if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) { |
| instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl, |
| cast<FunctionDecl>(New)); |
| continue; |
| } |
| |
| if (const CUDALaunchBoundsAttr *CUDALaunchBounds = |
| dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) { |
| instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs, |
| *CUDALaunchBounds, New); |
| continue; |
| } |
| |
| if (const ModeAttr *Mode = dyn_cast<ModeAttr>(TmplAttr)) { |
| instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New); |
| continue; |
| } |
| |
| if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) { |
| instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New); |
| continue; |
| } |
| |
| // Existing DLL attribute on the instantiation takes precedence. |
| if (TmplAttr->getKind() == attr::DLLExport || |
| TmplAttr->getKind() == attr::DLLImport) { |
| if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) { |
| continue; |
| } |
| } |
| |
| if (auto ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) { |
| AddParameterABIAttr(ABIAttr->getRange(), New, ABIAttr->getABI(), |
| ABIAttr->getSpellingListIndex()); |
| continue; |
| } |
| |
| if (isa<NSConsumedAttr>(TmplAttr) || isa<CFConsumedAttr>(TmplAttr)) { |
| AddNSConsumedAttr(TmplAttr->getRange(), New, |
| TmplAttr->getSpellingListIndex(), |
| isa<NSConsumedAttr>(TmplAttr), |
| /*template instantiation*/ true); |
| continue; |
| } |
| |
| assert(!TmplAttr->isPackExpansion()); |
| if (TmplAttr->isLateParsed() && LateAttrs) { |
| // Late parsed attributes must be instantiated and attached after the |
| // enclosing class has been instantiated. See Sema::InstantiateClass. |
| LocalInstantiationScope *Saved = nullptr; |
| if (CurrentInstantiationScope) |
| Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope); |
| LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New)); |
| } else { |
| // Allow 'this' within late-parsed attributes. |
| NamedDecl *ND = dyn_cast<NamedDecl>(New); |
| CXXRecordDecl *ThisContext = |
| dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()); |
| CXXThisScopeRAII ThisScope(*this, ThisContext, /*TypeQuals*/0, |
| ND && ND->isCXXInstanceMember()); |
| |
| Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context, |
| *this, TemplateArgs); |
| if (NewAttr) |
| New->addAttr(NewAttr); |
| } |
| } |
| } |
| |
| /// Get the previous declaration of a declaration for the purposes of template |
| /// instantiation. If this finds a previous declaration, then the previous |
| /// declaration of the instantiation of D should be an instantiation of the |
| /// result of this function. |
| template<typename DeclT> |
| static DeclT *getPreviousDeclForInstantiation(DeclT *D) { |
| DeclT *Result = D->getPreviousDecl(); |
| |
| // If the declaration is within a class, and the previous declaration was |
| // merged from a different definition of that class, then we don't have a |
| // previous declaration for the purpose of template instantiation. |
| if (Result && isa<CXXRecordDecl>(D->getDeclContext()) && |
| D->getLexicalDeclContext() != Result->getLexicalDeclContext()) |
| return nullptr; |
| |
| return Result; |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) { |
| llvm_unreachable("Translation units cannot be instantiated"); |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) { |
| llvm_unreachable("pragma comment cannot be instantiated"); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl( |
| PragmaDetectMismatchDecl *D) { |
| llvm_unreachable("pragma comment cannot be instantiated"); |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) { |
| llvm_unreachable("extern \"C\" context cannot be instantiated"); |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) { |
| LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(), |
| D->getIdentifier()); |
| Owner->addDecl(Inst); |
| return Inst; |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) { |
| llvm_unreachable("Namespaces cannot be instantiated"); |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { |
| NamespaceAliasDecl *Inst |
| = NamespaceAliasDecl::Create(SemaRef.Context, Owner, |
| D->getNamespaceLoc(), |
| D->getAliasLoc(), |
| D->getIdentifier(), |
| D->getQualifierLoc(), |
| D->getTargetNameLoc(), |
| D->getNamespace()); |
| Owner->addDecl(Inst); |
| return Inst; |
| } |
| |
| Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D, |
| bool IsTypeAlias) { |
| bool Invalid = false; |
| TypeSourceInfo *DI = D->getTypeSourceInfo(); |
| if (DI->getType()->isInstantiationDependentType() || |
| DI->getType()->isVariablyModifiedType()) { |
| DI = SemaRef.SubstType(DI, TemplateArgs, |
| D->getLocation(), D->getDeclName()); |
| if (!DI) { |
| Invalid = true; |
| DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy); |
| } |
| } else { |
| SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); |
| } |
| |
| // HACK: g++ has a bug where it gets the value kind of ?: wrong. |
| // libstdc++ relies upon this bug in its implementation of common_type. |
| // If we happen to be processing that implementation, fake up the g++ ?: |
| // semantics. See LWG issue 2141 for more information on the bug. |
| const DecltypeType *DT = DI->getType()->getAs<DecltypeType>(); |
| CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext()); |
| if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) && |
| DT->isReferenceType() && |
| RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() && |
| RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") && |
| D->getIdentifier() && D->getIdentifier()->isStr("type") && |
| SemaRef.getSourceManager().isInSystemHeader(D->getLocStart())) |
| // Fold it to the (non-reference) type which g++ would have produced. |
| DI = SemaRef.Context.getTrivialTypeSourceInfo( |
| DI->getType().getNonReferenceType()); |
| |
| // Create the new typedef |
| TypedefNameDecl *Typedef; |
| if (IsTypeAlias) |
| Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getLocStart(), |
| D->getLocation(), D->getIdentifier(), DI); |
| else |
| Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getLocStart(), |
| D->getLocation(), D->getIdentifier(), DI); |
| if (Invalid) |
| Typedef->setInvalidDecl(); |
| |
| // If the old typedef was the name for linkage purposes of an anonymous |
| // tag decl, re-establish that relationship for the new typedef. |
| if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) { |
| TagDecl *oldTag = oldTagType->getDecl(); |
| if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) { |
| TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl(); |
| assert(!newTag->hasNameForLinkage()); |
| newTag->setTypedefNameForAnonDecl(Typedef); |
| } |
| } |
| |
| if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) { |
| NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev, |
| TemplateArgs); |
| if (!InstPrev) |
| return nullptr; |
| |
| TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev); |
| |
| // If the typedef types are not identical, reject them. |
| SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef); |
| |
| Typedef->setPreviousDecl(InstPrevTypedef); |
| } |
| |
| SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef); |
| |
| Typedef->setAccess(D->getAccess()); |
| |
| return Typedef; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) { |
| Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false); |
| if (Typedef) |
| Owner->addDecl(Typedef); |
| return Typedef; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) { |
| Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true); |
| if (Typedef) |
| Owner->addDecl(Typedef); |
| return Typedef; |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { |
| // Create a local instantiation scope for this type alias template, which |
| // will contain the instantiations of the template parameters. |
| LocalInstantiationScope Scope(SemaRef); |
| |
| TemplateParameterList *TempParams = D->getTemplateParameters(); |
| TemplateParameterList *InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return nullptr; |
| |
| TypeAliasDecl *Pattern = D->getTemplatedDecl(); |
| |
| TypeAliasTemplateDecl *PrevAliasTemplate = nullptr; |
| if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) { |
| DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); |
| if (!Found.empty()) { |
| PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front()); |
| } |
| } |
| |
| TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>( |
| InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true)); |
| if (!AliasInst) |
| return nullptr; |
| |
| TypeAliasTemplateDecl *Inst |
| = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(), |
| D->getDeclName(), InstParams, AliasInst); |
| AliasInst->setDescribedAliasTemplate(Inst); |
| if (PrevAliasTemplate) |
| Inst->setPreviousDecl(PrevAliasTemplate); |
| |
| Inst->setAccess(D->getAccess()); |
| |
| if (!PrevAliasTemplate) |
| Inst->setInstantiatedFromMemberTemplate(D); |
| |
| Owner->addDecl(Inst); |
| |
| return Inst; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) { |
| auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(), |
| D->getIdentifier()); |
| NewBD->setReferenced(D->isReferenced()); |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD); |
| return NewBD; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) { |
| // Transform the bindings first. |
| SmallVector<BindingDecl*, 16> NewBindings; |
| for (auto *OldBD : D->bindings()) |
| NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD))); |
| ArrayRef<BindingDecl*> NewBindingArray = NewBindings; |
| |
| auto *NewDD = cast_or_null<DecompositionDecl>( |
| VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray)); |
| |
| if (!NewDD || NewDD->isInvalidDecl()) |
| for (auto *NewBD : NewBindings) |
| NewBD->setInvalidDecl(); |
| |
| return NewDD; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) { |
| return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D, |
| bool InstantiatingVarTemplate, |
| ArrayRef<BindingDecl*> *Bindings) { |
| |
| // Do substitution on the type of the declaration |
| TypeSourceInfo *DI = SemaRef.SubstType( |
| D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(), |
| D->getDeclName(), /*AllowDeducedTST*/true); |
| if (!DI) |
| return nullptr; |
| |
| if (DI->getType()->isFunctionType()) { |
| SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) |
| << D->isStaticDataMember() << DI->getType(); |
| return nullptr; |
| } |
| |
| DeclContext *DC = Owner; |
| if (D->isLocalExternDecl()) |
| SemaRef.adjustContextForLocalExternDecl(DC); |
| |
| // Build the instantiated declaration. |
| VarDecl *Var; |
| if (Bindings) |
| Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), |
| D->getLocation(), DI->getType(), DI, |
| D->getStorageClass(), *Bindings); |
| else |
| Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), |
| D->getLocation(), D->getIdentifier(), DI->getType(), |
| DI, D->getStorageClass()); |
| |
| // In ARC, infer 'retaining' for variables of retainable type. |
| if (SemaRef.getLangOpts().ObjCAutoRefCount && |
| SemaRef.inferObjCARCLifetime(Var)) |
| Var->setInvalidDecl(); |
| |
| // Substitute the nested name specifier, if any. |
| if (SubstQualifier(D, Var)) |
| return nullptr; |
| |
| SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, |
| StartingScope, InstantiatingVarTemplate); |
| |
| if (D->isNRVOVariable()) { |
| QualType ReturnType = cast<FunctionDecl>(DC)->getReturnType(); |
| if (SemaRef.isCopyElisionCandidate(ReturnType, Var, Sema::CES_Strict)) |
| Var->setNRVOVariable(true); |
| } |
| |
| Var->setImplicit(D->isImplicit()); |
| |
| return Var; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) { |
| AccessSpecDecl* AD |
| = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner, |
| D->getAccessSpecifierLoc(), D->getColonLoc()); |
| Owner->addHiddenDecl(AD); |
| return AD; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) { |
| bool Invalid = false; |
| TypeSourceInfo *DI = D->getTypeSourceInfo(); |
| if (DI->getType()->isInstantiationDependentType() || |
| DI->getType()->isVariablyModifiedType()) { |
| DI = SemaRef.SubstType(DI, TemplateArgs, |
| D->getLocation(), D->getDeclName()); |
| if (!DI) { |
| DI = D->getTypeSourceInfo(); |
| Invalid = true; |
| } else if (DI->getType()->isFunctionType()) { |
| // C++ [temp.arg.type]p3: |
| // If a declaration acquires a function type through a type |
| // dependent on a template-parameter and this causes a |
| // declaration that does not use the syntactic form of a |
| // function declarator to have function type, the program is |
| // ill-formed. |
| SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) |
| << DI->getType(); |
| Invalid = true; |
| } |
| } else { |
| SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); |
| } |
| |
| Expr *BitWidth = D->getBitWidth(); |
| if (Invalid) |
| BitWidth = nullptr; |
| else if (BitWidth) { |
| // The bit-width expression is a constant expression. |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| ExprResult InstantiatedBitWidth |
| = SemaRef.SubstExpr(BitWidth, TemplateArgs); |
| if (InstantiatedBitWidth.isInvalid()) { |
| Invalid = true; |
| BitWidth = nullptr; |
| } else |
| BitWidth = InstantiatedBitWidth.getAs<Expr>(); |
| } |
| |
| FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(), |
| DI->getType(), DI, |
| cast<RecordDecl>(Owner), |
| D->getLocation(), |
| D->isMutable(), |
| BitWidth, |
| D->getInClassInitStyle(), |
| D->getInnerLocStart(), |
| D->getAccess(), |
| nullptr); |
| if (!Field) { |
| cast<Decl>(Owner)->setInvalidDecl(); |
| return nullptr; |
| } |
| |
| SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope); |
| |
| if (Field->hasAttrs()) |
| SemaRef.CheckAlignasUnderalignment(Field); |
| |
| if (Invalid) |
| Field->setInvalidDecl(); |
| |
| if (!Field->getDeclName()) { |
| // Keep track of where this decl came from. |
| SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D); |
| } |
| if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) { |
| if (Parent->isAnonymousStructOrUnion() && |
| Parent->getRedeclContext()->isFunctionOrMethod()) |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field); |
| } |
| |
| Field->setImplicit(D->isImplicit()); |
| Field->setAccess(D->getAccess()); |
| Owner->addDecl(Field); |
| |
| return Field; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) { |
| bool Invalid = false; |
| TypeSourceInfo *DI = D->getTypeSourceInfo(); |
| |
| if (DI->getType()->isVariablyModifiedType()) { |
| SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified) |
| << D; |
| Invalid = true; |
| } else if (DI->getType()->isInstantiationDependentType()) { |
| DI = SemaRef.SubstType(DI, TemplateArgs, |
| D->getLocation(), D->getDeclName()); |
| if (!DI) { |
| DI = D->getTypeSourceInfo(); |
| Invalid = true; |
| } else if (DI->getType()->isFunctionType()) { |
| // C++ [temp.arg.type]p3: |
| // If a declaration acquires a function type through a type |
| // dependent on a template-parameter and this causes a |
| // declaration that does not use the syntactic form of a |
| // function declarator to have function type, the program is |
| // ill-formed. |
| SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) |
| << DI->getType(); |
| Invalid = true; |
| } |
| } else { |
| SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); |
| } |
| |
| MSPropertyDecl *Property = MSPropertyDecl::Create( |
| SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(), |
| DI, D->getLocStart(), D->getGetterId(), D->getSetterId()); |
| |
| SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs, |
| StartingScope); |
| |
| if (Invalid) |
| Property->setInvalidDecl(); |
| |
| Property->setAccess(D->getAccess()); |
| Owner->addDecl(Property); |
| |
| return Property; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) { |
| NamedDecl **NamedChain = |
| new (SemaRef.Context)NamedDecl*[D->getChainingSize()]; |
| |
| int i = 0; |
| for (auto *PI : D->chain()) { |
| NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI, |
| TemplateArgs); |
| if (!Next) |
| return nullptr; |
| |
| NamedChain[i++] = Next; |
| } |
| |
| QualType T = cast<FieldDecl>(NamedChain[i-1])->getType(); |
| IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( |
| SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T, |
| {NamedChain, D->getChainingSize()}); |
| |
| for (const auto *Attr : D->attrs()) |
| IndirectField->addAttr(Attr->clone(SemaRef.Context)); |
| |
| IndirectField->setImplicit(D->isImplicit()); |
| IndirectField->setAccess(D->getAccess()); |
| Owner->addDecl(IndirectField); |
| return IndirectField; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) { |
| // Handle friend type expressions by simply substituting template |
| // parameters into the pattern type and checking the result. |
| if (TypeSourceInfo *Ty = D->getFriendType()) { |
| TypeSourceInfo *InstTy; |
| // If this is an unsupported friend, don't bother substituting template |
| // arguments into it. The actual type referred to won't be used by any |
| // parts of Clang, and may not be valid for instantiating. Just use the |
| // same info for the instantiated friend. |
| if (D->isUnsupportedFriend()) { |
| InstTy = Ty; |
| } else { |
| InstTy = SemaRef.SubstType(Ty, TemplateArgs, |
| D->getLocation(), DeclarationName()); |
| } |
| if (!InstTy) |
| return nullptr; |
| |
| FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getLocStart(), |
| D->getFriendLoc(), InstTy); |
| if (!FD) |
| return nullptr; |
| |
| FD->setAccess(AS_public); |
| FD->setUnsupportedFriend(D->isUnsupportedFriend()); |
| Owner->addDecl(FD); |
| return FD; |
| } |
| |
| NamedDecl *ND = D->getFriendDecl(); |
| assert(ND && "friend decl must be a decl or a type!"); |
| |
| // All of the Visit implementations for the various potential friend |
| // declarations have to be carefully written to work for friend |
| // objects, with the most important detail being that the target |
| // decl should almost certainly not be placed in Owner. |
| Decl *NewND = Visit(ND); |
| if (!NewND) return nullptr; |
| |
| FriendDecl *FD = |
| FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), |
| cast<NamedDecl>(NewND), D->getFriendLoc()); |
| FD->setAccess(AS_public); |
| FD->setUnsupportedFriend(D->isUnsupportedFriend()); |
| Owner->addDecl(FD); |
| return FD; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) { |
| Expr *AssertExpr = D->getAssertExpr(); |
| |
| // The expression in a static assertion is a constant expression. |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| ExprResult InstantiatedAssertExpr |
| = SemaRef.SubstExpr(AssertExpr, TemplateArgs); |
| if (InstantiatedAssertExpr.isInvalid()) |
| return nullptr; |
| |
| return SemaRef.BuildStaticAssertDeclaration(D->getLocation(), |
| InstantiatedAssertExpr.get(), |
| D->getMessage(), |
| D->getRParenLoc(), |
| D->isFailed()); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) { |
| EnumDecl *PrevDecl = nullptr; |
| if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { |
| NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), |
| PatternPrev, |
| TemplateArgs); |
| if (!Prev) return nullptr; |
| PrevDecl = cast<EnumDecl>(Prev); |
| } |
| |
| EnumDecl *Enum = EnumDecl::Create(SemaRef.Context, Owner, D->getLocStart(), |
| D->getLocation(), D->getIdentifier(), |
| PrevDecl, D->isScoped(), |
| D->isScopedUsingClassTag(), D->isFixed()); |
| if (D->isFixed()) { |
| if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) { |
| // If we have type source information for the underlying type, it means it |
| // has been explicitly set by the user. Perform substitution on it before |
| // moving on. |
| SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); |
| TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc, |
| DeclarationName()); |
| if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI)) |
| Enum->setIntegerType(SemaRef.Context.IntTy); |
| else |
| Enum->setIntegerTypeSourceInfo(NewTI); |
| } else { |
| assert(!D->getIntegerType()->isDependentType() |
| && "Dependent type without type source info"); |
| Enum->setIntegerType(D->getIntegerType()); |
| } |
| } |
| |
| SemaRef.InstantiateAttrs(TemplateArgs, D, Enum); |
| |
| Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation); |
| Enum->setAccess(D->getAccess()); |
| // Forward the mangling number from the template to the instantiated decl. |
| SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D)); |
| // See if the old tag was defined along with a declarator. |
| // If it did, mark the new tag as being associated with that declarator. |
| if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) |
| SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD); |
| // See if the old tag was defined along with a typedef. |
| // If it did, mark the new tag as being associated with that typedef. |
| if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) |
| SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND); |
| if (SubstQualifier(D, Enum)) return nullptr; |
| Owner->addDecl(Enum); |
| |
| EnumDecl *Def = D->getDefinition(); |
| if (Def && Def != D) { |
| // If this is an out-of-line definition of an enum member template, check |
| // that the underlying types match in the instantiation of both |
| // declarations. |
| if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) { |
| SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); |
| QualType DefnUnderlying = |
| SemaRef.SubstType(TI->getType(), TemplateArgs, |
| UnderlyingLoc, DeclarationName()); |
| SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(), |
| DefnUnderlying, /*IsFixed=*/true, Enum); |
| } |
| } |
| |
| // C++11 [temp.inst]p1: The implicit instantiation of a class template |
| // specialization causes the implicit instantiation of the declarations, but |
| // not the definitions of scoped member enumerations. |
| // |
| // DR1484 clarifies that enumeration definitions inside of a template |
| // declaration aren't considered entities that can be separately instantiated |
| // from the rest of the entity they are declared inside of. |
| if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) { |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum); |
| InstantiateEnumDefinition(Enum, Def); |
| } |
| |
| return Enum; |
| } |
| |
| void TemplateDeclInstantiator::InstantiateEnumDefinition( |
| EnumDecl *Enum, EnumDecl *Pattern) { |
| Enum->startDefinition(); |
| |
| // Update the location to refer to the definition. |
| Enum->setLocation(Pattern->getLocation()); |
| |
| SmallVector<Decl*, 4> Enumerators; |
| |
| EnumConstantDecl *LastEnumConst = nullptr; |
| for (auto *EC : Pattern->enumerators()) { |
| // The specified value for the enumerator. |
| ExprResult Value((Expr *)nullptr); |
| if (Expr *UninstValue = EC->getInitExpr()) { |
| // The enumerator's value expression is a constant expression. |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| Value = SemaRef.SubstExpr(UninstValue, TemplateArgs); |
| } |
| |
| // Drop the initial value and continue. |
| bool isInvalid = false; |
| if (Value.isInvalid()) { |
| Value = nullptr; |
| isInvalid = true; |
| } |
| |
| EnumConstantDecl *EnumConst |
| = SemaRef.CheckEnumConstant(Enum, LastEnumConst, |
| EC->getLocation(), EC->getIdentifier(), |
| Value.get()); |
| |
| if (isInvalid) { |
| if (EnumConst) |
| EnumConst->setInvalidDecl(); |
| Enum->setInvalidDecl(); |
| } |
| |
| if (EnumConst) { |
| SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst); |
| |
| EnumConst->setAccess(Enum->getAccess()); |
| Enum->addDecl(EnumConst); |
| Enumerators.push_back(EnumConst); |
| LastEnumConst = EnumConst; |
| |
| if (Pattern->getDeclContext()->isFunctionOrMethod() && |
| !Enum->isScoped()) { |
| // If the enumeration is within a function or method, record the enum |
| // constant as a local. |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst); |
| } |
| } |
| } |
| |
| SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum, |
| Enumerators, nullptr, ParsedAttributesView()); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) { |
| llvm_unreachable("EnumConstantDecls can only occur within EnumDecls."); |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) { |
| llvm_unreachable("BuiltinTemplateDecls cannot be instantiated."); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) { |
| bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None); |
| |
| // Create a local instantiation scope for this class template, which |
| // will contain the instantiations of the template parameters. |
| LocalInstantiationScope Scope(SemaRef); |
| TemplateParameterList *TempParams = D->getTemplateParameters(); |
| TemplateParameterList *InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return nullptr; |
| |
| CXXRecordDecl *Pattern = D->getTemplatedDecl(); |
| |
| // Instantiate the qualifier. We have to do this first in case |
| // we're a friend declaration, because if we are then we need to put |
| // the new declaration in the appropriate context. |
| NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc(); |
| if (QualifierLoc) { |
| QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, |
| TemplateArgs); |
| if (!QualifierLoc) |
| return nullptr; |
| } |
| |
| CXXRecordDecl *PrevDecl = nullptr; |
| ClassTemplateDecl *PrevClassTemplate = nullptr; |
| |
| if (!isFriend && getPreviousDeclForInstantiation(Pattern)) { |
| DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); |
| if (!Found.empty()) { |
| PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front()); |
| if (PrevClassTemplate) |
| PrevDecl = PrevClassTemplate->getTemplatedDecl(); |
| } |
| } |
| |
| // If this isn't a friend, then it's a member template, in which |
| // case we just want to build the instantiation in the |
| // specialization. If it is a friend, we want to build it in |
| // the appropriate context. |
| DeclContext *DC = Owner; |
| if (isFriend) { |
| if (QualifierLoc) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| DC = SemaRef.computeDeclContext(SS); |
| if (!DC) return nullptr; |
| } else { |
| DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(), |
| Pattern->getDeclContext(), |
| TemplateArgs); |
| } |
| |
| // Look for a previous declaration of the template in the owning |
| // context. |
| LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(), |
| Sema::LookupOrdinaryName, |
| SemaRef.forRedeclarationInCurContext()); |
| SemaRef.LookupQualifiedName(R, DC); |
| |
| if (R.isSingleResult()) { |
| PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>(); |
| if (PrevClassTemplate) |
| PrevDecl = PrevClassTemplate->getTemplatedDecl(); |
| } |
| |
| if (!PrevClassTemplate && QualifierLoc) { |
| SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope) |
| << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC |
| << QualifierLoc.getSourceRange(); |
| return nullptr; |
| } |
| |
| bool AdoptedPreviousTemplateParams = false; |
| if (PrevClassTemplate) { |
| bool Complain = true; |
| |
| // HACK: libstdc++ 4.2.1 contains an ill-formed friend class |
| // template for struct std::tr1::__detail::_Map_base, where the |
| // template parameters of the friend declaration don't match the |
| // template parameters of the original declaration. In this one |
| // case, we don't complain about the ill-formed friend |
| // declaration. |
| if (isFriend && Pattern->getIdentifier() && |
| Pattern->getIdentifier()->isStr("_Map_base") && |
| DC->isNamespace() && |
| cast<NamespaceDecl>(DC)->getIdentifier() && |
| cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__detail")) { |
| DeclContext *DCParent = DC->getParent(); |
| if (DCParent->isNamespace() && |
| cast<NamespaceDecl>(DCParent)->getIdentifier() && |
| cast<NamespaceDecl>(DCParent)->getIdentifier()->isStr("tr1")) { |
| if (cast<Decl>(DCParent)->isInStdNamespace()) |
| Complain = false; |
| } |
| } |
| |
| TemplateParameterList *PrevParams |
| = PrevClassTemplate->getTemplateParameters(); |
| |
| // Make sure the parameter lists match. |
| if (!SemaRef.TemplateParameterListsAreEqual(InstParams, PrevParams, |
| Complain, |
| Sema::TPL_TemplateMatch)) { |
| if (Complain) |
| return nullptr; |
| |
| AdoptedPreviousTemplateParams = true; |
| InstParams = PrevParams; |
| } |
| |
| // Do some additional validation, then merge default arguments |
| // from the existing declarations. |
| if (!AdoptedPreviousTemplateParams && |
| SemaRef.CheckTemplateParameterList(InstParams, PrevParams, |
| Sema::TPC_ClassTemplate)) |
| return nullptr; |
| } |
| } |
| |
| CXXRecordDecl *RecordInst |
| = CXXRecordDecl::Create(SemaRef.Context, Pattern->getTagKind(), DC, |
| Pattern->getLocStart(), Pattern->getLocation(), |
| Pattern->getIdentifier(), PrevDecl, |
| /*DelayTypeCreation=*/true); |
| |
| if (QualifierLoc) |
| RecordInst->setQualifierInfo(QualifierLoc); |
| |
| ClassTemplateDecl *Inst |
| = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(), |
| D->getIdentifier(), InstParams, RecordInst); |
| assert(!(isFriend && Owner->isDependentContext())); |
| Inst->setPreviousDecl(PrevClassTemplate); |
| |
| RecordInst->setDescribedClassTemplate(Inst); |
| |
| if (isFriend) { |
| if (PrevClassTemplate) |
| Inst->setAccess(PrevClassTemplate->getAccess()); |
| else |
| Inst->setAccess(D->getAccess()); |
| |
| Inst->setObjectOfFriendDecl(); |
| // TODO: do we want to track the instantiation progeny of this |
| // friend target decl? |
| } else { |
| Inst->setAccess(D->getAccess()); |
| if (!PrevClassTemplate) |
| Inst->setInstantiatedFromMemberTemplate(D); |
| } |
| |
| // Trigger creation of the type for the instantiation. |
| SemaRef.Context.getInjectedClassNameType(RecordInst, |
| Inst->getInjectedClassNameSpecialization()); |
| |
| // Finish handling of friends. |
| if (isFriend) { |
| DC->makeDeclVisibleInContext(Inst); |
| Inst->setLexicalDeclContext(Owner); |
| RecordInst->setLexicalDeclContext(Owner); |
| return Inst; |
| } |
| |
| if (D->isOutOfLine()) { |
| Inst->setLexicalDeclContext(D->getLexicalDeclContext()); |
| RecordInst->setLexicalDeclContext(D->getLexicalDeclContext()); |
| } |
| |
| Owner->addDecl(Inst); |
| |
| if (!PrevClassTemplate) { |
| // Queue up any out-of-line partial specializations of this member |
| // class template; the client will force their instantiation once |
| // the enclosing class has been instantiated. |
| SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs; |
| D->getPartialSpecializations(PartialSpecs); |
| for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) |
| if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) |
| OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I])); |
| } |
| |
| return Inst; |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl( |
| ClassTemplatePartialSpecializationDecl *D) { |
| ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); |
| |
| // Lookup the already-instantiated declaration in the instantiation |
| // of the class template and return that. |
| DeclContext::lookup_result Found |
| = Owner->lookup(ClassTemplate->getDeclName()); |
| if (Found.empty()) |
| return nullptr; |
| |
| ClassTemplateDecl *InstClassTemplate |
| = dyn_cast<ClassTemplateDecl>(Found.front()); |
| if (!InstClassTemplate) |
| return nullptr; |
| |
| if (ClassTemplatePartialSpecializationDecl *Result |
| = InstClassTemplate->findPartialSpecInstantiatedFromMember(D)) |
| return Result; |
| |
| return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) { |
| assert(D->getTemplatedDecl()->isStaticDataMember() && |
| "Only static data member templates are allowed."); |
| |
| // Create a local instantiation scope for this variable template, which |
| // will contain the instantiations of the template parameters. |
| LocalInstantiationScope Scope(SemaRef); |
| TemplateParameterList *TempParams = D->getTemplateParameters(); |
| TemplateParameterList *InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return nullptr; |
| |
| VarDecl *Pattern = D->getTemplatedDecl(); |
| VarTemplateDecl *PrevVarTemplate = nullptr; |
| |
| if (getPreviousDeclForInstantiation(Pattern)) { |
| DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); |
| if (!Found.empty()) |
| PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); |
| } |
| |
| VarDecl *VarInst = |
| cast_or_null<VarDecl>(VisitVarDecl(Pattern, |
| /*InstantiatingVarTemplate=*/true)); |
| if (!VarInst) return nullptr; |
| |
| DeclContext *DC = Owner; |
| |
| VarTemplateDecl *Inst = VarTemplateDecl::Create( |
| SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams, |
| VarInst); |
| VarInst->setDescribedVarTemplate(Inst); |
| Inst->setPreviousDecl(PrevVarTemplate); |
| |
| Inst->setAccess(D->getAccess()); |
| if (!PrevVarTemplate) |
| Inst->setInstantiatedFromMemberTemplate(D); |
| |
| if (D->isOutOfLine()) { |
| Inst->setLexicalDeclContext(D->getLexicalDeclContext()); |
| VarInst->setLexicalDeclContext(D->getLexicalDeclContext()); |
| } |
| |
| Owner->addDecl(Inst); |
| |
| if (!PrevVarTemplate) { |
| // Queue up any out-of-line partial specializations of this member |
| // variable template; the client will force their instantiation once |
| // the enclosing class has been instantiated. |
| SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; |
| D->getPartialSpecializations(PartialSpecs); |
| for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) |
| if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) |
| OutOfLineVarPartialSpecs.push_back( |
| std::make_pair(Inst, PartialSpecs[I])); |
| } |
| |
| return Inst; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl( |
| VarTemplatePartialSpecializationDecl *D) { |
| assert(D->isStaticDataMember() && |
| "Only static data member templates are allowed."); |
| |
| VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); |
| |
| // Lookup the already-instantiated declaration and return that. |
| DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName()); |
| assert(!Found.empty() && "Instantiation found nothing?"); |
| |
| VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); |
| assert(InstVarTemplate && "Instantiation did not find a variable template?"); |
| |
| if (VarTemplatePartialSpecializationDecl *Result = |
| InstVarTemplate->findPartialSpecInstantiatedFromMember(D)) |
| return Result; |
| |
| return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D); |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { |
| // Create a local instantiation scope for this function template, which |
| // will contain the instantiations of the template parameters and then get |
| // merged with the local instantiation scope for the function template |
| // itself. |
| LocalInstantiationScope Scope(SemaRef); |
| |
| TemplateParameterList *TempParams = D->getTemplateParameters(); |
| TemplateParameterList *InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return nullptr; |
| |
| FunctionDecl *Instantiated = nullptr; |
| if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl())) |
| Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod, |
| InstParams)); |
| else |
| Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl( |
| D->getTemplatedDecl(), |
| InstParams)); |
| |
| if (!Instantiated) |
| return nullptr; |
| |
| // Link the instantiated function template declaration to the function |
| // template from which it was instantiated. |
| FunctionTemplateDecl *InstTemplate |
| = Instantiated->getDescribedFunctionTemplate(); |
| InstTemplate->setAccess(D->getAccess()); |
| assert(InstTemplate && |
| "VisitFunctionDecl/CXXMethodDecl didn't create a template!"); |
| |
| bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None); |
| |
| // Link the instantiation back to the pattern *unless* this is a |
| // non-definition friend declaration. |
| if (!InstTemplate->getInstantiatedFromMemberTemplate() && |
| !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition())) |
| InstTemplate->setInstantiatedFromMemberTemplate(D); |
| |
| // Make declarations visible in the appropriate context. |
| if (!isFriend) { |
| Owner->addDecl(InstTemplate); |
| } else if (InstTemplate->getDeclContext()->isRecord() && |
| !getPreviousDeclForInstantiation(D)) { |
| SemaRef.CheckFriendAccess(InstTemplate); |
| } |
| |
| return InstTemplate; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) { |
| CXXRecordDecl *PrevDecl = nullptr; |
| if (D->isInjectedClassName()) |
| PrevDecl = cast<CXXRecordDecl>(Owner); |
| else if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { |
| NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), |
| PatternPrev, |
| TemplateArgs); |
| if (!Prev) return nullptr; |
| PrevDecl = cast<CXXRecordDecl>(Prev); |
| } |
| |
| CXXRecordDecl *Record |
| = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner, |
| D->getLocStart(), D->getLocation(), |
| D->getIdentifier(), PrevDecl); |
| |
| // Substitute the nested name specifier, if any. |
| if (SubstQualifier(D, Record)) |
| return nullptr; |
| |
| Record->setImplicit(D->isImplicit()); |
| // FIXME: Check against AS_none is an ugly hack to work around the issue that |
| // the tag decls introduced by friend class declarations don't have an access |
| // specifier. Remove once this area of the code gets sorted out. |
| if (D->getAccess() != AS_none) |
| Record->setAccess(D->getAccess()); |
| if (!D->isInjectedClassName()) |
| Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); |
| |
| // If the original function was part of a friend declaration, |
| // inherit its namespace state. |
| if (D->getFriendObjectKind()) |
| Record->setObjectOfFriendDecl(); |
| |
| // Make sure that anonymous structs and unions are recorded. |
| if (D->isAnonymousStructOrUnion()) |
| Record->setAnonymousStructOrUnion(true); |
| |
| if (D->isLocalClass()) |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record); |
| |
| // Forward the mangling number from the template to the instantiated decl. |
| SemaRef.Context.setManglingNumber(Record, |
| SemaRef.Context.getManglingNumber(D)); |
| |
| // See if the old tag was defined along with a declarator. |
| // If it did, mark the new tag as being associated with that declarator. |
| if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) |
| SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD); |
| |
| // See if the old tag was defined along with a typedef. |
| // If it did, mark the new tag as being associated with that typedef. |
| if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) |
| SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND); |
| |
| Owner->addDecl(Record); |
| |
| // DR1484 clarifies that the members of a local class are instantiated as part |
| // of the instantiation of their enclosing entity. |
| if (D->isCompleteDefinition() && D->isLocalClass()) { |
| Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef); |
| |
| SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs, |
| TSK_ImplicitInstantiation, |
| /*Complain=*/true); |
| |
| // For nested local classes, we will instantiate the members when we |
| // reach the end of the outermost (non-nested) local class. |
| if (!D->isCXXClassMember()) |
| SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs, |
| TSK_ImplicitInstantiation); |
| |
| // This class may have local implicit instantiations that need to be |
| // performed within this scope. |
| LocalInstantiations.perform(); |
| } |
| |
| SemaRef.DiagnoseUnusedNestedTypedefs(Record); |
| |
| return Record; |
| } |
| |
| /// Adjust the given function type for an instantiation of the |
| /// given declaration, to cope with modifications to the function's type that |
| /// aren't reflected in the type-source information. |
| /// |
| /// \param D The declaration we're instantiating. |
| /// \param TInfo The already-instantiated type. |
| static QualType adjustFunctionTypeForInstantiation(ASTContext &Context, |
| FunctionDecl *D, |
| TypeSourceInfo *TInfo) { |
| const FunctionProtoType *OrigFunc |
| = D->getType()->castAs<FunctionProtoType>(); |
| const FunctionProtoType *NewFunc |
| = TInfo->getType()->castAs<FunctionProtoType>(); |
| if (OrigFunc->getExtInfo() == NewFunc->getExtInfo()) |
| return TInfo->getType(); |
| |
| FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo(); |
| NewEPI.ExtInfo = OrigFunc->getExtInfo(); |
| return Context.getFunctionType(NewFunc->getReturnType(), |
| NewFunc->getParamTypes(), NewEPI); |
| } |
| |
| /// Normal class members are of more specific types and therefore |
| /// don't make it here. This function serves three purposes: |
| /// 1) instantiating function templates |
| /// 2) substituting friend declarations |
| /// 3) substituting deduction guide declarations for nested class templates |
| Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D, |
| TemplateParameterList *TemplateParams) { |
| // Check whether there is already a function template specialization for |
| // this declaration. |
| FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); |
| if (FunctionTemplate && !TemplateParams) { |
| ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); |
| |
| void *InsertPos = nullptr; |
| FunctionDecl *SpecFunc |
| = FunctionTemplate->findSpecialization(Innermost, InsertPos); |
| |
| // If we already have a function template specialization, return it. |
| if (SpecFunc) |
| return SpecFunc; |
| } |
| |
| bool isFriend; |
| if (FunctionTemplate) |
| isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); |
| else |
| isFriend = (D->getFriendObjectKind() != Decl::FOK_None); |
| |
| bool MergeWithParentScope = (TemplateParams != nullptr) || |
| Owner->isFunctionOrMethod() || |
| !(isa<Decl>(Owner) && |
| cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); |
| LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); |
| |
| SmallVector<ParmVarDecl *, 4> Params; |
| TypeSourceInfo *TInfo = SubstFunctionType(D, Params); |
| if (!TInfo) |
| return nullptr; |
| QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); |
| |
| NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); |
| if (QualifierLoc) { |
| QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, |
| TemplateArgs); |
| if (!QualifierLoc) |
| return nullptr; |
| } |
| |
| // If we're instantiating a local function declaration, put the result |
| // in the enclosing namespace; otherwise we need to find the instantiated |
| // context. |
| DeclContext *DC; |
| if (D->isLocalExternDecl()) { |
| DC = Owner; |
| SemaRef.adjustContextForLocalExternDecl(DC); |
| } else if (isFriend && QualifierLoc) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| DC = SemaRef.computeDeclContext(SS); |
| if (!DC) return nullptr; |
| } else { |
| DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), |
| TemplateArgs); |
| } |
| |
| DeclarationNameInfo NameInfo |
| = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); |
| |
| FunctionDecl *Function; |
| if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) { |
| Function = CXXDeductionGuideDecl::Create( |
| SemaRef.Context, DC, D->getInnerLocStart(), DGuide->isExplicit(), |
| NameInfo, T, TInfo, D->getSourceRange().getEnd()); |
| if (DGuide->isCopyDeductionCandidate()) |
| cast<CXXDeductionGuideDecl>(Function)->setIsCopyDeductionCandidate(); |
| Function->setAccess(D->getAccess()); |
| } else { |
| Function = FunctionDecl::Create( |
| SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo, |
| D->getCanonicalDecl()->getStorageClass(), D->isInlineSpecified(), |
| D->hasWrittenPrototype(), D->isConstexpr()); |
| Function->setRangeEnd(D->getSourceRange().getEnd()); |
| } |
| |
| if (D->isInlined()) |
| Function->setImplicitlyInline(); |
| |
| if (QualifierLoc) |
| Function->setQualifierInfo(QualifierLoc); |
| |
| if (D->isLocalExternDecl()) |
| Function->setLocalExternDecl(); |
| |
| DeclContext *LexicalDC = Owner; |
| if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) { |
| assert(D->getDeclContext()->isFileContext()); |
| LexicalDC = D->getDeclContext(); |
| } |
| |
| Function->setLexicalDeclContext(LexicalDC); |
| |
| // Attach the parameters |
| for (unsigned P = 0; P < Params.size(); ++P) |
| if (Params[P]) |
| Params[P]->setOwningFunction(Function); |
| Function->setParams(Params); |
| |
| if (TemplateParams) { |
| // Our resulting instantiation is actually a function template, since we |
| // are substituting only the outer template parameters. For example, given |
| // |
| // template<typename T> |
| // struct X { |
| // template<typename U> friend void f(T, U); |
| // }; |
| // |
| // X<int> x; |
| // |
| // We are instantiating the friend function template "f" within X<int>, |
| // which means substituting int for T, but leaving "f" as a friend function |
| // template. |
| // Build the function template itself. |
| FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC, |
| Function->getLocation(), |
| Function->getDeclName(), |
| TemplateParams, Function); |
| Function->setDescribedFunctionTemplate(FunctionTemplate); |
| |
| FunctionTemplate->setLexicalDeclContext(LexicalDC); |
| |
| if (isFriend && D->isThisDeclarationADefinition()) { |
| FunctionTemplate->setInstantiatedFromMemberTemplate( |
| D->getDescribedFunctionTemplate()); |
| } |
| } else if (FunctionTemplate) { |
| // Record this function template specialization. |
| ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); |
| Function->setFunctionTemplateSpecialization(FunctionTemplate, |
| TemplateArgumentList::CreateCopy(SemaRef.Context, |
| Innermost), |
| /*InsertPos=*/nullptr); |
| } else if (isFriend && D->isThisDeclarationADefinition()) { |
| // Do not connect the friend to the template unless it's actually a |
| // definition. We don't want non-template functions to be marked as being |
| // template instantiations. |
| Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); |
| } |
| |
| if (InitFunctionInstantiation(Function, D)) |
| Function->setInvalidDecl(); |
| |
| bool isExplicitSpecialization = false; |
| |
| LookupResult Previous( |
| SemaRef, Function->getDeclName(), SourceLocation(), |
| D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage |
| : Sema::LookupOrdinaryName, |
| D->isLocalExternDecl() ? Sema::ForExternalRedeclaration |
| : SemaRef.forRedeclarationInCurContext()); |
| |
| if (DependentFunctionTemplateSpecializationInfo *Info |
| = D->getDependentSpecializationInfo()) { |
| assert(isFriend && "non-friend has dependent specialization info?"); |
| |
| // This needs to be set now for future sanity. |
| Function->setObjectOfFriendDecl(); |
| |
| // Instantiate the explicit template arguments. |
| TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), |
| Info->getRAngleLoc()); |
| if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(), |
| ExplicitArgs, TemplateArgs)) |
| return nullptr; |
| |
| // Map the candidate templates to their instantiations. |
| for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) { |
| Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(), |
| Info->getTemplate(I), |
| TemplateArgs); |
| if (!Temp) return nullptr; |
| |
| Previous.addDecl(cast<FunctionTemplateDecl>(Temp)); |
| } |
| |
| if (SemaRef.CheckFunctionTemplateSpecialization(Function, |
| &ExplicitArgs, |
| Previous)) |
| Function->setInvalidDecl(); |
| |
| isExplicitSpecialization = true; |
| |
| } else if (TemplateParams || !FunctionTemplate) { |
| // Look only into the namespace where the friend would be declared to |
| // find a previous declaration. This is the innermost enclosing namespace, |
| // as described in ActOnFriendFunctionDecl. |
| SemaRef.LookupQualifiedName(Previous, DC); |
| |
| // In C++, the previous declaration we find might be a tag type |
| // (class or enum). In this case, the new declaration will hide the |
| // tag type. Note that this does does not apply if we're declaring a |
| // typedef (C++ [dcl.typedef]p4). |
| if (Previous.isSingleTagDecl()) |
| Previous.clear(); |
| } |
| |
| if (isFriend) |
| Function->setObjectOfFriendDecl(); |
| |
| SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous, |
| isExplicitSpecialization); |
| |
| NamedDecl *PrincipalDecl = (TemplateParams |
| ? cast<NamedDecl>(FunctionTemplate) |
| : Function); |
| |
| // If the original function was part of a friend declaration, |
| // inherit its namespace state and add it to the owner. |
| if (isFriend) { |
| PrincipalDecl->setObjectOfFriendDecl(); |
| DC->makeDeclVisibleInContext(PrincipalDecl); |
| |
| bool QueuedInstantiation = false; |
| |
| // C++11 [temp.friend]p4 (DR329): |
| // When a function is defined in a friend function declaration in a class |
| // template, the function is instantiated when the function is odr-used. |
| // The same restrictions on multiple declarations and definitions that |
| // apply to non-template function declarations and definitions also apply |
| // to these implicit definitions. |
| if (D->isThisDeclarationADefinition()) { |
| SemaRef.CheckForFunctionRedefinition(Function); |
| if (!Function->isInvalidDecl()) { |
| for (auto R : Function->redecls()) { |
| if (R == Function) |
| continue; |
| |
| // If some prior declaration of this function has been used, we need |
| // to instantiate its definition. |
| if (!QueuedInstantiation && R->isUsed(false)) { |
| if (MemberSpecializationInfo *MSInfo = |
| Function->getMemberSpecializationInfo()) { |
| if (MSInfo->getPointOfInstantiation().isInvalid()) { |
| SourceLocation Loc = R->getLocation(); // FIXME |
| MSInfo->setPointOfInstantiation(Loc); |
| SemaRef.PendingLocalImplicitInstantiations.push_back( |
| std::make_pair(Function, Loc)); |
| QueuedInstantiation = true; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Check the template parameter list against the previous declaration. The |
| // goal here is to pick up default arguments added since the friend was |
| // declared; we know the template parameter lists match, since otherwise |
| // we would not have picked this template as the previous declaration. |
| if (TemplateParams && FunctionTemplate->getPreviousDecl()) { |
| SemaRef.CheckTemplateParameterList( |
| TemplateParams, |
| FunctionTemplate->getPreviousDecl()->getTemplateParameters(), |
| Function->isThisDeclarationADefinition() |
| ? Sema::TPC_FriendFunctionTemplateDefinition |
| : Sema::TPC_FriendFunctionTemplate); |
| } |
| } |
| |
| if (Function->isLocalExternDecl() && !Function->getPreviousDecl()) |
| DC->makeDeclVisibleInContext(PrincipalDecl); |
| |
| if (Function->isOverloadedOperator() && !DC->isRecord() && |
| PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) |
| PrincipalDecl->setNonMemberOperator(); |
| |
| assert(!D->isDefaulted() && "only methods should be defaulted"); |
| return Function; |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D, |
| TemplateParameterList *TemplateParams, |
| bool IsClassScopeSpecialization) { |
| FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); |
| if (FunctionTemplate && !TemplateParams) { |
| // We are creating a function template specialization from a function |
| // template. Check whether there is already a function template |
| // specialization for this particular set of template arguments. |
| ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); |
| |
| void *InsertPos = nullptr; |
| FunctionDecl *SpecFunc |
| = FunctionTemplate->findSpecialization(Innermost, InsertPos); |
| |
| // If we already have a function template specialization, return it. |
| if (SpecFunc) |
| return SpecFunc; |
| } |
| |
| bool isFriend; |
| if (FunctionTemplate) |
| isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); |
| else |
| isFriend = (D->getFriendObjectKind() != Decl::FOK_None); |
| |
| bool MergeWithParentScope = (TemplateParams != nullptr) || |
| !(isa<Decl>(Owner) && |
| cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); |
| LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); |
| |
| // Instantiate enclosing template arguments for friends. |
| SmallVector<TemplateParameterList *, 4> TempParamLists; |
| unsigned NumTempParamLists = 0; |
| if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) { |
| TempParamLists.resize(NumTempParamLists); |
| for (unsigned I = 0; I != NumTempParamLists; ++I) { |
| TemplateParameterList *TempParams = D->getTemplateParameterList(I); |
| TemplateParameterList *InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return nullptr; |
| TempParamLists[I] = InstParams; |
| } |
| } |
| |
| SmallVector<ParmVarDecl *, 4> Params; |
| TypeSourceInfo *TInfo = SubstFunctionType(D, Params); |
| if (!TInfo) |
| return nullptr; |
| QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); |
| |
| NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); |
| if (QualifierLoc) { |
| QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, |
| TemplateArgs); |
| if (!QualifierLoc) |
| return nullptr; |
| } |
| |
| DeclContext *DC = Owner; |
| if (isFriend) { |
| if (QualifierLoc) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| DC = SemaRef.computeDeclContext(SS); |
| |
| if (DC && SemaRef.RequireCompleteDeclContext(SS, DC)) |
| return nullptr; |
| } else { |
| DC = SemaRef.FindInstantiatedContext(D->getLocation(), |
| D->getDeclContext(), |
| TemplateArgs); |
| } |
| if (!DC) return nullptr; |
| } |
| |
| // Build the instantiated method declaration. |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); |
| CXXMethodDecl *Method = nullptr; |
| |
| SourceLocation StartLoc = D->getInnerLocStart(); |
| DeclarationNameInfo NameInfo |
| = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { |
| Method = CXXConstructorDecl::Create(SemaRef.Context, Record, |
| StartLoc, NameInfo, T, TInfo, |
| Constructor->isExplicit(), |
| Constructor->isInlineSpecified(), |
| false, Constructor->isConstexpr()); |
| Method->setRangeEnd(Constructor->getLocEnd()); |
| } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { |
| Method = CXXDestructorDecl::Create(SemaRef.Context, Record, |
| StartLoc, NameInfo, T, TInfo, |
| Destructor->isInlineSpecified(), |
| false); |
| Method->setRangeEnd(Destructor->getLocEnd()); |
| } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { |
| Method = CXXConversionDecl::Create(SemaRef.Context, Record, |
| StartLoc, NameInfo, T, TInfo, |
| Conversion->isInlineSpecified(), |
| Conversion->isExplicit(), |
| Conversion->isConstexpr(), |
| Conversion->getLocEnd()); |
| } else { |
| StorageClass SC = D->isStatic() ? SC_Static : SC_None; |
| Method = CXXMethodDecl::Create(SemaRef.Context, Record, |
| StartLoc, NameInfo, T, TInfo, |
| SC, D->isInlineSpecified(), |
| D->isConstexpr(), D->getLocEnd()); |
| } |
| |
| if (D->isInlined()) |
| Method->setImplicitlyInline(); |
| |
| if (QualifierLoc) |
| Method->setQualifierInfo(QualifierLoc); |
| |
| if (TemplateParams) { |
| // Our resulting instantiation is actually a function template, since we |
| // are substituting only the outer template parameters. For example, given |
| // |
| // template<typename T> |
| // struct X { |
| // template<typename U> void f(T, U); |
| // }; |
| // |
| // X<int> x; |
| // |
| // We are instantiating the member template "f" within X<int>, which means |
| // substituting int for T, but leaving "f" as a member function template. |
| // Build the function template itself. |
| FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record, |
| Method->getLocation(), |
| Method->getDeclName(), |
| TemplateParams, Method); |
| if (isFriend) { |
| FunctionTemplate->setLexicalDeclContext(Owner); |
| FunctionTemplate->setObjectOfFriendDecl(); |
| } else if (D->isOutOfLine()) |
| FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext()); |
| Method->setDescribedFunctionTemplate(FunctionTemplate); |
| } else if (FunctionTemplate) { |
| // Record this function template specialization. |
| ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); |
| Method->setFunctionTemplateSpecialization(FunctionTemplate, |
| TemplateArgumentList::CreateCopy(SemaRef.Context, |
| Innermost), |
| /*InsertPos=*/nullptr); |
| } else if (!isFriend) { |
| // Record that this is an instantiation of a member function. |
| Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); |
| } |
| |
| // If we are instantiating a member function defined |
| // out-of-line, the instantiation will have the same lexical |
| // context (which will be a namespace scope) as the template. |
| if (isFriend) { |
| if (NumTempParamLists) |
| Method->setTemplateParameterListsInfo( |
| SemaRef.Context, |
| llvm::makeArrayRef(TempParamLists.data(), NumTempParamLists)); |
| |
| Method->setLexicalDeclContext(Owner); |
| Method->setObjectOfFriendDecl(); |
| } else if (D->isOutOfLine()) |
| Method->setLexicalDeclContext(D->getLexicalDeclContext()); |
| |
| // Attach the parameters |
| for (unsigned P = 0; P < Params.size(); ++P) |
| Params[P]->setOwningFunction(Method); |
| Method->setParams(Params); |
| |
| if (InitMethodInstantiation(Method, D)) |
| Method->setInvalidDecl(); |
| |
| LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName, |
| Sema::ForExternalRedeclaration); |
| |
| if (!FunctionTemplate || TemplateParams || isFriend) { |
| SemaRef.LookupQualifiedName(Previous, Record); |
| |
| // In C++, the previous declaration we find might be a tag type |
| // (class or enum). In this case, the new declaration will hide the |
| // tag type. Note that this does does not apply if we're declaring a |
| // typedef (C++ [dcl.typedef]p4). |
| if (Previous.isSingleTagDecl()) |
| Previous.clear(); |
| } |
| |
| if (!IsClassScopeSpecialization) |
| SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous, false); |
| |
| if (D->isPure()) |
| SemaRef.CheckPureMethod(Method, SourceRange()); |
| |
| // Propagate access. For a non-friend declaration, the access is |
| // whatever we're propagating from. For a friend, it should be the |
| // previous declaration we just found. |
| if (isFriend && Method->getPreviousDecl()) |
| Method->setAccess(Method->getPreviousDecl()->getAccess()); |
| else |
| Method->setAccess(D->getAccess()); |
| if (FunctionTemplate) |
| FunctionTemplate->setAccess(Method->getAccess()); |
| |
| SemaRef.CheckOverrideControl(Method); |
| |
| // If a function is defined as defaulted or deleted, mark it as such now. |
| if (D->isExplicitlyDefaulted()) |
| SemaRef.SetDeclDefaulted(Method, Method->getLocation()); |
| if (D->isDeletedAsWritten()) |
| SemaRef.SetDeclDeleted(Method, Method->getLocation()); |
| |
| // If there's a function template, let our caller handle it. |
| if (FunctionTemplate) { |
| // do nothing |
| |
| // Don't hide a (potentially) valid declaration with an invalid one. |
| } else if (Method->isInvalidDecl() && !Previous.empty()) { |
| // do nothing |
| |
| // Otherwise, check access to friends and make them visible. |
| } else if (isFriend) { |
| // We only need to re-check access for methods which we didn't |
| // manage to match during parsing. |
| if (!D->getPreviousDecl()) |
| SemaRef.CheckFriendAccess(Method); |
| |
| Record->makeDeclVisibleInContext(Method); |
| |
| // Otherwise, add the declaration. We don't need to do this for |
| // class-scope specializations because we'll have matched them with |
| // the appropriate template. |
| } else if (!IsClassScopeSpecialization) { |
| Owner->addDecl(Method); |
| } |
| |
| return Method; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) { |
| return VisitCXXMethodDecl(D); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) { |
| return VisitCXXMethodDecl(D); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) { |
| return VisitCXXMethodDecl(D); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) { |
| return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, None, |
| /*ExpectParameterPack=*/ false); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl( |
| TemplateTypeParmDecl *D) { |
| // TODO: don't always clone when decls are refcounted. |
| assert(D->getTypeForDecl()->isTemplateTypeParmType()); |
| |
| TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create( |
| SemaRef.Context, Owner, D->getLocStart(), D->getLocation(), |
| D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(), |
| D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack()); |
| Inst->setAccess(AS_public); |
| |
| if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { |
| TypeSourceInfo *InstantiatedDefaultArg = |
| SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs, |
| D->getDefaultArgumentLoc(), D->getDeclName()); |
| if (InstantiatedDefaultArg) |
| Inst->setDefaultArgument(InstantiatedDefaultArg); |
| } |
| |
| // Introduce this template parameter's instantiation into the instantiation |
| // scope. |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst); |
| |
| return Inst; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl( |
| NonTypeTemplateParmDecl *D) { |
| // Substitute into the type of the non-type template parameter. |
| TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc(); |
| SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten; |
| SmallVector<QualType, 4> ExpandedParameterPackTypes; |
| bool IsExpandedParameterPack = false; |
| TypeSourceInfo *DI; |
| QualType T; |
| bool Invalid = false; |
| |
| if (D->isExpandedParameterPack()) { |
| // The non-type template parameter pack is an already-expanded pack |
| // expansion of types. Substitute into each of the expanded types. |
| ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes()); |
| ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes()); |
| for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { |
| TypeSourceInfo *NewDI = |
| SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs, |
| D->getLocation(), D->getDeclName()); |
| if (!NewDI) |
| return nullptr; |
| |
| QualType NewT = |
| SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); |
| if (NewT.isNull()) |
| return nullptr; |
| |
| ExpandedParameterPackTypesAsWritten.push_back(NewDI); |
| ExpandedParameterPackTypes.push_back(NewT); |
| } |
| |
| IsExpandedParameterPack = true; |
| DI = D->getTypeSourceInfo(); |
| T = DI->getType(); |
| } else if (D->isPackExpansion()) { |
| // The non-type template parameter pack's type is a pack expansion of types. |
| // Determine whether we need to expand this parameter pack into separate |
| // types. |
| PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>(); |
| TypeLoc Pattern = Expansion.getPatternLoc(); |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| Optional<unsigned> OrigNumExpansions |
| = Expansion.getTypePtr()->getNumExpansions(); |
| Optional<unsigned> NumExpansions = OrigNumExpansions; |
| if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(), |
| Pattern.getSourceRange(), |
| Unexpanded, |
| TemplateArgs, |
| Expand, RetainExpansion, |
| NumExpansions)) |
| return nullptr; |
| |
| if (Expand) { |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); |
| TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs, |
| D->getLocation(), |
| D->getDeclName()); |
| if (!NewDI) |
| return nullptr; |
| |
| QualType NewT = |
| SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); |
| if (NewT.isNull()) |
| return nullptr; |
| |
| ExpandedParameterPackTypesAsWritten.push_back(NewDI); |
| ExpandedParameterPackTypes.push_back(NewT); |
| } |
| |
| // Note that we have an expanded parameter pack. The "type" of this |
| // expanded parameter pack is the original expansion type, but callers |
| // will end up using the expanded parameter pack types for type-checking. |
| IsExpandedParameterPack = true; |
| DI = D->getTypeSourceInfo(); |
| T = DI->getType(); |
| } else { |
| // We cannot fully expand the pack expansion now, so substitute into the |
| // pattern and create a new pack expansion type. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); |
| TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs, |
| D->getLocation(), |
| D->getDeclName()); |
| if (!NewPattern) |
| return nullptr; |
| |
| SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation()); |
| DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(), |
| NumExpansions); |
| if (!DI) |
| return nullptr; |
| |
| T = DI->getType(); |
| } |
| } else { |
| // Simple case: substitution into a parameter that is not a parameter pack. |
| DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, |
| D->getLocation(), D->getDeclName()); |
| if (!DI) |
| return nullptr; |
| |
| // Check that this type is acceptable for a non-type template parameter. |
| T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation()); |
| if (T.isNull()) { |
| T = SemaRef.Context.IntTy; |
| Invalid = true; |
| } |
| } |
| |
| NonTypeTemplateParmDecl *Param; |
| if (IsExpandedParameterPack) |
| Param = NonTypeTemplateParmDecl::Create( |
| SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), |
| D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), |
| D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes, |
| ExpandedParameterPackTypesAsWritten); |
| else |
| Param = NonTypeTemplateParmDecl::Create( |
| SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), |
| D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), |
| D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI); |
| |
| Param->setAccess(AS_public); |
| if (Invalid) |
| Param->setInvalidDecl(); |
| |
| if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { |
| EnterExpressionEvaluationContext ConstantEvaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs); |
| if (!Value.isInvalid()) |
| Param->setDefaultArgument(Value.get()); |
| } |
| |
| // Introduce this template parameter's instantiation into the instantiation |
| // scope. |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); |
| return Param; |
| } |
| |
| static void collectUnexpandedParameterPacks( |
| Sema &S, |
| TemplateParameterList *Params, |
| SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) { |
| for (const auto &P : *Params) { |
| if (P->isTemplateParameterPack()) |
| continue; |
| if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) |
| S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(), |
| Unexpanded); |
| if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P)) |
| collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(), |
| Unexpanded); |
| } |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitTemplateTemplateParmDecl( |
| TemplateTemplateParmDecl *D) { |
| // Instantiate the template parameter list of the template template parameter. |
| TemplateParameterList *TempParams = D->getTemplateParameters(); |
| TemplateParameterList *InstParams; |
| SmallVector<TemplateParameterList*, 8> ExpandedParams; |
| |
| bool IsExpandedParameterPack = false; |
| |
| if (D->isExpandedParameterPack()) { |
| // The template template parameter pack is an already-expanded pack |
| // expansion of template parameters. Substitute into each of the expanded |
| // parameters. |
| ExpandedParams.reserve(D->getNumExpansionTemplateParameters()); |
| for (unsigned I = 0, N = D->getNumExpansionTemplateParameters(); |
| I != N; ++I) { |
| LocalInstantiationScope Scope(SemaRef); |
| TemplateParameterList *Expansion = |
| SubstTemplateParams(D->getExpansionTemplateParameters(I)); |
| if (!Expansion) |
| return nullptr; |
| ExpandedParams.push_back(Expansion); |
| } |
| |
| IsExpandedParameterPack = true; |
| InstParams = TempParams; |
| } else if (D->isPackExpansion()) { |
| // The template template parameter pack expands to a pack of template |
| // template parameters. Determine whether we need to expand this parameter |
| // pack into separate parameters. |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(), |
| Unexpanded); |
| |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| Optional<unsigned> NumExpansions; |
| if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(), |
| TempParams->getSourceRange(), |
| Unexpanded, |
| TemplateArgs, |
| Expand, RetainExpansion, |
| NumExpansions)) |
| return nullptr; |
| |
| if (Expand) { |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); |
| LocalInstantiationScope Scope(SemaRef); |
| TemplateParameterList *Expansion = SubstTemplateParams(TempParams); |
| if (!Expansion) |
| return nullptr; |
| ExpandedParams.push_back(Expansion); |
| } |
| |
| // Note that we have an expanded parameter pack. The "type" of this |
| // expanded parameter pack is the original expansion type, but callers |
| // will end up using the expanded parameter pack types for type-checking. |
| IsExpandedParameterPack = true; |
| InstParams = TempParams; |
| } else { |
| // We cannot fully expand the pack expansion now, so just substitute |
| // into the pattern. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); |
| |
| LocalInstantiationScope Scope(SemaRef); |
| InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return nullptr; |
| } |
| } else { |
| // Perform the actual substitution of template parameters within a new, |
| // local instantiation scope. |
| LocalInstantiationScope Scope(SemaRef); |
| InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return nullptr; |
| } |
| |
| // Build the template template parameter. |
| TemplateTemplateParmDecl *Param; |
| if (IsExpandedParameterPack) |
| Param = TemplateTemplateParmDecl::Create( |
| SemaRef.Context, Owner, D->getLocation(), |
| D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), |
| D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams); |
| else |
| Param = TemplateTemplateParmDecl::Create( |
| SemaRef.Context, Owner, D->getLocation(), |
| D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), |
| D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams); |
| if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { |
| NestedNameSpecifierLoc QualifierLoc = |
| D->getDefaultArgument().getTemplateQualifierLoc(); |
| QualifierLoc = |
| SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); |
| TemplateName TName = SemaRef.SubstTemplateName( |
| QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(), |
| D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs); |
| if (!TName.isNull()) |
| Param->setDefaultArgument( |
| SemaRef.Context, |
| TemplateArgumentLoc(TemplateArgument(TName), |
| D->getDefaultArgument().getTemplateQualifierLoc(), |
| D->getDefaultArgument().getTemplateNameLoc())); |
| } |
| Param->setAccess(AS_public); |
| |
| // Introduce this template parameter's instantiation into the instantiation |
| // scope. |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); |
| |
| return Param; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { |
| // Using directives are never dependent (and never contain any types or |
| // expressions), so they require no explicit instantiation work. |
| |
| UsingDirectiveDecl *Inst |
| = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(), |
| D->getNamespaceKeyLocation(), |
| D->getQualifierLoc(), |
| D->getIdentLocation(), |
| D->getNominatedNamespace(), |
| D->getCommonAncestor()); |
| |
| // Add the using directive to its declaration context |
| // only if this is not a function or method. |
| if (!Owner->isFunctionOrMethod()) |
| Owner->addDecl(Inst); |
| |
| return Inst; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) { |
| |
| // The nested name specifier may be dependent, for example |
| // template <typename T> struct t { |
| // struct s1 { T f1(); }; |
| // struct s2 : s1 { using s1::f1; }; |
| // }; |
| // template struct t<int>; |
| // Here, in using s1::f1, s1 refers to t<T>::s1; |
| // we need to substitute for t<int>::s1. |
| NestedNameSpecifierLoc QualifierLoc |
| = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), |
| TemplateArgs); |
| if (!QualifierLoc) |
| return nullptr; |
| |
| // For an inheriting constructor declaration, the name of the using |
| // declaration is the name of a constructor in this class, not in the |
| // base class. |
| DeclarationNameInfo NameInfo = D->getNameInfo(); |
| if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) |
| if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext)) |
| NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName( |
| SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD)))); |
| |
| // We only need to do redeclaration lookups if we're in a class |
| // scope (in fact, it's not really even possible in non-class |
| // scopes). |
| bool CheckRedeclaration = Owner->isRecord(); |
| |
| LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName, |
| Sema::ForVisibleRedeclaration); |
| |
| UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner, |
| D->getUsingLoc(), |
| QualifierLoc, |
| NameInfo, |
| D->hasTypename()); |
| |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| if (CheckRedeclaration) { |
| Prev.setHideTags(false); |
| SemaRef.LookupQualifiedName(Prev, Owner); |
| |
| // Check for invalid redeclarations. |
| if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(), |
| D->hasTypename(), SS, |
| D->getLocation(), Prev)) |
| NewUD->setInvalidDecl(); |
| |
| } |
| |
| if (!NewUD->isInvalidDecl() && |
| SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(), |
| SS, NameInfo, D->getLocation())) |
| NewUD->setInvalidDecl(); |
| |
| SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D); |
| NewUD->setAccess(D->getAccess()); |
| Owner->addDecl(NewUD); |
| |
| // Don't process the shadow decls for an invalid decl. |
| if (NewUD->isInvalidDecl()) |
| return NewUD; |
| |
| if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) |
| SemaRef.CheckInheritingConstructorUsingDecl(NewUD); |
| |
| bool isFunctionScope = Owner->isFunctionOrMethod(); |
| |
| // Process the shadow decls. |
| for (auto *Shadow : D->shadows()) { |
| // FIXME: UsingShadowDecl doesn't preserve its immediate target, so |
| // reconstruct it in the case where it matters. |
| NamedDecl *OldTarget = Shadow->getTargetDecl(); |
| if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow)) |
| if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl()) |
| OldTarget = BaseShadow; |
| |
| NamedDecl *InstTarget = |
| cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl( |
| Shadow->getLocation(), OldTarget, TemplateArgs)); |
| if (!InstTarget) |
| return nullptr; |
| |
| UsingShadowDecl *PrevDecl = nullptr; |
| if (CheckRedeclaration) { |
| if (SemaRef.CheckUsingShadowDecl(NewUD, InstTarget, Prev, PrevDecl)) |
| continue; |
| } else if (UsingShadowDecl *OldPrev = |
| getPreviousDeclForInstantiation(Shadow)) { |
| PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl( |
| Shadow->getLocation(), OldPrev, TemplateArgs)); |
| } |
| |
| UsingShadowDecl *InstShadow = |
| SemaRef.BuildUsingShadowDecl(/*Scope*/nullptr, NewUD, InstTarget, |
| PrevDecl); |
| SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow); |
| |
| if (isFunctionScope) |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow); |
| } |
| |
| return NewUD; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) { |
| // Ignore these; we handle them in bulk when processing the UsingDecl. |
| return nullptr; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl( |
| ConstructorUsingShadowDecl *D) { |
| // Ignore these; we handle them in bulk when processing the UsingDecl. |
| return nullptr; |
| } |
| |
| template <typename T> |
| Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl( |
| T *D, bool InstantiatingPackElement) { |
| // If this is a pack expansion, expand it now. |
| if (D->isPackExpansion() && !InstantiatingPackElement) { |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded); |
| SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded); |
| |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| Optional<unsigned> NumExpansions; |
| if (SemaRef.CheckParameterPacksForExpansion( |
| D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs, |
| Expand, RetainExpansion, NumExpansions)) |
| return nullptr; |
| |
| // This declaration cannot appear within a function template signature, |
| // so we can't have a partial argument list for a parameter pack. |
| assert(!RetainExpansion && |
| "should never need to retain an expansion for UsingPackDecl"); |
| |
| if (!Expand) { |
| // We cannot fully expand the pack expansion now, so substitute into the |
| // pattern and create a new pack expansion. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); |
| return instantiateUnresolvedUsingDecl(D, true); |
| } |
| |
| // Within a function, we don't have any normal way to check for conflicts |
| // between shadow declarations from different using declarations in the |
| // same pack expansion, but this is always ill-formed because all expansions |
| // must produce (conflicting) enumerators. |
| // |
| // Sadly we can't just reject this in the template definition because it |
| // could be valid if the pack is empty or has exactly one expansion. |
| if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) { |
| SemaRef.Diag(D->getEllipsisLoc(), |
| diag::err_using_decl_redeclaration_expansion); |
| return nullptr; |
| } |
| |
| // Instantiate the slices of this pack and build a UsingPackDecl. |
| SmallVector<NamedDecl*, 8> Expansions; |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); |
| Decl *Slice = instantiateUnresolvedUsingDecl(D, true); |
| if (!Slice) |
| return nullptr; |
| // Note that we can still get unresolved using declarations here, if we |
| // had arguments for all packs but the pattern also contained other |
| // template arguments (this only happens during partial substitution, eg |
| // into the body of a generic lambda in a function template). |
| Expansions.push_back(cast<NamedDecl>(Slice)); |
| } |
| |
| auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); |
| if (isDeclWithinFunction(D)) |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); |
| return NewD; |
| } |
| |
| UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D); |
| SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation(); |
| |
| NestedNameSpecifierLoc QualifierLoc |
| = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), |
| TemplateArgs); |
| if (!QualifierLoc) |
| return nullptr; |
| |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| DeclarationNameInfo NameInfo |
| = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); |
| |
| // Produce a pack expansion only if we're not instantiating a particular |
| // slice of a pack expansion. |
| bool InstantiatingSlice = D->getEllipsisLoc().isValid() && |
| SemaRef.ArgumentPackSubstitutionIndex != -1; |
| SourceLocation EllipsisLoc = |
| InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc(); |
| |
| NamedDecl *UD = SemaRef.BuildUsingDeclaration( |
| /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(), |
| /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc, |
| ParsedAttributesView(), |
| /*IsInstantiation*/ true); |
| if (UD) |
| SemaRef.Context.setInstantiatedFromUsingDecl(UD, D); |
| |
| return UD; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl( |
| UnresolvedUsingTypenameDecl *D) { |
| return instantiateUnresolvedUsingDecl(D); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl( |
| UnresolvedUsingValueDecl *D) { |
| return instantiateUnresolvedUsingDecl(D); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) { |
| SmallVector<NamedDecl*, 8> Expansions; |
| for (auto *UD : D->expansions()) { |
| if (NamedDecl *NewUD = |
| SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs)) |
| Expansions.push_back(NewUD); |
| else |
| return nullptr; |
| } |
| |
| auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); |
| if (isDeclWithinFunction(D)) |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); |
| return NewD; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl( |
| ClassScopeFunctionSpecializationDecl *Decl) { |
| CXXMethodDecl *OldFD = Decl->getSpecialization(); |
| CXXMethodDecl *NewFD = |
| cast_or_null<CXXMethodDecl>(VisitCXXMethodDecl(OldFD, nullptr, true)); |
| if (!NewFD) |
| return nullptr; |
| |
| LookupResult Previous(SemaRef, NewFD->getNameInfo(), Sema::LookupOrdinaryName, |
| Sema::ForExternalRedeclaration); |
| |
| TemplateArgumentListInfo TemplateArgs; |
| TemplateArgumentListInfo *TemplateArgsPtr = nullptr; |
| if (Decl->hasExplicitTemplateArgs()) { |
| TemplateArgs = Decl->templateArgs(); |
| TemplateArgsPtr = &TemplateArgs; |
| } |
| |
| SemaRef.LookupQualifiedName(Previous, SemaRef.CurContext); |
| if (SemaRef.CheckFunctionTemplateSpecialization(NewFD, TemplateArgsPtr, |
| Previous)) { |
| NewFD->setInvalidDecl(); |
| return NewFD; |
| } |
| |
| // Associate the specialization with the pattern. |
| FunctionDecl *Specialization = cast<FunctionDecl>(Previous.getFoundDecl()); |
| assert(Specialization && "Class scope Specialization is null"); |
| SemaRef.Context.setClassScopeSpecializationPattern(Specialization, OldFD); |
| |
| // FIXME: If this is a definition, check for redefinition errors! |
| |
| return NewFD; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl( |
| OMPThreadPrivateDecl *D) { |
| SmallVector<Expr *, 5> Vars; |
| for (auto *I : D->varlists()) { |
| Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); |
| assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr"); |
| Vars.push_back(Var); |
| } |
| |
| OMPThreadPrivateDecl *TD = |
| SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars); |
| |
| TD->setAccess(AS_public); |
| Owner->addDecl(TD); |
| |
| return TD; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl( |
| OMPDeclareReductionDecl *D) { |
| // Instantiate type and check if it is allowed. |
| QualType SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType( |
| D->getLocation(), |
| ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs, |
| D->getLocation(), DeclarationName()))); |
| if (SubstReductionType.isNull()) |
| return nullptr; |
| bool IsCorrect = !SubstReductionType.isNull(); |
| // Create instantiated copy. |
| std::pair<QualType, SourceLocation> ReductionTypes[] = { |
| std::make_pair(SubstReductionType, D->getLocation())}; |
| auto *PrevDeclInScope = D->getPrevDeclInScope(); |
| if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { |
| PrevDeclInScope = cast<OMPDeclareReductionDecl>( |
| SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) |
| ->get<Decl *>()); |
| } |
| auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart( |
| /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(), |
| PrevDeclInScope); |
| auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl()); |
| if (isDeclWithinFunction(NewDRD)) |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD); |
| Expr *SubstCombiner = nullptr; |
| Expr *SubstInitializer = nullptr; |
| // Combiners instantiation sequence. |
| if (D->getCombiner()) { |
| SemaRef.ActOnOpenMPDeclareReductionCombinerStart( |
| /*S=*/nullptr, NewDRD); |
| const char *Names[] = {"omp_in", "omp_out"}; |
| for (auto &Name : Names) { |
| DeclarationName DN(&SemaRef.Context.Idents.get(Name)); |
| auto OldLookup = D->lookup(DN); |
| auto Lookup = NewDRD->lookup(DN); |
| if (!OldLookup.empty() && !Lookup.empty()) { |
| assert(Lookup.size() == 1 && OldLookup.size() == 1); |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldLookup.front(), |
| Lookup.front()); |
| } |
| } |
| SubstCombiner = SemaRef.SubstExpr(D->getCombiner(), TemplateArgs).get(); |
| SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner); |
| // Initializers instantiation sequence. |
| if (D->getInitializer()) { |
| VarDecl *OmpPrivParm = |
| SemaRef.ActOnOpenMPDeclareReductionInitializerStart( |
| /*S=*/nullptr, NewDRD); |
| const char *Names[] = {"omp_orig", "omp_priv"}; |
| for (auto &Name : Names) { |
| DeclarationName DN(&SemaRef.Context.Idents.get(Name)); |
| auto OldLookup = D->lookup(DN); |
| auto Lookup = NewDRD->lookup(DN); |
| if (!OldLookup.empty() && !Lookup.empty()) { |
| assert(Lookup.size() == 1 && OldLookup.size() == 1); |
| auto *OldVD = cast<VarDecl>(OldLookup.front()); |
| auto *NewVD = cast<VarDecl>(Lookup.front()); |
| SemaRef.InstantiateVariableInitializer(NewVD, OldVD, TemplateArgs); |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldVD, NewVD); |
| } |
| } |
| if (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit) { |
| SubstInitializer = |
| SemaRef.SubstExpr(D->getInitializer(), TemplateArgs).get(); |
| } else { |
| IsCorrect = IsCorrect && OmpPrivParm->hasInit(); |
| } |
| SemaRef.ActOnOpenMPDeclareReductionInitializerEnd( |
| NewDRD, SubstInitializer, OmpPrivParm); |
| } |
| IsCorrect = |
| IsCorrect && SubstCombiner && |
| (!D->getInitializer() || |
| (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit && |
| SubstInitializer) || |
| (D->getInitializerKind() != OMPDeclareReductionDecl::CallInit && |
| !SubstInitializer && !SubstInitializer)); |
| } else |
| IsCorrect = false; |
| |
| (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd(/*S=*/nullptr, DRD, |
| IsCorrect); |
| |
| return NewDRD; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl( |
| OMPCapturedExprDecl * /*D*/) { |
| llvm_unreachable("Should not be met in templates"); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) { |
| return VisitFunctionDecl(D, nullptr); |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) { |
| Decl *Inst = VisitFunctionDecl(D, nullptr); |
| if (Inst && !D->getDescribedFunctionTemplate()) |
| Owner->addDecl(Inst); |
| return Inst; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) { |
| return VisitCXXMethodDecl(D, nullptr); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) { |
| llvm_unreachable("There are only CXXRecordDecls in C++"); |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl( |
| ClassTemplateSpecializationDecl *D) { |
| // As a MS extension, we permit class-scope explicit specialization |
| // of member class templates. |
| ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); |
| assert(ClassTemplate->getDeclContext()->isRecord() && |
| D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && |
| "can only instantiate an explicit specialization " |
| "for a member class template"); |
| |
| // Lookup the already-instantiated declaration in the instantiation |
| // of the class template. FIXME: Diagnose or assert if this fails? |
| DeclContext::lookup_result Found |
| = Owner->lookup(ClassTemplate->getDeclName()); |
| if (Found.empty()) |
| return nullptr; |
| ClassTemplateDecl *InstClassTemplate |
| = dyn_cast<ClassTemplateDecl>(Found.front()); |
| if (!InstClassTemplate) |
| return nullptr; |
| |
| // Substitute into the template arguments of the class template explicit |
| // specialization. |
| TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc(). |
| castAs<TemplateSpecializationTypeLoc>(); |
| TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(), |
| Loc.getRAngleLoc()); |
| SmallVector<TemplateArgumentLoc, 4> ArgLocs; |
| for (unsigned I = 0; I != Loc.getNumArgs(); ++I) |
| ArgLocs.push_back(Loc.getArgLoc(I)); |
| if (SemaRef.Subst(ArgLocs.data(), ArgLocs.size(), |
| InstTemplateArgs, TemplateArgs)) |
| return nullptr; |
| |
| // Check that the template argument list is well-formed for this |
| // class template. |
| SmallVector<TemplateArgument, 4> Converted; |
| if (SemaRef.CheckTemplateArgumentList(InstClassTemplate, |
| D->getLocation(), |
| InstTemplateArgs, |
| false, |
| Converted)) |
| return nullptr; |
| |
| // Figure out where to insert this class template explicit specialization |
| // in the member template's set of class template explicit specializations. |
| void *InsertPos = nullptr; |
| ClassTemplateSpecializationDecl *PrevDecl = |
| InstClassTemplate->findSpecialization(Converted, InsertPos); |
| |
| // Check whether we've already seen a conflicting instantiation of this |
| // declaration (for instance, if there was a prior implicit instantiation). |
| bool Ignored; |
| if (PrevDecl && |
| SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(), |
| D->getSpecializationKind(), |
| PrevDecl, |
| PrevDecl->getSpecializationKind(), |
| PrevDecl->getPointOfInstantiation(), |
| Ignored)) |
| return nullptr; |
| |
| // If PrevDecl was a definition and D is also a definition, diagnose. |
| // This happens in cases like: |
| // |
| // template<typename T, typename U> |
| // struct Outer { |
| // template<typename X> struct Inner; |
| // template<> struct Inner<T> {}; |
| // template<> struct Inner<U> {}; |
| // }; |
| // |
| // Outer<int, int> outer; // error: the explicit specializations of Inner |
| // // have the same signature. |
| if (PrevDecl && PrevDecl->getDefinition() && |
| D->isThisDeclarationADefinition()) { |
| SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl; |
| SemaRef.Diag(PrevDecl->getDefinition()->getLocation(), |
| diag::note_previous_definition); |
| return nullptr; |
| } |
| |
| // Create the class template partial specialization declaration. |
| ClassTemplateSpecializationDecl *InstD |
| = ClassTemplateSpecializationDecl::Create(SemaRef.Context, |
| D->getTagKind(), |
| Owner, |
| D->getLocStart(), |
| D->getLocation(), |
| InstClassTemplate, |
| Converted, |
| PrevDecl); |
| |
| // Add this partial specialization to the set of class template partial |
| // specializations. |
| if (!PrevDecl) |
| InstClassTemplate->AddSpecialization(InstD, InsertPos); |
| |
| // Substitute the nested name specifier, if any. |
| if (SubstQualifier(D, InstD)) |
| return nullptr; |
| |
| // Build the canonical type that describes the converted template |
| // arguments of the class template explicit specialization. |
| QualType CanonType = SemaRef.Context.getTemplateSpecializationType( |
| TemplateName(InstClassTemplate), Converted, |
| SemaRef.Context.getRecordType(InstD)); |
| |
| // Build the fully-sugared type for this class template |
| // specialization as the user wrote in the specialization |
| // itself. This means that we'll pretty-print the type retrieved |
| // from the specialization's declaration the way that the user |
| // actually wrote the specialization, rather than formatting the |
| // name based on the "canonical" representation used to store the |
| // template arguments in the specialization. |
| TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( |
| TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs, |
| CanonType); |
| |
| InstD->setAccess(D->getAccess()); |
| InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); |
| InstD->setSpecializationKind(D->getSpecializationKind()); |
| InstD->setTypeAsWritten(WrittenTy); |
| InstD->setExternLoc(D->getExternLoc()); |
| InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc()); |
| |
| Owner->addDecl(InstD); |
| |
| // Instantiate the members of the class-scope explicit specialization eagerly. |
| // We don't have support for lazy instantiation of an explicit specialization |
| // yet, and MSVC eagerly instantiates in this case. |
| if (D->isThisDeclarationADefinition() && |
| SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs, |
| TSK_ImplicitInstantiation, |
| /*Complain=*/true)) |
| return nullptr; |
| |
| return InstD; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( |
| VarTemplateSpecializationDecl *D) { |
| |
| TemplateArgumentListInfo VarTemplateArgsInfo; |
| VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); |
| assert(VarTemplate && |
| "A template specialization without specialized template?"); |
| |
| // Substitute the current template arguments. |
| const TemplateArgumentListInfo &TemplateArgsInfo = D->getTemplateArgsInfo(); |
| VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo.getLAngleLoc()); |
| VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo.getRAngleLoc()); |
| |
| if (SemaRef.Subst(TemplateArgsInfo.getArgumentArray(), |
| TemplateArgsInfo.size(), VarTemplateArgsInfo, TemplateArgs)) |
| return nullptr; |
| |
| // Check that the template argument list is well-formed for this template. |
| SmallVector<TemplateArgument, 4> Converted; |
| if (SemaRef.CheckTemplateArgumentList( |
| VarTemplate, VarTemplate->getLocStart(), |
| const_cast<TemplateArgumentListInfo &>(VarTemplateArgsInfo), false, |
| Converted)) |
| return nullptr; |
| |
| // Find the variable template specialization declaration that |
| // corresponds to these arguments. |
| void *InsertPos = nullptr; |
| if (VarTemplateSpecializationDecl *VarSpec = VarTemplate->findSpecialization( |
| Converted, InsertPos)) |
| // If we already have a variable template specialization, return it. |
| return VarSpec; |
| |
| return VisitVarTemplateSpecializationDecl(VarTemplate, D, InsertPos, |
| VarTemplateArgsInfo, Converted); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( |
| VarTemplateDecl *VarTemplate, VarDecl *D, void *InsertPos, |
| const TemplateArgumentListInfo &TemplateArgsInfo, |
| ArrayRef<TemplateArgument> Converted) { |
| |
| // Do substitution on the type of the declaration |
| TypeSourceInfo *DI = |
| SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, |
| D->getTypeSpecStartLoc(), D->getDeclName()); |
| if (!DI) |
| return nullptr; |
| |
| if (DI->getType()->isFunctionType()) { |
| SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) |
| << D->isStaticDataMember() << DI->getType(); |
| return nullptr; |
| } |
| |
| // Build the instantiated declaration |
| VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create( |
| SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), |
| VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted); |
| Var->setTemplateArgsInfo(TemplateArgsInfo); |
| if (InsertPos) |
| VarTemplate->AddSpecialization(Var, InsertPos); |
| |
| // Substitute the nested name specifier, if any. |
| if (SubstQualifier(D, Var)) |
| return nullptr; |
| |
| SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, |
| Owner, StartingScope); |
| |
| return Var; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) { |
| llvm_unreachable("@defs is not supported in Objective-C++"); |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) { |
| // FIXME: We need to be able to instantiate FriendTemplateDecls. |
| unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID( |
| DiagnosticsEngine::Error, |
| "cannot instantiate %0 yet"); |
| SemaRef.Diag(D->getLocation(), DiagID) |
| << D->getDeclKindName(); |
| |
| return nullptr; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) { |
| llvm_unreachable("Unexpected decl"); |
| } |
| |
| Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); |
| if (D->isInvalidDecl()) |
| return nullptr; |
| |
| return Instantiator.Visit(D); |
| } |
| |
| /// Instantiates a nested template parameter list in the current |
| /// instantiation context. |
| /// |
| /// \param L The parameter list to instantiate |
| /// |
| /// \returns NULL if there was an error |
| TemplateParameterList * |
| TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) { |
| // Get errors for all the parameters before bailing out. |
| bool Invalid = false; |
| |
| unsigned N = L->size(); |
| typedef SmallVector<NamedDecl *, 8> ParamVector; |
| ParamVector Params; |
| Params.reserve(N); |
| for (auto &P : *L) { |
| NamedDecl *D = cast_or_null<NamedDecl>(Visit(P)); |
| Params.push_back(D); |
| Invalid = Invalid || !D || D->isInvalidDecl(); |
| } |
| |
| // Clean up if we had an error. |
| if (Invalid) |
| return nullptr; |
| |
| // Note: we substitute into associated constraints later |
| Expr *const UninstantiatedRequiresClause = L->getRequiresClause(); |
| |
| TemplateParameterList *InstL |
| = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(), |
| L->getLAngleLoc(), Params, |
| L->getRAngleLoc(), |
| UninstantiatedRequiresClause); |
| return InstL; |
| } |
| |
| TemplateParameterList * |
| Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); |
| return Instantiator.SubstTemplateParams(Params); |
| } |
| |
| /// Instantiate the declaration of a class template partial |
| /// specialization. |
| /// |
| /// \param ClassTemplate the (instantiated) class template that is partially |
| // specialized by the instantiation of \p PartialSpec. |
| /// |
| /// \param PartialSpec the (uninstantiated) class template partial |
| /// specialization that we are instantiating. |
| /// |
| /// \returns The instantiated partial specialization, if successful; otherwise, |
| /// NULL to indicate an error. |
| ClassTemplatePartialSpecializationDecl * |
| TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization( |
| ClassTemplateDecl *ClassTemplate, |
| ClassTemplatePartialSpecializationDecl *PartialSpec) { |
| // Create a local instantiation scope for this class template partial |
| // specialization, which will contain the instantiations of the template |
| // parameters. |
| LocalInstantiationScope Scope(SemaRef); |
| |
| // Substitute into the template parameters of the class template partial |
| // specialization. |
| TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); |
| TemplateParameterList *InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return nullptr; |
| |
| // Substitute into the template arguments of the class template partial |
| // specialization. |
| const ASTTemplateArgumentListInfo *TemplArgInfo |
| = PartialSpec->getTemplateArgsAsWritten(); |
| TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, |
| TemplArgInfo->RAngleLoc); |
| if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(), |
| TemplArgInfo->NumTemplateArgs, |
| InstTemplateArgs, TemplateArgs)) |
| return nullptr; |
| |
| // Check that the template argument list is well-formed for this |
| // class template. |
| SmallVector<TemplateArgument, 4> Converted; |
| if (SemaRef.CheckTemplateArgumentList(ClassTemplate, |
| PartialSpec->getLocation(), |
| InstTemplateArgs, |
| false, |
| Converted)) |
| return nullptr; |
| |
| // Check these arguments are valid for a template partial specialization. |
| if (SemaRef.CheckTemplatePartialSpecializationArgs( |
| PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(), |
| Converted)) |
| return nullptr; |
| |
| // Figure out where to insert this class template partial specialization |
| // in the member template's set of class template partial specializations. |
| void *InsertPos = nullptr; |
| ClassTemplateSpecializationDecl *PrevDecl |
| = ClassTemplate->findPartialSpecialization(Converted, InsertPos); |
| |
| // Build the canonical type that describes the converted template |
| // arguments of the class template partial specialization. |
| QualType CanonType |
| = SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate), |
| Converted); |
| |
| // Build the fully-sugared type for this class template |
| // specialization as the user wrote in the specialization |
| // itself. This means that we'll pretty-print the type retrieved |
| // from the specialization's declaration the way that the user |
| // actually wrote the specialization, rather than formatting the |
| // name based on the "canonical" representation used to store the |
| // template arguments in the specialization. |
| TypeSourceInfo *WrittenTy |
| = SemaRef.Context.getTemplateSpecializationTypeInfo( |
| TemplateName(ClassTemplate), |
| PartialSpec->getLocation(), |
| InstTemplateArgs, |
| CanonType); |
| |
| if (PrevDecl) { |
| // We've already seen a partial specialization with the same template |
| // parameters and template arguments. This can happen, for example, when |
| // substituting the outer template arguments ends up causing two |
| // class template partial specializations of a member class template |
| // to have identical forms, e.g., |
| // |
| // template<typename T, typename U> |
| // struct Outer { |
| // template<typename X, typename Y> struct Inner; |
| // template<typename Y> struct Inner<T, Y>; |
| // template<typename Y> struct Inner<U, Y>; |
| // }; |
| // |
| // Outer<int, int> outer; // error: the partial specializations of Inner |
| // // have the same signature. |
| SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared) |
| << WrittenTy->getType(); |
| SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here) |
| << SemaRef.Context.getTypeDeclType(PrevDecl); |
| return nullptr; |
| } |
| |
| |
| // Create the class template partial specialization declaration. |
| ClassTemplatePartialSpecializationDecl *InstPartialSpec |
| = ClassTemplatePartialSpecializationDecl::Create(SemaRef.Context, |
| PartialSpec->getTagKind(), |
| Owner, |
| PartialSpec->getLocStart(), |
| PartialSpec->getLocation(), |
| InstParams, |
| ClassTemplate, |
| Converted, |
| InstTemplateArgs, |
| CanonType, |
| nullptr); |
| // Substitute the nested name specifier, if any. |
| if (SubstQualifier(PartialSpec, InstPartialSpec)) |
| return nullptr; |
| |
| InstPartialSpec->setInstantiatedFromMember(PartialSpec); |
| InstPartialSpec->setTypeAsWritten(WrittenTy); |
| |
| // Check the completed partial specialization. |
| SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); |
| |
| // Add this partial specialization to the set of class template partial |
| // specializations. |
| ClassTemplate->AddPartialSpecialization(InstPartialSpec, |
| /*InsertPos=*/nullptr); |
| return InstPartialSpec; |
| } |
| |
| /// Instantiate the declaration of a variable template partial |
| /// specialization. |
| /// |
| /// \param VarTemplate the (instantiated) variable template that is partially |
| /// specialized by the instantiation of \p PartialSpec. |
| /// |
| /// \param PartialSpec the (uninstantiated) variable template partial |
| /// specialization that we are instantiating. |
| /// |
| /// \returns The instantiated partial specialization, if successful; otherwise, |
| /// NULL to indicate an error. |
| VarTemplatePartialSpecializationDecl * |
| TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization( |
| VarTemplateDecl *VarTemplate, |
| VarTemplatePartialSpecializationDecl *PartialSpec) { |
| // Create a local instantiation scope for this variable template partial |
| // specialization, which will contain the instantiations of the template |
| // parameters. |
| LocalInstantiationScope Scope(SemaRef); |
| |
| // Substitute into the template parameters of the variable template partial |
| // specialization. |
| TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); |
| TemplateParameterList *InstParams = SubstTemplateParams(TempParams); |
| if (!InstParams) |
| return nullptr; |
| |
| // Substitute into the template arguments of the variable template partial |
| // specialization. |
| const ASTTemplateArgumentListInfo *TemplArgInfo |
| = PartialSpec->getTemplateArgsAsWritten(); |
| TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, |
| TemplArgInfo->RAngleLoc); |
| if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(), |
| TemplArgInfo->NumTemplateArgs, |
| InstTemplateArgs, TemplateArgs)) |
| return nullptr; |
| |
| // Check that the template argument list is well-formed for this |
| // class template. |
| SmallVector<TemplateArgument, 4> Converted; |
| if (SemaRef.CheckTemplateArgumentList(VarTemplate, PartialSpec->getLocation(), |
| InstTemplateArgs, false, Converted)) |
| return nullptr; |
| |
| // Check these arguments are valid for a template partial specialization. |
| if (SemaRef.CheckTemplatePartialSpecializationArgs( |
| PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(), |
| Converted)) |
| return nullptr; |
| |
| // Figure out where to insert this variable template partial specialization |
| // in the member template's set of variable template partial specializations. |
| void *InsertPos = nullptr; |
| VarTemplateSpecializationDecl *PrevDecl = |
| VarTemplate->findPartialSpecialization(Converted, InsertPos); |
| |
| // Build the canonical type that describes the converted template |
| // arguments of the variable template partial specialization. |
| QualType CanonType = SemaRef.Context.getTemplateSpecializationType( |
| TemplateName(VarTemplate), Converted); |
| |
| // Build the fully-sugared type for this variable template |
| // specialization as the user wrote in the specialization |
| // itself. This means that we'll pretty-print the type retrieved |
| // from the specialization's declaration the way that the user |
| // actually wrote the specialization, rather than formatting the |
| // name based on the "canonical" representation used to store the |
| // template arguments in the specialization. |
| TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( |
| TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs, |
| CanonType); |
| |
| if (PrevDecl) { |
| // We've already seen a partial specialization with the same template |
| // parameters and template arguments. This can happen, for example, when |
| // substituting the outer template arguments ends up causing two |
| // variable template partial specializations of a member variable template |
| // to have identical forms, e.g., |
| // |
| // template<typename T, typename U> |
| // struct Outer { |
| // template<typename X, typename Y> pair<X,Y> p; |
| // template<typename Y> pair<T, Y> p; |
| // template<typename Y> pair<U, Y> p; |
| // }; |
| // |
| // Outer<int, int> outer; // error: the partial specializations of Inner |
| // // have the same signature. |
| SemaRef.Diag(PartialSpec->getLocation(), |
| diag::err_var_partial_spec_redeclared) |
| << WrittenTy->getType(); |
| SemaRef.Diag(PrevDecl->getLocation(), |
| diag::note_var_prev_partial_spec_here); |
| return nullptr; |
| } |
| |
| // Do substitution on the type of the declaration |
| TypeSourceInfo *DI = SemaRef.SubstType( |
| PartialSpec->getTypeSourceInfo(), TemplateArgs, |
| PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName()); |
| if (!DI) |
| return nullptr; |
| |
| if (DI->getType()->isFunctionType()) { |
| SemaRef.Diag(PartialSpec->getLocation(), |
| diag::err_variable_instantiates_to_function) |
| << PartialSpec->isStaticDataMember() << DI->getType(); |
| return nullptr; |
| } |
| |
| // Create the variable template partial specialization declaration. |
| VarTemplatePartialSpecializationDecl *InstPartialSpec = |
| VarTemplatePartialSpecializationDecl::Create( |
| SemaRef.Context, Owner, PartialSpec->getInnerLocStart(), |
| PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(), |
| DI, PartialSpec->getStorageClass(), Converted, InstTemplateArgs); |
| |
| // Substitute the nested name specifier, if any. |
| if (SubstQualifier(PartialSpec, InstPartialSpec)) |
| return nullptr; |
| |
| InstPartialSpec->setInstantiatedFromMember(PartialSpec); |
| InstPartialSpec->setTypeAsWritten(WrittenTy); |
| |
| // Check the completed partial specialization. |
| SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); |
| |
| // Add this partial specialization to the set of variable template partial |
| // specializations. The instantiation of the initializer is not necessary. |
| VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr); |
| |
| SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs, |
| LateAttrs, Owner, StartingScope); |
| |
| return InstPartialSpec; |
| } |
| |
| TypeSourceInfo* |
| TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D, |
| SmallVectorImpl<ParmVarDecl *> &Params) { |
| TypeSourceInfo *OldTInfo = D->getTypeSourceInfo(); |
| assert(OldTInfo && "substituting function without type source info"); |
| assert(Params.empty() && "parameter vector is non-empty at start"); |
| |
| CXXRecordDecl *ThisContext = nullptr; |
| unsigned ThisTypeQuals = 0; |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { |
| ThisContext = cast<CXXRecordDecl>(Owner); |
| ThisTypeQuals = Method->getTypeQualifiers(); |
| } |
| |
| TypeSourceInfo *NewTInfo |
| = SemaRef.SubstFunctionDeclType(OldTInfo, TemplateArgs, |
| D->getTypeSpecStartLoc(), |
| D->getDeclName(), |
| ThisContext, ThisTypeQuals); |
| if (!NewTInfo) |
| return nullptr; |
| |
| TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); |
| if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) { |
| if (NewTInfo != OldTInfo) { |
| // Get parameters from the new type info. |
| TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens(); |
| FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>(); |
| unsigned NewIdx = 0; |
| for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams(); |
| OldIdx != NumOldParams; ++OldIdx) { |
| ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx); |
| LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope; |
| |
| Optional<unsigned> NumArgumentsInExpansion; |
| if (OldParam->isParameterPack()) |
| NumArgumentsInExpansion = |
| SemaRef.getNumArgumentsInExpansion(OldParam->getType(), |
| TemplateArgs); |
| if (!NumArgumentsInExpansion) { |
| // Simple case: normal parameter, or a parameter pack that's |
| // instantiated to a (still-dependent) parameter pack. |
| ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); |
| Params.push_back(NewParam); |
| Scope->InstantiatedLocal(OldParam, NewParam); |
| } else { |
| // Parameter pack expansion: make the instantiation an argument pack. |
| Scope->MakeInstantiatedLocalArgPack(OldParam); |
| for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) { |
| ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); |
| Params.push_back(NewParam); |
| Scope->InstantiatedLocalPackArg(OldParam, NewParam); |
| } |
| } |
| } |
| } else { |
| // The function type itself was not dependent and therefore no |
| // substitution occurred. However, we still need to instantiate |
| // the function parameters themselves. |
| const FunctionProtoType *OldProto = |
| cast<FunctionProtoType>(OldProtoLoc.getType()); |
| for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end; |
| ++i) { |
| ParmVarDecl *OldParam = OldProtoLoc.getParam(i); |
| if (!OldParam) { |
| Params.push_back(SemaRef.BuildParmVarDeclForTypedef( |
| D, D->getLocation(), OldProto->getParamType(i))); |
| continue; |
| } |
| |
| ParmVarDecl *Parm = |
| cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam)); |
| if (!Parm) |
| return nullptr; |
| Params.push_back(Parm); |
| } |
| } |
| } else { |
| // If the type of this function, after ignoring parentheses, is not |
| // *directly* a function type, then we're instantiating a function that |
| // was declared via a typedef or with attributes, e.g., |
| // |
| // typedef int functype(int, int); |
| // functype func; |
| // int __cdecl meth(int, int); |
| // |
| // In this case, we'll just go instantiate the ParmVarDecls that we |
| // synthesized in the method declaration. |
| SmallVector<QualType, 4> ParamTypes; |
| Sema::ExtParameterInfoBuilder ExtParamInfos; |
| if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr, |
| TemplateArgs, ParamTypes, &Params, |
| ExtParamInfos)) |
| return nullptr; |
| } |
| |
| return NewTInfo; |
| } |
| |
| /// Introduce the instantiated function parameters into the local |
| /// instantiation scope, and set the parameter names to those used |
| /// in the template. |
| static bool addInstantiatedParametersToScope(Sema &S, FunctionDecl *Function, |
| const FunctionDecl *PatternDecl, |
| LocalInstantiationScope &Scope, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| unsigned FParamIdx = 0; |
| for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) { |
| const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I); |
| if (!PatternParam->isParameterPack()) { |
| // Simple case: not a parameter pack. |
| assert(FParamIdx < Function->getNumParams()); |
| ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); |
| FunctionParam->setDeclName(PatternParam->getDeclName()); |
| // If the parameter's type is not dependent, update it to match the type |
| // in the pattern. They can differ in top-level cv-qualifiers, and we want |
| // the pattern's type here. If the type is dependent, they can't differ, |
| // per core issue 1668. Substitute into the type from the pattern, in case |
| // it's instantiation-dependent. |
| // FIXME: Updating the type to work around this is at best fragile. |
| if (!PatternDecl->getType()->isDependentType()) { |
| QualType T = S.SubstType(PatternParam->getType(), TemplateArgs, |
| FunctionParam->getLocation(), |
| FunctionParam->getDeclName()); |
| if (T.isNull()) |
| return true; |
| FunctionParam->setType(T); |
| } |
| |
| Scope.InstantiatedLocal(PatternParam, FunctionParam); |
| ++FParamIdx; |
| continue; |
| } |
| |
| // Expand the parameter pack. |
| Scope.MakeInstantiatedLocalArgPack(PatternParam); |
| Optional<unsigned> NumArgumentsInExpansion |
| = S.getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs); |
| assert(NumArgumentsInExpansion && |
| "should only be called when all template arguments are known"); |
| QualType PatternType = |
| PatternParam->getType()->castAs<PackExpansionType>()->getPattern(); |
| for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) { |
| ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); |
| FunctionParam->setDeclName(PatternParam->getDeclName()); |
| if (!PatternDecl->getType()->isDependentType()) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, Arg); |
| QualType T = S.SubstType(PatternType, TemplateArgs, |
| FunctionParam->getLocation(), |
| FunctionParam->getDeclName()); |
| if (T.isNull()) |
| return true; |
| FunctionParam->setType(T); |
| } |
| |
| Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam); |
| ++FParamIdx; |
| } |
| } |
| |
| return false; |
| } |
| |
| void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation, |
| FunctionDecl *Decl) { |
| const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>(); |
| if (Proto->getExceptionSpecType() != EST_Uninstantiated) |
| return; |
| |
| InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl, |
| InstantiatingTemplate::ExceptionSpecification()); |
| if (Inst.isInvalid()) { |
| // We hit the instantiation depth limit. Clear the exception specification |
| // so that our callers don't have to cope with EST_Uninstantiated. |
| UpdateExceptionSpec(Decl, EST_None); |
| return; |
| } |
| if (Inst.isAlreadyInstantiating()) { |
| // This exception specification indirectly depends on itself. Reject. |
| // FIXME: Corresponding rule in the standard? |
| Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl; |
| UpdateExceptionSpec(Decl, EST_None); |
| return; |
| } |
| |
| // Enter the scope of this instantiation. We don't use |
| // PushDeclContext because we don't have a scope. |
| Sema::ContextRAII savedContext(*this, Decl); |
| LocalInstantiationScope Scope(*this); |
| |
| MultiLevelTemplateArgumentList TemplateArgs = |
| getTemplateInstantiationArgs(Decl, nullptr, /*RelativeToPrimary*/true); |
| |
| FunctionDecl *Template = Proto->getExceptionSpecTemplate(); |
| if (addInstantiatedParametersToScope(*this, Decl, Template, Scope, |
| TemplateArgs)) { |
| UpdateExceptionSpec(Decl, EST_None); |
| return; |
| } |
| |
| SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(), |
| TemplateArgs); |
| } |
| |
| /// Initializes the common fields of an instantiation function |
| /// declaration (New) from the corresponding fields of its template (Tmpl). |
| /// |
| /// \returns true if there was an error |
| bool |
| TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New, |
| FunctionDecl *Tmpl) { |
| if (Tmpl->isDeleted()) |
| New->setDeletedAsWritten(); |
| |
| New->setImplicit(Tmpl->isImplicit()); |
| |
| // Forward the mangling number from the template to the instantiated decl. |
| SemaRef.Context.setManglingNumber(New, |
| SemaRef.Context.getManglingNumber(Tmpl)); |
| |
| // If we are performing substituting explicitly-specified template arguments |
| // or deduced template arguments into a function template and we reach this |
| // point, we are now past the point where SFINAE applies and have committed |
| // to keeping the new function template specialization. We therefore |
| // convert the active template instantiation for the function template |
| // into a template instantiation for this specific function template |
| // specialization, which is not a SFINAE context, so that we diagnose any |
| // further errors in the declaration itself. |
| typedef Sema::CodeSynthesisContext ActiveInstType; |
| ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back(); |
| if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution || |
| ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) { |
| if (FunctionTemplateDecl *FunTmpl |
| = dyn_cast<FunctionTemplateDecl>(ActiveInst.Entity)) { |
| assert(FunTmpl->getTemplatedDecl() == Tmpl && |
| "Deduction from the wrong function template?"); |
| (void) FunTmpl; |
| atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); |
| ActiveInst.Kind = ActiveInstType::TemplateInstantiation; |
| ActiveInst.Entity = New; |
| atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); |
| } |
| } |
| |
| const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>(); |
| assert(Proto && "Function template without prototype?"); |
| |
| if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) { |
| FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); |
| |
| // DR1330: In C++11, defer instantiation of a non-trivial |
| // exception specification. |
| // DR1484: Local classes and their members are instantiated along with the |
| // containing function. |
| if (SemaRef.getLangOpts().CPlusPlus11 && |
| EPI.ExceptionSpec.Type != EST_None && |
| EPI.ExceptionSpec.Type != EST_DynamicNone && |
| EPI.ExceptionSpec.Type != EST_BasicNoexcept && |
| !Tmpl->isLexicallyWithinFunctionOrMethod()) { |
| FunctionDecl *ExceptionSpecTemplate = Tmpl; |
| if (EPI.ExceptionSpec.Type == EST_Uninstantiated) |
| ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate; |
| ExceptionSpecificationType NewEST = EST_Uninstantiated; |
| if (EPI.ExceptionSpec.Type == EST_Unevaluated) |
| NewEST = EST_Unevaluated; |
| |
| // Mark the function has having an uninstantiated exception specification. |
| const FunctionProtoType *NewProto |
| = New->getType()->getAs<FunctionProtoType>(); |
| assert(NewProto && "Template instantiation without function prototype?"); |
| EPI = NewProto->getExtProtoInfo(); |
| EPI.ExceptionSpec.Type = NewEST; |
| EPI.ExceptionSpec.SourceDecl = New; |
| EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate; |
| New->setType(SemaRef.Context.getFunctionType( |
| NewProto->getReturnType(), NewProto->getParamTypes(), EPI)); |
| } else { |
| Sema::ContextRAII SwitchContext(SemaRef, New); |
| SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs); |
| } |
| } |
| |
| // Get the definition. Leaves the variable unchanged if undefined. |
| const FunctionDecl *Definition = Tmpl; |
| Tmpl->isDefined(Definition); |
| |
| SemaRef.InstantiateAttrs(TemplateArgs, Definition, New, |
| LateAttrs, StartingScope); |
| |
| return false; |
| } |
| |
| /// Initializes common fields of an instantiated method |
| /// declaration (New) from the corresponding fields of its template |
| /// (Tmpl). |
| /// |
| /// \returns true if there was an error |
| bool |
| TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New, |
| CXXMethodDecl *Tmpl) { |
| if (InitFunctionInstantiation(New, Tmpl)) |
| return true; |
| |
| New->setAccess(Tmpl->getAccess()); |
| if (Tmpl->isVirtualAsWritten()) |
| New->setVirtualAsWritten(true); |
| |
| // FIXME: New needs a pointer to Tmpl |
| return false; |
| } |
| |
| /// Instantiate (or find existing instantiation of) a function template with a |
| /// given set of template arguments. |
| /// |
| /// Usually this should not be used, and template argument deduction should be |
| /// used in its place. |
| FunctionDecl * |
| Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD, |
| const TemplateArgumentList *Args, |
| SourceLocation Loc) { |
| FunctionDecl *FD = FTD->getTemplatedDecl(); |
| |
| sema::TemplateDeductionInfo Info(Loc); |
| InstantiatingTemplate Inst( |
| *this, Loc, FTD, Args->asArray(), |
| CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); |
| if (Inst.isInvalid()) |
| return nullptr; |
| |
| ContextRAII SavedContext(*this, FD); |
| MultiLevelTemplateArgumentList MArgs(*Args); |
| |
| return cast_or_null<FunctionDecl>(SubstDecl(FD, FD->getParent(), MArgs)); |
| } |
| |
| /// In the MS ABI, we need to instantiate default arguments of dllexported |
| /// default constructors along with the constructor definition. This allows IR |
| /// gen to emit a constructor closure which calls the default constructor with |
| /// its default arguments. |
| static void InstantiateDefaultCtorDefaultArgs(Sema &S, |
| CXXConstructorDecl *Ctor) { |
| assert(S.Context.getTargetInfo().getCXXABI().isMicrosoft() && |
| Ctor->isDefaultConstructor()); |
| unsigned NumParams = Ctor->getNumParams(); |
| if (NumParams == 0) |
| return; |
| DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>(); |
| if (!Attr) |
| return; |
| for (unsigned I = 0; I != NumParams; ++I) { |
| (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor, |
| Ctor->getParamDecl(I)); |
| S.DiscardCleanupsInEvaluationContext(); |
| } |
| } |
| |
| /// Instantiate the definition of the given function from its |
| /// template. |
| /// |
| /// \param PointOfInstantiation the point at which the instantiation was |
| /// required. Note that this is not precisely a "point of instantiation" |
| /// for the function, but it's close. |
| /// |
| /// \param Function the already-instantiated declaration of a |
| /// function template specialization or member function of a class template |
| /// specialization. |
| /// |
| /// \param Recursive if true, recursively instantiates any functions that |
| /// are required by this instantiation. |
| /// |
| /// \param DefinitionRequired if true, then we are performing an explicit |
| /// instantiation where the body of the function is required. Complain if |
| /// there is no such body. |
| void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, |
| FunctionDecl *Function, |
| bool Recursive, |
| bool DefinitionRequired, |
| bool AtEndOfTU) { |
| if (Function->isInvalidDecl() || Function->isDefined() || |
| isa<CXXDeductionGuideDecl>(Function)) |
| return; |
| |
| // Never instantiate an explicit specialization except if it is a class scope |
| // explicit specialization. |
| TemplateSpecializationKind TSK = Function->getTemplateSpecializationKind(); |
| if (TSK == TSK_ExplicitSpecialization && |
| !Function->getClassScopeSpecializationPattern()) |
| return; |
| |
| // Find the function body that we'll be substituting. |
| const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern(); |
| assert(PatternDecl && "instantiating a non-template"); |
| |
| const FunctionDecl *PatternDef = PatternDecl->getDefinition(); |
| Stmt *Pattern = nullptr; |
| if (PatternDef) { |
| Pattern = PatternDef->getBody(PatternDef); |
| PatternDecl = PatternDef; |
| if (PatternDef->willHaveBody()) |
| PatternDef = nullptr; |
| } |
| |
| // FIXME: We need to track the instantiation stack in order to know which |
| // definitions should be visible within this instantiation. |
| if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function, |
| Function->getInstantiatedFromMemberFunction(), |
| PatternDecl, PatternDef, TSK, |
| /*Complain*/DefinitionRequired)) { |
| if (DefinitionRequired) |
| Function->setInvalidDecl(); |
| else if (TSK == TSK_ExplicitInstantiationDefinition) { |
| // Try again at the end of the translation unit (at which point a |
| // definition will be required). |
| assert(!Recursive); |
| Function->setInstantiationIsPending(true); |
| PendingInstantiations.push_back( |
| std::make_pair(Function, PointOfInstantiation)); |
| } else if (TSK == TSK_ImplicitInstantiation) { |
| if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && |
| !getSourceManager().isInSystemHeader(PatternDecl->getLocStart())) { |
| Diag(PointOfInstantiation, diag::warn_func_template_missing) |
| << Function; |
| Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); |
| if (getLangOpts().CPlusPlus11) |
| Diag(PointOfInstantiation, diag::note_inst_declaration_hint) |
| << Function; |
| } |
| } |
| |
| return; |
| } |
| |
| // Postpone late parsed template instantiations. |
| if (PatternDecl->isLateTemplateParsed() && |
| !LateTemplateParser) { |
| Function->setInstantiationIsPending(true); |
| LateParsedInstantiations.push_back( |
| std::make_pair(Function, PointOfInstantiation)); |
| return; |
| } |
| |
| // If we're performing recursive template instantiation, create our own |
| // queue of pending implicit instantiations that we will instantiate later, |
| // while we're still within our own instantiation context. |
| // This has to happen before LateTemplateParser below is called, so that |
| // it marks vtables used in late parsed templates as used. |
| GlobalEagerInstantiationScope GlobalInstantiations(*this, |
| /*Enabled=*/Recursive); |
| LocalEagerInstantiationScope LocalInstantiations(*this); |
| |
| // Call the LateTemplateParser callback if there is a need to late parse |
| // a templated function definition. |
| if (!Pattern && PatternDecl->isLateTemplateParsed() && |
| LateTemplateParser) { |
| // FIXME: Optimize to allow individual templates to be deserialized. |
| if (PatternDecl->isFromASTFile()) |
| ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap); |
| |
| auto LPTIter = LateParsedTemplateMap.find(PatternDecl); |
| assert(LPTIter != LateParsedTemplateMap.end() && |
| "missing LateParsedTemplate"); |
| LateTemplateParser(OpaqueParser, *LPTIter->second); |
| Pattern = PatternDecl->getBody(PatternDecl); |
| } |
| |
| // Note, we should never try to instantiate a deleted function template. |
| assert((Pattern || PatternDecl->isDefaulted() || |
| PatternDecl->hasSkippedBody()) && |
| "unexpected kind of function template definition"); |
| |
| // C++1y [temp.explicit]p10: |
| // Except for inline functions, declarations with types deduced from their |
| // initializer or return value, and class template specializations, other |
| // explicit instantiation declarations have the effect of suppressing the |
| // implicit instantiation of the entity to which they refer. |
| if (TSK == TSK_ExplicitInstantiationDeclaration && |
| !PatternDecl->isInlined() && |
| !PatternDecl->getReturnType()->getContainedAutoType()) |
| return; |
| |
| if (PatternDecl->isInlined()) { |
| // Function, and all later redeclarations of it (from imported modules, |
| // for instance), are now implicitly inline. |
| for (auto *D = Function->getMostRecentDecl(); /**/; |
| D = D->getPreviousDecl()) { |
| D->setImplicitlyInline(); |
| if (D == Function) |
| break; |
| } |
| } |
| |
| InstantiatingTemplate Inst(*this, PointOfInstantiation, Function); |
| if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) |
| return; |
| PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(), |
| "instantiating function definition"); |
| |
| // The instantiation is visible here, even if it was first declared in an |
| // unimported module. |
| Function->setVisibleDespiteOwningModule(); |
| |
| // Copy the inner loc start from the pattern. |
| Function->setInnerLocStart(PatternDecl->getInnerLocStart()); |
| |
| EnterExpressionEvaluationContext EvalContext( |
| *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); |
| |
| // Introduce a new scope where local variable instantiations will be |
| // recorded, unless we're actually a member function within a local |
| // class, in which case we need to merge our results with the parent |
| // scope (of the enclosing function). |
| bool MergeWithParentScope = false; |
| if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext())) |
| MergeWithParentScope = Rec->isLocalClass(); |
| |
| LocalInstantiationScope Scope(*this, MergeWithParentScope); |
| |
| if (PatternDecl->isDefaulted()) |
| SetDeclDefaulted(Function, PatternDecl->getLocation()); |
| else { |
| MultiLevelTemplateArgumentList TemplateArgs = |
| getTemplateInstantiationArgs(Function, nullptr, false, PatternDecl); |
| |
| // Substitute into the qualifier; we can get a substitution failure here |
| // through evil use of alias templates. |
| // FIXME: Is CurContext correct for this? Should we go to the (instantiation |
| // of the) lexical context of the pattern? |
| SubstQualifier(*this, PatternDecl, Function, TemplateArgs); |
| |
| ActOnStartOfFunctionDef(nullptr, Function); |
| |
| // Enter the scope of this instantiation. We don't use |
| // PushDeclContext because we don't have a scope. |
| Sema::ContextRAII savedContext(*this, Function); |
| |
| if (addInstantiatedParametersToScope(*this, Function, PatternDecl, Scope, |
| TemplateArgs)) |
| return; |
| |
| StmtResult Body; |
| if (PatternDecl->hasSkippedBody()) { |
| ActOnSkippedFunctionBody(Function); |
| Body = nullptr; |
| } else { |
| if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Function)) { |
| // If this is a constructor, instantiate the member initializers. |
| InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl), |
| TemplateArgs); |
| |
| // If this is an MS ABI dllexport default constructor, instantiate any |
| // default arguments. |
| if (Context.getTargetInfo().getCXXABI().isMicrosoft() && |
| Ctor->isDefaultConstructor()) { |
| InstantiateDefaultCtorDefaultArgs(*this, Ctor); |
| } |
| } |
| |
| // Instantiate the function body. |
| Body = SubstStmt(Pattern, TemplateArgs); |
| |
| if (Body.isInvalid()) |
| Function->setInvalidDecl(); |
| } |
| // FIXME: finishing the function body while in an expression evaluation |
| // context seems wrong. Investigate more. |
| ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true); |
| |
| PerformDependentDiagnostics(PatternDecl, TemplateArgs); |
| |
| if (auto *Listener = getASTMutationListener()) |
| Listener->FunctionDefinitionInstantiated(Function); |
| |
| savedContext.pop(); |
| } |
| |
| DeclGroupRef DG(Function); |
| Consumer.HandleTopLevelDecl(DG); |
| |
| // This class may have local implicit instantiations that need to be |
| // instantiation within this scope. |
| LocalInstantiations.perform(); |
| Scope.Exit(); |
| GlobalInstantiations.perform(); |
| } |
| |
| VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation( |
| VarTemplateDecl *VarTemplate, VarDecl *FromVar, |
| const TemplateArgumentList &TemplateArgList, |
| const TemplateArgumentListInfo &TemplateArgsInfo, |
| SmallVectorImpl<TemplateArgument> &Converted, |
| SourceLocation PointOfInstantiation, void *InsertPos, |
| LateInstantiatedAttrVec *LateAttrs, |
| LocalInstantiationScope *StartingScope) { |
| if (FromVar->isInvalidDecl()) |
| return nullptr; |
| |
| InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar); |
| if (Inst.isInvalid()) |
| return nullptr; |
| |
| MultiLevelTemplateArgumentList TemplateArgLists; |
| TemplateArgLists.addOuterTemplateArguments(&TemplateArgList); |
| |
| // Instantiate the first declaration of the variable template: for a partial |
| // specialization of a static data member template, the first declaration may |
| // or may not be the declaration in the class; if it's in the class, we want |
| // to instantiate a member in the class (a declaration), and if it's outside, |
| // we want to instantiate a definition. |
| // |
| // If we're instantiating an explicitly-specialized member template or member |
| // partial specialization, don't do this. The member specialization completely |
| // replaces the original declaration in this case. |
| bool IsMemberSpec = false; |
| if (VarTemplatePartialSpecializationDecl *PartialSpec = |
| dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar)) |
| IsMemberSpec = PartialSpec->isMemberSpecialization(); |
| else if (VarTemplateDecl *FromTemplate = FromVar->getDescribedVarTemplate()) |
| IsMemberSpec = FromTemplate->isMemberSpecialization(); |
| if (!IsMemberSpec) |
| FromVar = FromVar->getFirstDecl(); |
| |
| MultiLevelTemplateArgumentList MultiLevelList(TemplateArgList); |
| TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(), |
| MultiLevelList); |
| |
| // TODO: Set LateAttrs and StartingScope ... |
| |
| return cast_or_null<VarTemplateSpecializationDecl>( |
| Instantiator.VisitVarTemplateSpecializationDecl( |
| VarTemplate, FromVar, InsertPos, TemplateArgsInfo, Converted)); |
| } |
| |
| /// Instantiates a variable template specialization by completing it |
| /// with appropriate type information and initializer. |
| VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl( |
| VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| assert(PatternDecl->isThisDeclarationADefinition() && |
| "don't have a definition to instantiate from"); |
| |
| // Do substitution on the type of the declaration |
| TypeSourceInfo *DI = |
| SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs, |
| PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName()); |
| if (!DI) |
| return nullptr; |
| |
| // Update the type of this variable template specialization. |
| VarSpec->setType(DI->getType()); |
| |
| // Convert the declaration into a definition now. |
| VarSpec->setCompleteDefinition(); |
| |
| // Instantiate the initializer. |
| InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs); |
| |
| return VarSpec; |
| } |
| |
| /// BuildVariableInstantiation - Used after a new variable has been created. |
| /// Sets basic variable data and decides whether to postpone the |
| /// variable instantiation. |
| void Sema::BuildVariableInstantiation( |
| VarDecl *NewVar, VarDecl *OldVar, |
| const MultiLevelTemplateArgumentList &TemplateArgs, |
| LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner, |
| LocalInstantiationScope *StartingScope, |
| bool InstantiatingVarTemplate) { |
| |
| // If we are instantiating a local extern declaration, the |
| // instantiation belongs lexically to the containing function. |
| // If we are instantiating a static data member defined |
| // out-of-line, the instantiation will have the same lexical |
| // context (which will be a namespace scope) as the template. |
| if (OldVar->isLocalExternDecl()) { |
| NewVar->setLocalExternDecl(); |
| NewVar->setLexicalDeclContext(Owner); |
| } else if (OldVar->isOutOfLine()) |
| NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext()); |
| NewVar->setTSCSpec(OldVar->getTSCSpec()); |
| NewVar->setInitStyle(OldVar->getInitStyle()); |
| NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl()); |
| NewVar->setObjCForDecl(OldVar->isObjCForDecl()); |
| NewVar->setConstexpr(OldVar->isConstexpr()); |
| NewVar->setInitCapture(OldVar->isInitCapture()); |
| NewVar->setPreviousDeclInSameBlockScope( |
| OldVar->isPreviousDeclInSameBlockScope()); |
| NewVar->setAccess(OldVar->getAccess()); |
| |
| if (!OldVar->isStaticDataMember()) { |
| if (OldVar->isUsed(false)) |
| NewVar->setIsUsed(); |
| NewVar->setReferenced(OldVar->isReferenced()); |
| } |
| |
| InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope); |
| |
| LookupResult Previous( |
| *this, NewVar->getDeclName(), NewVar->getLocation(), |
| NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage |
| : Sema::LookupOrdinaryName, |
| NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration |
| : forRedeclarationInCurContext()); |
| |
| if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() && |
| (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() || |
| OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) { |
| // We have a previous declaration. Use that one, so we merge with the |
| // right type. |
| if (NamedDecl *NewPrev = FindInstantiatedDecl( |
| NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs)) |
| Previous.addDecl(NewPrev); |
| } else if (!isa<VarTemplateSpecializationDecl>(NewVar) && |
| OldVar->hasLinkage()) |
| LookupQualifiedName(Previous, NewVar->getDeclContext(), false); |
| CheckVariableDeclaration(NewVar, Previous); |
| |
| if (!InstantiatingVarTemplate) { |
| NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar); |
| if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl()) |
| NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar); |
| } |
| |
| if (!OldVar->isOutOfLine()) { |
| if (NewVar->getDeclContext()->isFunctionOrMethod()) |
| CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar); |
| } |
| |
| // Link instantiations of static data members back to the template from |
| // which they were instantiated. |
| if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate) |
| NewVar->setInstantiationOfStaticDataMember(OldVar, |
| TSK_ImplicitInstantiation); |
| |
| // Forward the mangling number from the template to the instantiated decl. |
| Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar)); |
| Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar)); |
| |
| // Delay instantiation of the initializer for variable templates or inline |
| // static data members until a definition of the variable is needed. We need |
| // it right away if the type contains 'auto'. |
| if ((!isa<VarTemplateSpecializationDecl>(NewVar) && |
| !InstantiatingVarTemplate && |
| !(OldVar->isInline() && OldVar->isThisDeclarationADefinition() && |
| !NewVar->isThisDeclarationADefinition())) || |
| NewVar->getType()->isUndeducedType()) |
| InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); |
| |
| // Diagnose unused local variables with dependent types, where the diagnostic |
| // will have been deferred. |
| if (!NewVar->isInvalidDecl() && |
| NewVar->getDeclContext()->isFunctionOrMethod() && |
| OldVar->getType()->isDependentType()) |
| DiagnoseUnusedDecl(NewVar); |
| } |
| |
| /// Instantiate the initializer of a variable. |
| void Sema::InstantiateVariableInitializer( |
| VarDecl *Var, VarDecl *OldVar, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| if (ASTMutationListener *L = getASTContext().getASTMutationListener()) |
| L->VariableDefinitionInstantiated(Var); |
| |
| // We propagate the 'inline' flag with the initializer, because it |
| // would otherwise imply that the variable is a definition for a |
| // non-static data member. |
| if (OldVar->isInlineSpecified()) |
| Var->setInlineSpecified(); |
| else if (OldVar->isInline()) |
| Var->setImplicitlyInline(); |
| |
| if (OldVar->getInit()) { |
| EnterExpressionEvaluationContext Evaluated( |
| *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var); |
| |
| // Instantiate the initializer. |
| ExprResult Init; |
| |
| { |
| ContextRAII SwitchContext(*this, Var->getDeclContext()); |
| Init = SubstInitializer(OldVar->getInit(), TemplateArgs, |
| OldVar->getInitStyle() == VarDecl::CallInit); |
| } |
| |
| if (!Init.isInvalid()) { |
| Expr *InitExpr = Init.get(); |
| |
| if (Var->hasAttr<DLLImportAttr>() && |
| (!InitExpr || |
| !InitExpr->isConstantInitializer(getASTContext(), false))) { |
| // Do not dynamically initialize dllimport variables. |
| } else if (InitExpr) { |
| bool DirectInit = OldVar->isDirectInit(); |
| AddInitializerToDecl(Var, InitExpr, DirectInit); |
| } else |
| ActOnUninitializedDecl(Var); |
| } else { |
| // FIXME: Not too happy about invalidating the declaration |
| // because of a bogus initializer. |
| Var->setInvalidDecl(); |
| } |
| } else { |
| // `inline` variables are a definition and declaration all in one; we won't |
| // pick up an initializer from anywhere else. |
| if (Var->isStaticDataMember() && !Var->isInline()) { |
| if (!Var->isOutOfLine()) |
| return; |
| |
| // If the declaration inside the class had an initializer, don't add |
| // another one to the out-of-line definition. |
| if (OldVar->getFirstDecl()->hasInit()) |
| return; |
| } |
| |
| // We'll add an initializer to a for-range declaration later. |
| if (Var->isCXXForRangeDecl() || Var->isObjCForDecl()) |
| return; |
| |
| ActOnUninitializedDecl(Var); |
| } |
| |
| if (getLangOpts().CUDA) |
| checkAllowedCUDAInitializer(Var); |
| } |
| |
| /// Instantiate the definition of the given variable from its |
| /// template. |
| /// |
| /// \param PointOfInstantiation the point at which the instantiation was |
| /// required. Note that this is not precisely a "point of instantiation" |
| /// for the variable, but it's close. |
| /// |
| /// \param Var the already-instantiated declaration of a templated variable. |
| /// |
| /// \param Recursive if true, recursively instantiates any functions that |
| /// are required by this instantiation. |
| /// |
| /// \param DefinitionRequired if true, then we are performing an explicit |
| /// instantiation where a definition of the variable is required. Complain |
| /// if there is no such definition. |
| void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation, |
| VarDecl *Var, bool Recursive, |
| bool DefinitionRequired, bool AtEndOfTU) { |
| if (Var->isInvalidDecl()) |
| return; |
| |
| VarTemplateSpecializationDecl *VarSpec = |
| dyn_cast<VarTemplateSpecializationDecl>(Var); |
| VarDecl *PatternDecl = nullptr, *Def = nullptr; |
| MultiLevelTemplateArgumentList TemplateArgs = |
| getTemplateInstantiationArgs(Var); |
| |
| if (VarSpec) { |
| // If this is a variable template specialization, make sure that it is |
| // non-dependent, then find its instantiation pattern. |
| bool InstantiationDependent = false; |
| assert(!TemplateSpecializationType::anyDependentTemplateArguments( |
| VarSpec->getTemplateArgsInfo(), InstantiationDependent) && |
| "Only instantiate variable template specializations that are " |
| "not type-dependent"); |
| (void)InstantiationDependent; |
| |
| // Find the variable initialization that we'll be substituting. If the |
| // pattern was instantiated from a member template, look back further to |
| // find the real pattern. |
| assert(VarSpec->getSpecializedTemplate() && |
| "Specialization without specialized template?"); |
| llvm::PointerUnion<VarTemplateDecl *, |
| VarTemplatePartialSpecializationDecl *> PatternPtr = |
| VarSpec->getSpecializedTemplateOrPartial(); |
| if (PatternPtr.is<VarTemplatePartialSpecializationDecl *>()) { |
| VarTemplatePartialSpecializationDecl *Tmpl = |
| PatternPtr.get<VarTemplatePartialSpecializationDecl *>(); |
| while (VarTemplatePartialSpecializationDecl *From = |
| Tmpl->getInstantiatedFromMember()) { |
| if (Tmpl->isMemberSpecialization()) |
| break; |
| |
| Tmpl = From; |
| } |
| PatternDecl = Tmpl; |
| } else { |
| VarTemplateDecl *Tmpl = PatternPtr.get<VarTemplateDecl *>(); |
| while (VarTemplateDecl *From = |
| Tmpl->getInstantiatedFromMemberTemplate()) { |
| if (Tmpl->isMemberSpecialization()) |
| break; |
| |
| Tmpl = From; |
| } |
| PatternDecl = Tmpl->getTemplatedDecl(); |
| } |
| |
| // If this is a static data member template, there might be an |
| // uninstantiated initializer on the declaration. If so, instantiate |
| // it now. |
| // |
| // FIXME: This largely duplicates what we would do below. The difference |
| // is that along this path we may instantiate an initializer from an |
| // in-class declaration of the template and instantiate the definition |
| // from a separate out-of-class definition. |
| if (PatternDecl->isStaticDataMember() && |
| (PatternDecl = PatternDecl->getFirstDecl())->hasInit() && |
| !Var->hasInit()) { |
| // FIXME: Factor out the duplicated instantiation context setup/tear down |
| // code here. |
| InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); |
| if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) |
| return; |
| PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), |
| "instantiating variable initializer"); |
| |
| // The instantiation is visible here, even if it was first declared in an |
| // unimported module. |
| Var->setVisibleDespiteOwningModule(); |
| |
| // If we're performing recursive template instantiation, create our own |
| // queue of pending implicit instantiations that we will instantiate |
| // later, while we're still within our own instantiation context. |
| GlobalEagerInstantiationScope GlobalInstantiations(*this, |
| /*Enabled=*/Recursive); |
| LocalInstantiationScope Local(*this); |
| LocalEagerInstantiationScope LocalInstantiations(*this); |
| |
| // Enter the scope of this instantiation. We don't use |
| // PushDeclContext because we don't have a scope. |
| ContextRAII PreviousContext(*this, Var->getDeclContext()); |
| InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs); |
| PreviousContext.pop(); |
| |
| // This variable may have local implicit instantiations that need to be |
| // instantiated within this scope. |
| LocalInstantiations.perform(); |
| Local.Exit(); |
| GlobalInstantiations.perform(); |
| } |
| |
| // Find actual definition |
| Def = PatternDecl->getDefinition(getASTContext()); |
| } else { |
| // If this is a static data member, find its out-of-line definition. |
| assert(Var->isStaticDataMember() && "not a static data member?"); |
| PatternDecl = Var->getInstantiatedFromStaticDataMember(); |
| |
| assert(PatternDecl && "data member was not instantiated from a template?"); |
| assert(PatternDecl->isStaticDataMember() && "not a static data member?"); |
| Def = PatternDecl->getDefinition(); |
| } |
| |
| TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind(); |
| |
| // If we don't have a definition of the variable template, we won't perform |
| // any instantiation. Rather, we rely on the user to instantiate this |
| // definition (or provide a specialization for it) in another translation |
| // unit. |
| if (!Def && !DefinitionRequired) { |
| if (TSK == TSK_ExplicitInstantiationDefinition) { |
| PendingInstantiations.push_back( |
| std::make_pair(Var, PointOfInstantiation)); |
| } else if (TSK == TSK_ImplicitInstantiation) { |
| // Warn about missing definition at the end of translation unit. |
| if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && |
| !getSourceManager().isInSystemHeader(PatternDecl->getLocStart())) { |
| Diag(PointOfInstantiation, diag::warn_var_template_missing) |
| << Var; |
| Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); |
| if (getLangOpts().CPlusPlus11) |
| Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var; |
| } |
| return; |
| } |
| |
| } |
| |
| // FIXME: We need to track the instantiation stack in order to know which |
| // definitions should be visible within this instantiation. |
| // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember(). |
| if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var, |
| /*InstantiatedFromMember*/false, |
| PatternDecl, Def, TSK, |
| /*Complain*/DefinitionRequired)) |
| return; |
| |
| |
| // Never instantiate an explicit specialization. |
| if (TSK == TSK_ExplicitSpecialization) |
| return; |
| |
| // C++11 [temp.explicit]p10: |
| // Except for inline functions, const variables of literal types, variables |
| // of reference types, [...] explicit instantiation declarations |
| // have the effect of suppressing the implicit instantiation of the entity |
| // to which they refer. |
| if (TSK == TSK_ExplicitInstantiationDeclaration && |
| !Var->isUsableInConstantExpressions(getASTContext())) |
| return; |
| |
| // Make sure to pass the instantiated variable to the consumer at the end. |
| struct PassToConsumerRAII { |
| ASTConsumer &Consumer; |
| VarDecl *Var; |
| |
| PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var) |
| : Consumer(Consumer), Var(Var) { } |
| |
| ~PassToConsumerRAII() { |
| Consumer.HandleCXXStaticMemberVarInstantiation(Var); |
| } |
| } PassToConsumerRAII(Consumer, Var); |
| |
| // If we already have a definition, we're done. |
| if (VarDecl *Def = Var->getDefinition()) { |
| // We may be explicitly instantiating something we've already implicitly |
| // instantiated. |
| Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(), |
| PointOfInstantiation); |
| return; |
| } |
| |
| InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); |
| if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) |
| return; |
| PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), |
| "instantiating variable definition"); |
| |
| // If we're performing recursive template instantiation, create our own |
| // queue of pending implicit instantiations that we will instantiate later, |
| // while we're still within our own instantiation context. |
| GlobalEagerInstantiationScope GlobalInstantiations(*this, |
| /*Enabled=*/Recursive); |
| |
| // Enter the scope of this instantiation. We don't use |
| // PushDeclContext because we don't have a scope. |
| ContextRAII PreviousContext(*this, Var->getDeclContext()); |
| LocalInstantiationScope Local(*this); |
| |
| LocalEagerInstantiationScope LocalInstantiations(*this); |
| |
| VarDecl *OldVar = Var; |
| if (Def->isStaticDataMember() && !Def->isOutOfLine()) { |
| // We're instantiating an inline static data member whose definition was |
| // provided inside the class. |
| InstantiateVariableInitializer(Var, Def, TemplateArgs); |
| } else if (!VarSpec) { |
| Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(), |
| TemplateArgs)); |
| } else if (Var->isStaticDataMember() && |
| Var->getLexicalDeclContext()->isRecord()) { |
| // We need to instantiate the definition of a static data member template, |
| // and all we have is the in-class declaration of it. Instantiate a separate |
| // declaration of the definition. |
| TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(), |
| TemplateArgs); |
| Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl( |
| VarSpec->getSpecializedTemplate(), Def, nullptr, |
| VarSpec->getTemplateArgsInfo(), VarSpec->getTemplateArgs().asArray())); |
| if (Var) { |
| llvm::PointerUnion<VarTemplateDecl *, |
| VarTemplatePartialSpecializationDecl *> PatternPtr = |
| VarSpec->getSpecializedTemplateOrPartial(); |
| if (VarTemplatePartialSpecializationDecl *Partial = |
| PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>()) |
| cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf( |
| Partial, &VarSpec->getTemplateInstantiationArgs()); |
| |
| // Merge the definition with the declaration. |
| LookupResult R(*this, Var->getDeclName(), Var->getLocation(), |
| LookupOrdinaryName, forRedeclarationInCurContext()); |
| R.addDecl(OldVar); |
| MergeVarDecl(Var, R); |
| |
| // Attach the initializer. |
| InstantiateVariableInitializer(Var, Def, TemplateArgs); |
| } |
| } else |
| // Complete the existing variable's definition with an appropriately |
| // substituted type and initializer. |
| Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs); |
| |
| PreviousContext.pop(); |
| |
| if (Var) { |
| PassToConsumerRAII.Var = Var; |
| Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(), |
| OldVar->getPointOfInstantiation()); |
| } |
| |
| // This variable may have local implicit instantiations that need to be |
| // instantiated within this scope. |
| LocalInstantiations.perform(); |
| Local.Exit(); |
| GlobalInstantiations.perform(); |
| } |
| |
| void |
| Sema::InstantiateMemInitializers(CXXConstructorDecl *New, |
| const CXXConstructorDecl *Tmpl, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| |
| SmallVector<CXXCtorInitializer*, 4> NewInits; |
| bool AnyErrors = Tmpl->isInvalidDecl(); |
| |
| // Instantiate all the initializers. |
| for (const auto *Init : Tmpl->inits()) { |
| // Only instantiate written initializers, let Sema re-construct implicit |
| // ones. |
| if (!Init->isWritten()) |
| continue; |
| |
| SourceLocation EllipsisLoc; |
| |
| if (Init->isPackExpansion()) { |
| // This is a pack expansion. We should expand it now. |
| TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc(); |
| SmallVector<UnexpandedParameterPack, 4> Unexpanded; |
| collectUnexpandedParameterPacks(BaseTL, Unexpanded); |
| collectUnexpandedParameterPacks(Init->getInit(), Unexpanded); |
| bool ShouldExpand = false; |
| bool RetainExpansion = false; |
| Optional<unsigned> NumExpansions; |
| if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(), |
| BaseTL.getSourceRange(), |
| Unexpanded, |
| TemplateArgs, ShouldExpand, |
| RetainExpansion, |
| NumExpansions)) { |
| AnyErrors = true; |
| New->setInvalidDecl(); |
| continue; |
| } |
| assert(ShouldExpand && "Partial instantiation of base initializer?"); |
| |
| // Loop over all of the arguments in the argument pack(s), |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I); |
| |
| // Instantiate the initializer. |
| ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, |
| /*CXXDirectInit=*/true); |
| if (TempInit.isInvalid()) { |
| AnyErrors = true; |
| break; |
| } |
| |
| // Instantiate the base type. |
| TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(), |
| TemplateArgs, |
| Init->getSourceLocation(), |
| New->getDeclName()); |
| if (!BaseTInfo) { |
| AnyErrors = true; |
| break; |
| } |
| |
| // Build the initializer. |
| MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(), |
| BaseTInfo, TempInit.get(), |
| New->getParent(), |
| SourceLocation()); |
| if (NewInit.isInvalid()) { |
| AnyErrors = true; |
| break; |
| } |
| |
| NewInits.push_back(NewInit.get()); |
| } |
| |
| continue; |
| } |
| |
| // Instantiate the initializer. |
| ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, |
| /*CXXDirectInit=*/true); |
| if (TempInit.isInvalid()) { |
| AnyErrors = true; |
| continue; |
| } |
| |
| MemInitResult NewInit; |
| if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) { |
| TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(), |
| TemplateArgs, |
| Init->getSourceLocation(), |
| New->getDeclName()); |
| if (!TInfo) { |
| AnyErrors = true; |
| New->setInvalidDecl(); |
| continue; |
| } |
| |
| if (Init->isBaseInitializer()) |
| NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(), |
| New->getParent(), EllipsisLoc); |
| else |
| NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(), |
| cast<CXXRecordDecl>(CurContext->getParent())); |
| } else if (Init->isMemberInitializer()) { |
| FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl( |
| Init->getMemberLocation(), |
| Init->getMember(), |
| TemplateArgs)); |
| if (!Member) { |
| AnyErrors = true; |
| New->setInvalidDecl(); |
| continue; |
| } |
| |
| NewInit = BuildMemberInitializer(Member, TempInit.get(), |
| Init->getSourceLocation()); |
| } else if (Init->isIndirectMemberInitializer()) { |
| IndirectFieldDecl *IndirectMember = |
| cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl( |
| Init->getMemberLocation(), |
| Init->getIndirectMember(), TemplateArgs)); |
| |
| if (!IndirectMember) { |
| AnyErrors = true; |
| New->setInvalidDecl(); |
| continue; |
| } |
| |
| NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(), |
| Init->getSourceLocation()); |
| } |
| |
| if (NewInit.isInvalid()) { |
| AnyErrors = true; |
| New->setInvalidDecl(); |
| } else { |
| NewInits.push_back(NewInit.get()); |
| } |
| } |
| |
| // Assign all the initializers to the new constructor. |
| ActOnMemInitializers(New, |
| /*FIXME: ColonLoc */ |
| SourceLocation(), |
| NewInits, |
| AnyErrors); |
| } |
| |
| // TODO: this could be templated if the various decl types used the |
| // same method name. |
| static bool isInstantiationOf(ClassTemplateDecl *Pattern, |
| ClassTemplateDecl *Instance) { |
| Pattern = Pattern->getCanonicalDecl(); |
| |
| do { |
| Instance = Instance->getCanonicalDecl(); |
| if (Pattern == Instance) return true; |
| Instance = Instance->getInstantiatedFromMemberTemplate(); |
| } while (Instance); |
| |
| return false; |
| } |
| |
| static bool isInstantiationOf(FunctionTemplateDecl *Pattern, |
| FunctionTemplateDecl *Instance) { |
| Pattern = Pattern->getCanonicalDecl(); |
| |
| do { |
| Instance = Instance->getCanonicalDecl(); |
| if (Pattern == Instance) return true; |
| Instance = Instance->getInstantiatedFromMemberTemplate(); |
| } while (Instance); |
| |
| return false; |
| } |
| |
| static bool |
| isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern, |
| ClassTemplatePartialSpecializationDecl *Instance) { |
| Pattern |
| = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl()); |
| do { |
| Instance = cast<ClassTemplatePartialSpecializationDecl>( |
| Instance->getCanonicalDecl()); |
| if (Pattern == Instance) |
| return true; |
| Instance = Instance->getInstantiatedFromMember(); |
| } while (Instance); |
| |
| return false; |
| } |
| |
| static bool isInstantiationOf(CXXRecordDecl *Pattern, |
| CXXRecordDecl *Instance) { |
| Pattern = Pattern->getCanonicalDecl(); |
| |
| do { |
| Instance = Instance->getCanonicalDecl(); |
| if (Pattern == Instance) return true; |
| Instance = Instance->getInstantiatedFromMemberClass(); |
| } while (Instance); |
| |
| return false; |
| } |
| |
| static bool isInstantiationOf(FunctionDecl *Pattern, |
| FunctionDecl *Instance) { |
| Pattern = Pattern->getCanonicalDecl(); |
| |
| do { |
| Instance = Instance->getCanonicalDecl(); |
| if (Pattern == Instance) return true; |
| Instance = Instance->getInstantiatedFromMemberFunction(); |
| } while (Instance); |
| |
| return false; |
| } |
| |
| static bool isInstantiationOf(EnumDecl *Pattern, |
| EnumDecl *Instance) { |
| Pattern = Pattern->getCanonicalDecl(); |
| |
| do { |
| Instance = Instance->getCanonicalDecl(); |
| if (Pattern == Instance) return true; |
| Instance = Instance->getInstantiatedFromMemberEnum(); |
| } while (Instance); |
| |
| return false; |
| } |
| |
| static bool isInstantiationOf(UsingShadowDecl *Pattern, |
| UsingShadowDecl *Instance, |
| ASTContext &C) { |
| return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance), |
| Pattern); |
| } |
| |
| static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance, |
| ASTContext &C) { |
| return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); |
| } |
| |
| template<typename T> |
| static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other, |
| ASTContext &Ctx) { |
| // An unresolved using declaration can instantiate to an unresolved using |
| // declaration, or to a using declaration or a using declaration pack. |
| // |
| // Multiple declarations can claim to be instantiated from an unresolved |
| // using declaration if it's a pack expansion. We want the UsingPackDecl |
| // in that case, not the individual UsingDecls within the pack. |
| bool OtherIsPackExpansion; |
| NamedDecl *OtherFrom; |
| if (auto *OtherUUD = dyn_cast<T>(Other)) { |
| OtherIsPackExpansion = OtherUUD->isPackExpansion(); |
| OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD); |
| } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) { |
| OtherIsPackExpansion = true; |
| OtherFrom = OtherUPD->getInstantiatedFromUsingDecl(); |
| } else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) { |
| OtherIsPackExpansion = false; |
| OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD); |
| } else { |
| return false; |
| } |
| return Pattern->isPackExpansion() == OtherIsPackExpansion && |
| declaresSameEntity(OtherFrom, Pattern); |
| } |
| |
| static bool isInstantiationOfStaticDataMember(VarDecl *Pattern, |
| VarDecl *Instance) { |
| assert(Instance->isStaticDataMember()); |
| |
| Pattern = Pattern->getCanonicalDecl(); |
| |
| do { |
| Instance = Instance->getCanonicalDecl(); |
| if (Pattern == Instance) return true; |
| Instance = Instance->getInstantiatedFromStaticDataMember(); |
| } while (Instance); |
| |
| return false; |
| } |
| |
| // Other is the prospective instantiation |
| // D is the prospective pattern |
| static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) { |
| if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D)) |
| return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); |
| |
| if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D)) |
| return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); |
| |
| if (D->getKind() != Other->getKind()) |
| return false; |
| |
| if (auto *Record = dyn_cast<CXXRecordDecl>(Other)) |
| return isInstantiationOf(cast<CXXRecordDecl>(D), Record); |
| |
| if (auto *Function = dyn_cast<FunctionDecl>(Other)) |
| return isInstantiationOf(cast<FunctionDecl>(D), Function); |
| |
| if (auto *Enum = dyn_cast<EnumDecl>(Other)) |
| return isInstantiationOf(cast<EnumDecl>(D), Enum); |
| |
| if (auto *Var = dyn_cast<VarDecl>(Other)) |
| if (Var->isStaticDataMember()) |
| return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var); |
| |
| if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other)) |
| return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp); |
| |
| if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other)) |
| return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp); |
| |
| if (auto *PartialSpec = |
| dyn_cast<ClassTemplatePartialSpecializationDecl>(Other)) |
| return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D), |
| PartialSpec); |
| |
| if (auto *Field = dyn_cast<FieldDecl>(Other)) { |
| if (!Field->getDeclName()) { |
| // This is an unnamed field. |
| return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field), |
| cast<FieldDecl>(D)); |
| } |
| } |
| |
| if (auto *Using = dyn_cast<UsingDecl>(Other)) |
| return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx); |
| |
| if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other)) |
| return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx); |
| |
| return D->getDeclName() && |
| D->getDeclName() == cast<NamedDecl>(Other)->getDeclName(); |
| } |
| |
| template<typename ForwardIterator> |
| static NamedDecl *findInstantiationOf(ASTContext &Ctx, |
| NamedDecl *D, |
| ForwardIterator first, |
| ForwardIterator last) { |
| for (; first != last; ++first) |
| if (isInstantiationOf(Ctx, D, *first)) |
| return cast<NamedDecl>(*first); |
| |
| return nullptr; |
| } |
| |
| /// Finds the instantiation of the given declaration context |
| /// within the current instantiation. |
| /// |
| /// \returns NULL if there was an error |
| DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) { |
| Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true); |
| return cast_or_null<DeclContext>(ID); |
| } else return DC; |
| } |
| |
| /// Find the instantiation of the given declaration within the |
| /// current instantiation. |
| /// |
| /// This routine is intended to be used when \p D is a declaration |
| /// referenced from within a template, that needs to mapped into the |
| /// corresponding declaration within an instantiation. For example, |
| /// given: |
| /// |
| /// \code |
| /// template<typename T> |
| /// struct X { |
| /// enum Kind { |
| /// KnownValue = sizeof(T) |
| /// }; |
| /// |
| /// bool getKind() const { return KnownValue; } |
| /// }; |
| /// |
| /// template struct X<int>; |
| /// \endcode |
| /// |
| /// In the instantiation of <tt>X<int>::getKind()</tt>, we need to map the |
| /// \p EnumConstantDecl for \p KnownValue (which refers to |
| /// <tt>X<T>::<Kind>::KnownValue</tt>) to its instantiation |
| /// (<tt>X<int>::<Kind>::KnownValue</tt>). \p FindInstantiatedDecl performs |
| /// this mapping from within the instantiation of <tt>X<int></tt>. |
| NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, |
| const MultiLevelTemplateArgumentList &TemplateArgs, |
| bool FindingInstantiatedContext) { |
| DeclContext *ParentDC = D->getDeclContext(); |
| // FIXME: Parmeters of pointer to functions (y below) that are themselves |
| // parameters (p below) can have their ParentDC set to the translation-unit |
| // - thus we can not consistently check if the ParentDC of such a parameter |
| // is Dependent or/and a FunctionOrMethod. |
| // For e.g. this code, during Template argument deduction tries to |
| // find an instantiated decl for (T y) when the ParentDC for y is |
| // the translation unit. |
| // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {} |
| // float baz(float(*)()) { return 0.0; } |
| // Foo(baz); |
| // The better fix here is perhaps to ensure that a ParmVarDecl, by the time |
| // it gets here, always has a FunctionOrMethod as its ParentDC?? |
| // For now: |
| // - as long as we have a ParmVarDecl whose parent is non-dependent and |
| // whose type is not instantiation dependent, do nothing to the decl |
| // - otherwise find its instantiated decl. |
| if (isa<ParmVarDecl>(D) && !ParentDC->isDependentContext() && |
| !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType()) |
| return D; |
| if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) || |
| isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) || |
| (ParentDC->isFunctionOrMethod() && ParentDC->isDependentContext()) || |
| (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda())) { |
| // D is a local of some kind. Look into the map of local |
| // declarations to their instantiations. |
| if (CurrentInstantiationScope) { |
| if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) { |
| if (Decl *FD = Found->dyn_cast<Decl *>()) |
| return cast<NamedDecl>(FD); |
| |
| int PackIdx = ArgumentPackSubstitutionIndex; |
| assert(PackIdx != -1 && |
| "found declaration pack but not pack expanding"); |
| typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack; |
| return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]); |
| } |
| } |
| |
| // If we're performing a partial substitution during template argument |
| // deduction, we may not have values for template parameters yet. They |
| // just map to themselves. |
| if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) || |
| isa<TemplateTemplateParmDecl>(D)) |
| return D; |
| |
| if (D->isInvalidDecl()) |
| return nullptr; |
| |
| // Normally this function only searches for already instantiated declaration |
| // however we have to make an exclusion for local types used before |
| // definition as in the code: |
| // |
| // template<typename T> void f1() { |
| // void g1(struct x1); |
| // struct x1 {}; |
| // } |
| // |
| // In this case instantiation of the type of 'g1' requires definition of |
| // 'x1', which is defined later. Error recovery may produce an enum used |
| // before definition. In these cases we need to instantiate relevant |
| // declarations here. |
| bool NeedInstantiate = false; |
| if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) |
| NeedInstantiate = RD->isLocalClass(); |
| else |
| NeedInstantiate = isa<EnumDecl>(D); |
| if (NeedInstantiate) { |
| Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); |
| CurrentInstantiationScope->InstantiatedLocal(D, Inst); |
| return cast<TypeDecl>(Inst); |
| } |
| |
| // If we didn't find the decl, then we must have a label decl that hasn't |
| // been found yet. Lazily instantiate it and return it now. |
| assert(isa<LabelDecl>(D)); |
| |
| Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); |
| assert(Inst && "Failed to instantiate label??"); |
| |
| CurrentInstantiationScope->InstantiatedLocal(D, Inst); |
| return cast<LabelDecl>(Inst); |
| } |
| |
| // For variable template specializations, update those that are still |
| // type-dependent. |
| if (VarTemplateSpecializationDecl *VarSpec = |
| dyn_cast<VarTemplateSpecializationDecl>(D)) { |
| bool InstantiationDependent = false; |
| const TemplateArgumentListInfo &VarTemplateArgs = |
| VarSpec->getTemplateArgsInfo(); |
| if (TemplateSpecializationType::anyDependentTemplateArguments( |
| VarTemplateArgs, InstantiationDependent)) |
| D = cast<NamedDecl>( |
| SubstDecl(D, VarSpec->getDeclContext(), TemplateArgs)); |
| return D; |
| } |
| |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { |
| if (!Record->isDependentContext()) |
| return D; |
| |
| // Determine whether this record is the "templated" declaration describing |
| // a class template or class template partial specialization. |
| ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate(); |
| if (ClassTemplate) |
| ClassTemplate = ClassTemplate->getCanonicalDecl(); |
| else if (ClassTemplatePartialSpecializationDecl *PartialSpec |
| = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) |
| ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl(); |
| |
| // Walk the current context to find either the record or an instantiation of |
| // it. |
| DeclContext *DC = CurContext; |
| while (!DC->isFileContext()) { |
| // If we're performing substitution while we're inside the template |
| // definition, we'll find our own context. We're done. |
| if (DC->Equals(Record)) |
| return Record; |
| |
| if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) { |
| // Check whether we're in the process of instantiating a class template |
| // specialization of the template we're mapping. |
| if (ClassTemplateSpecializationDecl *InstSpec |
| = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){ |
| ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate(); |
| if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate)) |
| return InstRecord; |
| } |
| |
| // Check whether we're in the process of instantiating a member class. |
| if (isInstantiationOf(Record, InstRecord)) |
| return InstRecord; |
| } |
| |
| // Move to the outer template scope. |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) { |
| if (FD->getFriendObjectKind() && FD->getDeclContext()->isFileContext()){ |
| DC = FD->getLexicalDeclContext(); |
| continue; |
| } |
| // An implicit deduction guide acts as if it's within the class template |
| // specialization described by its name and first N template params. |
| auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD); |
| if (Guide && Guide->isImplicit()) { |
| TemplateDecl *TD = Guide->getDeducedTemplate(); |
| // Convert the arguments to an "as-written" list. |
| TemplateArgumentListInfo Args(Loc, Loc); |
| for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front( |
| TD->getTemplateParameters()->size())) { |
| ArrayRef<TemplateArgument> Unpacked(Arg); |
| if (Arg.getKind() == TemplateArgument::Pack) |
| Unpacked = Arg.pack_elements(); |
| for (TemplateArgument UnpackedArg : Unpacked) |
| Args.addArgument( |
| getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc)); |
| } |
| QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args); |
| if (T.isNull()) |
| return nullptr; |
| auto *SubstRecord = T->getAsCXXRecordDecl(); |
| assert(SubstRecord && "class template id not a class type?"); |
| // Check that this template-id names the primary template and not a |
| // partial or explicit specialization. (In the latter cases, it's |
| // meaningless to attempt to find an instantiation of D within the |
| // specialization.) |
| // FIXME: The standard doesn't say what should happen here. |
| if (FindingInstantiatedContext && |
| usesPartialOrExplicitSpecialization( |
| Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) { |
| Diag(Loc, diag::err_specialization_not_primary_template) |
| << T << (SubstRecord->getTemplateSpecializationKind() == |
| TSK_ExplicitSpecialization); |
| return nullptr; |
| } |
| DC = SubstRecord; |
| continue; |
| } |
| } |
| |
| DC = DC->getParent(); |
| } |
| |
| // Fall through to deal with other dependent record types (e.g., |
| // anonymous unions in class templates). |
| } |
| |
| if (!ParentDC->isDependentContext()) |
| return D; |
| |
| ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs); |
| if (!ParentDC) |
| return nullptr; |
| |
| if (ParentDC != D->getDeclContext()) { |
| // We performed some kind of instantiation in the parent context, |
| // so now we need to look into the instantiated parent context to |
| // find the instantiation of the declaration D. |
| |
| // If our context used to be dependent, we may need to instantiate |
| // it before performing lookup into that context. |
| bool IsBeingInstantiated = false; |
| if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) { |
| if (!Spec->isDependentContext()) { |
| QualType T = Context.getTypeDeclType(Spec); |
| const RecordType *Tag = T->getAs<RecordType>(); |
| assert(Tag && "type of non-dependent record is not a RecordType"); |
| if (Tag->isBeingDefined()) |
| IsBeingInstantiated = true; |
| if (!Tag->isBeingDefined() && |
| RequireCompleteType(Loc, T, diag::err_incomplete_type)) |
| return nullptr; |
| |
| ParentDC = Tag->getDecl(); |
| } |
| } |
| |
| NamedDecl *Result = nullptr; |
| // FIXME: If the name is a dependent name, this lookup won't necessarily |
| // find it. Does that ever matter? |
| if (auto Name = D->getDeclName()) { |
| DeclarationNameInfo NameInfo(Name, D->getLocation()); |
| Name = SubstDeclarationNameInfo(NameInfo, TemplateArgs).getName(); |
| if (!Name) |
| return nullptr; |
| DeclContext::lookup_result Found = ParentDC->lookup(Name); |
| Result = findInstantiationOf(Context, D, Found.begin(), Found.end()); |
| } else { |
| // Since we don't have a name for the entity we're looking for, |
| // our only option is to walk through all of the declarations to |
| // find that name. This will occur in a few cases: |
| // |
| // - anonymous struct/union within a template |
| // - unnamed class/struct/union/enum within a template |
| // |
| // FIXME: Find a better way to find these instantiations! |
| Result = findInstantiationOf(Context, D, |
| ParentDC->decls_begin(), |
| ParentDC->decls_end()); |
| } |
| |
| if (!Result) { |
| if (isa<UsingShadowDecl>(D)) { |
| // UsingShadowDecls can instantiate to nothing because of using hiding. |
| } else if (Diags.hasErrorOccurred()) { |
| // We've already complained about something, so most likely this |
| // declaration failed to instantiate. There's no point in complaining |
| // further, since this is normal in invalid code. |
| } else if (IsBeingInstantiated) { |
| // The class in which this member exists is currently being |
| // instantiated, and we haven't gotten around to instantiating this |
| // member yet. This can happen when the code uses forward declarations |
| // of member classes, and introduces ordering dependencies via |
| // template instantiation. |
| Diag(Loc, diag::err_member_not_yet_instantiated) |
| << D->getDeclName() |
| << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC)); |
| Diag(D->getLocation(), diag::note_non_instantiated_member_here); |
| } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) { |
| // This enumeration constant was found when the template was defined, |
| // but can't be found in the instantiation. This can happen if an |
| // unscoped enumeration member is explicitly specialized. |
| EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext()); |
| EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum, |
| TemplateArgs)); |
| assert(Spec->getTemplateSpecializationKind() == |
| TSK_ExplicitSpecialization); |
| Diag(Loc, diag::err_enumerator_does_not_exist) |
| << D->getDeclName() |
| << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext())); |
| Diag(Spec->getLocation(), diag::note_enum_specialized_here) |
| << Context.getTypeDeclType(Spec); |
| } else { |
| // We should have found something, but didn't. |
| llvm_unreachable("Unable to find instantiation of declaration!"); |
| } |
| } |
| |
| D = Result; |
| } |
| |
| return D; |
| } |
| |
| /// Performs template instantiation for all implicit template |
| /// instantiations we have seen until this point. |
| void Sema::PerformPendingInstantiations(bool LocalOnly) { |
| while (!PendingLocalImplicitInstantiations.empty() || |
| (!LocalOnly && !PendingInstantiations.empty())) { |
| PendingImplicitInstantiation Inst; |
| |
| if (PendingLocalImplicitInstantiations.empty()) { |
| Inst = PendingInstantiations.front(); |
| PendingInstantiations.pop_front(); |
| } else { |
| Inst = PendingLocalImplicitInstantiations.front(); |
| PendingLocalImplicitInstantiations.pop_front(); |
| } |
| |
| // Instantiate function definitions |
| if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) { |
| bool DefinitionRequired = Function->getTemplateSpecializationKind() == |
| TSK_ExplicitInstantiationDefinition; |
| if (Function->isMultiVersion()) { |
| getASTContext().forEachMultiversionedFunctionVersion( |
| Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) { |
| InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true, |
| DefinitionRequired, true); |
| if (CurFD->isDefined()) |
| CurFD->setInstantiationIsPending(false); |
| }); |
| } else { |
| InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true, |
| DefinitionRequired, true); |
| if (Function->isDefined()) |
| Function->setInstantiationIsPending(false); |
| } |
| continue; |
| } |
| |
| // Instantiate variable definitions |
| VarDecl *Var = cast<VarDecl>(Inst.first); |
| |
| assert((Var->isStaticDataMember() || |
| isa<VarTemplateSpecializationDecl>(Var)) && |
| "Not a static data member, nor a variable template" |
| " specialization?"); |
| |
| // Don't try to instantiate declarations if the most recent redeclaration |
| // is invalid. |
| if (Var->getMostRecentDecl()->isInvalidDecl()) |
| continue; |
| |
| // Check if the most recent declaration has changed the specialization kind |
| // and removed the need for implicit instantiation. |
| switch (Var->getMostRecentDecl()->getTemplateSpecializationKind()) { |
| case TSK_Undeclared: |
| llvm_unreachable("Cannot instantitiate an undeclared specialization."); |
| case TSK_ExplicitInstantiationDeclaration: |
| case TSK_ExplicitSpecialization: |
| continue; // No longer need to instantiate this type. |
| case TSK_ExplicitInstantiationDefinition: |
| // We only need an instantiation if the pending instantiation *is* the |
| // explicit instantiation. |
| if (Var != Var->getMostRecentDecl()) |
| continue; |
| break; |
| case TSK_ImplicitInstantiation: |
| break; |
| } |
| |
| PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), |
| "instantiating variable definition"); |
| bool DefinitionRequired = Var->getTemplateSpecializationKind() == |
| TSK_ExplicitInstantiationDefinition; |
| |
| // Instantiate static data member definitions or variable template |
| // specializations. |
| InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true, |
| DefinitionRequired, true); |
| } |
| } |
| |
| void Sema::PerformDependentDiagnostics(const DeclContext *Pattern, |
| const MultiLevelTemplateArgumentList &TemplateArgs) { |
| for (auto DD : Pattern->ddiags()) { |
| switch (DD->getKind()) { |
| case DependentDiagnostic::Access: |
| HandleDependentAccessCheck(*DD, TemplateArgs); |
| break; |
| } |
| } |
| } |