| //===------------------------ fallback_malloc.cpp -------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // Define _LIBCPP_BUILDING_LIBRARY to ensure _LIBCPP_HAS_NO_ALIGNED_ALLOCATION |
| // is only defined when libc aligned allocation is not available. |
| #define _LIBCPP_BUILDING_LIBRARY |
| #include "fallback_malloc.h" |
| |
| #include <__threading_support> |
| |
| #include <cstdlib> // for malloc, calloc, free |
| #include <cstring> // for memset |
| |
| // A small, simple heap manager based (loosely) on |
| // the startup heap manager from FreeBSD, optimized for space. |
| // |
| // Manages a fixed-size memory pool, supports malloc and free only. |
| // No support for realloc. |
| // |
| // Allocates chunks in multiples of four bytes, with a four byte header |
| // for each chunk. The overhead of each chunk is kept low by keeping pointers |
| // as two byte offsets within the heap, rather than (4 or 8 byte) pointers. |
| |
| namespace { |
| |
| // When POSIX threads are not available, make the mutex operations a nop |
| #ifndef _LIBCXXABI_HAS_NO_THREADS |
| _LIBCPP_SAFE_STATIC |
| static std::__libcpp_mutex_t heap_mutex = _LIBCPP_MUTEX_INITIALIZER; |
| #else |
| static void* heap_mutex = 0; |
| #endif |
| |
| class mutexor { |
| public: |
| #ifndef _LIBCXXABI_HAS_NO_THREADS |
| mutexor(std::__libcpp_mutex_t* m) : mtx_(m) { |
| std::__libcpp_mutex_lock(mtx_); |
| } |
| ~mutexor() { std::__libcpp_mutex_unlock(mtx_); } |
| #else |
| mutexor(void*) {} |
| ~mutexor() {} |
| #endif |
| private: |
| mutexor(const mutexor& rhs); |
| mutexor& operator=(const mutexor& rhs); |
| #ifndef _LIBCXXABI_HAS_NO_THREADS |
| std::__libcpp_mutex_t* mtx_; |
| #endif |
| }; |
| |
| static const size_t HEAP_SIZE = 512; |
| char heap[HEAP_SIZE] __attribute__((aligned)); |
| |
| typedef unsigned short heap_offset; |
| typedef unsigned short heap_size; |
| |
| struct heap_node { |
| heap_offset next_node; // offset into heap |
| heap_size len; // size in units of "sizeof(heap_node)" |
| }; |
| |
| static const heap_node* list_end = |
| (heap_node*)(&heap[HEAP_SIZE]); // one past the end of the heap |
| static heap_node* freelist = NULL; |
| |
| heap_node* node_from_offset(const heap_offset offset) { |
| return (heap_node*)(heap + (offset * sizeof(heap_node))); |
| } |
| |
| heap_offset offset_from_node(const heap_node* ptr) { |
| return static_cast<heap_offset>( |
| static_cast<size_t>(reinterpret_cast<const char*>(ptr) - heap) / |
| sizeof(heap_node)); |
| } |
| |
| void init_heap() { |
| freelist = (heap_node*)heap; |
| freelist->next_node = offset_from_node(list_end); |
| freelist->len = HEAP_SIZE / sizeof(heap_node); |
| } |
| |
| // How big a chunk we allocate |
| size_t alloc_size(size_t len) { |
| return (len + sizeof(heap_node) - 1) / sizeof(heap_node) + 1; |
| } |
| |
| bool is_fallback_ptr(void* ptr) { |
| return ptr >= heap && ptr < (heap + HEAP_SIZE); |
| } |
| |
| void* fallback_malloc(size_t len) { |
| heap_node *p, *prev; |
| const size_t nelems = alloc_size(len); |
| mutexor mtx(&heap_mutex); |
| |
| if (NULL == freelist) |
| init_heap(); |
| |
| // Walk the free list, looking for a "big enough" chunk |
| for (p = freelist, prev = 0; p && p != list_end; |
| prev = p, p = node_from_offset(p->next_node)) { |
| |
| if (p->len > nelems) { // chunk is larger, shorten, and return the tail |
| heap_node* q; |
| |
| p->len = static_cast<heap_size>(p->len - nelems); |
| q = p + p->len; |
| q->next_node = 0; |
| q->len = static_cast<heap_size>(nelems); |
| return (void*)(q + 1); |
| } |
| |
| if (p->len == nelems) { // exact size match |
| if (prev == 0) |
| freelist = node_from_offset(p->next_node); |
| else |
| prev->next_node = p->next_node; |
| p->next_node = 0; |
| return (void*)(p + 1); |
| } |
| } |
| return NULL; // couldn't find a spot big enough |
| } |
| |
| // Return the start of the next block |
| heap_node* after(struct heap_node* p) { return p + p->len; } |
| |
| void fallback_free(void* ptr) { |
| struct heap_node* cp = ((struct heap_node*)ptr) - 1; // retrieve the chunk |
| struct heap_node *p, *prev; |
| |
| mutexor mtx(&heap_mutex); |
| |
| #ifdef DEBUG_FALLBACK_MALLOC |
| std::cout << "Freeing item at " << offset_from_node(cp) << " of size " |
| << cp->len << std::endl; |
| #endif |
| |
| for (p = freelist, prev = 0; p && p != list_end; |
| prev = p, p = node_from_offset(p->next_node)) { |
| #ifdef DEBUG_FALLBACK_MALLOC |
| std::cout << " p, cp, after (p), after(cp) " << offset_from_node(p) << ' ' |
| << offset_from_node(cp) << ' ' << offset_from_node(after(p)) |
| << ' ' << offset_from_node(after(cp)) << std::endl; |
| #endif |
| if (after(p) == cp) { |
| #ifdef DEBUG_FALLBACK_MALLOC |
| std::cout << " Appending onto chunk at " << offset_from_node(p) |
| << std::endl; |
| #endif |
| p->len = static_cast<heap_size>( |
| p->len + cp->len); // make the free heap_node larger |
| return; |
| } else if (after(cp) == p) { // there's a free heap_node right after |
| #ifdef DEBUG_FALLBACK_MALLOC |
| std::cout << " Appending free chunk at " << offset_from_node(p) |
| << std::endl; |
| #endif |
| cp->len = static_cast<heap_size>(cp->len + p->len); |
| if (prev == 0) { |
| freelist = cp; |
| cp->next_node = p->next_node; |
| } else |
| prev->next_node = offset_from_node(cp); |
| return; |
| } |
| } |
| // Nothing to merge with, add it to the start of the free list |
| #ifdef DEBUG_FALLBACK_MALLOC |
| std::cout << " Making new free list entry " << offset_from_node(cp) |
| << std::endl; |
| #endif |
| cp->next_node = offset_from_node(freelist); |
| freelist = cp; |
| } |
| |
| #ifdef INSTRUMENT_FALLBACK_MALLOC |
| size_t print_free_list() { |
| struct heap_node *p, *prev; |
| heap_size total_free = 0; |
| if (NULL == freelist) |
| init_heap(); |
| |
| for (p = freelist, prev = 0; p && p != list_end; |
| prev = p, p = node_from_offset(p->next_node)) { |
| std::cout << (prev == 0 ? "" : " ") << "Offset: " << offset_from_node(p) |
| << "\tsize: " << p->len << " Next: " << p->next_node << std::endl; |
| total_free += p->len; |
| } |
| std::cout << "Total Free space: " << total_free << std::endl; |
| return total_free; |
| } |
| #endif |
| } // end unnamed namespace |
| |
| namespace __cxxabiv1 { |
| |
| struct __attribute__((aligned)) __aligned_type {}; |
| |
| void* __aligned_malloc_with_fallback(size_t size) { |
| #if defined(_WIN32) |
| if (void* dest = _aligned_malloc(size, alignof(__aligned_type))) |
| return dest; |
| #elif defined(_LIBCPP_HAS_NO_ALIGNED_ALLOCATION) |
| if (void* dest = std::malloc(size)) |
| return dest; |
| #else |
| if (size == 0) |
| size = 1; |
| void* dest; |
| if (::posix_memalign(&dest, alignof(__aligned_type), size) == 0) |
| return dest; |
| #endif |
| return fallback_malloc(size); |
| } |
| |
| void* __calloc_with_fallback(size_t count, size_t size) { |
| void* ptr = std::calloc(count, size); |
| if (NULL != ptr) |
| return ptr; |
| // if calloc fails, fall back to emergency stash |
| ptr = fallback_malloc(size * count); |
| if (NULL != ptr) |
| std::memset(ptr, 0, size * count); |
| return ptr; |
| } |
| |
| void __aligned_free_with_fallback(void* ptr) { |
| if (is_fallback_ptr(ptr)) |
| fallback_free(ptr); |
| else { |
| #if defined(_WIN32) |
| ::_aligned_free(ptr); |
| #else |
| std::free(ptr); |
| #endif |
| } |
| } |
| |
| void __free_with_fallback(void* ptr) { |
| if (is_fallback_ptr(ptr)) |
| fallback_free(ptr); |
| else |
| std::free(ptr); |
| } |
| |
| } // namespace __cxxabiv1 |