| //===-- Symtab.cpp ----------------------------------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include <map> |
| #include <set> |
| |
| #include "Plugins/Language/CPlusPlus/CPlusPlusLanguage.h" |
| #include "Plugins/Language/ObjC/ObjCLanguage.h" |
| #include "lldb/Core/Module.h" |
| #include "lldb/Core/STLUtils.h" |
| #include "lldb/Core/Section.h" |
| #include "lldb/Symbol/ObjectFile.h" |
| #include "lldb/Symbol/Symbol.h" |
| #include "lldb/Symbol/SymbolContext.h" |
| #include "lldb/Symbol/Symtab.h" |
| #include "lldb/Utility/RegularExpression.h" |
| #include "lldb/Utility/Stream.h" |
| #include "lldb/Utility/Timer.h" |
| |
| using namespace lldb; |
| using namespace lldb_private; |
| |
| Symtab::Symtab(ObjectFile *objfile) |
| : m_objfile(objfile), m_symbols(), m_file_addr_to_index(), |
| m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false), |
| m_name_indexes_computed(false) {} |
| |
| Symtab::~Symtab() {} |
| |
| void Symtab::Reserve(size_t count) { |
| // Clients should grab the mutex from this symbol table and lock it manually |
| // when calling this function to avoid performance issues. |
| m_symbols.reserve(count); |
| } |
| |
| Symbol *Symtab::Resize(size_t count) { |
| // Clients should grab the mutex from this symbol table and lock it manually |
| // when calling this function to avoid performance issues. |
| m_symbols.resize(count); |
| return m_symbols.empty() ? nullptr : &m_symbols[0]; |
| } |
| |
| uint32_t Symtab::AddSymbol(const Symbol &symbol) { |
| // Clients should grab the mutex from this symbol table and lock it manually |
| // when calling this function to avoid performance issues. |
| uint32_t symbol_idx = m_symbols.size(); |
| m_name_to_index.Clear(); |
| m_file_addr_to_index.Clear(); |
| m_symbols.push_back(symbol); |
| m_file_addr_to_index_computed = false; |
| m_name_indexes_computed = false; |
| return symbol_idx; |
| } |
| |
| size_t Symtab::GetNumSymbols() const { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| return m_symbols.size(); |
| } |
| |
| void Symtab::SectionFileAddressesChanged() { |
| m_name_to_index.Clear(); |
| m_file_addr_to_index_computed = false; |
| } |
| |
| void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); |
| s->Indent(); |
| const FileSpec &file_spec = m_objfile->GetFileSpec(); |
| const char *object_name = nullptr; |
| if (m_objfile->GetModule()) |
| object_name = m_objfile->GetModule()->GetObjectName().GetCString(); |
| |
| if (file_spec) |
| s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, |
| file_spec.GetPath().c_str(), object_name ? "(" : "", |
| object_name ? object_name : "", object_name ? ")" : "", |
| (uint64_t)m_symbols.size()); |
| else |
| s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); |
| |
| if (!m_symbols.empty()) { |
| switch (sort_order) { |
| case eSortOrderNone: { |
| s->PutCString(":\n"); |
| DumpSymbolHeader(s); |
| const_iterator begin = m_symbols.begin(); |
| const_iterator end = m_symbols.end(); |
| for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { |
| s->Indent(); |
| pos->Dump(s, target, std::distance(begin, pos)); |
| } |
| } break; |
| |
| case eSortOrderByName: { |
| // Although we maintain a lookup by exact name map, the table isn't |
| // sorted by name. So we must make the ordered symbol list up ourselves. |
| s->PutCString(" (sorted by name):\n"); |
| DumpSymbolHeader(s); |
| typedef std::multimap<const char *, const Symbol *, |
| CStringCompareFunctionObject> |
| CStringToSymbol; |
| CStringToSymbol name_map; |
| for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); |
| pos != end; ++pos) { |
| const char *name = pos->GetName().AsCString(); |
| if (name && name[0]) |
| name_map.insert(std::make_pair(name, &(*pos))); |
| } |
| |
| for (CStringToSymbol::const_iterator pos = name_map.begin(), |
| end = name_map.end(); |
| pos != end; ++pos) { |
| s->Indent(); |
| pos->second->Dump(s, target, pos->second - &m_symbols[0]); |
| } |
| } break; |
| |
| case eSortOrderByAddress: |
| s->PutCString(" (sorted by address):\n"); |
| DumpSymbolHeader(s); |
| if (!m_file_addr_to_index_computed) |
| InitAddressIndexes(); |
| const size_t num_entries = m_file_addr_to_index.GetSize(); |
| for (size_t i = 0; i < num_entries; ++i) { |
| s->Indent(); |
| const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; |
| m_symbols[symbol_idx].Dump(s, target, symbol_idx); |
| } |
| break; |
| } |
| } |
| } |
| |
| void Symtab::Dump(Stream *s, Target *target, |
| std::vector<uint32_t> &indexes) const { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| const size_t num_symbols = GetNumSymbols(); |
| // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); |
| s->Indent(); |
| s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", |
| (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); |
| s->IndentMore(); |
| |
| if (!indexes.empty()) { |
| std::vector<uint32_t>::const_iterator pos; |
| std::vector<uint32_t>::const_iterator end = indexes.end(); |
| DumpSymbolHeader(s); |
| for (pos = indexes.begin(); pos != end; ++pos) { |
| size_t idx = *pos; |
| if (idx < num_symbols) { |
| s->Indent(); |
| m_symbols[idx].Dump(s, target, idx); |
| } |
| } |
| } |
| s->IndentLess(); |
| } |
| |
| void Symtab::DumpSymbolHeader(Stream *s) { |
| s->Indent(" Debug symbol\n"); |
| s->Indent(" |Synthetic symbol\n"); |
| s->Indent(" ||Externally Visible\n"); |
| s->Indent(" |||\n"); |
| s->Indent("Index UserID DSX Type File Address/Value Load " |
| "Address Size Flags Name\n"); |
| s->Indent("------- ------ --- --------------- ------------------ " |
| "------------------ ------------------ ---------- " |
| "----------------------------------\n"); |
| } |
| |
| static int CompareSymbolID(const void *key, const void *p) { |
| const user_id_t match_uid = *(const user_id_t *)key; |
| const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); |
| if (match_uid < symbol_uid) |
| return -1; |
| if (match_uid > symbol_uid) |
| return 1; |
| return 0; |
| } |
| |
| Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| Symbol *symbol = |
| (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), |
| sizeof(m_symbols[0]), CompareSymbolID); |
| return symbol; |
| } |
| |
| Symbol *Symtab::SymbolAtIndex(size_t idx) { |
| // Clients should grab the mutex from this symbol table and lock it manually |
| // when calling this function to avoid performance issues. |
| if (idx < m_symbols.size()) |
| return &m_symbols[idx]; |
| return nullptr; |
| } |
| |
| const Symbol *Symtab::SymbolAtIndex(size_t idx) const { |
| // Clients should grab the mutex from this symbol table and lock it manually |
| // when calling this function to avoid performance issues. |
| if (idx < m_symbols.size()) |
| return &m_symbols[idx]; |
| return nullptr; |
| } |
| |
| //---------------------------------------------------------------------- |
| // InitNameIndexes |
| //---------------------------------------------------------------------- |
| void Symtab::InitNameIndexes() { |
| // Protected function, no need to lock mutex... |
| if (!m_name_indexes_computed) { |
| m_name_indexes_computed = true; |
| static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); |
| Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); |
| // Create the name index vector to be able to quickly search by name |
| const size_t num_symbols = m_symbols.size(); |
| #if 1 |
| m_name_to_index.Reserve(num_symbols); |
| #else |
| // TODO: benchmark this to see if we save any memory. Otherwise we |
| // will always keep the memory reserved in the vector unless we pull some |
| // STL swap magic and then recopy... |
| uint32_t actual_count = 0; |
| for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); |
| pos != end; ++pos) { |
| const Mangled &mangled = pos->GetMangled(); |
| if (mangled.GetMangledName()) |
| ++actual_count; |
| |
| if (mangled.GetDemangledName()) |
| ++actual_count; |
| } |
| |
| m_name_to_index.Reserve(actual_count); |
| #endif |
| |
| NameToIndexMap::Entry entry; |
| |
| // The "const char *" in "class_contexts" must come from a |
| // ConstString::GetCString() |
| std::set<const char *> class_contexts; |
| UniqueCStringMap<uint32_t> mangled_name_to_index; |
| std::vector<const char *> symbol_contexts(num_symbols, nullptr); |
| |
| for (entry.value = 0; entry.value < num_symbols; ++entry.value) { |
| const Symbol *symbol = &m_symbols[entry.value]; |
| |
| // Don't let trampolines get into the lookup by name map If we ever need |
| // the trampoline symbols to be searchable by name we can remove this and |
| // then possibly add a new bool to any of the Symtab functions that |
| // lookup symbols by name to indicate if they want trampolines. |
| if (symbol->IsTrampoline()) |
| continue; |
| |
| const Mangled &mangled = symbol->GetMangled(); |
| entry.cstring = mangled.GetMangledName(); |
| if (entry.cstring) { |
| m_name_to_index.Append(entry); |
| |
| if (symbol->ContainsLinkerAnnotations()) { |
| // If the symbol has linker annotations, also add the version without |
| // the annotations. |
| entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations( |
| entry.cstring.GetStringRef())); |
| m_name_to_index.Append(entry); |
| } |
| |
| const SymbolType symbol_type = symbol->GetType(); |
| if (symbol_type == eSymbolTypeCode || |
| symbol_type == eSymbolTypeResolver) { |
| llvm::StringRef entry_ref(entry.cstring.GetStringRef()); |
| if (entry_ref[0] == '_' && entry_ref[1] == 'Z' && |
| (entry_ref[2] != 'T' && // avoid virtual table, VTT structure, |
| // typeinfo structure, and typeinfo |
| // name |
| entry_ref[2] != 'G' && // avoid guard variables |
| entry_ref[2] != 'Z')) // named local entities (if we |
| // eventually handle eSymbolTypeData, |
| // we will want this back) |
| { |
| CPlusPlusLanguage::MethodName cxx_method( |
| mangled.GetDemangledName(lldb::eLanguageTypeC_plus_plus)); |
| entry.cstring = ConstString(cxx_method.GetBasename()); |
| if (entry.cstring) { |
| // ConstString objects permanently store the string in the pool |
| // so calling GetCString() on the value gets us a const char * |
| // that will never go away |
| const char *const_context = |
| ConstString(cxx_method.GetContext()).GetCString(); |
| |
| if (!const_context || const_context[0] == 0) { |
| // No context for this function so this has to be a basename |
| m_basename_to_index.Append(entry); |
| // If there is no context (no namespaces or class scopes that |
| // come before the function name) then this also could be a |
| // fullname. |
| m_name_to_index.Append(entry); |
| } else { |
| entry_ref = entry.cstring.GetStringRef(); |
| if (entry_ref[0] == '~' || |
| !cxx_method.GetQualifiers().empty()) { |
| // The first character of the demangled basename is '~' which |
| // means we have a class destructor. We can use this |
| // information to help us know what is a class and what |
| // isn't. |
| if (class_contexts.find(const_context) == class_contexts.end()) |
| class_contexts.insert(const_context); |
| m_method_to_index.Append(entry); |
| } else { |
| if (class_contexts.find(const_context) != |
| class_contexts.end()) { |
| // The current decl context is in our "class_contexts" |
| // which means this is a method on a class |
| m_method_to_index.Append(entry); |
| } else { |
| // We don't know if this is a function basename or a |
| // method, so put it into a temporary collection so once we |
| // are done we can look in class_contexts to see if each |
| // entry is a class or just a function and will put any |
| // remaining items into m_method_to_index or |
| // m_basename_to_index as needed |
| mangled_name_to_index.Append(entry); |
| symbol_contexts[entry.value] = const_context; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| entry.cstring = mangled.GetDemangledName(symbol->GetLanguage()); |
| if (entry.cstring) { |
| m_name_to_index.Append(entry); |
| |
| if (symbol->ContainsLinkerAnnotations()) { |
| // If the symbol has linker annotations, also add the version without |
| // the annotations. |
| entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations( |
| entry.cstring.GetStringRef())); |
| m_name_to_index.Append(entry); |
| } |
| } |
| |
| // If the demangled name turns out to be an ObjC name, and is a category |
| // name, add the version without categories to the index too. |
| ObjCLanguage::MethodName objc_method(entry.cstring.GetStringRef(), true); |
| if (objc_method.IsValid(true)) { |
| entry.cstring = objc_method.GetSelector(); |
| m_selector_to_index.Append(entry); |
| |
| ConstString objc_method_no_category( |
| objc_method.GetFullNameWithoutCategory(true)); |
| if (objc_method_no_category) { |
| entry.cstring = objc_method_no_category; |
| m_name_to_index.Append(entry); |
| } |
| } |
| } |
| |
| size_t count; |
| if (!mangled_name_to_index.IsEmpty()) { |
| count = mangled_name_to_index.GetSize(); |
| for (size_t i = 0; i < count; ++i) { |
| if (mangled_name_to_index.GetValueAtIndex(i, entry.value)) { |
| entry.cstring = mangled_name_to_index.GetCStringAtIndex(i); |
| if (symbol_contexts[entry.value] && |
| class_contexts.find(symbol_contexts[entry.value]) != |
| class_contexts.end()) { |
| m_method_to_index.Append(entry); |
| } else { |
| // If we got here, we have something that had a context (was inside |
| // a namespace or class) yet we don't know if the entry |
| m_method_to_index.Append(entry); |
| m_basename_to_index.Append(entry); |
| } |
| } |
| } |
| } |
| m_name_to_index.Sort(); |
| m_name_to_index.SizeToFit(); |
| m_selector_to_index.Sort(); |
| m_selector_to_index.SizeToFit(); |
| m_basename_to_index.Sort(); |
| m_basename_to_index.SizeToFit(); |
| m_method_to_index.Sort(); |
| m_method_to_index.SizeToFit(); |
| } |
| } |
| |
| void Symtab::PreloadSymbols() { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| InitNameIndexes(); |
| } |
| |
| void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, |
| bool add_demangled, bool add_mangled, |
| NameToIndexMap &name_to_index_map) const { |
| if (add_demangled || add_mangled) { |
| static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); |
| Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| // Create the name index vector to be able to quickly search by name |
| NameToIndexMap::Entry entry; |
| const size_t num_indexes = indexes.size(); |
| for (size_t i = 0; i < num_indexes; ++i) { |
| entry.value = indexes[i]; |
| assert(i < m_symbols.size()); |
| const Symbol *symbol = &m_symbols[entry.value]; |
| |
| const Mangled &mangled = symbol->GetMangled(); |
| if (add_demangled) { |
| entry.cstring = mangled.GetDemangledName(symbol->GetLanguage()); |
| if (entry.cstring) |
| name_to_index_map.Append(entry); |
| } |
| |
| if (add_mangled) { |
| entry.cstring = mangled.GetMangledName(); |
| if (entry.cstring) |
| name_to_index_map.Append(entry); |
| } |
| } |
| } |
| } |
| |
| uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, |
| std::vector<uint32_t> &indexes, |
| uint32_t start_idx, |
| uint32_t end_index) const { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| uint32_t prev_size = indexes.size(); |
| |
| const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); |
| |
| for (uint32_t i = start_idx; i < count; ++i) { |
| if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) |
| indexes.push_back(i); |
| } |
| |
| return indexes.size() - prev_size; |
| } |
| |
| uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( |
| SymbolType symbol_type, uint32_t flags_value, |
| std::vector<uint32_t> &indexes, uint32_t start_idx, |
| uint32_t end_index) const { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| uint32_t prev_size = indexes.size(); |
| |
| const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); |
| |
| for (uint32_t i = start_idx; i < count; ++i) { |
| if ((symbol_type == eSymbolTypeAny || |
| m_symbols[i].GetType() == symbol_type) && |
| m_symbols[i].GetFlags() == flags_value) |
| indexes.push_back(i); |
| } |
| |
| return indexes.size() - prev_size; |
| } |
| |
| uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, |
| Debug symbol_debug_type, |
| Visibility symbol_visibility, |
| std::vector<uint32_t> &indexes, |
| uint32_t start_idx, |
| uint32_t end_index) const { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| uint32_t prev_size = indexes.size(); |
| |
| const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); |
| |
| for (uint32_t i = start_idx; i < count; ++i) { |
| if (symbol_type == eSymbolTypeAny || |
| m_symbols[i].GetType() == symbol_type) { |
| if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) |
| indexes.push_back(i); |
| } |
| } |
| |
| return indexes.size() - prev_size; |
| } |
| |
| uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { |
| if (!m_symbols.empty()) { |
| const Symbol *first_symbol = &m_symbols[0]; |
| if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) |
| return symbol - first_symbol; |
| } |
| return UINT32_MAX; |
| } |
| |
| struct SymbolSortInfo { |
| const bool sort_by_load_addr; |
| const Symbol *symbols; |
| }; |
| |
| namespace { |
| struct SymbolIndexComparator { |
| const std::vector<Symbol> &symbols; |
| std::vector<lldb::addr_t> &addr_cache; |
| |
| // Getting from the symbol to the Address to the File Address involves some |
| // work. Since there are potentially many symbols here, and we're using this |
| // for sorting so we're going to be computing the address many times, cache |
| // that in addr_cache. The array passed in has to be the same size as the |
| // symbols array passed into the member variable symbols, and should be |
| // initialized with LLDB_INVALID_ADDRESS. |
| // NOTE: You have to make addr_cache externally and pass it in because |
| // std::stable_sort |
| // makes copies of the comparator it is initially passed in, and you end up |
| // spending huge amounts of time copying this array... |
| |
| SymbolIndexComparator(const std::vector<Symbol> &s, |
| std::vector<lldb::addr_t> &a) |
| : symbols(s), addr_cache(a) { |
| assert(symbols.size() == addr_cache.size()); |
| } |
| bool operator()(uint32_t index_a, uint32_t index_b) { |
| addr_t value_a = addr_cache[index_a]; |
| if (value_a == LLDB_INVALID_ADDRESS) { |
| value_a = symbols[index_a].GetAddressRef().GetFileAddress(); |
| addr_cache[index_a] = value_a; |
| } |
| |
| addr_t value_b = addr_cache[index_b]; |
| if (value_b == LLDB_INVALID_ADDRESS) { |
| value_b = symbols[index_b].GetAddressRef().GetFileAddress(); |
| addr_cache[index_b] = value_b; |
| } |
| |
| if (value_a == value_b) { |
| // The if the values are equal, use the original symbol user ID |
| lldb::user_id_t uid_a = symbols[index_a].GetID(); |
| lldb::user_id_t uid_b = symbols[index_b].GetID(); |
| if (uid_a < uid_b) |
| return true; |
| if (uid_a > uid_b) |
| return false; |
| return false; |
| } else if (value_a < value_b) |
| return true; |
| |
| return false; |
| } |
| }; |
| } |
| |
| void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes, |
| bool remove_duplicates) const { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); |
| Timer scoped_timer(func_cat, LLVM_PRETTY_FUNCTION); |
| // No need to sort if we have zero or one items... |
| if (indexes.size() <= 1) |
| return; |
| |
| // Sort the indexes in place using std::stable_sort. |
| // NOTE: The use of std::stable_sort instead of std::sort here is strictly for |
| // performance, |
| // not correctness. The indexes vector tends to be "close" to sorted, which |
| // the stable sort handles better. |
| |
| std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); |
| |
| SymbolIndexComparator comparator(m_symbols, addr_cache); |
| std::stable_sort(indexes.begin(), indexes.end(), comparator); |
| |
| // Remove any duplicates if requested |
| if (remove_duplicates) { |
| auto last = std::unique(indexes.begin(), indexes.end()); |
| indexes.erase(last, indexes.end()); |
| } |
| } |
| |
| uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name, |
| std::vector<uint32_t> &indexes) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); |
| Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); |
| if (symbol_name) { |
| if (!m_name_indexes_computed) |
| InitNameIndexes(); |
| |
| return m_name_to_index.GetValues(symbol_name, indexes); |
| } |
| return 0; |
| } |
| |
| uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name, |
| Debug symbol_debug_type, |
| Visibility symbol_visibility, |
| std::vector<uint32_t> &indexes) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); |
| Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); |
| if (symbol_name) { |
| const size_t old_size = indexes.size(); |
| if (!m_name_indexes_computed) |
| InitNameIndexes(); |
| |
| std::vector<uint32_t> all_name_indexes; |
| const size_t name_match_count = |
| m_name_to_index.GetValues(symbol_name, all_name_indexes); |
| for (size_t i = 0; i < name_match_count; ++i) { |
| if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, |
| symbol_visibility)) |
| indexes.push_back(all_name_indexes[i]); |
| } |
| return indexes.size() - old_size; |
| } |
| return 0; |
| } |
| |
| uint32_t |
| Symtab::AppendSymbolIndexesWithNameAndType(const ConstString &symbol_name, |
| SymbolType symbol_type, |
| std::vector<uint32_t> &indexes) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { |
| std::vector<uint32_t>::iterator pos = indexes.begin(); |
| while (pos != indexes.end()) { |
| if (symbol_type == eSymbolTypeAny || |
| m_symbols[*pos].GetType() == symbol_type) |
| ++pos; |
| else |
| pos = indexes.erase(pos); |
| } |
| } |
| return indexes.size(); |
| } |
| |
| uint32_t Symtab::AppendSymbolIndexesWithNameAndType( |
| const ConstString &symbol_name, SymbolType symbol_type, |
| Debug symbol_debug_type, Visibility symbol_visibility, |
| std::vector<uint32_t> &indexes) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, |
| symbol_visibility, indexes) > 0) { |
| std::vector<uint32_t>::iterator pos = indexes.begin(); |
| while (pos != indexes.end()) { |
| if (symbol_type == eSymbolTypeAny || |
| m_symbols[*pos].GetType() == symbol_type) |
| ++pos; |
| else |
| pos = indexes.erase(pos); |
| } |
| } |
| return indexes.size(); |
| } |
| |
| uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( |
| const RegularExpression ®exp, SymbolType symbol_type, |
| std::vector<uint32_t> &indexes) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| uint32_t prev_size = indexes.size(); |
| uint32_t sym_end = m_symbols.size(); |
| |
| for (uint32_t i = 0; i < sym_end; i++) { |
| if (symbol_type == eSymbolTypeAny || |
| m_symbols[i].GetType() == symbol_type) { |
| const char *name = m_symbols[i].GetName().AsCString(); |
| if (name) { |
| if (regexp.Execute(name)) |
| indexes.push_back(i); |
| } |
| } |
| } |
| return indexes.size() - prev_size; |
| } |
| |
| uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( |
| const RegularExpression ®exp, SymbolType symbol_type, |
| Debug symbol_debug_type, Visibility symbol_visibility, |
| std::vector<uint32_t> &indexes) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| uint32_t prev_size = indexes.size(); |
| uint32_t sym_end = m_symbols.size(); |
| |
| for (uint32_t i = 0; i < sym_end; i++) { |
| if (symbol_type == eSymbolTypeAny || |
| m_symbols[i].GetType() == symbol_type) { |
| if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility) == false) |
| continue; |
| |
| const char *name = m_symbols[i].GetName().AsCString(); |
| if (name) { |
| if (regexp.Execute(name)) |
| indexes.push_back(i); |
| } |
| } |
| } |
| return indexes.size() - prev_size; |
| } |
| |
| Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, |
| Debug symbol_debug_type, |
| Visibility symbol_visibility, |
| uint32_t &start_idx) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| const size_t count = m_symbols.size(); |
| for (size_t idx = start_idx; idx < count; ++idx) { |
| if (symbol_type == eSymbolTypeAny || |
| m_symbols[idx].GetType() == symbol_type) { |
| if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { |
| start_idx = idx; |
| return &m_symbols[idx]; |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| size_t |
| Symtab::FindAllSymbolsWithNameAndType(const ConstString &name, |
| SymbolType symbol_type, |
| std::vector<uint32_t> &symbol_indexes) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); |
| Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); |
| // Initialize all of the lookup by name indexes before converting NAME to a |
| // uniqued string NAME_STR below. |
| if (!m_name_indexes_computed) |
| InitNameIndexes(); |
| |
| if (name) { |
| // The string table did have a string that matched, but we need to check |
| // the symbols and match the symbol_type if any was given. |
| AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); |
| } |
| return symbol_indexes.size(); |
| } |
| |
| size_t Symtab::FindAllSymbolsWithNameAndType( |
| const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type, |
| Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); |
| Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); |
| // Initialize all of the lookup by name indexes before converting NAME to a |
| // uniqued string NAME_STR below. |
| if (!m_name_indexes_computed) |
| InitNameIndexes(); |
| |
| if (name) { |
| // The string table did have a string that matched, but we need to check |
| // the symbols and match the symbol_type if any was given. |
| AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, |
| symbol_visibility, symbol_indexes); |
| } |
| return symbol_indexes.size(); |
| } |
| |
| size_t Symtab::FindAllSymbolsMatchingRexExAndType( |
| const RegularExpression ®ex, SymbolType symbol_type, |
| Debug symbol_debug_type, Visibility symbol_visibility, |
| std::vector<uint32_t> &symbol_indexes) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, |
| symbol_visibility, symbol_indexes); |
| return symbol_indexes.size(); |
| } |
| |
| Symbol *Symtab::FindFirstSymbolWithNameAndType(const ConstString &name, |
| SymbolType symbol_type, |
| Debug symbol_debug_type, |
| Visibility symbol_visibility) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); |
| Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); |
| if (!m_name_indexes_computed) |
| InitNameIndexes(); |
| |
| if (name) { |
| std::vector<uint32_t> matching_indexes; |
| // The string table did have a string that matched, but we need to check |
| // the symbols and match the symbol_type if any was given. |
| if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, |
| symbol_visibility, |
| matching_indexes)) { |
| std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end(); |
| for (pos = matching_indexes.begin(); pos != end; ++pos) { |
| Symbol *symbol = SymbolAtIndex(*pos); |
| |
| if (symbol->Compare(name, symbol_type)) |
| return symbol; |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| typedef struct { |
| const Symtab *symtab; |
| const addr_t file_addr; |
| Symbol *match_symbol; |
| const uint32_t *match_index_ptr; |
| addr_t match_offset; |
| } SymbolSearchInfo; |
| |
| // Add all the section file start address & size to the RangeVector, recusively |
| // adding any children sections. |
| static void AddSectionsToRangeMap(SectionList *sectlist, |
| RangeVector<addr_t, addr_t> §ion_ranges) { |
| const int num_sections = sectlist->GetNumSections(0); |
| for (int i = 0; i < num_sections; i++) { |
| SectionSP sect_sp = sectlist->GetSectionAtIndex(i); |
| if (sect_sp) { |
| SectionList &child_sectlist = sect_sp->GetChildren(); |
| |
| // If this section has children, add the children to the RangeVector. |
| // Else add this section to the RangeVector. |
| if (child_sectlist.GetNumSections(0) > 0) { |
| AddSectionsToRangeMap(&child_sectlist, section_ranges); |
| } else { |
| size_t size = sect_sp->GetByteSize(); |
| if (size > 0) { |
| addr_t base_addr = sect_sp->GetFileAddress(); |
| RangeVector<addr_t, addr_t>::Entry entry; |
| entry.SetRangeBase(base_addr); |
| entry.SetByteSize(size); |
| section_ranges.Append(entry); |
| } |
| } |
| } |
| } |
| } |
| |
| void Symtab::InitAddressIndexes() { |
| // Protected function, no need to lock mutex... |
| if (!m_file_addr_to_index_computed && !m_symbols.empty()) { |
| m_file_addr_to_index_computed = true; |
| |
| FileRangeToIndexMap::Entry entry; |
| const_iterator begin = m_symbols.begin(); |
| const_iterator end = m_symbols.end(); |
| for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { |
| if (pos->ValueIsAddress()) { |
| entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); |
| entry.SetByteSize(pos->GetByteSize()); |
| entry.data = std::distance(begin, pos); |
| m_file_addr_to_index.Append(entry); |
| } |
| } |
| const size_t num_entries = m_file_addr_to_index.GetSize(); |
| if (num_entries > 0) { |
| m_file_addr_to_index.Sort(); |
| |
| // Create a RangeVector with the start & size of all the sections for |
| // this objfile. We'll need to check this for any FileRangeToIndexMap |
| // entries with an uninitialized size, which could potentially be a large |
| // number so reconstituting the weak pointer is busywork when it is |
| // invariant information. |
| SectionList *sectlist = m_objfile->GetSectionList(); |
| RangeVector<addr_t, addr_t> section_ranges; |
| if (sectlist) { |
| AddSectionsToRangeMap(sectlist, section_ranges); |
| section_ranges.Sort(); |
| } |
| |
| // Iterate through the FileRangeToIndexMap and fill in the size for any |
| // entries that didn't already have a size from the Symbol (e.g. if we |
| // have a plain linker symbol with an address only, instead of debug info |
| // where we get an address and a size and a type, etc.) |
| for (size_t i = 0; i < num_entries; i++) { |
| FileRangeToIndexMap::Entry *entry = |
| m_file_addr_to_index.GetMutableEntryAtIndex(i); |
| if (entry->GetByteSize() == 0) { |
| addr_t curr_base_addr = entry->GetRangeBase(); |
| const RangeVector<addr_t, addr_t>::Entry *containing_section = |
| section_ranges.FindEntryThatContains(curr_base_addr); |
| |
| // Use the end of the section as the default max size of the symbol |
| addr_t sym_size = 0; |
| if (containing_section) { |
| sym_size = |
| containing_section->GetByteSize() - |
| (entry->GetRangeBase() - containing_section->GetRangeBase()); |
| } |
| |
| for (size_t j = i; j < num_entries; j++) { |
| FileRangeToIndexMap::Entry *next_entry = |
| m_file_addr_to_index.GetMutableEntryAtIndex(j); |
| addr_t next_base_addr = next_entry->GetRangeBase(); |
| if (next_base_addr > curr_base_addr) { |
| addr_t size_to_next_symbol = next_base_addr - curr_base_addr; |
| |
| // Take the difference between this symbol and the next one as |
| // its size, if it is less than the size of the section. |
| if (sym_size == 0 || size_to_next_symbol < sym_size) { |
| sym_size = size_to_next_symbol; |
| } |
| break; |
| } |
| } |
| |
| if (sym_size > 0) { |
| entry->SetByteSize(sym_size); |
| Symbol &symbol = m_symbols[entry->data]; |
| symbol.SetByteSize(sym_size); |
| symbol.SetSizeIsSynthesized(true); |
| } |
| } |
| } |
| |
| // Sort again in case the range size changes the ordering |
| m_file_addr_to_index.Sort(); |
| } |
| } |
| } |
| |
| void Symtab::CalculateSymbolSizes() { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| if (!m_symbols.empty()) { |
| if (!m_file_addr_to_index_computed) |
| InitAddressIndexes(); |
| |
| const size_t num_entries = m_file_addr_to_index.GetSize(); |
| |
| for (size_t i = 0; i < num_entries; ++i) { |
| // The entries in the m_file_addr_to_index have calculated the sizes |
| // already so we will use this size if we need to. |
| const FileRangeToIndexMap::Entry &entry = |
| m_file_addr_to_index.GetEntryRef(i); |
| |
| Symbol &symbol = m_symbols[entry.data]; |
| |
| // If the symbol size is already valid, no need to do anything |
| if (symbol.GetByteSizeIsValid()) |
| continue; |
| |
| const addr_t range_size = entry.GetByteSize(); |
| if (range_size > 0) { |
| symbol.SetByteSize(range_size); |
| symbol.SetSizeIsSynthesized(true); |
| } |
| } |
| } |
| } |
| |
| Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| if (!m_file_addr_to_index_computed) |
| InitAddressIndexes(); |
| |
| const FileRangeToIndexMap::Entry *entry = |
| m_file_addr_to_index.FindEntryStartsAt(file_addr); |
| if (entry) { |
| Symbol *symbol = SymbolAtIndex(entry->data); |
| if (symbol->GetFileAddress() == file_addr) |
| return symbol; |
| } |
| return nullptr; |
| } |
| |
| Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| if (!m_file_addr_to_index_computed) |
| InitAddressIndexes(); |
| |
| const FileRangeToIndexMap::Entry *entry = |
| m_file_addr_to_index.FindEntryThatContains(file_addr); |
| if (entry) { |
| Symbol *symbol = SymbolAtIndex(entry->data); |
| if (symbol->ContainsFileAddress(file_addr)) |
| return symbol; |
| } |
| return nullptr; |
| } |
| |
| void Symtab::ForEachSymbolContainingFileAddress( |
| addr_t file_addr, std::function<bool(Symbol *)> const &callback) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| |
| if (!m_file_addr_to_index_computed) |
| InitAddressIndexes(); |
| |
| std::vector<uint32_t> all_addr_indexes; |
| |
| // Get all symbols with file_addr |
| const size_t addr_match_count = |
| m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, |
| all_addr_indexes); |
| |
| for (size_t i = 0; i < addr_match_count; ++i) { |
| Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); |
| if (symbol->ContainsFileAddress(file_addr)) { |
| if (!callback(symbol)) |
| break; |
| } |
| } |
| } |
| |
| void Symtab::SymbolIndicesToSymbolContextList( |
| std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) { |
| // No need to protect this call using m_mutex all other method calls are |
| // already thread safe. |
| |
| const bool merge_symbol_into_function = true; |
| size_t num_indices = symbol_indexes.size(); |
| if (num_indices > 0) { |
| SymbolContext sc; |
| sc.module_sp = m_objfile->GetModule(); |
| for (size_t i = 0; i < num_indices; i++) { |
| sc.symbol = SymbolAtIndex(symbol_indexes[i]); |
| if (sc.symbol) |
| sc_list.AppendIfUnique(sc, merge_symbol_into_function); |
| } |
| } |
| } |
| |
| size_t Symtab::FindFunctionSymbols(const ConstString &name, |
| uint32_t name_type_mask, |
| SymbolContextList &sc_list) { |
| size_t count = 0; |
| std::vector<uint32_t> symbol_indexes; |
| |
| // eFunctionNameTypeAuto should be pre-resolved by a call to |
| // Module::LookupInfo::LookupInfo() |
| assert((name_type_mask & eFunctionNameTypeAuto) == 0); |
| |
| if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { |
| std::vector<uint32_t> temp_symbol_indexes; |
| FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); |
| |
| unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); |
| if (temp_symbol_indexes_size > 0) { |
| std::lock_guard<std::recursive_mutex> guard(m_mutex); |
| for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { |
| SymbolContext sym_ctx; |
| sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); |
| if (sym_ctx.symbol) { |
| switch (sym_ctx.symbol->GetType()) { |
| case eSymbolTypeCode: |
| case eSymbolTypeResolver: |
| case eSymbolTypeReExported: |
| symbol_indexes.push_back(temp_symbol_indexes[i]); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| if (name_type_mask & eFunctionNameTypeBase) { |
| // From mangled names we can't tell what is a basename and what is a method |
| // name, so we just treat them the same |
| if (!m_name_indexes_computed) |
| InitNameIndexes(); |
| |
| if (!m_basename_to_index.IsEmpty()) { |
| const UniqueCStringMap<uint32_t>::Entry *match; |
| for (match = m_basename_to_index.FindFirstValueForName(name); |
| match != nullptr; |
| match = m_basename_to_index.FindNextValueForName(match)) { |
| symbol_indexes.push_back(match->value); |
| } |
| } |
| } |
| |
| if (name_type_mask & eFunctionNameTypeMethod) { |
| if (!m_name_indexes_computed) |
| InitNameIndexes(); |
| |
| if (!m_method_to_index.IsEmpty()) { |
| const UniqueCStringMap<uint32_t>::Entry *match; |
| for (match = m_method_to_index.FindFirstValueForName(name); |
| match != nullptr; |
| match = m_method_to_index.FindNextValueForName(match)) { |
| symbol_indexes.push_back(match->value); |
| } |
| } |
| } |
| |
| if (name_type_mask & eFunctionNameTypeSelector) { |
| if (!m_name_indexes_computed) |
| InitNameIndexes(); |
| |
| if (!m_selector_to_index.IsEmpty()) { |
| const UniqueCStringMap<uint32_t>::Entry *match; |
| for (match = m_selector_to_index.FindFirstValueForName(name); |
| match != nullptr; |
| match = m_selector_to_index.FindNextValueForName(match)) { |
| symbol_indexes.push_back(match->value); |
| } |
| } |
| } |
| |
| if (!symbol_indexes.empty()) { |
| std::sort(symbol_indexes.begin(), symbol_indexes.end()); |
| symbol_indexes.erase( |
| std::unique(symbol_indexes.begin(), symbol_indexes.end()), |
| symbol_indexes.end()); |
| count = symbol_indexes.size(); |
| SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); |
| } |
| |
| return count; |
| } |
| |
| const Symbol *Symtab::GetParent(Symbol *child_symbol) const { |
| uint32_t child_idx = GetIndexForSymbol(child_symbol); |
| if (child_idx != UINT32_MAX && child_idx > 0) { |
| for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { |
| const Symbol *symbol = SymbolAtIndex(idx); |
| const uint32_t sibling_idx = symbol->GetSiblingIndex(); |
| if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) |
| return symbol; |
| } |
| } |
| return NULL; |
| } |