| /* |
| ** This file contains all sources (including headers) to the LEMON |
| ** LALR(1) parser generator. The sources have been combined into a |
| ** single file to make it easy to include LEMON in the source tree |
| ** and Makefile of another program. |
| ** |
| ** The author of this program disclaims copyright. |
| */ |
| #include <stdio.h> |
| #include <stdarg.h> |
| #include <string.h> |
| #include <ctype.h> |
| #include <stdlib.h> |
| #include <assert.h> |
| |
| #ifndef __WIN32__ |
| # if defined(_WIN32) || defined(WIN32) |
| # define __WIN32__ |
| # endif |
| #endif |
| |
| #ifdef __WIN32__ |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| extern int access(const char *path, int mode); |
| #ifdef __cplusplus |
| } |
| #endif |
| #else |
| #include <unistd.h> |
| #endif |
| |
| /* #define PRIVATE static */ |
| #define PRIVATE |
| |
| #ifdef TEST |
| #define MAXRHS 5 /* Set low to exercise exception code */ |
| #else |
| #define MAXRHS 1000 |
| #endif |
| |
| static int showPrecedenceConflict = 0; |
| static const char **made_files = NULL; |
| static int made_files_count = 0; |
| static int successful_exit = 0; |
| static void LemonAtExit(void) |
| { |
| /* if we failed, delete (most) files we made, to unconfuse build tools. */ |
| int i; |
| for (i = 0; i < made_files_count; i++) { |
| if (!successful_exit) { |
| remove(made_files[i]); |
| } |
| } |
| free(made_files); |
| made_files_count = 0; |
| made_files = NULL; |
| } |
| |
| static char *msort(char*,char**,int(*)(const char*,const char*)); |
| |
| /* |
| ** Compilers are getting increasingly pedantic about type conversions |
| ** as C evolves ever closer to Ada.... To work around the latest problems |
| ** we have to define the following variant of strlen(). |
| */ |
| #define lemonStrlen(X) ((int)strlen(X)) |
| |
| /* a few forward declarations... */ |
| struct rule; |
| struct lemon; |
| struct action; |
| |
| static struct action *Action_new(void); |
| static struct action *Action_sort(struct action *); |
| |
| /********** From the file "build.h" ************************************/ |
| void FindRulePrecedences(); |
| void FindFirstSets(); |
| void FindStates(); |
| void FindLinks(); |
| void FindFollowSets(); |
| void FindActions(); |
| |
| /********* From the file "configlist.h" *********************************/ |
| void Configlist_init(void); |
| struct config *Configlist_add(struct rule *, int); |
| struct config *Configlist_addbasis(struct rule *, int); |
| void Configlist_closure(struct lemon *); |
| void Configlist_sort(void); |
| void Configlist_sortbasis(void); |
| struct config *Configlist_return(void); |
| struct config *Configlist_basis(void); |
| void Configlist_eat(struct config *); |
| void Configlist_reset(void); |
| |
| /********* From the file "error.h" ***************************************/ |
| void ErrorMsg(const char *, int,const char *, ...); |
| |
| /****** From the file "option.h" ******************************************/ |
| enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR, |
| OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR}; |
| struct s_options { |
| enum option_type type; |
| const char *label; |
| char *arg; |
| const char *message; |
| }; |
| int OptInit(char**,struct s_options*,FILE*); |
| int OptNArgs(void); |
| char *OptArg(int); |
| void OptErr(int); |
| void OptPrint(void); |
| |
| /******** From the file "parse.h" *****************************************/ |
| void Parse(struct lemon *lemp); |
| |
| /********* From the file "plink.h" ***************************************/ |
| struct plink *Plink_new(void); |
| void Plink_add(struct plink **, struct config *); |
| void Plink_copy(struct plink **, struct plink *); |
| void Plink_delete(struct plink *); |
| |
| /********** From the file "report.h" *************************************/ |
| void Reprint(struct lemon *); |
| void ReportOutput(struct lemon *); |
| void ReportTable(struct lemon *, int); |
| void ReportHeader(struct lemon *); |
| void CompressTables(struct lemon *); |
| void ResortStates(struct lemon *); |
| |
| /********** From the file "set.h" ****************************************/ |
| void SetSize(int); /* All sets will be of size N */ |
| char *SetNew(void); /* A new set for element 0..N */ |
| void SetFree(char*); /* Deallocate a set */ |
| |
| char *SetNew(void); /* A new set for element 0..N */ |
| int SetAdd(char*,int); /* Add element to a set */ |
| int SetUnion(char *,char *); /* A <- A U B, thru element N */ |
| #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */ |
| |
| /********** From the file "struct.h" *************************************/ |
| /* |
| ** Principal data structures for the LEMON parser generator. |
| */ |
| |
| typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean; |
| |
| /* Symbols (terminals and nonterminals) of the grammar are stored |
| ** in the following: */ |
| enum symbol_type { |
| TERMINAL, |
| NONTERMINAL, |
| MULTITERMINAL |
| }; |
| enum e_assoc { |
| LEFT, |
| RIGHT, |
| NONE, |
| UNK |
| }; |
| struct symbol { |
| const char *name; /* Name of the symbol */ |
| int index; /* Index number for this symbol */ |
| enum symbol_type type; /* Symbols are all either TERMINALS or NTs */ |
| struct rule *rule; /* Linked list of rules of this (if an NT) */ |
| struct symbol *fallback; /* fallback token in case this token doesn't parse */ |
| int prec; /* Precedence if defined (-1 otherwise) */ |
| enum e_assoc assoc; /* Associativity if precedence is defined */ |
| char *firstset; /* First-set for all rules of this symbol */ |
| Boolean lambda; /* True if NT and can generate an empty string */ |
| int useCnt; /* Number of times used */ |
| char *destructor; /* Code which executes whenever this symbol is |
| ** popped from the stack during error processing */ |
| int destLineno; /* Line number for start of destructor */ |
| char *datatype; /* The data type of information held by this |
| ** object. Only used if type==NONTERMINAL */ |
| int dtnum; /* The data type number. In the parser, the value |
| ** stack is a union. The .yy%d element of this |
| ** union is the correct data type for this object */ |
| /* The following fields are used by MULTITERMINALs only */ |
| int nsubsym; /* Number of constituent symbols in the MULTI */ |
| struct symbol **subsym; /* Array of constituent symbols */ |
| }; |
| |
| /* Each production rule in the grammar is stored in the following |
| ** structure. */ |
| struct rule { |
| struct symbol *lhs; /* Left-hand side of the rule */ |
| const char *lhsalias; /* Alias for the LHS (NULL if none) */ |
| int lhsStart; /* True if left-hand side is the start symbol */ |
| int ruleline; /* Line number for the rule */ |
| int nrhs; /* Number of RHS symbols */ |
| struct symbol **rhs; /* The RHS symbols */ |
| const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */ |
| int line; /* Line number at which code begins */ |
| const char *code; /* The code executed when this rule is reduced */ |
| struct symbol *precsym; /* Precedence symbol for this rule */ |
| int index; /* An index number for this rule */ |
| Boolean canReduce; /* True if this rule is ever reduced */ |
| struct rule *nextlhs; /* Next rule with the same LHS */ |
| struct rule *next; /* Next rule in the global list */ |
| }; |
| |
| /* A configuration is a production rule of the grammar together with |
| ** a mark (dot) showing how much of that rule has been processed so far. |
| ** Configurations also contain a follow-set which is a list of terminal |
| ** symbols which are allowed to immediately follow the end of the rule. |
| ** Every configuration is recorded as an instance of the following: */ |
| enum cfgstatus { |
| COMPLETE, |
| INCOMPLETE |
| }; |
| struct config { |
| struct rule *rp; /* The rule upon which the configuration is based */ |
| int dot; /* The parse point */ |
| char *fws; /* Follow-set for this configuration only */ |
| struct plink *fplp; /* Follow-set forward propagation links */ |
| struct plink *bplp; /* Follow-set backwards propagation links */ |
| struct state *stp; /* Pointer to state which contains this */ |
| enum cfgstatus status; /* used during followset and shift computations */ |
| struct config *next; /* Next configuration in the state */ |
| struct config *bp; /* The next basis configuration */ |
| }; |
| |
| enum e_action { |
| SHIFT, |
| ACCEPT, |
| REDUCE, |
| ERROR, |
| SSCONFLICT, /* A shift/shift conflict */ |
| SRCONFLICT, /* Was a reduce, but part of a conflict */ |
| RRCONFLICT, /* Was a reduce, but part of a conflict */ |
| SH_RESOLVED, /* Was a shift. Precedence resolved conflict */ |
| RD_RESOLVED, /* Was reduce. Precedence resolved conflict */ |
| NOT_USED /* Deleted by compression */ |
| }; |
| |
| /* Every shift or reduce operation is stored as one of the following */ |
| struct action { |
| struct symbol *sp; /* The look-ahead symbol */ |
| enum e_action type; |
| union { |
| struct state *stp; /* The new state, if a shift */ |
| struct rule *rp; /* The rule, if a reduce */ |
| } x; |
| struct action *next; /* Next action for this state */ |
| struct action *collide; /* Next action with the same hash */ |
| }; |
| |
| /* Each state of the generated parser's finite state machine |
| ** is encoded as an instance of the following structure. */ |
| struct state { |
| struct config *bp; /* The basis configurations for this state */ |
| struct config *cfp; /* All configurations in this set */ |
| int statenum; /* Sequential number for this state */ |
| struct action *ap; /* Array of actions for this state */ |
| int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */ |
| int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */ |
| int iDflt; /* Default action */ |
| }; |
| #define NO_OFFSET (-2147483647) |
| |
| /* A followset propagation link indicates that the contents of one |
| ** configuration followset should be propagated to another whenever |
| ** the first changes. */ |
| struct plink { |
| struct config *cfp; /* The configuration to which linked */ |
| struct plink *next; /* The next propagate link */ |
| }; |
| |
| /* The state vector for the entire parser generator is recorded as |
| ** follows. (LEMON uses no global variables and makes little use of |
| ** static variables. Fields in the following structure can be thought |
| ** of as begin global variables in the program.) */ |
| struct lemon { |
| struct state **sorted; /* Table of states sorted by state number */ |
| struct rule *rule; /* List of all rules */ |
| int nstate; /* Number of states */ |
| int nrule; /* Number of rules */ |
| int nsymbol; /* Number of terminal and nonterminal symbols */ |
| int nterminal; /* Number of terminal symbols */ |
| struct symbol **symbols; /* Sorted array of pointers to symbols */ |
| int errorcnt; /* Number of errors */ |
| struct symbol *errsym; /* The error symbol */ |
| struct symbol *wildcard; /* Token that matches anything */ |
| char *name; /* Name of the generated parser */ |
| char *arg; /* Declaration of the 3th argument to parser */ |
| char *tokentype; /* Type of terminal symbols in the parser stack */ |
| char *vartype; /* The default type of non-terminal symbols */ |
| char *start; /* Name of the start symbol for the grammar */ |
| char *stacksize; /* Size of the parser stack */ |
| char *include; /* Code to put at the start of the C file */ |
| char *error; /* Code to execute when an error is seen */ |
| char *overflow; /* Code to execute on a stack overflow */ |
| char *failure; /* Code to execute on parser failure */ |
| char *accept; /* Code to execute when the parser excepts */ |
| char *extracode; /* Code appended to the generated file */ |
| char *tokendest; /* Code to execute to destroy token data */ |
| char *vardest; /* Code for the default non-terminal destructor */ |
| char *filename; /* Name of the input file */ |
| char *outname; /* Name of the current output file */ |
| char *tokenprefix; /* A prefix added to token names in the .h file */ |
| int nconflict; /* Number of parsing conflicts */ |
| int tablesize; /* Size of the parse tables */ |
| int basisflag; /* Print only basis configurations */ |
| int has_fallback; /* True if any %fallback is seen in the grammar */ |
| int nolinenosflag; /* True if #line statements should not be printed */ |
| char *argv0; /* Name of the program */ |
| }; |
| |
| #define MemoryCheck(X) if((X)==0){ \ |
| extern void memory_error(); \ |
| memory_error(); \ |
| } |
| |
| /**************** From the file "table.h" *********************************/ |
| /* |
| ** All code in this file has been automatically generated |
| ** from a specification in the file |
| ** "table.q" |
| ** by the associative array code building program "aagen". |
| ** Do not edit this file! Instead, edit the specification |
| ** file, then rerun aagen. |
| */ |
| /* |
| ** Code for processing tables in the LEMON parser generator. |
| */ |
| /* Routines for handling a strings */ |
| |
| const char *Strsafe(const char *); |
| |
| void Strsafe_init(void); |
| int Strsafe_insert(const char *); |
| const char *Strsafe_find(const char *); |
| |
| /* Routines for handling symbols of the grammar */ |
| |
| struct symbol *Symbol_new(const char *); |
| int Symbolcmpp(const void *, const void *); |
| void Symbol_init(void); |
| int Symbol_insert(struct symbol *, const char *); |
| struct symbol *Symbol_find(const char *); |
| struct symbol *Symbol_Nth(int); |
| int Symbol_count(void); |
| struct symbol **Symbol_arrayof(void); |
| |
| /* Routines to manage the state table */ |
| |
| int Configcmp(const char *, const char *); |
| struct state *State_new(void); |
| void State_init(void); |
| int State_insert(struct state *, struct config *); |
| struct state *State_find(struct config *); |
| struct state **State_arrayof(/* */); |
| |
| /* Routines used for efficiency in Configlist_add */ |
| |
| void Configtable_init(void); |
| int Configtable_insert(struct config *); |
| struct config *Configtable_find(struct config *); |
| void Configtable_clear(int(*)(struct config *)); |
| |
| /****************** From the file "action.c" *******************************/ |
| /* |
| ** Routines processing parser actions in the LEMON parser generator. |
| */ |
| |
| /* Allocate a new parser action */ |
| static struct action *Action_new(void){ |
| static struct action *freelist = 0; |
| struct action *newaction; |
| |
| if( freelist==0 ){ |
| int i; |
| int amt = 100; |
| freelist = (struct action *)calloc(amt, sizeof(struct action)); |
| if( freelist==0 ){ |
| fprintf(stderr,"Unable to allocate memory for a new parser action."); |
| exit(1); |
| } |
| for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; |
| freelist[amt-1].next = 0; |
| } |
| newaction = freelist; |
| freelist = freelist->next; |
| return newaction; |
| } |
| |
| /* Compare two actions for sorting purposes. Return negative, zero, or |
| ** positive if the first action is less than, equal to, or greater than |
| ** the first |
| */ |
| static int actioncmp( |
| struct action *ap1, |
| struct action *ap2 |
| ){ |
| int rc; |
| rc = ap1->sp->index - ap2->sp->index; |
| if( rc==0 ){ |
| rc = (int)ap1->type - (int)ap2->type; |
| } |
| if( rc==0 && ap1->type==REDUCE ){ |
| rc = ap1->x.rp->index - ap2->x.rp->index; |
| } |
| if( rc==0 ){ |
| rc = (int) (ap2 - ap1); |
| } |
| return rc; |
| } |
| |
| /* Sort parser actions */ |
| static struct action *Action_sort( |
| struct action *ap |
| ){ |
| ap = (struct action *)msort((char *)ap,(char **)&ap->next, |
| (int(*)(const char*,const char*))actioncmp); |
| return ap; |
| } |
| |
| void Action_add( |
| struct action **app, |
| enum e_action type, |
| struct symbol *sp, |
| char *arg |
| ){ |
| struct action *newaction; |
| newaction = Action_new(); |
| newaction->next = *app; |
| *app = newaction; |
| newaction->type = type; |
| newaction->sp = sp; |
| if( type==SHIFT ){ |
| newaction->x.stp = (struct state *)arg; |
| }else{ |
| newaction->x.rp = (struct rule *)arg; |
| } |
| } |
| /********************** New code to implement the "acttab" module ***********/ |
| /* |
| ** This module implements routines use to construct the yy_action[] table. |
| */ |
| |
| /* |
| ** The state of the yy_action table under construction is an instance of |
| ** the following structure. |
| ** |
| ** The yy_action table maps the pair (state_number, lookahead) into an |
| ** action_number. The table is an array of integers pairs. The state_number |
| ** determines an initial offset into the yy_action array. The lookahead |
| ** value is then added to this initial offset to get an index X into the |
| ** yy_action array. If the aAction[X].lookahead equals the value of the |
| ** of the lookahead input, then the value of the action_number output is |
| ** aAction[X].action. If the lookaheads do not match then the |
| ** default action for the state_number is returned. |
| ** |
| ** All actions associated with a single state_number are first entered |
| ** into aLookahead[] using multiple calls to acttab_action(). Then the |
| ** actions for that single state_number are placed into the aAction[] |
| ** array with a single call to acttab_insert(). The acttab_insert() call |
| ** also resets the aLookahead[] array in preparation for the next |
| ** state number. |
| */ |
| struct lookahead_action { |
| int lookahead; /* Value of the lookahead token */ |
| int action; /* Action to take on the given lookahead */ |
| }; |
| typedef struct acttab acttab; |
| struct acttab { |
| int nAction; /* Number of used slots in aAction[] */ |
| int nActionAlloc; /* Slots allocated for aAction[] */ |
| struct lookahead_action |
| *aAction, /* The yy_action[] table under construction */ |
| *aLookahead; /* A single new transaction set */ |
| int mnLookahead; /* Minimum aLookahead[].lookahead */ |
| int mnAction; /* Action associated with mnLookahead */ |
| int mxLookahead; /* Maximum aLookahead[].lookahead */ |
| int nLookahead; /* Used slots in aLookahead[] */ |
| int nLookaheadAlloc; /* Slots allocated in aLookahead[] */ |
| }; |
| |
| /* Return the number of entries in the yy_action table */ |
| #define acttab_size(X) ((X)->nAction) |
| |
| /* The value for the N-th entry in yy_action */ |
| #define acttab_yyaction(X,N) ((X)->aAction[N].action) |
| |
| /* The value for the N-th entry in yy_lookahead */ |
| #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead) |
| |
| /* Free all memory associated with the given acttab */ |
| void acttab_free(acttab *p){ |
| free( p->aAction ); |
| free( p->aLookahead ); |
| free( p ); |
| } |
| |
| /* Allocate a new acttab structure */ |
| acttab *acttab_alloc(void){ |
| acttab *p = (acttab *) calloc( 1, sizeof(*p) ); |
| if( p==0 ){ |
| fprintf(stderr,"Unable to allocate memory for a new acttab."); |
| exit(1); |
| } |
| memset(p, 0, sizeof(*p)); |
| return p; |
| } |
| |
| /* Add a new action to the current transaction set. |
| ** |
| ** This routine is called once for each lookahead for a particular |
| ** state. |
| */ |
| void acttab_action(acttab *p, int lookahead, int action){ |
| if( p->nLookahead>=p->nLookaheadAlloc ){ |
| p->nLookaheadAlloc += 25; |
| p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead, |
| sizeof(p->aLookahead[0])*p->nLookaheadAlloc ); |
| if( p->aLookahead==0 ){ |
| fprintf(stderr,"malloc failed\n"); |
| exit(1); |
| } |
| } |
| if( p->nLookahead==0 ){ |
| p->mxLookahead = lookahead; |
| p->mnLookahead = lookahead; |
| p->mnAction = action; |
| }else{ |
| if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead; |
| if( p->mnLookahead>lookahead ){ |
| p->mnLookahead = lookahead; |
| p->mnAction = action; |
| } |
| } |
| p->aLookahead[p->nLookahead].lookahead = lookahead; |
| p->aLookahead[p->nLookahead].action = action; |
| p->nLookahead++; |
| } |
| |
| /* |
| ** Add the transaction set built up with prior calls to acttab_action() |
| ** into the current action table. Then reset the transaction set back |
| ** to an empty set in preparation for a new round of acttab_action() calls. |
| ** |
| ** Return the offset into the action table of the new transaction. |
| */ |
| int acttab_insert(acttab *p){ |
| int i, j, k, n; |
| assert( p->nLookahead>0 ); |
| |
| /* Make sure we have enough space to hold the expanded action table |
| ** in the worst case. The worst case occurs if the transaction set |
| ** must be appended to the current action table |
| */ |
| n = p->mxLookahead + 1; |
| if( p->nAction + n >= p->nActionAlloc ){ |
| int oldAlloc = p->nActionAlloc; |
| p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20; |
| p->aAction = (struct lookahead_action *) realloc( p->aAction, |
| sizeof(p->aAction[0])*p->nActionAlloc); |
| if( p->aAction==0 ){ |
| fprintf(stderr,"malloc failed\n"); |
| exit(1); |
| } |
| for(i=oldAlloc; i<p->nActionAlloc; i++){ |
| p->aAction[i].lookahead = -1; |
| p->aAction[i].action = -1; |
| } |
| } |
| |
| /* Scan the existing action table looking for an offset that is a |
| ** duplicate of the current transaction set. Fall out of the loop |
| ** if and when the duplicate is found. |
| ** |
| ** i is the index in p->aAction[] where p->mnLookahead is inserted. |
| */ |
| for(i=p->nAction-1; i>=0; i--){ |
| if( p->aAction[i].lookahead==p->mnLookahead ){ |
| /* All lookaheads and actions in the aLookahead[] transaction |
| ** must match against the candidate aAction[i] entry. */ |
| if( p->aAction[i].action!=p->mnAction ) continue; |
| for(j=0; j<p->nLookahead; j++){ |
| k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
| if( k<0 || k>=p->nAction ) break; |
| if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break; |
| if( p->aLookahead[j].action!=p->aAction[k].action ) break; |
| } |
| if( j<p->nLookahead ) continue; |
| |
| /* No possible lookahead value that is not in the aLookahead[] |
| ** transaction is allowed to match aAction[i] */ |
| n = 0; |
| for(j=0; j<p->nAction; j++){ |
| if( p->aAction[j].lookahead<0 ) continue; |
| if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++; |
| } |
| if( n==p->nLookahead ){ |
| break; /* An exact match is found at offset i */ |
| } |
| } |
| } |
| |
| /* If no existing offsets exactly match the current transaction, find an |
| ** an empty offset in the aAction[] table in which we can add the |
| ** aLookahead[] transaction. |
| */ |
| if( i<0 ){ |
| /* Look for holes in the aAction[] table that fit the current |
| ** aLookahead[] transaction. Leave i set to the offset of the hole. |
| ** If no holes are found, i is left at p->nAction, which means the |
| ** transaction will be appended. */ |
| for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){ |
| if( p->aAction[i].lookahead<0 ){ |
| for(j=0; j<p->nLookahead; j++){ |
| k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
| if( k<0 ) break; |
| if( p->aAction[k].lookahead>=0 ) break; |
| } |
| if( j<p->nLookahead ) continue; |
| for(j=0; j<p->nAction; j++){ |
| if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break; |
| } |
| if( j==p->nAction ){ |
| break; /* Fits in empty slots */ |
| } |
| } |
| } |
| } |
| /* Insert transaction set at index i. */ |
| for(j=0; j<p->nLookahead; j++){ |
| k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
| p->aAction[k] = p->aLookahead[j]; |
| if( k>=p->nAction ) p->nAction = k+1; |
| } |
| p->nLookahead = 0; |
| |
| /* Return the offset that is added to the lookahead in order to get the |
| ** index into yy_action of the action */ |
| return i - p->mnLookahead; |
| } |
| |
| /********************** From the file "build.c" *****************************/ |
| /* |
| ** Routines to construction the finite state machine for the LEMON |
| ** parser generator. |
| */ |
| |
| /* Find a precedence symbol of every rule in the grammar. |
| ** |
| ** Those rules which have a precedence symbol coded in the input |
| ** grammar using the "[symbol]" construct will already have the |
| ** rp->precsym field filled. Other rules take as their precedence |
| ** symbol the first RHS symbol with a defined precedence. If there |
| ** are not RHS symbols with a defined precedence, the precedence |
| ** symbol field is left blank. |
| */ |
| void FindRulePrecedences(struct lemon *xp) |
| { |
| struct rule *rp; |
| for(rp=xp->rule; rp; rp=rp->next){ |
| if( rp->precsym==0 ){ |
| int i, j; |
| for(i=0; i<rp->nrhs && rp->precsym==0; i++){ |
| struct symbol *sp = rp->rhs[i]; |
| if( sp->type==MULTITERMINAL ){ |
| for(j=0; j<sp->nsubsym; j++){ |
| if( sp->subsym[j]->prec>=0 ){ |
| rp->precsym = sp->subsym[j]; |
| break; |
| } |
| } |
| }else if( sp->prec>=0 ){ |
| rp->precsym = rp->rhs[i]; |
| } |
| } |
| } |
| } |
| return; |
| } |
| |
| /* Find all nonterminals which will generate the empty string. |
| ** Then go back and compute the first sets of every nonterminal. |
| ** The first set is the set of all terminal symbols which can begin |
| ** a string generated by that nonterminal. |
| */ |
| void FindFirstSets(struct lemon *lemp) |
| { |
| int i, j; |
| struct rule *rp; |
| int progress; |
| |
| for(i=0; i<lemp->nsymbol; i++){ |
| lemp->symbols[i]->lambda = LEMON_FALSE; |
| } |
| for(i=lemp->nterminal; i<lemp->nsymbol; i++){ |
| lemp->symbols[i]->firstset = SetNew(); |
| } |
| |
| /* First compute all lambdas */ |
| do{ |
| progress = 0; |
| for(rp=lemp->rule; rp; rp=rp->next){ |
| if( rp->lhs->lambda ) continue; |
| for(i=0; i<rp->nrhs; i++){ |
| struct symbol *sp = rp->rhs[i]; |
| if( sp->type!=TERMINAL || sp->lambda==LEMON_FALSE ) break; |
| } |
| if( i==rp->nrhs ){ |
| rp->lhs->lambda = LEMON_TRUE; |
| progress = 1; |
| } |
| } |
| }while( progress ); |
| |
| /* Now compute all first sets */ |
| do{ |
| struct symbol *s1, *s2; |
| progress = 0; |
| for(rp=lemp->rule; rp; rp=rp->next){ |
| s1 = rp->lhs; |
| for(i=0; i<rp->nrhs; i++){ |
| s2 = rp->rhs[i]; |
| if( s2->type==TERMINAL ){ |
| progress += SetAdd(s1->firstset,s2->index); |
| break; |
| }else if( s2->type==MULTITERMINAL ){ |
| for(j=0; j<s2->nsubsym; j++){ |
| progress += SetAdd(s1->firstset,s2->subsym[j]->index); |
| } |
| break; |
| }else if( s1==s2 ){ |
| if( s1->lambda==LEMON_FALSE ) break; |
| }else{ |
| progress += SetUnion(s1->firstset,s2->firstset); |
| if( s2->lambda==LEMON_FALSE ) break; |
| } |
| } |
| } |
| }while( progress ); |
| return; |
| } |
| |
| /* Compute all LR(0) states for the grammar. Links |
| ** are added to between some states so that the LR(1) follow sets |
| ** can be computed later. |
| */ |
| PRIVATE struct state *getstate(struct lemon *); /* forward reference */ |
| void FindStates(struct lemon *lemp) |
| { |
| struct symbol *sp; |
| struct rule *rp; |
| |
| Configlist_init(); |
| |
| /* Find the start symbol */ |
| if( lemp->start ){ |
| sp = Symbol_find(lemp->start); |
| if( sp==0 ){ |
| ErrorMsg(lemp->filename,0, |
| "The specified start symbol \"%s\" is not \ |
| in a nonterminal of the grammar. \"%s\" will be used as the start \ |
| symbol instead.",lemp->start,lemp->rule->lhs->name); |
| lemp->errorcnt++; |
| sp = lemp->rule->lhs; |
| } |
| }else{ |
| sp = lemp->rule->lhs; |
| } |
| |
| /* Make sure the start symbol doesn't occur on the right-hand side of |
| ** any rule. Report an error if it does. (YACC would generate a new |
| ** start symbol in this case.) */ |
| for(rp=lemp->rule; rp; rp=rp->next){ |
| int i; |
| for(i=0; i<rp->nrhs; i++){ |
| if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */ |
| ErrorMsg(lemp->filename,0, |
| "The start symbol \"%s\" occurs on the \ |
| right-hand side of a rule. This will result in a parser which \ |
| does not work properly.",sp->name); |
| lemp->errorcnt++; |
| } |
| } |
| } |
| |
| /* The basis configuration set for the first state |
| ** is all rules which have the start symbol as their |
| ** left-hand side */ |
| for(rp=sp->rule; rp; rp=rp->nextlhs){ |
| struct config *newcfp; |
| rp->lhsStart = 1; |
| newcfp = Configlist_addbasis(rp,0); |
| SetAdd(newcfp->fws,0); |
| } |
| |
| /* Compute the first state. All other states will be |
| ** computed automatically during the computation of the first one. |
| ** The returned pointer to the first state is not used. */ |
| (void)getstate(lemp); |
| return; |
| } |
| |
| /* Return a pointer to a state which is described by the configuration |
| ** list which has been built from calls to Configlist_add. |
| */ |
| PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */ |
| PRIVATE struct state *getstate(struct lemon *lemp) |
| { |
| struct config *cfp, *bp; |
| struct state *stp; |
| |
| /* Extract the sorted basis of the new state. The basis was constructed |
| ** by prior calls to "Configlist_addbasis()". */ |
| Configlist_sortbasis(); |
| bp = Configlist_basis(); |
| |
| /* Get a state with the same basis */ |
| stp = State_find(bp); |
| if( stp ){ |
| /* A state with the same basis already exists! Copy all the follow-set |
| ** propagation links from the state under construction into the |
| ** preexisting state, then return a pointer to the preexisting state */ |
| struct config *x, *y; |
| for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){ |
| Plink_copy(&y->bplp,x->bplp); |
| Plink_delete(x->fplp); |
| x->fplp = x->bplp = 0; |
| } |
| cfp = Configlist_return(); |
| Configlist_eat(cfp); |
| }else{ |
| /* This really is a new state. Construct all the details */ |
| Configlist_closure(lemp); /* Compute the configuration closure */ |
| Configlist_sort(); /* Sort the configuration closure */ |
| cfp = Configlist_return(); /* Get a pointer to the config list */ |
| stp = State_new(); /* A new state structure */ |
| MemoryCheck(stp); |
| stp->bp = bp; /* Remember the configuration basis */ |
| stp->cfp = cfp; /* Remember the configuration closure */ |
| stp->statenum = lemp->nstate++; /* Every state gets a sequence number */ |
| stp->ap = 0; /* No actions, yet. */ |
| State_insert(stp,stp->bp); /* Add to the state table */ |
| buildshifts(lemp,stp); /* Recursively compute successor states */ |
| } |
| return stp; |
| } |
| |
| /* |
| ** Return true if two symbols are the same. |
| */ |
| int same_symbol(struct symbol *a, struct symbol *b) |
| { |
| int i; |
| if( a==b ) return 1; |
| if( a->type!=MULTITERMINAL ) return 0; |
| if( b->type!=MULTITERMINAL ) return 0; |
| if( a->nsubsym!=b->nsubsym ) return 0; |
| for(i=0; i<a->nsubsym; i++){ |
| if( a->subsym[i]!=b->subsym[i] ) return 0; |
| } |
| return 1; |
| } |
| |
| /* Construct all successor states to the given state. A "successor" |
| ** state is any state which can be reached by a shift action. |
| */ |
| PRIVATE void buildshifts(struct lemon *lemp, struct state *stp) |
| { |
| struct config *cfp; /* For looping thru the config closure of "stp" */ |
| struct config *bcfp; /* For the inner loop on config closure of "stp" */ |
| struct config *newcfg; /* */ |
| struct symbol *sp; /* Symbol following the dot in configuration "cfp" */ |
| struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */ |
| struct state *newstp; /* A pointer to a successor state */ |
| |
| /* Each configuration becomes complete after it contibutes to a successor |
| ** state. Initially, all configurations are incomplete */ |
| for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE; |
| |
| /* Loop through all configurations of the state "stp" */ |
| for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
| if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */ |
| if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */ |
| Configlist_reset(); /* Reset the new config set */ |
| sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */ |
| |
| /* For every configuration in the state "stp" which has the symbol "sp" |
| ** following its dot, add the same configuration to the basis set under |
| ** construction but with the dot shifted one symbol to the right. */ |
| for(bcfp=cfp; bcfp; bcfp=bcfp->next){ |
| if( bcfp->status==COMPLETE ) continue; /* Already used */ |
| if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */ |
| bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */ |
| if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */ |
| bcfp->status = COMPLETE; /* Mark this config as used */ |
| newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1); |
| Plink_add(&newcfg->bplp,bcfp); |
| } |
| |
| /* Get a pointer to the state described by the basis configuration set |
| ** constructed in the preceding loop */ |
| newstp = getstate(lemp); |
| |
| /* The state "newstp" is reached from the state "stp" by a shift action |
| ** on the symbol "sp" */ |
| if( sp->type==MULTITERMINAL ){ |
| int i; |
| for(i=0; i<sp->nsubsym; i++){ |
| Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp); |
| } |
| }else{ |
| Action_add(&stp->ap,SHIFT,sp,(char *)newstp); |
| } |
| } |
| } |
| |
| /* |
| ** Construct the propagation links |
| */ |
| void FindLinks(struct lemon *lemp) |
| { |
| int i; |
| struct config *cfp, *other; |
| struct state *stp; |
| struct plink *plp; |
| |
| /* Housekeeping detail: |
| ** Add to every propagate link a pointer back to the state to |
| ** which the link is attached. */ |
| for(i=0; i<lemp->nstate; i++){ |
| stp = lemp->sorted[i]; |
| for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
| cfp->stp = stp; |
| } |
| } |
| |
| /* Convert all backlinks into forward links. Only the forward |
| ** links are used in the follow-set computation. */ |
| for(i=0; i<lemp->nstate; i++){ |
| stp = lemp->sorted[i]; |
| for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
| for(plp=cfp->bplp; plp; plp=plp->next){ |
| other = plp->cfp; |
| Plink_add(&other->fplp,cfp); |
| } |
| } |
| } |
| } |
| |
| /* Compute all followsets. |
| ** |
| ** A followset is the set of all symbols which can come immediately |
| ** after a configuration. |
| */ |
| void FindFollowSets(struct lemon *lemp) |
| { |
| int i; |
| struct config *cfp; |
| struct plink *plp; |
| int progress; |
| int change; |
| |
| for(i=0; i<lemp->nstate; i++){ |
| for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ |
| cfp->status = INCOMPLETE; |
| } |
| } |
| |
| do{ |
| progress = 0; |
| for(i=0; i<lemp->nstate; i++){ |
| for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ |
| if( cfp->status==COMPLETE ) continue; |
| for(plp=cfp->fplp; plp; plp=plp->next){ |
| change = SetUnion(plp->cfp->fws,cfp->fws); |
| if( change ){ |
| plp->cfp->status = INCOMPLETE; |
| progress = 1; |
| } |
| } |
| cfp->status = COMPLETE; |
| } |
| } |
| }while( progress ); |
| } |
| |
| static int resolve_conflict(struct action *,struct action *, struct symbol *); |
| |
| /* Compute the reduce actions, and resolve conflicts. |
| */ |
| void FindActions(struct lemon *lemp) |
| { |
| int i,j; |
| struct config *cfp; |
| struct state *stp; |
| struct symbol *sp; |
| struct rule *rp; |
| |
| /* Add all of the reduce actions |
| ** A reduce action is added for each element of the followset of |
| ** a configuration which has its dot at the extreme right. |
| */ |
| for(i=0; i<lemp->nstate; i++){ /* Loop over all states */ |
| stp = lemp->sorted[i]; |
| for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */ |
| if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */ |
| for(j=0; j<lemp->nterminal; j++){ |
| if( SetFind(cfp->fws,j) ){ |
| /* Add a reduce action to the state "stp" which will reduce by the |
| ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */ |
| Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp); |
| } |
| } |
| } |
| } |
| } |
| |
| /* Add the accepting token */ |
| if( lemp->start ){ |
| sp = Symbol_find(lemp->start); |
| if( sp==0 ) sp = lemp->rule->lhs; |
| }else{ |
| sp = lemp->rule->lhs; |
| } |
| /* Add to the first state (which is always the starting state of the |
| ** finite state machine) an action to ACCEPT if the lookahead is the |
| ** start nonterminal. */ |
| Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); |
| |
| /* Resolve conflicts */ |
| for(i=0; i<lemp->nstate; i++){ |
| struct action *ap, *nap; |
| struct state *stp; |
| stp = lemp->sorted[i]; |
| /* assert( stp->ap ); */ |
| stp->ap = Action_sort(stp->ap); |
| for(ap=stp->ap; ap && ap->next; ap=ap->next){ |
| for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ |
| /* The two actions "ap" and "nap" have the same lookahead. |
| ** Figure out which one should be used */ |
| lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym); |
| } |
| } |
| } |
| |
| /* Report an error for each rule that can never be reduced. */ |
| for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE; |
| for(i=0; i<lemp->nstate; i++){ |
| struct action *ap; |
| for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ |
| if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE; |
| } |
| } |
| for(rp=lemp->rule; rp; rp=rp->next){ |
| if( rp->canReduce ) continue; |
| ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n"); |
| lemp->errorcnt++; |
| } |
| } |
| |
| /* Resolve a conflict between the two given actions. If the |
| ** conflict can't be resolved, return non-zero. |
| ** |
| ** NO LONGER TRUE: |
| ** To resolve a conflict, first look to see if either action |
| ** is on an error rule. In that case, take the action which |
| ** is not associated with the error rule. If neither or both |
| ** actions are associated with an error rule, then try to |
| ** use precedence to resolve the conflict. |
| ** |
| ** If either action is a SHIFT, then it must be apx. This |
| ** function won't work if apx->type==REDUCE and apy->type==SHIFT. |
| */ |
| static int resolve_conflict( |
| struct action *apx, |
| struct action *apy, |
| struct symbol *errsym /* The error symbol (if defined. NULL otherwise) */ |
| ){ |
| struct symbol *spx, *spy; |
| int errcnt = 0; |
| assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */ |
| if( apx->type==SHIFT && apy->type==SHIFT ){ |
| apy->type = SSCONFLICT; |
| errcnt++; |
| } |
| if( apx->type==SHIFT && apy->type==REDUCE ){ |
| spx = apx->sp; |
| spy = apy->x.rp->precsym; |
| if( spy==0 || spx->prec<0 || spy->prec<0 ){ |
| /* Not enough precedence information. */ |
| apy->type = SRCONFLICT; |
| errcnt++; |
| }else if( spx->prec>spy->prec ){ /* higher precedence wins */ |
| apy->type = RD_RESOLVED; |
| }else if( spx->prec<spy->prec ){ |
| apx->type = SH_RESOLVED; |
| }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */ |
| apy->type = RD_RESOLVED; /* associativity */ |
| }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */ |
| apx->type = SH_RESOLVED; |
| }else{ |
| assert( spx->prec==spy->prec && spx->assoc==NONE ); |
| apy->type = SRCONFLICT; |
| errcnt++; |
| } |
| }else if( apx->type==REDUCE && apy->type==REDUCE ){ |
| spx = apx->x.rp->precsym; |
| spy = apy->x.rp->precsym; |
| if( spx==0 || spy==0 || spx->prec<0 || |
| spy->prec<0 || spx->prec==spy->prec ){ |
| apy->type = RRCONFLICT; |
| errcnt++; |
| }else if( spx->prec>spy->prec ){ |
| apy->type = RD_RESOLVED; |
| }else if( spx->prec<spy->prec ){ |
| apx->type = RD_RESOLVED; |
| } |
| }else{ |
| assert( |
| apx->type==SH_RESOLVED || |
| apx->type==RD_RESOLVED || |
| apx->type==SSCONFLICT || |
| apx->type==SRCONFLICT || |
| apx->type==RRCONFLICT || |
| apy->type==SH_RESOLVED || |
| apy->type==RD_RESOLVED || |
| apy->type==SSCONFLICT || |
| apy->type==SRCONFLICT || |
| apy->type==RRCONFLICT |
| ); |
| /* The REDUCE/SHIFT case cannot happen because SHIFTs come before |
| ** REDUCEs on the list. If we reach this point it must be because |
| ** the parser conflict had already been resolved. */ |
| } |
| return errcnt; |
| } |
| /********************* From the file "configlist.c" *************************/ |
| /* |
| ** Routines to processing a configuration list and building a state |
| ** in the LEMON parser generator. |
| */ |
| |
| static struct config *freelist = 0; /* List of free configurations */ |
| static struct config *current = 0; /* Top of list of configurations */ |
| static struct config **currentend = 0; /* Last on list of configs */ |
| static struct config *basis = 0; /* Top of list of basis configs */ |
| static struct config **basisend = 0; /* End of list of basis configs */ |
| |
| /* Return a pointer to a new configuration */ |
| PRIVATE struct config *newconfig(){ |
| struct config *newcfg; |
| if( freelist==0 ){ |
| int i; |
| int amt = 3; |
| freelist = (struct config *)calloc( amt, sizeof(struct config) ); |
| if( freelist==0 ){ |
| fprintf(stderr,"Unable to allocate memory for a new configuration."); |
| exit(1); |
| } |
| for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; |
| freelist[amt-1].next = 0; |
| } |
| newcfg = freelist; |
| freelist = freelist->next; |
| return newcfg; |
| } |
| |
| /* The configuration "old" is no longer used */ |
| PRIVATE void deleteconfig(struct config *old) |
| { |
| old->next = freelist; |
| freelist = old; |
| } |
| |
| /* Initialized the configuration list builder */ |
| void Configlist_init(){ |
| current = 0; |
| currentend = ¤t; |
| basis = 0; |
| basisend = &basis; |
| Configtable_init(); |
| return; |
| } |
| |
| /* Initialized the configuration list builder */ |
| void Configlist_reset(){ |
| current = 0; |
| currentend = ¤t; |
| basis = 0; |
| basisend = &basis; |
| Configtable_clear(0); |
| return; |
| } |
| |
| /* Add another configuration to the configuration list */ |
| struct config *Configlist_add( |
| struct rule *rp, /* The rule */ |
| int dot /* Index into the RHS of the rule where the dot goes */ |
| ){ |
| struct config *cfp, model; |
| |
| assert( currentend!=0 ); |
| model.rp = rp; |
| model.dot = dot; |
| cfp = Configtable_find(&model); |
| if( cfp==0 ){ |
| cfp = newconfig(); |
| cfp->rp = rp; |
| cfp->dot = dot; |
| cfp->fws = SetNew(); |
| cfp->stp = 0; |
| cfp->fplp = cfp->bplp = 0; |
| cfp->next = 0; |
| cfp->bp = 0; |
| *currentend = cfp; |
| currentend = &cfp->next; |
| Configtable_insert(cfp); |
| } |
| return cfp; |
| } |
| |
| /* Add a basis configuration to the configuration list */ |
| struct config *Configlist_addbasis(struct rule *rp, int dot) |
| { |
| struct config *cfp, model; |
| |
| assert( basisend!=0 ); |
| assert( currentend!=0 ); |
| model.rp = rp; |
| model.dot = dot; |
| cfp = Configtable_find(&model); |
| if( cfp==0 ){ |
| cfp = newconfig(); |
| cfp->rp = rp; |
| cfp->dot = dot; |
| cfp->fws = SetNew(); |
| cfp->stp = 0; |
| cfp->fplp = cfp->bplp = 0; |
| cfp->next = 0; |
| cfp->bp = 0; |
| *currentend = cfp; |
| currentend = &cfp->next; |
| *basisend = cfp; |
| basisend = &cfp->bp; |
| Configtable_insert(cfp); |
| } |
| return cfp; |
| } |
| |
| /* Compute the closure of the configuration list */ |
| void Configlist_closure(struct lemon *lemp) |
| { |
| struct config *cfp, *newcfp; |
| struct rule *rp, *newrp; |
| struct symbol *sp, *xsp; |
| int i, dot; |
| |
| assert( currentend!=0 ); |
| for(cfp=current; cfp; cfp=cfp->next){ |
| rp = cfp->rp; |
| dot = cfp->dot; |
| if( dot>=rp->nrhs ) continue; |
| sp = rp->rhs[dot]; |
| if( sp->type==NONTERMINAL ){ |
| if( sp->rule==0 && sp!=lemp->errsym ){ |
| ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.", |
| sp->name); |
| lemp->errorcnt++; |
| } |
| for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){ |
| newcfp = Configlist_add(newrp,0); |
| for(i=dot+1; i<rp->nrhs; i++){ |
| xsp = rp->rhs[i]; |
| if( xsp->type==TERMINAL ){ |
| SetAdd(newcfp->fws,xsp->index); |
| break; |
| }else if( xsp->type==MULTITERMINAL ){ |
| int k; |
| for(k=0; k<xsp->nsubsym; k++){ |
| SetAdd(newcfp->fws, xsp->subsym[k]->index); |
| } |
| break; |
| }else{ |
| SetUnion(newcfp->fws,xsp->firstset); |
| if( xsp->lambda==LEMON_FALSE ) break; |
| } |
| } |
| if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp); |
| } |
| } |
| } |
| return; |
| } |
| |
| /* Sort the configuration list */ |
| void Configlist_sort(){ |
| current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp); |
| currentend = 0; |
| return; |
| } |
| |
| /* Sort the basis configuration list */ |
| void Configlist_sortbasis(){ |
| basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp); |
| basisend = 0; |
| return; |
| } |
| |
| /* Return a pointer to the head of the configuration list and |
| ** reset the list */ |
| struct config *Configlist_return(){ |
| struct config *old; |
| old = current; |
| current = 0; |
| currentend = 0; |
| return old; |
| } |
| |
| /* Return a pointer to the head of the configuration list and |
| ** reset the list */ |
| struct config *Configlist_basis(){ |
| struct config *old; |
| old = basis; |
| basis = 0; |
| basisend = 0; |
| return old; |
| } |
| |
| /* Free all elements of the given configuration list */ |
| void Configlist_eat(struct config *cfp) |
| { |
| struct config *nextcfp; |
| for(; cfp; cfp=nextcfp){ |
| nextcfp = cfp->next; |
| assert( cfp->fplp==0 ); |
| assert( cfp->bplp==0 ); |
| if( cfp->fws ) SetFree(cfp->fws); |
| deleteconfig(cfp); |
| } |
| return; |
| } |
| /***************** From the file "error.c" *********************************/ |
| /* |
| ** Code for printing error message. |
| */ |
| |
| void ErrorMsg(const char *filename, int lineno, const char *format, ...){ |
| va_list ap; |
| fprintf(stderr, "%s:%d: ", filename, lineno); |
| va_start(ap, format); |
| vfprintf(stderr,format,ap); |
| va_end(ap); |
| fprintf(stderr, "\n"); |
| } |
| /**************** From the file "main.c" ************************************/ |
| /* |
| ** Main program file for the LEMON parser generator. |
| */ |
| |
| /* Report an out-of-memory condition and abort. This function |
| ** is used mostly by the "MemoryCheck" macro in struct.h |
| */ |
| void memory_error(){ |
| fprintf(stderr,"Out of memory. Aborting...\n"); |
| exit(1); |
| } |
| |
| static int nDefine = 0; /* Number of -D options on the command line */ |
| static char **azDefine = 0; /* Name of the -D macros */ |
| |
| /* This routine is called with the argument to each -D command-line option. |
| ** Add the macro defined to the azDefine array. |
| */ |
| static void handle_D_option(char *z){ |
| char **paz; |
| nDefine++; |
| azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine); |
| if( azDefine==0 ){ |
| fprintf(stderr,"out of memory\n"); |
| exit(1); |
| } |
| paz = &azDefine[nDefine-1]; |
| *paz = (char *) malloc( lemonStrlen(z)+1 ); |
| if( *paz==0 ){ |
| fprintf(stderr,"out of memory\n"); |
| exit(1); |
| } |
| strcpy(*paz, z); |
| for(z=*paz; *z && *z!='='; z++){} |
| *z = 0; |
| } |
| |
| static char *user_templatename = NULL; |
| static void handle_T_option(char *z){ |
| user_templatename = (char *) malloc( lemonStrlen(z)+1 ); |
| if( user_templatename==0 ){ |
| memory_error(); |
| } |
| strcpy(user_templatename, z); |
| } |
| |
| /* The main program. Parse the command line and do it... */ |
| int main(int argc, char **argv) |
| { |
| static int version = 0; |
| static int rpflag = 0; |
| static int basisflag = 0; |
| static int compress = 0; |
| static int quiet = 0; |
| static int statistics = 0; |
| static int mhflag = 0; |
| static int nolinenosflag = 0; |
| static int noResort = 0; |
| static struct s_options options[] = { |
| {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."}, |
| {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."}, |
| {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."}, |
| {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."}, |
| {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."}, |
| {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."}, |
| {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."}, |
| {OPT_FLAG, "p", (char*)&showPrecedenceConflict, |
| "Show conflicts resolved by precedence rules"}, |
| {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."}, |
| {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"}, |
| {OPT_FLAG, "s", (char*)&statistics, |
| "Print parser stats to standard output."}, |
| {OPT_FLAG, "x", (char*)&version, "Print the version number."}, |
| {OPT_FLAG,0,0,0} |
| }; |
| int i; |
| int exitcode; |
| struct lemon lem; |
| |
| atexit(LemonAtExit); |
| |
| OptInit(argv,options,stderr); |
| if( version ){ |
| printf("Lemon version 1.0\n"); |
| exit(0); |
| } |
| if( OptNArgs()!=1 ){ |
| fprintf(stderr,"Exactly one filename argument is required.\n"); |
| exit(1); |
| } |
| memset(&lem, 0, sizeof(lem)); |
| lem.errorcnt = 0; |
| |
| /* Initialize the machine */ |
| Strsafe_init(); |
| Symbol_init(); |
| State_init(); |
| lem.argv0 = argv[0]; |
| lem.filename = OptArg(0); |
| lem.basisflag = basisflag; |
| lem.nolinenosflag = nolinenosflag; |
| Symbol_new("$"); |
| lem.errsym = Symbol_new("error"); |
| lem.errsym->useCnt = 0; |
| |
| /* Parse the input file */ |
| Parse(&lem); |
| if( lem.errorcnt ) exit(lem.errorcnt); |
| if( lem.nrule==0 ){ |
| fprintf(stderr,"Empty grammar.\n"); |
| exit(1); |
| } |
| |
| /* Count and index the symbols of the grammar */ |
| lem.nsymbol = Symbol_count(); |
| Symbol_new("{default}"); |
| lem.symbols = Symbol_arrayof(); |
| for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i; |
| qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*), Symbolcmpp); |
| for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i; |
| for(i=1; isupper(lem.symbols[i]->name[0]); i++); |
| lem.nterminal = i; |
| |
| /* Generate a reprint of the grammar, if requested on the command line */ |
| if( rpflag ){ |
| Reprint(&lem); |
| }else{ |
| /* Initialize the size for all follow and first sets */ |
| SetSize(lem.nterminal+1); |
| |
| /* Find the precedence for every production rule (that has one) */ |
| FindRulePrecedences(&lem); |
| |
| /* Compute the lambda-nonterminals and the first-sets for every |
| ** nonterminal */ |
| FindFirstSets(&lem); |
| |
| /* Compute all LR(0) states. Also record follow-set propagation |
| ** links so that the follow-set can be computed later */ |
| lem.nstate = 0; |
| FindStates(&lem); |
| lem.sorted = State_arrayof(); |
| |
| /* Tie up loose ends on the propagation links */ |
| FindLinks(&lem); |
| |
| /* Compute the follow set of every reducible configuration */ |
| FindFollowSets(&lem); |
| |
| /* Compute the action tables */ |
| FindActions(&lem); |
| |
| /* Compress the action tables */ |
| if( compress==0 ) CompressTables(&lem); |
| |
| /* Reorder and renumber the states so that states with fewer choices |
| ** occur at the end. This is an optimization that helps make the |
| ** generated parser tables smaller. */ |
| if( noResort==0 ) ResortStates(&lem); |
| |
| /* Generate a report of the parser generated. (the "y.output" file) */ |
| if( !quiet ) ReportOutput(&lem); |
| |
| /* Generate the source code for the parser */ |
| ReportTable(&lem, mhflag); |
| |
| /* Produce a header file for use by the scanner. (This step is |
| ** omitted if the "-m" option is used because makeheaders will |
| ** generate the file for us.) */ |
| if( !mhflag ) ReportHeader(&lem); |
| } |
| if( statistics ){ |
| printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n", |
| lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule); |
| printf(" %d states, %d parser table entries, %d conflicts\n", |
| lem.nstate, lem.tablesize, lem.nconflict); |
| } |
| if( lem.nconflict > 0 ){ |
| fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict); |
| } |
| |
| /* return 0 on success, 1 on failure. */ |
| exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0; |
| successful_exit = (exitcode == 0); |
| exit(exitcode); |
| return (exitcode); |
| } |
| /******************** From the file "msort.c" *******************************/ |
| /* |
| ** A generic merge-sort program. |
| ** |
| ** USAGE: |
| ** Let "ptr" be a pointer to some structure which is at the head of |
| ** a null-terminated list. Then to sort the list call: |
| ** |
| ** ptr = msort(ptr,&(ptr->next),cmpfnc); |
| ** |
| ** In the above, "cmpfnc" is a pointer to a function which compares |
| ** two instances of the structure and returns an integer, as in |
| ** strcmp. The second argument is a pointer to the pointer to the |
| ** second element of the linked list. This address is used to compute |
| ** the offset to the "next" field within the structure. The offset to |
| ** the "next" field must be constant for all structures in the list. |
| ** |
| ** The function returns a new pointer which is the head of the list |
| ** after sorting. |
| ** |
| ** ALGORITHM: |
| ** Merge-sort. |
| */ |
| |
| /* |
| ** Return a pointer to the next structure in the linked list. |
| */ |
| #define NEXT(A) (*(char**)(((unsigned long)A)+offset)) |
| |
| /* |
| ** Inputs: |
| ** a: A sorted, null-terminated linked list. (May be null). |
| ** b: A sorted, null-terminated linked list. (May be null). |
| ** cmp: A pointer to the comparison function. |
| ** offset: Offset in the structure to the "next" field. |
| ** |
| ** Return Value: |
| ** A pointer to the head of a sorted list containing the elements |
| ** of both a and b. |
| ** |
| ** Side effects: |
| ** The "next" pointers for elements in the lists a and b are |
| ** changed. |
| */ |
| static char *merge( |
| char *a, |
| char *b, |
| int (*cmp)(const char*,const char*), |
| int offset |
| ){ |
| char *ptr, *head; |
| |
| if( a==0 ){ |
| head = b; |
| }else if( b==0 ){ |
| head = a; |
| }else{ |
| if( (*cmp)(a,b)<=0 ){ |
| ptr = a; |
| a = NEXT(a); |
| }else{ |
| ptr = b; |
| b = NEXT(b); |
| } |
| head = ptr; |
| while( a && b ){ |
| if( (*cmp)(a,b)<=0 ){ |
| NEXT(ptr) = a; |
| ptr = a; |
| a = NEXT(a); |
| }else{ |
| NEXT(ptr) = b; |
| ptr = b; |
| b = NEXT(b); |
| } |
| } |
| if( a ) NEXT(ptr) = a; |
| else NEXT(ptr) = b; |
| } |
| return head; |
| } |
| |
| /* |
| ** Inputs: |
| ** list: Pointer to a singly-linked list of structures. |
| ** next: Pointer to pointer to the second element of the list. |
| ** cmp: A comparison function. |
| ** |
| ** Return Value: |
| ** A pointer to the head of a sorted list containing the elements |
| ** orginally in list. |
| ** |
| ** Side effects: |
| ** The "next" pointers for elements in list are changed. |
| */ |
| #define LISTSIZE 30 |
| static char *msort( |
| char *list, |
| char **next, |
| int (*cmp)(const char*,const char*) |
| ){ |
| unsigned long offset; |
| char *ep; |
| char *set[LISTSIZE]; |
| int i; |
| offset = (unsigned long)next - (unsigned long)list; |
| for(i=0; i<LISTSIZE; i++) set[i] = 0; |
| while( list ){ |
| ep = list; |
| list = NEXT(list); |
| NEXT(ep) = 0; |
| for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){ |
| ep = merge(ep,set[i],cmp,offset); |
| set[i] = 0; |
| } |
| set[i] = ep; |
| } |
| ep = 0; |
| for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset); |
| return ep; |
| } |
| /************************ From the file "option.c" **************************/ |
| static char **argv; |
| static struct s_options *op; |
| static FILE *errstream; |
| |
| #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0) |
| |
| /* |
| ** Print the command line with a carrot pointing to the k-th character |
| ** of the n-th field. |
| */ |
| static void errline(int n, int k, FILE *err) |
| { |
| int spcnt, i; |
| if( argv[0] ) fprintf(err,"%s",argv[0]); |
| spcnt = lemonStrlen(argv[0]) + 1; |
| for(i=1; i<n && argv[i]; i++){ |
| fprintf(err," %s",argv[i]); |
| spcnt += lemonStrlen(argv[i])+1; |
| } |
| spcnt += k; |
| for(; argv[i]; i++) fprintf(err," %s",argv[i]); |
| if( spcnt<20 ){ |
| fprintf(err,"\n%*s^-- here\n",spcnt,""); |
| }else{ |
| fprintf(err,"\n%*shere --^\n",spcnt-7,""); |
| } |
| } |
| |
| /* |
| ** Return the index of the N-th non-switch argument. Return -1 |
| ** if N is out of range. |
| */ |
| static int argindex(int n) |
| { |
| int i; |
| int dashdash = 0; |
| if( argv!=0 && *argv!=0 ){ |
| for(i=1; argv[i]; i++){ |
| if( dashdash || !ISOPT(argv[i]) ){ |
| if( n==0 ) return i; |
| n--; |
| } |
| if( strcmp(argv[i],"--")==0 ) dashdash = 1; |
| } |
| } |
| return -1; |
| } |
| |
| static char emsg[] = "Command line syntax error: "; |
| |
| /* |
| ** Process a flag command line argument. |
| */ |
| static int handleflags(int i, FILE *err) |
| { |
| int v; |
| int errcnt = 0; |
| int j; |
| for(j=0; op[j].label; j++){ |
| if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break; |
| } |
| v = argv[i][0]=='-' ? 1 : 0; |
| if( op[j].label==0 ){ |
| if( err ){ |
| fprintf(err,"%sundefined option.\n",emsg); |
| errline(i,1,err); |
| } |
| errcnt++; |
| }else if( op[j].type==OPT_FLAG ){ |
| *((int*)op[j].arg) = v; |
| }else if( op[j].type==OPT_FFLAG ){ |
| (*(void(*)(int))(op[j].arg))(v); |
| }else if( op[j].type==OPT_FSTR ){ |
| (*(void(*)(char *))(op[j].arg))(&argv[i][2]); |
| }else{ |
| if( err ){ |
| fprintf(err,"%smissing argument on switch.\n",emsg); |
| errline(i,1,err); |
| } |
| errcnt++; |
| } |
| return errcnt; |
| } |
| |
| /* |
| ** Process a command line switch which has an argument. |
| */ |
| static int handleswitch(int i, FILE *err) |
| { |
| int lv = 0; |
| double dv = 0.0; |
| char *sv = 0, *end; |
| char *cp; |
| int j; |
| int errcnt = 0; |
| cp = strchr(argv[i],'='); |
| assert( cp!=0 ); |
| *cp = 0; |
| for(j=0; op[j].label; j++){ |
| if( strcmp(argv[i],op[j].label)==0 ) break; |
| } |
| *cp = '='; |
| if( op[j].label==0 ){ |
| if( err ){ |
| fprintf(err,"%sundefined option.\n",emsg); |
| errline(i,0,err); |
| } |
| errcnt++; |
| }else{ |
| cp++; |
| switch( op[j].type ){ |
| case OPT_FLAG: |
| case OPT_FFLAG: |
| if( err ){ |
| fprintf(err,"%soption requires an argument.\n",emsg); |
| errline(i,0,err); |
| } |
| errcnt++; |
| break; |
| case OPT_DBL: |
| case OPT_FDBL: |
| dv = strtod(cp,&end); |
| if( *end ){ |
| if( err ){ |
| fprintf(err,"%sillegal character in floating-point argument.\n",emsg); |
| errline(i,((unsigned long)end)-(unsigned long)argv[i],err); |
| } |
| errcnt++; |
| } |
| break; |
| case OPT_INT: |
| case OPT_FINT: |
| lv = strtol(cp,&end,0); |
| if( *end ){ |
| if( err ){ |
| fprintf(err,"%sillegal character in integer argument.\n",emsg); |
| errline(i,((unsigned long)end)-(unsigned long)argv[i],err); |
| } |
| errcnt++; |
| } |
| break; |
| case OPT_STR: |
| case OPT_FSTR: |
| sv = cp; |
| break; |
| } |
| switch( op[j].type ){ |
| case OPT_FLAG: |
| case OPT_FFLAG: |
| break; |
| case OPT_DBL: |
| *(double*)(op[j].arg) = dv; |
| break; |
| case OPT_FDBL: |
| (*(void(*)(double))(op[j].arg))(dv); |
| break; |
| case OPT_INT: |
| *(int*)(op[j].arg) = lv; |
| break; |
| case OPT_FINT: |
| (*(void(*)(int))(op[j].arg))((int)lv); |
| break; |
| case OPT_STR: |
| *(char**)(op[j].arg) = sv; |
| break; |
| case OPT_FSTR: |
| (*(void(*)(char *))(op[j].arg))(sv); |
| break; |
| } |
| } |
| return errcnt; |
| } |
| |
| int OptInit(char **a, struct s_options *o, FILE *err) |
| { |
| int errcnt = 0; |
| argv = a; |
| op = o; |
| errstream = err; |
| if( argv && *argv && op ){ |
| int i; |
| for(i=1; argv[i]; i++){ |
| if( argv[i][0]=='+' || argv[i][0]=='-' ){ |
| errcnt += handleflags(i,err); |
| }else if( strchr(argv[i],'=') ){ |
| errcnt += handleswitch(i,err); |
| } |
| } |
| } |
| if( errcnt>0 ){ |
| fprintf(err,"Valid command line options for \"%s\" are:\n",*a); |
| OptPrint(); |
| exit(1); |
| } |
| return 0; |
| } |
| |
| int OptNArgs(){ |
| int cnt = 0; |
| int dashdash = 0; |
| int i; |
| if( argv!=0 && argv[0]!=0 ){ |
| for(i=1; argv[i]; i++){ |
| if( dashdash || !ISOPT(argv[i]) ) cnt++; |
| if( strcmp(argv[i],"--")==0 ) dashdash = 1; |
| } |
| } |
| return cnt; |
| } |
| |
| char *OptArg(int n) |
| { |
| int i; |
| i = argindex(n); |
| return i>=0 ? argv[i] : 0; |
| } |
| |
| void OptErr(int n) |
| { |
| int i; |
| i = argindex(n); |
| if( i>=0 ) errline(i,0,errstream); |
| } |
| |
| void OptPrint(){ |
| int i; |
| int max, len; |
| max = 0; |
| for(i=0; op[i].label; i++){ |
| len = lemonStrlen(op[i].label) + 1; |
| switch( op[i].type ){ |
| case OPT_FLAG: |
| case OPT_FFLAG: |
| break; |
| case OPT_INT: |
| case OPT_FINT: |
| len += 9; /* length of "<integer>" */ |
| break; |
| case OPT_DBL: |
| case OPT_FDBL: |
| len += 6; /* length of "<real>" */ |
| break; |
| case OPT_STR: |
| case OPT_FSTR: |
| len += 8; /* length of "<string>" */ |
| break; |
| } |
| if( len>max ) max = len; |
| } |
| for(i=0; op[i].label; i++){ |
| switch( op[i].type ){ |
| case OPT_FLAG: |
| case OPT_FFLAG: |
| fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message); |
| break; |
| case OPT_INT: |
| case OPT_FINT: |
| fprintf(errstream," %s=<integer>%*s %s\n",op[i].label, |
| (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message); |
| break; |
| case OPT_DBL: |
| case OPT_FDBL: |
| fprintf(errstream," %s=<real>%*s %s\n",op[i].label, |
| (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message); |
| break; |
| case OPT_STR: |
| case OPT_FSTR: |
| fprintf(errstream," %s=<string>%*s %s\n",op[i].label, |
| (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message); |
| break; |
| } |
| } |
| } |
| /*********************** From the file "parse.c" ****************************/ |
| /* |
| ** Input file parser for the LEMON parser generator. |
| */ |
| |
| /* The state of the parser */ |
| enum e_state { |
| INITIALIZE, |
| WAITING_FOR_DECL_OR_RULE, |
| WAITING_FOR_DECL_KEYWORD, |
| WAITING_FOR_DECL_ARG, |
| WAITING_FOR_PRECEDENCE_SYMBOL, |
| WAITING_FOR_ARROW, |
| IN_RHS, |
| LHS_ALIAS_1, |
| LHS_ALIAS_2, |
| LHS_ALIAS_3, |
| RHS_ALIAS_1, |
| RHS_ALIAS_2, |
| PRECEDENCE_MARK_1, |
| PRECEDENCE_MARK_2, |
| RESYNC_AFTER_RULE_ERROR, |
| RESYNC_AFTER_DECL_ERROR, |
| WAITING_FOR_DESTRUCTOR_SYMBOL, |
| WAITING_FOR_DATATYPE_SYMBOL, |
| WAITING_FOR_FALLBACK_ID, |
| WAITING_FOR_WILDCARD_ID |
| }; |
| struct pstate { |
| char *filename; /* Name of the input file */ |
| int tokenlineno; /* Linenumber at which current token starts */ |
| int errorcnt; /* Number of errors so far */ |
| char *tokenstart; /* Text of current token */ |
| struct lemon *gp; /* Global state vector */ |
| enum e_state state; /* The state of the parser */ |
| struct symbol *fallback; /* The fallback token */ |
| struct symbol *lhs; /* Left-hand side of current rule */ |
| const char *lhsalias; /* Alias for the LHS */ |
| int nrhs; /* Number of right-hand side symbols seen */ |
| struct symbol *rhs[MAXRHS]; /* RHS symbols */ |
| const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */ |
| struct rule *prevrule; /* Previous rule parsed */ |
| const char *declkeyword; /* Keyword of a declaration */ |
| char **declargslot; /* Where the declaration argument should be put */ |
| int insertLineMacro; /* Add #line before declaration insert */ |
| int *decllinenoslot; /* Where to write declaration line number */ |
| enum e_assoc declassoc; /* Assign this association to decl arguments */ |
| int preccounter; /* Assign this precedence to decl arguments */ |
| struct rule *firstrule; /* Pointer to first rule in the grammar */ |
| struct rule *lastrule; /* Pointer to the most recently parsed rule */ |
| }; |
| |
| /* Parse a single token */ |
| static void parseonetoken(struct pstate *psp) |
| { |
| const char *x; |
| x = Strsafe(psp->tokenstart); /* Save the token permanently */ |
| #if 0 |
| printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno, |
| x,psp->state); |
| #endif |
| switch( psp->state ){ |
| case INITIALIZE: |
| psp->prevrule = 0; |
| psp->preccounter = 0; |
| psp->firstrule = psp->lastrule = 0; |
| psp->gp->nrule = 0; |
| /* Fall thru to next case */ |
| case WAITING_FOR_DECL_OR_RULE: |
| if( x[0]=='%' ){ |
| psp->state = WAITING_FOR_DECL_KEYWORD; |
| }else if( islower(x[0]) ){ |
| psp->lhs = Symbol_new(x); |
| psp->nrhs = 0; |
| psp->lhsalias = 0; |
| psp->state = WAITING_FOR_ARROW; |
| }else if( x[0]=='{' ){ |
| if( psp->prevrule==0 ){ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "There is no prior rule opon which to attach the code \ |
| fragment which begins on this line."); |
| psp->errorcnt++; |
| }else if( psp->prevrule->code!=0 ){ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Code fragment beginning on this line is not the first \ |
| to follow the previous rule."); |
| psp->errorcnt++; |
| }else{ |
| psp->prevrule->line = psp->tokenlineno; |
| psp->prevrule->code = &x[1]; |
| } |
| }else if( x[0]=='[' ){ |
| psp->state = PRECEDENCE_MARK_1; |
| }else{ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Token \"%s\" should be either \"%%\" or a nonterminal name.", |
| x); |
| psp->errorcnt++; |
| } |
| break; |
| case PRECEDENCE_MARK_1: |
| if( !isupper(x[0]) ){ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "The precedence symbol must be a terminal."); |
| psp->errorcnt++; |
| }else if( psp->prevrule==0 ){ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "There is no prior rule to assign precedence \"[%s]\".",x); |
| psp->errorcnt++; |
| }else if( psp->prevrule->precsym!=0 ){ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Precedence mark on this line is not the first \ |
| to follow the previous rule."); |
| psp->errorcnt++; |
| }else{ |
| psp->prevrule->precsym = Symbol_new(x); |
| } |
| psp->state = PRECEDENCE_MARK_2; |
| break; |
| case PRECEDENCE_MARK_2: |
| if( x[0]!=']' ){ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Missing \"]\" on precedence mark."); |
| psp->errorcnt++; |
| } |
| psp->state = WAITING_FOR_DECL_OR_RULE; |
| break; |
| case WAITING_FOR_ARROW: |
| if( x[0]==':' && x[1]==':' && x[2]=='=' ){ |
| psp->state = IN_RHS; |
| }else if( x[0]=='(' ){ |
| psp->state = LHS_ALIAS_1; |
| }else{ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Expected to see a \":\" following the LHS symbol \"%s\".", |
| psp->lhs->name); |
| psp->errorcnt++; |
| psp->state = RESYNC_AFTER_RULE_ERROR; |
| } |
| break; |
| case LHS_ALIAS_1: |
| if( isalpha(x[0]) ){ |
| psp->lhsalias = x; |
| psp->state = LHS_ALIAS_2; |
| }else{ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "\"%s\" is not a valid alias for the LHS \"%s\"\n", |
| x,psp->lhs->name); |
| psp->errorcnt++; |
| psp->state = RESYNC_AFTER_RULE_ERROR; |
| } |
| break; |
| case LHS_ALIAS_2: |
| if( x[0]==')' ){ |
| psp->state = LHS_ALIAS_3; |
| }else{ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); |
| psp->errorcnt++; |
| psp->state = RESYNC_AFTER_RULE_ERROR; |
| } |
| break; |
| case LHS_ALIAS_3: |
| if( x[0]==':' && x[1]==':' && x[2]=='=' ){ |
| psp->state = IN_RHS; |
| }else{ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Missing \"->\" following: \"%s(%s)\".", |
| psp->lhs->name,psp->lhsalias); |
| psp->errorcnt++; |
| psp->state = RESYNC_AFTER_RULE_ERROR; |
| } |
| break; |
| case IN_RHS: |
| if( x[0]=='.' ){ |
| struct rule *rp; |
| rp = (struct rule *)calloc( sizeof(struct rule) + |
| sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1); |
| if( rp==0 ){ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Can't allocate enough memory for this rule."); |
| psp->errorcnt++; |
| psp->prevrule = 0; |
| }else{ |
| int i; |
| rp->ruleline = psp->tokenlineno; |
| rp->rhs = (struct symbol**)&rp[1]; |
| rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]); |
| for(i=0; i<psp->nrhs; i++){ |
| rp->rhs[i] = psp->rhs[i]; |
| rp->rhsalias[i] = psp->alias[i]; |
| } |
| rp->lhs = psp->lhs; |
| rp->lhsalias = psp->lhsalias; |
| rp->nrhs = psp->nrhs; |
| rp->code = 0; |
| rp->precsym = 0; |
| rp->index = psp->gp->nrule++; |
| rp->nextlhs = rp->lhs->rule; |
| rp->lhs->rule = rp; |
| rp->next = 0; |
| if( psp->firstrule==0 ){ |
| psp->firstrule = psp->lastrule = rp; |
| }else{ |
| psp->lastrule->next = rp; |
| psp->lastrule = rp; |
| } |
| psp->prevrule = rp; |
| } |
| psp->state = WAITING_FOR_DECL_OR_RULE; |
| }else if( isalpha(x[0]) ){ |
| if( psp->nrhs>=MAXRHS ){ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Too many symbols on RHS of rule beginning at \"%s\".", |
| x); |
| psp->errorcnt++; |
| psp->state = RESYNC_AFTER_RULE_ERROR; |
| }else{ |
| psp->rhs[psp->nrhs] = Symbol_new(x); |
| psp->alias[psp->nrhs] = 0; |
| psp->nrhs++; |
| } |
| }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){ |
| struct symbol *msp = psp->rhs[psp->nrhs-1]; |
| if( msp->type!=MULTITERMINAL ){ |
| struct symbol *origsp = msp; |
| msp = (struct symbol *) calloc(1,sizeof(*msp)); |
| memset(msp, 0, sizeof(*msp)); |
| msp->type = MULTITERMINAL; |
| msp->nsubsym = 1; |
| msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*)); |
| msp->subsym[0] = origsp; |
| msp->name = origsp->name; |
| psp->rhs[psp->nrhs-1] = msp; |
| } |
| msp->nsubsym++; |
| msp->subsym = (struct symbol **) realloc(msp->subsym, |
| sizeof(struct symbol*)*msp->nsubsym); |
| msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]); |
| if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Cannot form a compound containing a non-terminal"); |
| psp->errorcnt++; |
| } |
| }else if( x[0]=='(' && psp->nrhs>0 ){ |
| psp->state = RHS_ALIAS_1; |
| }else{ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Illegal character on RHS of rule: \"%s\".",x); |
| psp->errorcnt++; |
| psp->state = RESYNC_AFTER_RULE_ERROR; |
| } |
| break; |
| case RHS_ALIAS_1: |
| if( isalpha(x[0]) ){ |
| psp->alias[psp->nrhs-1] = x; |
| psp->state = RHS_ALIAS_2; |
| }else{ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", |
| x,psp->rhs[psp->nrhs-1]->name); |
| psp->errorcnt++; |
| psp->state = RESYNC_AFTER_RULE_ERROR; |
| } |
| break; |
| case RHS_ALIAS_2: |
| if( x[0]==')' ){ |
| psp->state = IN_RHS; |
| }else{ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); |
| psp->errorcnt++; |
| psp->state = RESYNC_AFTER_RULE_ERROR; |
| } |
| break; |
| case WAITING_FOR_DECL_KEYWORD: |
| if( isalpha(x[0]) ){ |
| psp->declkeyword = x; |
| psp->declargslot = 0; |
| psp->decllinenoslot = 0; |
| psp->insertLineMacro = 1; |
| psp->state = WAITING_FOR_DECL_ARG; |
| if( strcmp(x,"name")==0 ){ |
| psp->declargslot = &(psp->gp->name); |
| psp->insertLineMacro = 0; |
| }else if( strcmp(x,"include")==0 ){ |
| psp->declargslot = &(psp->gp->include); |
| }else if( strcmp(x,"code")==0 ){ |
| psp->declargslot = &(psp->gp->extracode); |
| }else if( strcmp(x,"token_destructor")==0 ){ |
| psp->declargslot = &psp->gp->tokendest; |
| }else if( strcmp(x,"default_destructor")==0 ){ |
| psp->declargslot = &psp->gp->vardest; |
| }else if( strcmp(x,"token_prefix")==0 ){ |
| psp->declargslot = &psp->gp->tokenprefix; |
| psp->insertLineMacro = 0; |
| }else if( strcmp(x,"syntax_error")==0 ){ |
| psp->declargslot = &(psp->gp->error); |
| }else if( strcmp(x,"parse_accept")==0 ){ |
| psp->declargslot = &(psp->gp->accept); |
| }else if( strcmp(x,"parse_failure")==0 ){ |
| psp->declargslot = &(psp->gp->failure); |
| }else if( strcmp(x,"stack_overflow")==0 ){ |
| psp->declargslot = &(psp->gp->overflow); |
| }else if( strcmp(x,"extra_argument")==0 ){ |
| psp->declargslot = &(psp->gp->arg); |
| psp->insertLineMacro = 0; |
| }else if( strcmp(x,"token_type")==0 ){ |
| psp->declargslot = &(psp->gp->tokentype); |
| psp->insertLineMacro = 0; |
| }else if( strcmp(x,"default_type")==0 ){ |
| psp->declargslot = &(psp->gp->vartype); |
| psp->insertLineMacro = 0; |
| }else if( strcmp(x,"stack_size")==0 ){ |
| psp->declargslot = &(psp->gp->stacksize); |
| psp->insertLineMacro = 0; |
| }else if( strcmp(x,"start_symbol")==0 ){ |
| psp->declargslot = &(psp->gp->start); |
| psp->insertLineMacro = 0; |
| }else if( strcmp(x,"left")==0 ){ |
| psp->preccounter++; |
| psp->declassoc = LEFT; |
| psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
| }else if( strcmp(x,"right")==0 ){ |
| psp->preccounter++; |
| psp->declassoc = RIGHT; |
| psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
| }else if( strcmp(x,"nonassoc")==0 ){ |
| psp->preccounter++; |
| psp->declassoc = NONE; |
| psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
| }else if( strcmp(x,"destructor")==0 ){ |
| psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL; |
| }else if( strcmp(x,"type")==0 ){ |
| psp->state = WAITING_FOR_DATATYPE_SYMBOL; |
| }else if( strcmp(x,"fallback")==0 ){ |
| psp->fallback = 0; |
| psp->state = WAITING_FOR_FALLBACK_ID; |
| }else if( strcmp(x,"wildcard")==0 ){ |
| psp->state = WAITING_FOR_WILDCARD_ID; |
| }else{ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Unknown declaration keyword: \"%%%s\".",x); |
| psp->errorcnt++; |
| psp->state = RESYNC_AFTER_DECL_ERROR; |
| } |
| }else{ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Illegal declaration keyword: \"%s\".",x); |
| psp->errorcnt++; |
| psp->state = RESYNC_AFTER_DECL_ERROR; |
| } |
| break; |
| case WAITING_FOR_DESTRUCTOR_SYMBOL: |
| if( !isalpha(x[0]) ){ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Symbol name missing after %%destructor keyword"); |
| psp->errorcnt++; |
| psp->state = RESYNC_AFTER_DECL_ERROR; |
| }else{ |
| struct symbol *sp = Symbol_new(x); |
| psp->declargslot = &sp->destructor; |
| psp->decllinenoslot = &sp->destLineno; |
| psp->insertLineMacro = 1; |
| psp->state = WAITING_FOR_DECL_ARG; |
| } |
| break; |
| case WAITING_FOR_DATATYPE_SYMBOL: |
| if( !isalpha(x[0]) ){ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Symbol name missing after %%type keyword"); |
| psp->errorcnt++; |
| psp->state = RESYNC_AFTER_DECL_ERROR; |
| }else{ |
| struct symbol *sp = Symbol_find(x); |
| if((sp) && (sp->datatype)){ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Symbol %%type \"%s\" already defined", x); |
| psp->errorcnt++; |
| psp->state = RESYNC_AFTER_DECL_ERROR; |
| }else{ |
| if (!sp){ |
| sp = Symbol_new(x); |
| } |
| psp->declargslot = &sp->datatype; |
| psp->insertLineMacro = 0; |
| psp->state = WAITING_FOR_DECL_ARG; |
| } |
| } |
| break; |
| case WAITING_FOR_PRECEDENCE_SYMBOL: |
| if( x[0]=='.' ){ |
| psp->state = WAITING_FOR_DECL_OR_RULE; |
| }else if( isupper(x[0]) ){ |
| struct symbol *sp; |
| sp = Symbol_new(x); |
| if( sp->prec>=0 ){ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Symbol \"%s\" has already be given a precedence.",x); |
| psp->errorcnt++; |
| }else{ |
| sp->prec = psp->preccounter; |
| sp->assoc = psp->declassoc; |
| } |
| }else{ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Can't assign a precedence to \"%s\".",x); |
| psp->errorcnt++; |
| } |
| break; |
| case WAITING_FOR_DECL_ARG: |
| if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){ |
| const char *zOld, *zNew; |
| char *zBuf, *z; |
| int nOld, n, nLine, nNew, nBack; |
| int addLineMacro; |
| char zLine[50]; |
| zNew = x; |
| if( zNew[0]=='"' || zNew[0]=='{' ) zNew++; |
| nNew = lemonStrlen(zNew); |
| if( *psp->declargslot ){ |
| zOld = *psp->declargslot; |
| }else{ |
| zOld = ""; |
| } |
| nOld = lemonStrlen(zOld); |
| n = nOld + nNew + 20; |
| addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro && |
| (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0); |
| if( addLineMacro ){ |
| for(z=psp->filename, nBack=0; *z; z++){ |
| if( *z=='\\' ) nBack++; |
| } |
| sprintf(zLine, "#line %d ", psp->tokenlineno); |
| nLine = lemonStrlen(zLine); |
| n += nLine + lemonStrlen(psp->filename) + nBack; |
| } |
| *psp->declargslot = (char *) realloc(*psp->declargslot, n); |
| zBuf = *psp->declargslot + nOld; |
| if( addLineMacro ){ |
| if( nOld && zBuf[-1]!='\n' ){ |
| *(zBuf++) = '\n'; |
| } |
| memcpy(zBuf, zLine, nLine); |
| zBuf += nLine; |
| *(zBuf++) = '"'; |
| for(z=psp->filename; *z; z++){ |
| if( *z=='\\' ){ |
| *(zBuf++) = '\\'; |
| } |
| *(zBuf++) = *z; |
| } |
| *(zBuf++) = '"'; |
| *(zBuf++) = '\n'; |
| } |
| if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){ |
| psp->decllinenoslot[0] = psp->tokenlineno; |
| } |
| memcpy(zBuf, zNew, nNew); |
| zBuf += nNew; |
| *zBuf = 0; |
| psp->state = WAITING_FOR_DECL_OR_RULE; |
| }else{ |
| ErrorMsg(psp->filename,psp->tokenlineno, |
| "Illegal argument to %%%s: %s",psp->declkeyword,x); |
| psp->errorcnt++; |
| psp->state = RESYNC_AFTER_DECL_ERROR; |
| } |
| break; |
| case WAITING_FOR_FALLBACK_ID: |
| if( x[0]=='.' ){ |
| psp->state = WAITING_FOR_DECL_OR_RULE; |
| }else if( !isupper(x[0]) ){ |
| ErrorMsg(psp->filename, psp->tokenlineno, |
| "%%fallback argument \"%s\" should be a token", x); |
| psp->errorcnt++; |
| }else{ |
| struct symbol *sp = Symbol_new(x); |
| if( psp->fallback==0 ){ |
| psp->fallback = sp; |
| }else if( sp->fallback ){ |
| ErrorMsg(psp->filename, psp->tokenlineno, |
| "More than one fallback assigned to token %s", x); |
| psp->errorcnt++; |
| }else{ |
| sp->fallback = psp->fallback; |
| psp->gp->has_fallback = 1; |
| } |
| } |
| break; |
| case WAITING_FOR_WILDCARD_ID: |
| if( x[0]=='.' ){ |
| psp->state = WAITING_FOR_DECL_OR_RULE; |
| }else if( !isupper(x[0]) ){ |
| ErrorMsg(psp->filename, psp->tokenlineno, |
| "%%wildcard argument \"%s\" should be a token", x); |
| psp->errorcnt++; |
| }else{ |
| struct symbol *sp = Symbol_new(x); |
| if( psp->gp->wildcard==0 ){ |
| psp->gp->wildcard = sp; |
| }else{ |
| ErrorMsg(psp->filename, psp->tokenlineno, |
| "Extra wildcard to token: %s", x); |
| psp->errorcnt++; |
| } |
| } |
| break; |
| case RESYNC_AFTER_RULE_ERROR: |
| /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; |
| ** break; */ |
| case RESYNC_AFTER_DECL_ERROR: |
| if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; |
| if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD; |
| break; |
| } |
| } |
| |
| /* Run the preprocessor over the input file text. The global variables |
| ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined |
| ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and |
| ** comments them out. Text in between is also commented out as appropriate. |
| */ |
| static void preprocess_input(char *z){ |
| int i, j, k, n; |
| int exclude = 0; |
| int start = 0; |
| int lineno = 1; |
| int start_lineno = 1; |
| for(i=0; z[i]; i++){ |
| if( z[i]=='\n' ) lineno++; |
| if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue; |
| if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){ |
| if( exclude ){ |
| exclude--; |
| if( exclude==0 ){ |
| for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' '; |
| } |
| } |
| for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; |
| }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6])) |
| || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){ |
| if( exclude ){ |
| exclude++; |
| }else{ |
| for(j=i+7; isspace(z[j]); j++){} |
| for(n=0; z[j+n] && !isspace(z[j+n]); n++){} |
| exclude = 1; |
| for(k=0; k<nDefine; k++){ |
| if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){ |
| exclude = 0; |
| break; |
| } |
| } |
| if( z[i+3]=='n' ) exclude = !exclude; |
| if( exclude ){ |
| start = i; |
| start_lineno = lineno; |
| } |
| } |
| for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; |
| } |
| } |
| if( exclude ){ |
| fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno); |
| exit(1); |
| } |
| } |
| |
| /* In spite of its name, this function is really a scanner. It read |
| ** in the entire input file (all at once) then tokenizes it. Each |
| ** token is passed to the function "parseonetoken" which builds all |
| ** the appropriate data structures in the global state vector "gp". |
| */ |
| void Parse(struct lemon *gp) |
| { |
| struct pstate ps; |
| FILE *fp; |
| char *filebuf; |
| int filesize; |
| int lineno; |
| int c; |
| char *cp, *nextcp; |
| int startline = 0; |
| |
| memset(&ps, '\0', sizeof(ps)); |
| ps.gp = gp; |
| ps.filename = gp->filename; |
| ps.errorcnt = 0; |
| ps.state = INITIALIZE; |
| |
| /* Begin by reading the input file */ |
| fp = fopen(ps.filename,"rb"); |
| if( fp==0 ){ |
| ErrorMsg(ps.filename,0,"Can't open this file for reading."); |
| gp->errorcnt++; |
| return; |
| } |
| fseek(fp,0,2); |
| filesize = ftell(fp); |
| rewind(fp); |
| filebuf = (char *)malloc( filesize+1 ); |
| if( filebuf==0 ){ |
| ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.", |
| filesize+1); |
| gp->errorcnt++; |
| return; |
| } |
| if( fread(filebuf,1,filesize,fp)!=filesize ){ |
| ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.", |
| filesize); |
| free(filebuf); |
| gp->errorcnt++; |
| return; |
| } |
| fclose(fp); |
| filebuf[filesize] = 0; |
| |
| /* Make an initial pass through the file to handle %ifdef and %ifndef */ |
| preprocess_input(filebuf); |
| |
| /* Now scan the text of the input file */ |
| lineno = 1; |
| for(cp=filebuf; (c= *cp)!=0; ){ |
| if( c=='\n' ) lineno++; /* Keep track of the line number */ |
| if( isspace(c) ){ cp++; continue; } /* Skip all white space */ |
| if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */ |
| cp+=2; |
| while( (c= *cp)!=0 && c!='\n' ) cp++; |
| continue; |
| } |
| if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */ |
| cp+=2; |
| while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){ |
| if( c=='\n' ) lineno++; |
| cp++; |
| } |
| if( c ) cp++; |
| continue; |
| } |
| ps.tokenstart = cp; /* Mark the beginning of the token */ |
| ps.tokenlineno = lineno; /* Linenumber on which token begins */ |
| if( c=='\"' ){ /* String literals */ |
| cp++; |
| while( (c= *cp)!=0 && c!='\"' ){ |
| if( c=='\n' ) lineno++; |
| cp++; |
| } |
| if( c==0 ){ |
| ErrorMsg(ps.filename,startline, |
| "String starting on this line is not terminated before the end of the file."); |
| ps.errorcnt++; |
| nextcp = cp; |
| }else{ |
| nextcp = cp+1; |
| } |
| }else if( c=='{' ){ /* A block of C code */ |
| int level; |
| cp++; |
| for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){ |
| if( c=='\n' ) lineno++; |
| else if( c=='{' ) level++; |
| else if( c=='}' ) level--; |
| else if( c=='/' && cp[1]=='*' ){ /* Skip comments */ |
| int prevc; |
| cp = &cp[2]; |
| prevc = 0; |
| while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){ |
| if( c=='\n' ) lineno++; |
| prevc = c; |
| cp++; |
| } |
| }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */ |
| cp = &cp[2]; |
| while( (c= *cp)!=0 && c!='\n' ) cp++; |
| if( c ) lineno++; |
| }else if( c=='\'' || c=='\"' ){ /* String a character literals */ |
| int startchar, prevc; |
| startchar = c; |
| prevc = 0; |
| for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){ |
| if( c=='\n' ) lineno++; |
| if( prevc=='\\' ) prevc = 0; |
| else prevc = c; |
| } |
| } |
| } |
| if( c==0 ){ |
| ErrorMsg(ps.filename,ps.tokenlineno, |
| "C code starting on this line is not terminated before the end of the file."); |
| ps.errorcnt++; |
| nextcp = cp; |
| }else{ |
| nextcp = cp+1; |
| } |
| }else if( isalnum(c) ){ /* Identifiers */ |
| while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++; |
| nextcp = cp; |
| }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */ |
| cp += 3; |
| nextcp = cp; |
| }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){ |
| cp += 2; |
| while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++; |
| nextcp = cp; |
| }else{ /* All other (one character) operators */ |
| cp++; |
| nextcp = cp; |
| } |
| c = *cp; |
| *cp = 0; /* Null terminate the token */ |
| parseonetoken(&ps); /* Parse the token */ |
| *cp = c; /* Restore the buffer */ |
| cp = nextcp; |
| } |
| free(filebuf); /* Release the buffer after parsing */ |
| gp->rule = ps.firstrule; |
| gp->errorcnt = ps.errorcnt; |
| } |
| /*************************** From the file "plink.c" *********************/ |
| /* |
| ** Routines processing configuration follow-set propagation links |
| ** in the LEMON parser generator. |
| */ |
| static struct plink *plink_freelist = 0; |
| |
| /* Allocate a new plink */ |
| struct plink *Plink_new(){ |
| struct plink *newlink; |
| |
| if( plink_freelist==0 ){ |
| int i; |
| int amt = 100; |
| plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) ); |
| if( plink_freelist==0 ){ |
| fprintf(stderr, |
| "Unable to allocate memory for a new follow-set propagation link.\n"); |
| exit(1); |
| } |
| for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1]; |
| plink_freelist[amt-1].next = 0; |
| } |
| newlink = plink_freelist; |
| plink_freelist = plink_freelist->next; |
| return newlink; |
| } |
| |
| /* Add a plink to a plink list */ |
| void Plink_add(struct plink **plpp, struct config *cfp) |
| { |
| struct plink *newlink; |
| newlink = Plink_new(); |
| newlink->next = *plpp; |
| *plpp = newlink; |
| newlink->cfp = cfp; |
| } |
| |
| /* Transfer every plink on the list "from" to the list "to" */ |
| void Plink_copy(struct plink **to, struct plink *from) |
| { |
| struct plink *nextpl; |
| while( from ){ |
| nextpl = from->next; |
| from->next = *to; |
| *to = from; |
| from = nextpl; |
| } |
| } |
| |
| /* Delete every plink on the list */ |
| void Plink_delete(struct plink *plp) |
| { |
| struct plink *nextpl; |
| |
| while( plp ){ |
| nextpl = plp->next; |
| plp->next = plink_freelist; |
| plink_freelist = plp; |
| plp = nextpl; |
| } |
| } |
| /*********************** From the file "report.c" **************************/ |
| /* |
| ** Procedures for generating reports and tables in the LEMON parser generator. |
| */ |
| |
| /* Generate a filename with the given suffix. Space to hold the |
| ** name comes from malloc() and must be freed by the calling |
| ** function. |
| */ |
| PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) |
| { |
| char *name; |
| char *cp; |
| |
| name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 ); |
| if( name==0 ){ |
| fprintf(stderr,"Can't allocate space for a filename.\n"); |
| exit(1); |
| } |
| strcpy(name,lemp->filename); |
| cp = strrchr(name,'.'); |
| if( cp ) *cp = 0; |
| strcat(name,suffix); |
| return name; |
| } |
| |
| /* Open a file with a name based on the name of the input file, |
| ** but with a different (specified) suffix, and return a pointer |
| ** to the stream */ |
| PRIVATE FILE *file_open( |
| struct lemon *lemp, |
| const char *suffix, |
| const char *mode |
| ){ |
| FILE *fp; |
| |
| if( lemp->outname ) free(lemp->outname); |
| lemp->outname = file_makename(lemp, suffix); |
| fp = fopen(lemp->outname,mode); |
| if( fp==0 && *mode=='w' ){ |
| fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname); |
| lemp->errorcnt++; |
| return 0; |
| } |
| |
| /* Add files we create to a list, so we can delete them if we fail. This |
| ** is to keep makefiles from getting confused. We don't include .out files, |
| ** though: this is debug information, and you don't want it deleted if there |
| ** was an error you need to track down. |
| */ |
| if(( *mode=='w' ) && (strcmp(suffix, ".out") != 0)){ |
| const char **ptr = (const char **) |
| realloc(made_files, sizeof (const char **) * (made_files_count + 1)); |
| const char *fname = Strsafe(lemp->outname); |
| if ((ptr == NULL) || (fname == NULL)) { |
| free(ptr); |
| memory_error(); |
| } |
| made_files = ptr; |
| made_files[made_files_count++] = fname; |
| } |
| return fp; |
| } |
| |
| /* Duplicate the input file without comments and without actions |
| ** on rules */ |
| void Reprint(struct lemon *lemp) |
| { |
| struct rule *rp; |
| struct symbol *sp; |
| int i, j, maxlen, len, ncolumns, skip; |
| printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename); |
| maxlen = 10; |
| for(i=0; i<lemp->nsymbol; i++){ |
| sp = lemp->symbols[i]; |
| len = lemonStrlen(sp->name); |
| if( len>maxlen ) maxlen = len; |
| } |
| ncolumns = 76/(maxlen+5); |
| if( ncolumns<1 ) ncolumns = 1; |
| skip = (lemp->nsymbol + ncolumns - 1)/ncolumns; |
| for(i=0; i<skip; i++){ |
| printf("//"); |
| for(j=i; j<lemp->nsymbol; j+=skip){ |
| sp = lemp->symbols[j]; |
| assert( sp->index==j ); |
| printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name); |
| } |
| printf("\n"); |
| } |
| for(rp=lemp->rule; rp; rp=rp->next){ |
| printf("%s",rp->lhs->name); |
| /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */ |
| printf(" ::="); |
| for(i=0; i<rp->nrhs; i++){ |
| sp = rp->rhs[i]; |
| printf(" %s", sp->name); |
| if( sp->type==MULTITERMINAL ){ |
| for(j=1; j<sp->nsubsym; j++){ |
| printf("|%s", sp->subsym[j]->name); |
| } |
| } |
| /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */ |
| } |
| printf("."); |
| if( rp->precsym ) printf(" [%s]",rp->precsym->name); |
| /* if( rp->code ) printf("\n %s",rp->code); */ |
| printf("\n"); |
| } |
| } |
| |
| void ConfigPrint(FILE *fp, struct config *cfp) |
| { |
| struct rule *rp; |
| struct symbol *sp; |
| int i, j; |
| rp = cfp->rp; |
| fprintf(fp,"%s ::=",rp->lhs->name); |
| for(i=0; i<=rp->nrhs; i++){ |
| if( i==cfp->dot ) fprintf(fp," *"); |
| if( i==rp->nrhs ) break; |
| sp = rp->rhs[i]; |
| fprintf(fp," %s", sp->name); |
| if( sp->type==MULTITERMINAL ){ |
| for(j=1; j<sp->nsubsym; j++){ |
| fprintf(fp,"|%s",sp->subsym[j]->name); |
| } |
| } |
| } |
| } |
| |
| /* #define TEST */ |
| #if 0 |
| /* Print a set */ |
| PRIVATE void SetPrint(out,set,lemp) |
| FILE *out; |
| char *set; |
| struct lemon *lemp; |
| { |
| int i; |
| char *spacer; |
| spacer = ""; |
| fprintf(out,"%12s[",""); |
| for(i=0; i<lemp->nterminal; i++){ |
| if( SetFind(set,i) ){ |
| fprintf(out,"%s%s",spacer,lemp->symbols[i]->name); |
| spacer = " "; |
| } |
| } |
| fprintf(out,"]\n"); |
| } |
| |
| /* Print a plink chain */ |
| PRIVATE void PlinkPrint(out,plp,tag) |
| FILE *out; |
| struct plink *plp; |
| char *tag; |
| { |
| while( plp ){ |
| fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum); |
| ConfigPrint(out,plp->cfp); |
| fprintf(out,"\n"); |
| plp = plp->next; |
| } |
| } |
| #endif |
| |
| /* Print an action to the given file descriptor. Return FALSE if |
| ** nothing was actually printed. |
| */ |
| int PrintAction(struct action *ap, FILE *fp, int indent){ |
| int result = 1; |
| switch( ap->type ){ |
| case SHIFT: |
| fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum); |
| break; |
| case REDUCE: |
| fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index); |
| break; |
| case ACCEPT: |
| fprintf(fp,"%*s accept",indent,ap->sp->name); |
| break; |
| case ERROR: |
| fprintf(fp,"%*s error",indent,ap->sp->name); |
| break; |
| case SRCONFLICT: |
| case RRCONFLICT: |
| fprintf(fp,"%*s reduce %-3d ** Parsing conflict **", |
| indent,ap->sp->name,ap->x.rp->index); |
| break; |
| case SSCONFLICT: |
| fprintf(fp,"%*s shift %-3d ** Parsing conflict **", |
| indent,ap->sp->name,ap->x.stp->statenum); |
| break; |
| case SH_RESOLVED: |
| if( showPrecedenceConflict ){ |
| fprintf(fp,"%*s shift %-3d -- dropped by precedence", |
| indent,ap->sp->name,ap->x.stp->statenum); |
| }else{ |
| result = 0; |
| } |
| break; |
| case RD_RESOLVED: |
| if( showPrecedenceConflict ){ |
| fprintf(fp,"%*s reduce %-3d -- dropped by precedence", |
| indent,ap->sp->name,ap->x.rp->index); |
| }else{ |
| result = 0; |
| } |
| break; |
| case NOT_USED: |
| result = 0; |
| break; |
| } |
| return result; |
| } |
| |
| /* Generate the "y.output" log file */ |
| void ReportOutput(struct lemon *lemp) |
| { |
| int i; |
| struct state *stp; |
| struct config *cfp; |
| struct action *ap; |
| FILE *fp; |
| |
| fp = file_open(lemp,".out","wb"); |
| if( fp==0 ) return; |
| for(i=0; i<lemp->nstate; i++){ |
| stp = lemp->sorted[i]; |
| fprintf(fp,"State %d:\n",stp->statenum); |
| if( lemp->basisflag ) cfp=stp->bp; |
| else cfp=stp->cfp; |
| while( cfp ){ |
| char buf[20]; |
| if( cfp->dot==cfp->rp->nrhs ){ |
| sprintf(buf,"(%d)",cfp->rp->index); |
| fprintf(fp," %5s ",buf); |
| }else{ |
| fprintf(fp," "); |
| } |
| ConfigPrint(fp,cfp); |
| fprintf(fp,"\n"); |
| #if 0 |
| SetPrint(fp,cfp->fws,lemp); |
| PlinkPrint(fp,cfp->fplp,"To "); |
| PlinkPrint(fp,cfp->bplp,"From"); |
| #endif |
| if( lemp->basisflag ) cfp=cfp->bp; |
| else cfp=cfp->next; |
| } |
| fprintf(fp,"\n"); |
| for(ap=stp->ap; ap; ap=ap->next){ |
| if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); |
| } |
| fprintf(fp,"\n"); |
| } |
| fprintf(fp, "----------------------------------------------------\n"); |
| fprintf(fp, "Symbols:\n"); |
| for(i=0; i<lemp->nsymbol; i++){ |
| int j; |
| struct symbol *sp; |
| |
| sp = lemp->symbols[i]; |
| fprintf(fp, " %3d: %s", i, sp->name); |
| if( sp->type==NONTERMINAL ){ |
| fprintf(fp, ":"); |
| if( sp->lambda ){ |
| fprintf(fp, " <lambda>"); |
| } |
| for(j=0; j<lemp->nterminal; j++){ |
| if( sp->firstset && SetFind(sp->firstset, j) ){ |
| fprintf(fp, " %s", lemp->symbols[j]->name); |
| } |
| } |
| } |
| fprintf(fp, "\n"); |
| } |
| fclose(fp); |
| return; |
| } |
| |
| /* Search for the file "name" which is in the same directory as |
| ** the exacutable */ |
| PRIVATE char *pathsearch(char *argv0, char *name, int modemask) |
| { |
| const char *pathlist; |
| char *pathbufptr; |
| char *pathbuf; |
| char *path,*cp; |
| char c; |
| |
| #ifdef __WIN32__ |
| cp = strrchr(argv0,'\\'); |
| #else |
| cp = strrchr(argv0,'/'); |
| #endif |
| if( cp ){ |
| c = *cp; |
| *cp = 0; |
| path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 ); |
| if( path ) sprintf(path,"%s/%s",argv0,name); |
| *cp = c; |
| }else{ |
| pathlist = getenv("PATH"); |
| if( pathlist==0 ) pathlist = ".:/bin:/usr/bin"; |
| pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 ); |
| path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 ); |
| if( (pathbuf != 0) && (path!=0) ){ |
| pathbufptr = pathbuf; |
| strcpy(pathbuf, pathlist); |
| while( *pathbuf ){ |
| cp = strchr(pathbuf,':'); |
| if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)]; |
| c = *cp; |
| *cp = 0; |
| sprintf(path,"%s/%s",pathbuf,name); |
| *cp = c; |
| if( c==0 ) pathbuf[0] = 0; |
| else pathbuf = &cp[1]; |
| if( access(path,modemask)==0 ) break; |
| } |
| free(pathbufptr); |
| } |
| } |
| return path; |
| } |
| |
| /* Given an action, compute the integer value for that action |
| ** which is to be put in the action table of the generated machine. |
| ** Return negative if no action should be generated. |
| */ |
| PRIVATE int compute_action(struct lemon *lemp, struct action *ap) |
| { |
| int act; |
| switch( ap->type ){ |
| case SHIFT: act = ap->x.stp->statenum; break; |
| case REDUCE: act = ap->x.rp->index + lemp->nstate; break; |
| case ERROR: act = lemp->nstate + lemp->nrule; break; |
| case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break; |
| default: act = -1; break; |
| } |
| return act; |
| } |
| |
| #define LINESIZE 1000 |
| /* The next cluster of routines are for reading the template file |
| ** and writing the results to the generated parser */ |
| /* The first function transfers data from "in" to "out" until |
| ** a line is seen which begins with "%%". The line number is |
| ** tracked. |
| ** |
| ** if name!=0, then any word that begin with "Parse" is changed to |
| ** begin with *name instead. |
| */ |
| PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) |
| { |
| int i, iStart; |
| char line[LINESIZE]; |
| while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){ |
| (*lineno)++; |
| iStart = 0; |
| if( name ){ |
| for(i=0; line[i]; i++){ |
| if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0 |
| && (i==0 || !isalpha(line[i-1])) |
| ){ |
| if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]); |
| fprintf(out,"%s",name); |
| i += 4; |
| iStart = i+1; |
| } |
| } |
| } |
| fprintf(out,"%s",&line[iStart]); |
| } |
| } |
| |
| /* The next function finds the template file and opens it, returning |
| ** a pointer to the opened file. */ |
| PRIVATE FILE *tplt_open(struct lemon *lemp) |
| { |
| static char templatename[] = "lempar.c"; |
| char buf[1000]; |
| FILE *in; |
| char *tpltname; |
| char *cp; |
| |
| /* first, see if user specified a template filename on the command line. */ |
| if (user_templatename != 0) { |
| if( access(user_templatename,004)==-1 ){ |
| fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", |
| user_templatename); |
| lemp->errorcnt++; |
| return 0; |
| } |
| in = fopen(user_templatename,"rb"); |
| if( in==0 ){ |
| fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename); |
| lemp->errorcnt++; |
| return 0; |
| } |
| return in; |
| } |
| |
| cp = strrchr(lemp->filename,'.'); |
| if( cp ){ |
| sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename); |
| }else{ |
| sprintf(buf,"%s.lt",lemp->filename); |
| } |
| if( access(buf,004)==0 ){ |
| tpltname = buf; |
| }else if( access(templatename,004)==0 ){ |
| tpltname = templatename; |
| }else{ |
| tpltname = pathsearch(lemp->argv0,templatename,0); |
| } |
| if( tpltname==0 ){ |
| fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", |
| templatename); |
| lemp->errorcnt++; |
| return 0; |
| } |
| in = fopen(tpltname,"rb"); |
| if( in==0 ){ |
| fprintf(stderr,"Can't open the template file \"%s\".\n",templatename); |
| lemp->errorcnt++; |
| return 0; |
| } |
| return in; |
| } |
| |
| /* Print a #line directive line to the output file. */ |
| PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename) |
| { |
| fprintf(out,"#line %d \"",lineno); |
| while( *filename ){ |
| if( *filename == '\\' ) putc('\\',out); |
| putc(*filename,out); |
| filename++; |
| } |
| fprintf(out,"\"\n"); |
| } |
| |
| /* Print a string to the file and keep the linenumber up to date */ |
| PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno) |
| { |
| if( str==0 ) return; |
| while( *str ){ |
| putc(*str,out); |
| if( *str=='\n' ) (*lineno)++; |
| str++; |
| } |
| if( str[-1]!='\n' ){ |
| putc('\n',out); |
| (*lineno)++; |
| } |
| if (!lemp->nolinenosflag) { |
| (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); |
| } |
| return; |
| } |
| |
| /* |
| ** The following routine emits code for the destructor for the |
| ** symbol sp |
| */ |
| void emit_destructor_code( |
| FILE *out, |
| struct symbol *sp, |
| struct lemon *lemp, |
| int *lineno |
| ){ |
| char *cp = 0; |
| |
| if( sp->type==TERMINAL ){ |
| cp = lemp->tokendest; |
| if( cp==0 ) return; |
| fprintf(out,"{\n"); (*lineno)++; |
| }else if( sp->destructor ){ |
| cp = sp->destructor; |
| fprintf(out,"{\n"); (*lineno)++; |
| if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp->filename); } |
| }else if( lemp->vardest ){ |
| cp = lemp->vardest; |
| if( cp==0 ) return; |
| fprintf(out,"{\n"); (*lineno)++; |
| }else{ |
| assert( 0 ); /* Cannot happen */ |
| } |
| for(; *cp; cp++){ |
| if( *cp=='$' && cp[1]=='$' ){ |
| fprintf(out,"(yypminor->yy%d)",sp->dtnum); |
| cp++; |
| continue; |
| } |
| if( *cp=='\n' ) (*lineno)++; |
| fputc(*cp,out); |
| } |
| fprintf(out,"\n"); (*lineno)++; |
| if (!lemp->nolinenosflag) { |
| (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); |
| } |
| fprintf(out,"}\n"); (*lineno)++; |
| return; |
| } |
| |
| /* |
| ** Return TRUE (non-zero) if the given symbol has a destructor. |
| */ |
| int has_destructor(struct symbol *sp, struct lemon *lemp) |
| { |
| int ret; |
| if( sp->type==TERMINAL ){ |
| ret = lemp->tokendest!=0; |
| }else{ |
| ret = lemp->vardest!=0 || sp->destructor!=0; |
| } |
| return ret; |
| } |
| |
| /* |
| ** Append text to a dynamically allocated string. If zText is 0 then |
| ** reset the string to be empty again. Always return the complete text |
| ** of the string (which is overwritten with each call). |
| ** |
| ** n bytes of zText are stored. If n==0 then all of zText up to the first |
| ** \000 terminator is stored. zText can contain up to two instances of |
| ** %d. The values of p1 and p2 are written into the first and second |
| ** %d. |
| ** |
| ** If n==-1, then the previous character is overwritten. |
| */ |
| PRIVATE char *append_str(const char *zText, int n, int p1, int p2){ |
| static char empty[1] = { 0 }; |
| static char *z = 0; |
| static int alloced = 0; |
| static int used = 0; |
| int c; |
| char zInt[40]; |
| if( zText==0 ){ |
| used = 0; |
| return z; |
| } |
| if( n<=0 ){ |
| if( n<0 ){ |
| used += n; |
| assert( used>=0 ); |
| } |
| n = lemonStrlen(zText); |
| } |
| if( (int) (n+sizeof(zInt)*2+used) >= alloced ){ |
| alloced = n + sizeof(zInt)*2 + used + 200; |
| z = (char *) realloc(z, alloced); |
| } |
| if( z==0 ) return empty; |
| while( n-- > 0 ){ |
| c = *(zText++); |
| if( c=='%' && n>0 && zText[0]=='d' ){ |
| sprintf(zInt, "%d", p1); |
| p1 = p2; |
| strcpy(&z[used], zInt); |
| used += lemonStrlen(&z[used]); |
| zText++; |
| n--; |
| }else{ |
| z[used++] = c; |
| } |
| } |
| z[used] = 0; |
| return z; |
| } |
| |
| /* |
| ** zCode is a string that is the action associated with a rule. Expand |
| ** the symbols in this string so that the refer to elements of the parser |
| ** stack. |
| */ |
| PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){ |
| char *cp, *xp; |
| int i; |
| char lhsused = 0; /* True if the LHS element has been used */ |
| char used[MAXRHS]; /* True for each RHS element which is used */ |
| |
| for(i=0; i<rp->nrhs; i++) used[i] = 0; |
| lhsused = 0; |
| |
| if( rp->code==0 ){ |
| static char newlinestr[2] = { '\n', '\0' }; |
| rp->code = newlinestr; |
| rp->line = rp->ruleline; |
| } |
| |
| append_str(0,0,0,0); |
| |
| /* This const cast is wrong but harmless, if we're careful. */ |
| for(cp=(char *)rp->code; *cp; cp++){ |
| if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){ |
| char saved; |
| for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++); |
| saved = *xp; |
| *xp = 0; |
| if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){ |
| append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0); |
| cp = xp; |
| lhsused = 1; |
| }else{ |
| for(i=0; i<rp->nrhs; i++){ |
| if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){ |
| if( cp!=rp->code && cp[-1]=='@' ){ |
| /* If the argument is of the form @X then substituted |
| ** the token number of X, not the value of X */ |
| append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0); |
| }else{ |
| struct symbol *sp = rp->rhs[i]; |
| int dtnum; |
| if( sp->type==MULTITERMINAL ){ |
| dtnum = sp->subsym[0]->dtnum; |
| }else{ |
| dtnum = sp->dtnum; |
| } |
| append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum); |
| } |
| cp = xp; |
| used[i] = 1; |
| break; |
| } |
| } |
| } |
| *xp = saved; |
| } |
| append_str(cp, 1, 0, 0); |
| } /* End loop */ |
| |
| /* Check to make sure the LHS has been used */ |
| if( rp->lhsalias && !lhsused ){ |
| ErrorMsg(lemp->filename,rp->ruleline, |
| "Label \"%s\" for \"%s(%s)\" is never used.", |
| rp->lhsalias,rp->lhs->name,rp->lhsalias); |
| lemp->errorcnt++; |
| } |
| |
| /* Generate destructor code for RHS symbols which are not used in the |
| ** reduce code */ |
| for(i=0; i<rp->nrhs; i++){ |
| if( rp->rhsalias[i] && !used[i] ){ |
| ErrorMsg(lemp->filename,rp->ruleline, |
| "Label %s for \"%s(%s)\" is never used.", |
| rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]); |
| lemp->errorcnt++; |
| }else if( rp->rhsalias[i]==0 ){ |
| if( has_destructor(rp->rhs[i],lemp) ){ |
| append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, |
| rp->rhs[i]->index,i-rp->nrhs+1); |
| }else{ |
| /* No destructor defined for this term */ |
| } |
| } |
| } |
| if( rp->code ){ |
| cp = append_str(0,0,0,0); |
| rp->code = Strsafe(cp?cp:""); |
| } |
| } |
| |
| /* |
| ** Generate code which executes when the rule "rp" is reduced. Write |
| ** the code to "out". Make sure lineno stays up-to-date. |
| */ |
| PRIVATE void emit_code( |
| FILE *out, |
| struct rule *rp, |
| struct lemon *lemp, |
| int *lineno |
| ){ |
| const char *cp; |
| |
| /* Generate code to do the reduce action */ |
| if( rp->code ){ |
| if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->filename); } |
| fprintf(out,"{%s",rp->code); |
| for(cp=rp->code; *cp; cp++){ |
| if( *cp=='\n' ) (*lineno)++; |
| } /* End loop */ |
| fprintf(out,"}\n"); (*lineno)++; |
| if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); } |
| } /* End if( rp->code ) */ |
| |
| return; |
| } |
| |
| /* |
| ** Print the definition of the union used for the parser's data stack. |
| ** This union contains fields for every possible data type for tokens |
| ** and nonterminals. In the process of computing and printing this |
| ** union, also set the ".dtnum" field of every terminal and nonterminal |
| ** symbol. |
| */ |
| void print_stack_union( |
| FILE *out, /* The output stream */ |
| struct lemon *lemp, /* The main info structure for this parser */ |
| int *plineno, /* Pointer to the line number */ |
| int mhflag /* True if generating makeheaders output */ |
| ){ |
| int lineno = *plineno; /* The line number of the output */ |
| char **types; /* A hash table of datatypes */ |
| int arraysize; /* Size of the "types" array */ |
| int maxdtlength; /* Maximum length of any ".datatype" field. */ |
| char *stddt; /* Standardized name for a datatype */ |
| int i,j; /* Loop counters */ |
| int hash; /* For hashing the name of a type */ |
| const char *name; /* Name of the parser */ |
| |
| /* Allocate and initialize types[] and allocate stddt[] */ |
| arraysize = lemp->nsymbol * 2; |
| types = (char**)calloc( arraysize, sizeof(char*) ); |
| for(i=0; i<arraysize; i++) types[i] = 0; |
| maxdtlength = 0; |
| if( lemp->vartype ){ |
| maxdtlength = lemonStrlen(lemp->vartype); |
| } |
| for(i=0; i<lemp->nsymbol; i++){ |
| int len; |
| struct symbol *sp = lemp->symbols[i]; |
| if( sp->datatype==0 ) continue; |
| len = lemonStrlen(sp->datatype); |
| if( len>maxdtlength ) maxdtlength = len; |
| } |
| stddt = (char*)malloc( maxdtlength*2 + 1 ); |
| if( types==0 || stddt==0 ){ |
| fprintf(stderr,"Out of memory.\n"); |
| exit(1); |
| } |
| |
| /* Build a hash table of datatypes. The ".dtnum" field of each symbol |
| ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is |
| ** used for terminal symbols. If there is no %default_type defined then |
| ** 0 is also used as the .dtnum value for nonterminals which do not specify |
| ** a datatype using the %type directive. |
| */ |
| for(i=0; i<lemp->nsymbol; i++){ |
| struct symbol *sp = lemp->symbols[i]; |
| char *cp; |
| if( sp==lemp->errsym ){ |
| sp->dtnum = arraysize+1; |
| continue; |
| } |
| if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){ |
| sp->dtnum = 0; |
| continue; |
| } |
| cp = sp->datatype; |
| if( cp==0 ) cp = lemp->vartype; |
| j = 0; |
| while( isspace(*cp) ) cp++; |
| while( *cp ) stddt[j++] = *cp++; |
| while( j>0 && isspace(stddt[j-1]) ) j--; |
| stddt[j] = 0; |
| if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){ |
| sp->dtnum = 0; |
| continue; |
| } |
| hash = 0; |
| for(j=0; stddt[j]; j++){ |
| hash = hash*53 + stddt[j]; |
| } |
| hash = (hash & 0x7fffffff)%arraysize; |
| while( types[hash] ){ |
| if( strcmp(types[hash],stddt)==0 ){ |
| sp->dtnum = hash + 1; |
| break; |
| } |
| hash++; |
| if( hash>=arraysize ) hash = 0; |
| } |
| if( types[hash]==0 ){ |
| sp->dtnum = hash + 1; |
| types[hash] = (char*)malloc( lemonStrlen(stddt)+1 ); |
| if( types[hash]==0 ){ |
| fprintf(stderr,"Out of memory.\n"); |
| exit(1); |
| } |
| strcpy(types[hash],stddt); |
| } |
| } |
| |
| /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */ |
| name = lemp->name ? lemp->name : "Parse"; |
| lineno = *plineno; |
| if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } |
| fprintf(out,"#define %sTOKENTYPE %s\n",name, |
| lemp->tokentype?lemp->tokentype:"void*"); lineno++; |
| if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } |
| fprintf(out,"typedef union {\n"); lineno++; |
| fprintf(out," int yyinit;\n"); lineno++; |
| fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; |
| for(i=0; i<arraysize; i++){ |
| if( types[i]==0 ) continue; |
| fprintf(out," %s yy%d;\n",types[i],i+1); lineno++; |
| free(types[i]); |
| } |
| if( lemp->errsym->useCnt ){ |
| fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++; |
| } |
| free(stddt); |
| free(types); |
| fprintf(out,"} YYMINORTYPE;\n"); lineno++; |
| *plineno = lineno; |
| } |
| |
| /* |
| ** Return the name of a C datatype able to represent values between |
| ** lwr and upr, inclusive. |
| */ |
| static const char *minimum_size_type(int lwr, int upr){ |
| if( lwr>=0 ){ |
| if( upr<=255 ){ |
| return "unsigned char"; |
| }else if( upr<65535 ){ |
| return "unsigned short int"; |
| }else{ |
| return "unsigned int"; |
| } |
| }else if( lwr>=-127 && upr<=127 ){ |
| return "signed char"; |
| }else if( lwr>=-32767 && upr<32767 ){ |
| return "short"; |
| }else{ |
| return "int"; |
| } |
| } |
| |
| /* |
| ** Each state contains a set of token transaction and a set of |
| ** nonterminal transactions. Each of these sets makes an instance |
| ** of the following structure. An array of these structures is used |
| ** to order the creation of entries in the yy_action[] table. |
| */ |
| struct axset { |
| struct state *stp; /* A pointer to a state */ |
| int isTkn; /* True to use tokens. False for non-terminals */ |
| int nAction; /* Number of actions */ |
| int iOrder; /* Original order of action sets */ |
| }; |
| |
| /* |
| ** Compare to axset structures for sorting purposes |
| */ |
| static int axset_compare(const void *a, const void *b){ |
| struct axset *p1 = (struct axset*)a; |
| struct axset *p2 = (struct axset*)b; |
| int c; |
| c = p2->nAction - p1->nAction; |
| if( c==0 ){ |
| c = p2->iOrder - p1->iOrder; |
| } |
| assert( c!=0 || p1==p2 ); |
| return c; |
| } |
| |
| /* |
| ** Write text on "out" that describes the rule "rp". |
| */ |
| static void writeRuleText(FILE *out, struct rule *rp){ |
| int j; |
| fprintf(out,"%s ::=", rp->lhs->name); |
| for(j=0; j<rp->nrhs; j++){ |
| struct symbol *sp = rp->rhs[j]; |
| fprintf(out," %s", sp->name); |
| if( sp->type==MULTITERMINAL ){ |
| int k; |
| for(k=1; k<sp->nsubsym; k++){ |
| fprintf(out,"|%s",sp->subsym[k]->name); |
| } |
| } |
| } |
| } |
| |
| |
| /* Generate C source code for the parser */ |
| void ReportTable( |
| struct lemon *lemp, |
| int mhflag /* Output in makeheaders format if true */ |
| ){ |
| FILE *out, *in; |
| char line[LINESIZE]; |
| int lineno; |
| struct state *stp; |
| struct action *ap; |
| struct rule *rp; |
| struct acttab *pActtab; |
| int i, j, n; |
| const char *name; |
| int mnTknOfst, mxTknOfst; |
| int mnNtOfst, mxNtOfst; |
| struct axset *ax; |
| |
| in = tplt_open(lemp); |
| if( in==0 ) return; |
| out = file_open(lemp,".c","wb"); |
| if( out==0 ){ |
| fclose(in); |
| return; |
| } |
| lineno = 1; |
| tplt_xfer(lemp->name,in,out,&lineno); |
| |
| /* Generate the include code, if any */ |
| tplt_print(out,lemp,lemp->include,&lineno); |
| if( mhflag ){ |
| char *name = file_makename(lemp, ".h"); |
| fprintf(out,"#include \"%s\"\n", name); lineno++; |
| free(name); |
| } |
| tplt_xfer(lemp->name,in,out,&lineno); |
| |
| /* Generate #defines for all tokens */ |
| if( mhflag ){ |
| const char *prefix; |
| fprintf(out,"#if INTERFACE\n"); lineno++; |
| if( lemp->tokenprefix ) prefix = lemp->tokenprefix; |
| else prefix = ""; |
| for(i=1; i<lemp->nterminal; i++){ |
| fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); |
| lineno++; |
| } |
| fprintf(out,"#endif\n"); lineno++; |
| } |
| tplt_xfer(lemp->name,in,out,&lineno); |
| |
| /* Generate the defines */ |
| fprintf(out,"#define YYCODETYPE %s\n", |
| minimum_size_type(0, lemp->nsymbol+1)); lineno++; |
| fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++; |
| fprintf(out,"#define YYACTIONTYPE %s\n", |
| minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++; |
| if( lemp->wildcard ){ |
| fprintf(out,"#define YYWILDCARD %d\n", |
| lemp->wildcard->index); lineno++; |
| } |
| print_stack_union(out,lemp,&lineno,mhflag); |
| fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++; |
| if( lemp->stacksize ){ |
| fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++; |
| }else{ |
| fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++; |
| } |
| fprintf(out, "#endif\n"); lineno++; |
| if( mhflag ){ |
| fprintf(out,"#if INTERFACE\n"); lineno++; |
| } |
| name = lemp->name ? lemp->name : "Parse"; |
| if( lemp->arg && lemp->arg[0] ){ |
| int i; |
| i = lemonStrlen(lemp->arg); |
| while( i>=1 && isspace(lemp->arg[i-1]) ) i--; |
| while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--; |
| fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++; |
| fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++; |
| fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n", |
| name,lemp->arg,&lemp->arg[i]); lineno++; |
| fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n", |
| name,&lemp->arg[i],&lemp->arg[i]); lineno++; |
| }else{ |
| fprintf(out,"#define %sARG_SDECL\n",name); lineno++; |
| fprintf(out,"#define %sARG_PDECL\n",name); lineno++; |
| fprintf(out,"#define %sARG_FETCH\n",name); lineno++; |
| fprintf(out,"#define %sARG_STORE\n",name); lineno++; |
| } |
| if( mhflag ){ |
| fprintf(out,"#endif\n"); lineno++; |
| } |
| fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++; |
| fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++; |
| if( lemp->errsym->useCnt ){ |
| fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++; |
| fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++; |
| } |
| if( lemp->has_fallback ){ |
| fprintf(out,"#define YYFALLBACK 1\n"); lineno++; |
| } |
| tplt_xfer(lemp->name,in,out,&lineno); |
| |
| /* Generate the action table and its associates: |
| ** |
| ** yy_action[] A single table containing all actions. |
| ** yy_lookahead[] A table containing the lookahead for each entry in |
| ** yy_action. Used to detect hash collisions. |
| ** yy_shift_ofst[] For each state, the offset into yy_action for |
| ** shifting terminals. |
| ** yy_reduce_ofst[] For each state, the offset into yy_action for |
| ** shifting non-terminals after a reduce. |
| ** yy_default[] Default action for each state. |
| */ |
| |
| /* Compute the actions on all states and count them up */ |
| ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0])); |
| if( ax==0 ){ |
| fprintf(stderr,"malloc failed\n"); |
| exit(1); |
| } |
| for(i=0; i<lemp->nstate; i++){ |
| stp = lemp->sorted[i]; |
| ax[i*2].stp = stp; |
| ax[i*2].isTkn = 1; |
| ax[i*2].nAction = stp->nTknAct; |
| ax[i*2+1].stp = stp; |
| ax[i*2+1].isTkn = 0; |
| ax[i*2+1].nAction = stp->nNtAct; |
| } |
| mxTknOfst = mnTknOfst = 0; |
| mxNtOfst = mnNtOfst = 0; |
| |
| /* Compute the action table. In order to try to keep the size of the |
| ** action table to a minimum, the heuristic of placing the largest action |
| ** sets first is used. |
| */ |
| for(i=0; i<lemp->nstate*2; i++) ax[i].iOrder = i; |
| qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare); |
| pActtab = acttab_alloc(); |
| for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){ |
| stp = ax[i].stp; |
| if( ax[i].isTkn ){ |
| for(ap=stp->ap; ap; ap=ap->next){ |
| int action; |
| if( ap->sp->index>=lemp->nterminal ) continue; |
| action = compute_action(lemp, ap); |
| if( action<0 ) continue; |
| acttab_action(pActtab, ap->sp->index, action); |
| } |
| stp->iTknOfst = acttab_insert(pActtab); |
| if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst; |
| if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst; |
| }else{ |
| for(ap=stp->ap; ap; ap=ap->next){ |
| int action; |
| if( ap->sp->index<lemp->nterminal ) continue; |
| if( ap->sp->index==lemp->nsymbol ) continue; |
| action = compute_action(lemp, ap); |
| if( action<0 ) continue; |
| acttab_action(pActtab, ap->sp->index, action); |
| } |
| stp->iNtOfst = acttab_insert(pActtab); |
| if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst; |
| if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst; |
| } |
| } |
| free(ax); |
| |
| /* Output the yy_action table */ |
| n = acttab_size(pActtab); |
| fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++; |
| fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++; |
| for(i=j=0; i<n; i++){ |
| int action = acttab_yyaction(pActtab, i); |
| if( action<0 ) action = lemp->nstate + lemp->nrule + 2; |
| if( j==0 ) fprintf(out," /* %5d */ ", i); |
| fprintf(out, " %4d,", action); |
| if( j==9 || i==n-1 ){ |
| fprintf(out, "\n"); lineno++; |
| j = 0; |
| }else{ |
| j++; |
| } |
| } |
| fprintf(out, "};\n"); lineno++; |
| |
| /* Output the yy_lookahead table */ |
| fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++; |
| for(i=j=0; i<n; i++){ |
| int la = acttab_yylookahead(pActtab, i); |
| if( la<0 ) la = lemp->nsymbol; |
| if( j==0 ) fprintf(out," /* %5d */ ", i); |
| fprintf(out, " %4d,", la); |
| if( j==9 || i==n-1 ){ |
| fprintf(out, "\n"); lineno++; |
| j = 0; |
| }else{ |
| j++; |
| } |
| } |
| fprintf(out, "};\n"); lineno++; |
| |
| /* Output the yy_shift_ofst[] table */ |
| fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++; |
| n = lemp->nstate; |
| while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--; |
| fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++; |
| fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++; |
| fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++; |
| fprintf(out, "static const %s yy_shift_ofst[] = {\n", |
| minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++; |
| for(i=j=0; i<n; i++){ |
| int ofst; |
| stp = lemp->sorted[i]; |
| ofst = stp->iTknOfst; |
| if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1; |
| if( j==0 ) fprintf(out," /* %5d */ ", i); |
| fprintf(out, " %4d,", ofst); |
| if( j==9 || i==n-1 ){ |
| fprintf(out, "\n"); lineno++; |
| j = 0; |
| }else{ |
| j++; |
| } |
| } |
| fprintf(out, "};\n"); lineno++; |
| |
| /* Output the yy_reduce_ofst[] table */ |
| fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++; |
| n = lemp->nstate; |
| while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--; |
| fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++; |
| fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++; |
| fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++; |
| fprintf(out, "static const %s yy_reduce_ofst[] = {\n", |
| minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++; |
| for(i=j=0; i<n; i++){ |
| int ofst; |
| stp = lemp->sorted[i]; |
| ofst = stp->iNtOfst; |
| if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1; |
| if( j==0 ) fprintf(out," /* %5d */ ", i); |
| fprintf(out, " %4d,", ofst); |
| if( j==9 || i==n-1 ){ |
| fprintf(out, "\n"); lineno++; |
| j = 0; |
| }else{ |
| j++; |
| } |
| } |
| fprintf(out, "};\n"); lineno++; |
| |
| /* Output the default action table */ |
| fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++; |
| n = lemp->nstate; |
| for(i=j=0; i<n; i++){ |
| stp = lemp->sorted[i]; |
| if( j==0 ) fprintf(out," /* %5d */ ", i); |
| fprintf(out, " %4d,", stp->iDflt); |
| if( j==9 || i==n-1 ){ |
| fprintf(out, "\n"); lineno++; |
| j = 0; |
| }else{ |
| j++; |
| } |
| } |
| fprintf(out, "};\n"); lineno++; |
| tplt_xfer(lemp->name,in,out,&lineno); |
| |
| /* Generate the table of fallback tokens. |
| */ |
| if( lemp->has_fallback ){ |
| int mx = lemp->nterminal - 1; |
| while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } |
| for(i=0; i<=mx; i++){ |
| struct symbol *p = lemp->symbols[i]; |
| if( p->fallback==0 ){ |
| fprintf(out, " 0, /* %10s => nothing */\n", p->name); |
| }else{ |
| fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index, |
| p->name, p->fallback->name); |
| } |
| lineno++; |
| } |
| } |
| tplt_xfer(lemp->name, in, out, &lineno); |
| |
| /* Generate a table containing the symbolic name of every symbol |
| */ |
| for(i=0; i<lemp->nsymbol; i++){ |
| sprintf(line,"\"%s\",",lemp->symbols[i]->name); |
| fprintf(out," %-15s",line); |
| if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; } |
| } |
| if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; } |
| tplt_xfer(lemp->name,in,out,&lineno); |
| |
| /* Generate a table containing a text string that describes every |
| ** rule in the rule set of the grammar. This information is used |
| ** when tracing REDUCE actions. |
| */ |
| for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ |
| assert( rp->index==i ); |
| fprintf(out," /* %3d */ \"", i); |
| writeRuleText(out, rp); |
| fprintf(out,"\",\n"); lineno++; |
| } |
| tplt_xfer(lemp->name,in,out,&lineno); |
| |
| /* Generate code which executes every time a symbol is popped from |
| ** the stack while processing errors or while destroying the parser. |
| ** (In other words, generate the %destructor actions) |
| */ |
| if( lemp->tokendest ){ |
| int once = 1; |
| for(i=0; i<lemp->nsymbol; i++){ |
| struct symbol *sp = lemp->symbols[i]; |
| if( sp==0 || sp->type!=TERMINAL ) continue; |
| if( once ){ |
| fprintf(out, " /* TERMINAL Destructor */\n"); lineno++; |
| once = 0; |
| } |
| fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
| } |
| for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++); |
| if( i<lemp->nsymbol ){ |
| emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); |
| fprintf(out," break;\n"); lineno++; |
| } |
| } |
| if( lemp->vardest ){ |
| struct symbol *dflt_sp = 0; |
| int once = 1; |
| for(i=0; i<lemp->nsymbol; i++){ |
| struct symbol *sp = lemp->symbols[i]; |
| if( sp==0 || sp->type==TERMINAL || |
| sp->index<=0 || sp->destructor!=0 ) continue; |
| if( once ){ |
| fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++; |
| once = 0; |
| } |
| fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
| dflt_sp = sp; |
| } |
| if( dflt_sp!=0 ){ |
| emit_destructor_code(out,dflt_sp,lemp,&lineno); |
| } |
| fprintf(out," break;\n"); lineno++; |
| } |
| for(i=0; i<lemp->nsymbol; i++){ |
| struct symbol *sp = lemp->symbols[i]; |
| if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue; |
| fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
| |
| /* Combine duplicate destructors into a single case */ |
| for(j=i+1; j<lemp->nsymbol; j++){ |
| struct symbol *sp2 = lemp->symbols[j]; |
| if( sp2 && sp2->type!=TERMINAL && sp2->destructor |
| && sp2->dtnum==sp->dtnum |
| && strcmp(sp->destructor,sp2->destructor)==0 ){ |
| fprintf(out," case %d: /* %s */\n", |
| sp2->index, sp2->name); lineno++; |
| sp2->destructor = 0; |
| } |
| } |
| |
| emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); |
| fprintf(out," break;\n"); lineno++; |
| } |
| tplt_xfer(lemp->name,in,out,&lineno); |
| |
| /* Generate code which executes whenever the parser stack overflows */ |
| tplt_print(out,lemp,lemp->overflow,&lineno); |
| tplt_xfer(lemp->name,in,out,&lineno); |
| |
| /* Generate the table of rule information |
| ** |
| ** Note: This code depends on the fact that rules are number |
| ** sequentually beginning with 0. |
| */ |
| for(rp=lemp->rule; rp; rp=rp->next){ |
| fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++; |
| } |
| tplt_xfer(lemp->name,in,out,&lineno); |
| |
| /* Generate code which execution during each REDUCE action */ |
| for(rp=lemp->rule; rp; rp=rp->next){ |
| translate_code(lemp, rp); |
| } |
| /* First output rules other than the default: rule */ |
| for(rp=lemp->rule; rp; rp=rp->next){ |
| struct rule *rp2; /* Other rules with the same action */ |
| if( rp->code==0 ) continue; |
| if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */ |
| fprintf(out," case %d: /* ", rp->index); |
| writeRuleText(out, rp); |
| fprintf(out, " */\n"); lineno++; |
| for(rp2=rp->next; rp2; rp2=rp2->next){ |
| if( rp2->code==rp->code ){ |
| fprintf(out," case %d: /* ", rp2->index); |
| writeRuleText(out, rp2); |
| fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++; |
| rp2->code = 0; |
| } |
| } |
| emit_code(out,rp,lemp,&lineno); |
| fprintf(out," break;\n"); lineno++; |
| rp->code = 0; |
| } |
| /* Finally, output the default: rule. We choose as the default: all |
| ** empty actions. */ |
| fprintf(out," default:\n"); lineno++; |
| for(rp=lemp->rule; rp; rp=rp->next){ |
| if( rp->code==0 ) continue; |
| assert( rp->code[0]=='\n' && rp->code[1]==0 ); |
| fprintf(out," /* (%d) ", rp->index); |
| writeRuleText(out, rp); |
| fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++; |
| } |
| fprintf(out," break;\n"); lineno++; |
| tplt_xfer(lemp->name,in,out,&lineno); |
| |
| /* Generate code which executes if a parse fails */ |
| tplt_print(out,lemp,lemp->failure,&lineno); |
| tplt_xfer(lemp->name,in,out,&lineno); |
| |
| /* Generate code which executes when a syntax error occurs */ |
| tplt_print(out,lemp,lemp->error,&lineno); |
| tplt_xfer(lemp->name,in,out,&lineno); |
| |
| /* Generate code which executes when the parser accepts its input */ |
| tplt_print(out,lemp,lemp->accept,&lineno); |
| tplt_xfer(lemp->name,in,out,&lineno); |
| |
| /* Append any addition code the user desires */ |
| tplt_print(out,lemp,lemp->extracode,&lineno); |
| |
| fclose(in); |
| fclose(out); |
| return; |
| } |
| |
| /* Generate a header file for the parser */ |
| void ReportHeader(struct lemon *lemp) |
| { |
| FILE *out, *in; |
| const char *prefix; |
| char line[LINESIZE]; |
| char pattern[LINESIZE]; |
| int i; |
| |
| if( lemp->tokenprefix ) prefix = lemp->tokenprefix; |
| else prefix = ""; |
| in = file_open(lemp,".h","rb"); |
| if( in ){ |
| for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){ |
| sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); |
| if( strcmp(line,pattern) ) break; |
| } |
| fclose(in); |
| if( i==lemp->nterminal ){ |
| /* No change in the file. Don't rewrite it. */ |
| return; |
| } |
| } |
| out = file_open(lemp,".h","wb"); |
| if( out ){ |
| for(i=1; i<lemp->nterminal; i++){ |
| fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); |
| } |
| fclose(out); |
| } |
| return; |
| } |
| |
| /* Reduce the size of the action tables, if possible, by making use |
| ** of defaults. |
| ** |
| ** In this version, we take the most frequent REDUCE action and make |
| ** it the default. Except, there is no default if the wildcard token |
| ** is a possible look-ahead. |
| */ |
| void CompressTables(struct lemon *lemp) |
| { |
| struct state *stp; |
| struct action *ap, *ap2; |
| struct rule *rp, *rp2, *rbest; |
| int nbest, n; |
| int i; |
| int usesWildcard; |
| |
| for(i=0; i<lemp->nstate; i++){ |
| stp = lemp->sorted[i]; |
| nbest = 0; |
| rbest = 0; |
| usesWildcard = 0; |
| |
| for(ap=stp->ap; ap; ap=ap->next){ |
| if( ap->type==SHIFT && ap->sp==lemp->wildcard ){ |
| usesWildcard = 1; |
| } |
| if( ap->type!=REDUCE ) continue; |
| rp = ap->x.rp; |
| if( rp->lhsStart ) continue; |
| if( rp==rbest ) continue; |
| n = 1; |
| for(ap2=ap->next; ap2; ap2=ap2->next){ |
| if( ap2->type!=REDUCE ) continue; |
| rp2 = ap2->x.rp; |
| if( rp2==rbest ) continue; |
| if( rp2==rp ) n++; |
| } |
| if( n>nbest ){ |
| nbest = n; |
| rbest = rp; |
| } |
| } |
| |
| /* Do not make a default if the number of rules to default |
| ** is not at least 1 or if the wildcard token is a possible |
| ** lookahead. |
| */ |
| if( nbest<1 || usesWildcard ) continue; |
| |
| |
| /* Combine matching REDUCE actions into a single default */ |
| for(ap=stp->ap; ap; ap=ap->next){ |
| if( ap->type==REDUCE && ap->x.rp==rbest ) break; |
| } |
| assert( ap ); |
| ap->sp = Symbol_new("{default}"); |
| for(ap=ap->next; ap; ap=ap->next){ |
| if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED; |
| } |
| stp->ap = Action_sort(stp->ap); |
| } |
| } |
| |
| |
| /* |
| ** Compare two states for sorting purposes. The smaller state is the |
| ** one with the most non-terminal actions. If they have the same number |
| ** of non-terminal actions, then the smaller is the one with the most |
| ** token actions. |
| */ |
| static int stateResortCompare(const void *a, const void *b){ |
| const struct state *pA = *(const struct state**)a; |
| const struct state *pB = *(const struct state**)b; |
| int n; |
| |
| n = pB->nNtAct - pA->nNtAct; |
| if( n==0 ){ |
| n = pB->nTknAct - pA->nTknAct; |
| if( n==0 ){ |
| n = pB->statenum - pA->statenum; |
| } |
| } |
| assert( n!=0 ); |
| return n; |
| } |
| |
| |
| /* |
| ** Renumber and resort states so that states with fewer choices |
| ** occur at the end. Except, keep state 0 as the first state. |
| */ |
| void ResortStates(struct lemon *lemp) |
| { |
| int i; |
| struct state *stp; |
| struct action *ap; |
| |
| for(i=0; i<lemp->nstate; i++){ |
| stp = lemp->sorted[i]; |
| stp->nTknAct = stp->nNtAct = 0; |
| stp->iDflt = lemp->nstate + lemp->nrule; |
| stp->iTknOfst = NO_OFFSET; |
| stp->iNtOfst = NO_OFFSET; |
| for(ap=stp->ap; ap; ap=ap->next){ |
| if( compute_action(lemp,ap)>=0 ){ |
| if( ap->sp->index<lemp->nterminal ){ |
| stp->nTknAct++; |
| }else if( ap->sp->index<lemp->nsymbol ){ |
| stp->nNtAct++; |
| }else{ |
| stp->iDflt = compute_action(lemp, ap); |
| } |
| } |
| } |
| } |
| qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]), |
| stateResortCompare); |
| for(i=0; i<lemp->nstate; i++){ |
| lemp->sorted[i]->statenum = i; |
| } |
| } |
| |
| |
| /***************** From the file "set.c" ************************************/ |
| /* |
| ** Set manipulation routines for the LEMON parser generator. |
| */ |
| |
| static int size = 0; |
| |
| /* Set the set size */ |
| void SetSize(int n) |
| { |
| size = n+1; |
| } |
| |
| /* Allocate a new set */ |
| char *SetNew(){ |
| char *s; |
| s = (char*)calloc( size, 1); |
| if( s==0 ){ |
| extern void memory_error(); |
| memory_error(); |
| } |
| return s; |
| } |
| |
| /* Deallocate a set */ |
| void SetFree(char *s) |
| { |
| free(s); |
| } |
| |
| /* Add a new element to the set. Return TRUE if the element was added |
| ** and FALSE if it was already there. */ |
| int SetAdd(char *s, int e) |
| { |
| int rv; |
| assert( e>=0 && e<size ); |
| rv = s[e]; |
| s[e] = 1; |
| return !rv; |
| } |
| |
| /* Add every element of s2 to s1. Return TRUE if s1 changes. */ |
| int SetUnion(char *s1, char *s2) |
| { |
| int i, progress; |
| progress = 0; |
| for(i=0; i<size; i++){ |
| if( s2[i]==0 ) continue; |
| if( s1[i]==0 ){ |
| progress = 1; |
| s1[i] = 1; |
| } |
| } |
| return progress; |
| } |
| /********************** From the file "table.c" ****************************/ |
| /* |
| ** All code in this file has been automatically generated |
| ** from a specification in the file |
| ** "table.q" |
| ** by the associative array code building program "aagen". |
| ** Do not edit this file! Instead, edit the specification |
| ** file, then rerun aagen. |
| */ |
| /* |
| ** Code for processing tables in the LEMON parser generator. |
| */ |
| |
| PRIVATE int strhash(const char *x) |
| { |
| int h = 0; |
| while( *x) h = h*13 + *(x++); |
| return h; |
| } |
| |
| /* Works like strdup, sort of. Save a string in malloced memory, but |
| ** keep strings in a table so that the same string is not in more |
| ** than one place. |
| */ |
| const char *Strsafe(const char *y) |
| { |
| const char *z; |
| char *cpy; |
| |
| if( y==0 ) return 0; |
| z = Strsafe_find(y); |
| if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){ |
| strcpy(cpy,y); |
| z = cpy; |
| Strsafe_insert(z); |
| } |
| MemoryCheck(z); |
| return z; |
| } |
| |
| /* There is one instance of the following structure for each |
| ** associative array of type "x1". |
| */ |
| struct s_x1 { |
| int size; /* The number of available slots. */ |
| /* Must be a power of 2 greater than or */ |
| /* equal to 1 */ |
| int count; /* Number of currently slots filled */ |
| struct s_x1node *tbl; /* The data stored here */ |
| struct s_x1node **ht; /* Hash table for lookups */ |
| }; |
| |
| /* There is one instance of this structure for every data element |
| ** in an associative array of type "x1". |
| */ |
| typedef struct s_x1node { |
| const char *data; /* The data */ |
| struct s_x1node *next; /* Next entry with the same hash */ |
| struct s_x1node **from; /* Previous link */ |
| } x1node; |
| |
| /* There is only one instance of the array, which is the following */ |
| static struct s_x1 *x1a; |
| |
| /* Allocate a new associative array */ |
| void Strsafe_init(){ |
| if( x1a ) return; |
| x1a = (struct s_x1*)malloc( sizeof(struct s_x1) ); |
| if( x1a ){ |
| x1a->size = 1024; |
| x1a->count = 0; |
| x1a->tbl = (x1node*)malloc( |
| (sizeof(x1node) + sizeof(x1node*))*1024 ); |
| if( x1a->tbl==0 ){ |
| free(x1a); |
| x1a = 0; |
| }else{ |
| int i; |
| x1a->ht = (x1node**)&(x1a->tbl[1024]); |
| for(i=0; i<1024; i++) x1a->ht[i] = 0; |
| } |
| } |
| } |
| /* Insert a new record into the array. Return TRUE if successful. |
| ** Prior data with the same key is NOT overwritten */ |
| int Strsafe_insert(const char *data) |
| { |
| x1node *np; |
| int h; |
| int ph; |
| |
| if( x1a==0 ) return 0; |
| ph = strhash(data); |
| h = ph & (x1a->size-1); |
| np = x1a->ht[h]; |
| while( np ){ |
| if( strcmp(np->data,data)==0 ){ |
| /* An existing entry with the same key is found. */ |
| /* Fail because overwrite is not allows. */ |
| return 0; |
| } |
| np = np->next; |
| } |
| if( x1a->count>=x1a->size ){ |
| /* Need to make the hash table bigger */ |
| int i,size; |
| struct s_x1 array; |
| array.size = size = x1a->size*2; |
| array.count = x1a->count; |
| array.tbl = (x1node*)malloc( |
| (sizeof(x1node) + sizeof(x1node*))*size ); |
| if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
| array.ht = (x1node**)&(array.tbl[size]); |
| for(i=0; i<size; i++) array.ht[i] = 0; |
| for(i=0; i<x1a->count; i++){ |
| x1node *oldnp, *newnp; |
| oldnp = &(x1a->tbl[i]); |
| h = strhash(oldnp->data) & (size-1); |
| newnp = &(array.tbl[i]); |
| if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
| newnp->next = array.ht[h]; |
| newnp->data = oldnp->data; |
| newnp->from = &(array.ht[h]); |
| array.ht[h] = newnp; |
| } |
| free(x1a->tbl); |
| *x1a = array; |
| } |
| /* Insert the new data */ |
| h = ph & (x1a->size-1); |
| np = &(x1a->tbl[x1a->count++]); |
| np->data = data; |
| if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next); |
| np->next = x1a->ht[h]; |
| x1a->ht[h] = np; |
| np->from = &(x1a->ht[h]); |
| return 1; |
| } |
| |
| /* Return a pointer to data assigned to the given key. Return NULL |
| ** if no such key. */ |
| const char *Strsafe_find(const char *key) |
| { |
| int h; |
| x1node *np; |
| |
| if( x1a==0 ) return 0; |
| h = strhash(key) & (x1a->size-1); |
| np = x1a->ht[h]; |
| while( np ){ |
| if( strcmp(np->data,key)==0 ) break; |
| np = np->next; |
| } |
| return np ? np->data : 0; |
| } |
| |
| /* Return a pointer to the (terminal or nonterminal) symbol "x". |
| ** Create a new symbol if this is the first time "x" has been seen. |
| */ |
| struct symbol *Symbol_new(const char *x) |
| { |
| struct symbol *sp; |
| |
| sp = Symbol_find(x); |
| if( sp==0 ){ |
| sp = (struct symbol *)calloc(1, sizeof(struct symbol) ); |
| MemoryCheck(sp); |
| sp->name = Strsafe(x); |
| sp->type = isupper(*x) ? TERMINAL : NONTERMINAL; |
| sp->rule = 0; |
| sp->fallback = 0; |
| sp->prec = -1; |
| sp->assoc = UNK; |
| sp->firstset = 0; |
| sp->lambda = LEMON_FALSE; |
| sp->destructor = 0; |
| sp->destLineno = 0; |
| sp->datatype = 0; |
| sp->useCnt = 0; |
| Symbol_insert(sp,sp->name); |
| } |
| sp->useCnt++; |
| return sp; |
| } |
| |
| /* Compare two symbols for working purposes |
| ** |
| ** Symbols that begin with upper case letters (terminals or tokens) |
| ** must sort before symbols that begin with lower case letters |
| ** (non-terminals). Other than that, the order does not matter. |
| ** |
| ** We find experimentally that leaving the symbols in their original |
| ** order (the order they appeared in the grammar file) gives the |
| ** smallest parser tables in SQLite. |
| */ |
| int Symbolcmpp(const void *_a, const void *_b) |
| { |
| const struct symbol **a = (const struct symbol **) _a; |
| const struct symbol **b = (const struct symbol **) _b; |
| int i1 = (**a).index + 10000000*((**a).name[0]>'Z'); |
| int i2 = (**b).index + 10000000*((**b).name[0]>'Z'); |
| assert( i1!=i2 || strcmp((**a).name,(**b).name)==0 ); |
| return i1-i2; |
| } |
| |
| /* There is one instance of the following structure for each |
| ** associative array of type "x2". |
| */ |
| struct s_x2 { |
| int size; /* The number of available slots. */ |
| /* Must be a power of 2 greater than or */ |
| /* equal to 1 */ |
| int count; /* Number of currently slots filled */ |
| struct s_x2node *tbl; /* The data stored here */ |
| struct s_x2node **ht; /* Hash table for lookups */ |
| }; |
| |
| /* There is one instance of this structure for every data element |
| ** in an associative array of type "x2". |
| */ |
| typedef struct s_x2node { |
| struct symbol *data; /* The data */ |
| const char *key; /* The key */ |
| struct s_x2node *next; /* Next entry with the same hash */ |
| struct s_x2node **from; /* Previous link */ |
| } x2node; |
| |
| /* There is only one instance of the array, which is the following */ |
| static struct s_x2 *x2a; |
| |
| /* Allocate a new associative array */ |
| void Symbol_init(){ |
| if( x2a ) return; |
| x2a = (struct s_x2*)malloc( sizeof(struct s_x2) ); |
| if( x2a ){ |
| x2a->size = 128; |
| x2a->count = 0; |
| x2a->tbl = (x2node*)malloc( |
| (sizeof(x2node) + sizeof(x2node*))*128 ); |
| if( x2a->tbl==0 ){ |
| free(x2a); |
| x2a = 0; |
| }else{ |
| int i; |
| x2a->ht = (x2node**)&(x2a->tbl[128]); |
| for(i=0; i<128; i++) x2a->ht[i] = 0; |
| } |
| } |
| } |
| /* Insert a new record into the array. Return TRUE if successful. |
| ** Prior data with the same key is NOT overwritten */ |
| int Symbol_insert(struct symbol *data, const char *key) |
| { |
| x2node *np; |
| int h; |
| int ph; |
| |
| if( x2a==0 ) return 0; |
| ph = strhash(key); |
| h = ph & (x2a->size-1); |
| np = x2a->ht[h]; |
| while( np ){ |
| if( strcmp(np->key,key)==0 ){ |
| /* An existing entry with the same key is found. */ |
| /* Fail because overwrite is not allows. */ |
| return 0; |
| } |
| np = np->next; |
| } |
| if( x2a->count>=x2a->size ){ |
| /* Need to make the hash table bigger */ |
| int i,size; |
| struct s_x2 array; |
| array.size = size = x2a->size*2; |
| array.count = x2a->count; |
| array.tbl = (x2node*)malloc( |
| (sizeof(x2node) + sizeof(x2node*))*size ); |
| if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
| array.ht = (x2node**)&(array.tbl[size]); |
| for(i=0; i<size; i++) array.ht[i] = 0; |
| for(i=0; i<x2a->count; i++){ |
| x2node *oldnp, *newnp; |
| oldnp = &(x2a->tbl[i]); |
| h = strhash(oldnp->key) & (size-1); |
| newnp = &(array.tbl[i]); |
| if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
| newnp->next = array.ht[h]; |
| newnp->key = oldnp->key; |
| newnp->data = oldnp->data; |
| newnp->from = &(array.ht[h]); |
| array.ht[h] = newnp; |
| } |
| free(x2a->tbl); |
| *x2a = array; |
| } |
| /* Insert the new data */ |
| h = ph & (x2a->size-1); |
| np = &(x2a->tbl[x2a->count++]); |
| np->key = key; |
| np->data = data; |
| if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next); |
| np->next = x2a->ht[h]; |
| x2a->ht[h] = np; |
| np->from = &(x2a->ht[h]); |
| return 1; |
| } |
| |
| /* Return a pointer to data assigned to the given key. Return NULL |
| ** if no such key. */ |
| struct symbol *Symbol_find(const char *key) |
| { |
| int h; |
| x2node *np; |
| |
| if( x2a==0 ) return 0; |
| h = strhash(key) & (x2a->size-1); |
| np = x2a->ht[h]; |
| while( np ){ |
| if( strcmp(np->key,key)==0 ) break; |
| np = np->next; |
| } |
| return np ? np->data : 0; |
| } |
| |
| /* Return the n-th data. Return NULL if n is out of range. */ |
| struct symbol *Symbol_Nth(int n) |
| { |
| struct symbol *data; |
| if( x2a && n>0 && n<=x2a->count ){ |
| data = x2a->tbl[n-1].data; |
| }else{ |
| data = 0; |
| } |
| return data; |
| } |
| |
| /* Return the size of the array */ |
| int Symbol_count() |
| { |
| return x2a ? x2a->count : 0; |
| } |
| |
| /* Return an array of pointers to all data in the table. |
| ** The array is obtained from malloc. Return NULL if memory allocation |
| ** problems, or if the array is empty. */ |
| struct symbol **Symbol_arrayof() |
| { |
| struct symbol **array; |
| int i,size; |
| if( x2a==0 ) return 0; |
| size = x2a->count; |
| array = (struct symbol **)calloc(size, sizeof(struct symbol *)); |
| if( array ){ |
| for(i=0; i<size; i++) array[i] = x2a->tbl[i].data; |
| } |
| return array; |
| } |
| |
| /* Compare two configurations */ |
| int Configcmp(const char *_a,const char *_b) |
| { |
| const struct config *a = (struct config *) _a; |
| const struct config *b = (struct config *) _b; |
| int x; |
| x = a->rp->index - b->rp->index; |
| if( x==0 ) x = a->dot - b->dot; |
| return x; |
| } |
| |
| /* Compare two states */ |
| PRIVATE int statecmp(struct config *a, struct config *b) |
| { |
| int rc; |
| for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){ |
| rc = a->rp->index - b->rp->index; |
| if( rc==0 ) rc = a->dot - b->dot; |
| } |
| if( rc==0 ){ |
| if( a ) rc = 1; |
| if( b ) rc = -1; |
| } |
| return rc; |
| } |
| |
| /* Hash a state */ |
| PRIVATE int statehash(struct config *a) |
| { |
| int h=0; |
| while( a ){ |
| h = h*571 + a->rp->index*37 + a->dot; |
| a = a->bp; |
| } |
| return h; |
| } |
| |
| /* Allocate a new state structure */ |
| struct state *State_new() |
| { |
| struct state *newstate; |
| newstate = (struct state *)calloc(1, sizeof(struct state) ); |
| MemoryCheck(newstate); |
| return newstate; |
| } |
| |
| /* There is one instance of the following structure for each |
| ** associative array of type "x3". |
| */ |
| struct s_x3 { |
| int size; /* The number of available slots. */ |
| /* Must be a power of 2 greater than or */ |
| /* equal to 1 */ |
| int count; /* Number of currently slots filled */ |
| struct s_x3node *tbl; /* The data stored here */ |
| struct s_x3node **ht; /* Hash table for lookups */ |
| }; |
| |
| /* There is one instance of this structure for every data element |
| ** in an associative array of type "x3". |
| */ |
| typedef struct s_x3node { |
| struct state *data; /* The data */ |
| struct config *key; /* The key */ |
| struct s_x3node *next; /* Next entry with the same hash */ |
| struct s_x3node **from; /* Previous link */ |
| } x3node; |
| |
| /* There is only one instance of the array, which is the following */ |
| static struct s_x3 *x3a; |
| |
| /* Allocate a new associative array */ |
| void State_init(){ |
| if( x3a ) return; |
| x3a = (struct s_x3*)malloc( sizeof(struct s_x3) ); |
| if( x3a ){ |
| x3a->size = 128; |
| x3a->count = 0; |
| x3a->tbl = (x3node*)malloc( |
| (sizeof(x3node) + sizeof(x3node*))*128 ); |
| if( x3a->tbl==0 ){ |
| free(x3a); |
| x3a = 0; |
| }else{ |
| int i; |
| x3a->ht = (x3node**)&(x3a->tbl[128]); |
| for(i=0; i<128; i++) x3a->ht[i] = 0; |
| } |
| } |
| } |
| /* Insert a new record into the array. Return TRUE if successful. |
| ** Prior data with the same key is NOT overwritten */ |
| int State_insert(struct state *data, struct config *key) |
| { |
| x3node *np; |
| int h; |
| int ph; |
| |
| if( x3a==0 ) return 0; |
| ph = statehash(key); |
| h = ph & (x3a->size-1); |
| np = x3a->ht[h]; |
| while( np ){ |
| if( statecmp(np->key,key)==0 ){ |
| /* An existing entry with the same key is found. */ |
| /* Fail because overwrite is not allows. */ |
| return 0; |
| } |
| np = np->next; |
| } |
| if( x3a->count>=x3a->size ){ |
| /* Need to make the hash table bigger */ |
| int i,size; |
| struct s_x3 array; |
| array.size = size = x3a->size*2; |
| array.count = x3a->count; |
| array.tbl = (x3node*)malloc( |
| (sizeof(x3node) + sizeof(x3node*))*size ); |
| if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
| array.ht = (x3node**)&(array.tbl[size]); |
| for(i=0; i<size; i++) array.ht[i] = 0; |
| for(i=0; i<x3a->count; i++){ |
| x3node *oldnp, *newnp; |
| oldnp = &(x3a->tbl[i]); |
| h = statehash(oldnp->key) & (size-1); |
| newnp = &(array.tbl[i]); |
| if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
| newnp->next = array.ht[h]; |
| newnp->key = oldnp->key; |
| newnp->data = oldnp->data; |
| newnp->from = &(array.ht[h]); |
| array.ht[h] = newnp; |
| } |
| free(x3a->tbl); |
| *x3a = array; |
| } |
| /* Insert the new data */ |
| h = ph & (x3a->size-1); |
| np = &(x3a->tbl[x3a->count++]); |
| np->key = key; |
| np->data = data; |
| if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next); |
| np->next = x3a->ht[h]; |
| x3a->ht[h] = np; |
| np->from = &(x3a->ht[h]); |
| return 1; |
| } |
| |
| /* Return a pointer to data assigned to the given key. Return NULL |
| ** if no such key. */ |
| struct state *State_find(struct config *key) |
| { |
| int h; |
| x3node *np; |
| |
| if( x3a==0 ) return 0; |
| h = statehash(key) & (x3a->size-1); |
| np = x3a->ht[h]; |
| while( np ){ |
| if( statecmp(np->key,key)==0 ) break; |
| np = np->next; |
| } |
| return np ? np->data : 0; |
| } |
| |
| /* Return an array of pointers to all data in the table. |
| ** The array is obtained from malloc. Return NULL if memory allocation |
| ** problems, or if the array is empty. */ |
| struct state **State_arrayof() |
| { |
| struct state **array; |
| int i,size; |
| if( x3a==0 ) return 0; |
| size = x3a->count; |
| array = (struct state **)malloc( sizeof(struct state *)*size ); |
| if( array ){ |
| for(i=0; i<size; i++) array[i] = x3a->tbl[i].data; |
| } |
| return array; |
| } |
| |
| /* Hash a configuration */ |
| PRIVATE int confighash(struct config *a) |
| { |
| int h=0; |
| h = h*571 + a->rp->index*37 + a->dot; |
| return h; |
| } |
| |
| /* There is one instance of the following structure for each |
| ** associative array of type "x4". |
| */ |
| struct s_x4 { |
| int size; /* The number of available slots. */ |
| /* Must be a power of 2 greater than or */ |
| /* equal to 1 */ |
| int count; /* Number of currently slots filled */ |
| struct s_x4node *tbl; /* The data stored here */ |
| struct s_x4node **ht; /* Hash table for lookups */ |
| }; |
| |
| /* There is one instance of this structure for every data element |
| ** in an associative array of type "x4". |
| */ |
| typedef struct s_x4node { |
| struct config *data; /* The data */ |
| struct s_x4node *next; /* Next entry with the same hash */ |
| struct s_x4node **from; /* Previous link */ |
| } x4node; |
| |
| /* There is only one instance of the array, which is the following */ |
| static struct s_x4 *x4a; |
| |
| /* Allocate a new associative array */ |
| void Configtable_init(){ |
| if( x4a ) return; |
| x4a = (struct s_x4*)malloc( sizeof(struct s_x4) ); |
| if( x4a ){ |
| x4a->size = 64; |
| x4a->count = 0; |
| x4a->tbl = (x4node*)malloc( |
| (sizeof(x4node) + sizeof(x4node*))*64 ); |
| if( x4a->tbl==0 ){ |
| free(x4a); |
| x4a = 0; |
| }else{ |
| int i; |
| x4a->ht = (x4node**)&(x4a->tbl[64]); |
| for(i=0; i<64; i++) x4a->ht[i] = 0; |
| } |
| } |
| } |
| /* Insert a new record into the array. Return TRUE if successful. |
| ** Prior data with the same key is NOT overwritten */ |
| int Configtable_insert(struct config *data) |
| { |
| x4node *np; |
| int h; |
| int ph; |
| |
| if( x4a==0 ) return 0; |
| ph = confighash(data); |
| h = ph & (x4a->size-1); |
| np = x4a->ht[h]; |
| while( np ){ |
| if( Configcmp((const char *) np->data,(const char *) data)==0 ){ |
| /* An existing entry with the same key is found. */ |
| /* Fail because overwrite is not allows. */ |
| return 0; |
| } |
| np = np->next; |
| } |
| if( x4a->count>=x4a->size ){ |
| /* Need to make the hash table bigger */ |
| int i,size; |
| struct s_x4 array; |
| array.size = size = x4a->size*2; |
| array.count = x4a->count; |
| array.tbl = (x4node*)malloc( |
| (sizeof(x4node) + sizeof(x4node*))*size ); |
| if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
| array.ht = (x4node**)&(array.tbl[size]); |
| for(i=0; i<size; i++) array.ht[i] = 0; |
| for(i=0; i<x4a->count; i++){ |
| x4node *oldnp, *newnp; |
| oldnp = &(x4a->tbl[i]); |
| h = confighash(oldnp->data) & (size-1); |
| newnp = &(array.tbl[i]); |
| if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
| newnp->next = array.ht[h]; |
| newnp->data = oldnp->data; |
| newnp->from = &(array.ht[h]); |
| array.ht[h] = newnp; |
| } |
| free(x4a->tbl); |
| *x4a = array; |
| } |
| /* Insert the new data */ |
| h = ph & (x4a->size-1); |
| np = &(x4a->tbl[x4a->count++]); |
| np->data = data; |
| if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next); |
| np->next = x4a->ht[h]; |
| x4a->ht[h] = np; |
| np->from = &(x4a->ht[h]); |
| return 1; |
| } |
| |
| /* Return a pointer to data assigned to the given key. Return NULL |
| ** if no such key. */ |
| struct config *Configtable_find(struct config *key) |
| { |
| int h; |
| x4node *np; |
| |
| if( x4a==0 ) return 0; |
| h = confighash(key) & (x4a->size-1); |
| np = x4a->ht[h]; |
| while( np ){ |
| if( Configcmp((const char *) np->data,(const char *) key)==0 ) break; |
| np = np->next; |
| } |
| return np ? np->data : 0; |
| } |
| |
| /* Remove all data from the table. Pass each data to the function "f" |
| ** as it is removed. ("f" may be null to avoid this step.) */ |
| void Configtable_clear(int(*f)(struct config *)) |
| { |
| int i; |
| if( x4a==0 || x4a->count==0 ) return; |
| if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data); |
| for(i=0; i<x4a->size; i++) x4a->ht[i] = 0; |
| x4a->count = 0; |
| return; |
| } |