blob: 5997bff667829048bdc365007ace85fa74fd33aa [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/api/api.h"
#include <algorithm> // For min
#include <cmath> // For isnan.
#include <limits>
#include <string>
#include <utility> // For move
#include <vector>
#include "include/v8-cppgc.h"
#include "include/v8-fast-api-calls.h"
#include "include/v8-profiler.h"
#include "include/v8-unwinder-state.h"
#include "include/v8-util.h"
#include "src/api/api-inl.h"
#include "src/api/api-natives.h"
#include "src/base/functional.h"
#include "src/base/logging.h"
#include "src/base/platform/platform.h"
#include "src/base/platform/time.h"
#include "src/base/safe_conversions.h"
#include "src/base/utils/random-number-generator.h"
#include "src/builtins/accessors.h"
#include "src/builtins/builtins-utils.h"
#include "src/codegen/compiler.h"
#include "src/codegen/cpu-features.h"
#include "src/common/assert-scope.h"
#include "src/common/external-pointer.h"
#include "src/common/globals.h"
#include "src/compiler-dispatcher/compiler-dispatcher.h"
#include "src/date/date.h"
#include "src/debug/debug-coverage.h"
#include "src/debug/debug-evaluate.h"
#include "src/debug/debug-type-profile.h"
#include "src/debug/debug.h"
#include "src/debug/liveedit.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/diagnostics/gdb-jit.h"
#include "src/execution/execution.h"
#include "src/execution/frames-inl.h"
#include "src/execution/isolate-inl.h"
#include "src/execution/messages.h"
#include "src/execution/microtask-queue.h"
#include "src/execution/runtime-profiler.h"
#include "src/execution/simulator.h"
#include "src/execution/v8threads.h"
#include "src/execution/vm-state-inl.h"
#include "src/handles/global-handles.h"
#include "src/handles/persistent-handles.h"
#include "src/heap/embedder-tracing.h"
#include "src/heap/heap-inl.h"
#include "src/init/bootstrapper.h"
#include "src/init/icu_util.h"
#include "src/init/startup-data-util.h"
#include "src/init/v8.h"
#include "src/json/json-parser.h"
#include "src/json/json-stringifier.h"
#include "src/logging/counters.h"
#include "src/logging/metrics.h"
#include "src/logging/tracing-flags.h"
#include "src/numbers/conversions-inl.h"
#include "src/objects/api-callbacks.h"
#include "src/objects/contexts.h"
#include "src/objects/embedder-data-array-inl.h"
#include "src/objects/embedder-data-slot-inl.h"
#include "src/objects/frame-array-inl.h"
#include "src/objects/hash-table-inl.h"
#include "src/objects/heap-object.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/js-collection-inl.h"
#include "src/objects/js-generator-inl.h"
#include "src/objects/js-promise-inl.h"
#include "src/objects/js-regexp-inl.h"
#include "src/objects/js-weak-refs-inl.h"
#include "src/objects/module-inl.h"
#include "src/objects/objects-inl.h"
#include "src/objects/oddball.h"
#include "src/objects/ordered-hash-table-inl.h"
#include "src/objects/property-descriptor.h"
#include "src/objects/property-details.h"
#include "src/objects/property.h"
#include "src/objects/prototype.h"
#include "src/objects/slots.h"
#include "src/objects/smi.h"
#include "src/objects/stack-frame-info-inl.h"
#include "src/objects/synthetic-module-inl.h"
#include "src/objects/templates.h"
#include "src/objects/value-serializer.h"
#include "src/parsing/parse-info.h"
#include "src/parsing/parser.h"
#include "src/parsing/pending-compilation-error-handler.h"
#include "src/parsing/scanner-character-streams.h"
#include "src/profiler/cpu-profiler.h"
#include "src/profiler/heap-profiler.h"
#include "src/profiler/heap-snapshot-generator-inl.h"
#include "src/profiler/profile-generator-inl.h"
#include "src/profiler/tick-sample.h"
#include "src/regexp/regexp-utils.h"
#include "src/runtime/runtime.h"
#include "src/snapshot/code-serializer.h"
#include "src/snapshot/embedded/embedded-data.h"
#include "src/snapshot/snapshot.h"
#include "src/snapshot/startup-serializer.h" // For SerializedHandleChecker.
#include "src/strings/char-predicates-inl.h"
#include "src/strings/string-hasher.h"
#include "src/strings/unicode-inl.h"
#include "src/tracing/trace-event.h"
#include "src/trap-handler/trap-handler.h"
#include "src/utils/detachable-vector.h"
#include "src/utils/version.h"
#include "src/wasm/streaming-decoder.h"
#include "src/wasm/value-type.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/wasm/wasm-result.h"
#include "src/wasm/wasm-serialization.h"
#if V8_OS_LINUX || V8_OS_MACOSX || V8_OS_FREEBSD
#include <signal.h>
#include "include/v8-wasm-trap-handler-posix.h"
#include "src/trap-handler/handler-inside-posix.h"
#endif
#if V8_OS_WIN
#include <versionhelpers.h>
#include <windows.h>
#include "include/v8-wasm-trap-handler-win.h"
#include "src/trap-handler/handler-inside-win.h"
#if defined(V8_OS_WIN64)
#include "src/base/platform/wrappers.h"
#include "src/diagnostics/unwinding-info-win64.h"
#endif // V8_OS_WIN64
#endif // V8_OS_WIN
#define TRACE_BS(...) \
do { \
if (i::FLAG_trace_backing_store) PrintF(__VA_ARGS__); \
} while (false)
namespace v8 {
/*
* Most API methods should use one of the three macros:
*
* ENTER_V8, ENTER_V8_NO_SCRIPT, ENTER_V8_NO_SCRIPT_NO_EXCEPTION.
*
* The latter two assume that no script is executed, and no exceptions are
* scheduled in addition (respectively). Creating a pending exception and
* removing it before returning is ok.
*
* Exceptions should be handled either by invoking one of the
* RETURN_ON_FAILED_EXECUTION* macros.
*
* Don't use macros with DO_NOT_USE in their name.
*
* TODO(jochen): Document debugger specific macros.
* TODO(jochen): Document LOG_API and other RuntimeCallStats macros.
* TODO(jochen): All API methods should invoke one of the ENTER_V8* macros.
* TODO(jochen): Remove calls form API methods to DO_NOT_USE macros.
*/
#define LOG_API(isolate, class_name, function_name) \
i::RuntimeCallTimerScope _runtime_timer( \
isolate, i::RuntimeCallCounterId::kAPI_##class_name##_##function_name); \
LOG(isolate, ApiEntryCall("v8::" #class_name "::" #function_name))
#define ENTER_V8_DO_NOT_USE(isolate) i::VMState<v8::OTHER> __state__((isolate))
#define ENTER_V8_HELPER_DO_NOT_USE(isolate, context, class_name, \
function_name, bailout_value, \
HandleScopeClass, do_callback) \
if (IsExecutionTerminatingCheck(isolate)) { \
return bailout_value; \
} \
HandleScopeClass handle_scope(isolate); \
CallDepthScope<do_callback> call_depth_scope(isolate, context); \
LOG_API(isolate, class_name, function_name); \
i::VMState<v8::OTHER> __state__((isolate)); \
bool has_pending_exception = false
#define PREPARE_FOR_DEBUG_INTERFACE_EXECUTION_WITH_ISOLATE(isolate, T) \
if (IsExecutionTerminatingCheck(isolate)) { \
return MaybeLocal<T>(); \
} \
InternalEscapableScope handle_scope(isolate); \
CallDepthScope<false> call_depth_scope(isolate, v8::Local<v8::Context>()); \
i::VMState<v8::OTHER> __state__((isolate)); \
bool has_pending_exception = false
#define PREPARE_FOR_EXECUTION_WITH_CONTEXT(context, class_name, function_name, \
bailout_value, HandleScopeClass, \
do_callback) \
auto isolate = context.IsEmpty() \
? i::Isolate::Current() \
: reinterpret_cast<i::Isolate*>(context->GetIsolate()); \
ENTER_V8_HELPER_DO_NOT_USE(isolate, context, class_name, function_name, \
bailout_value, HandleScopeClass, do_callback);
#define PREPARE_FOR_EXECUTION(context, class_name, function_name, T) \
PREPARE_FOR_EXECUTION_WITH_CONTEXT(context, class_name, function_name, \
MaybeLocal<T>(), InternalEscapableScope, \
false)
#define ENTER_V8(isolate, context, class_name, function_name, bailout_value, \
HandleScopeClass) \
ENTER_V8_HELPER_DO_NOT_USE(isolate, context, class_name, function_name, \
bailout_value, HandleScopeClass, true)
#ifdef DEBUG
#define ENTER_V8_NO_SCRIPT(isolate, context, class_name, function_name, \
bailout_value, HandleScopeClass) \
ENTER_V8_HELPER_DO_NOT_USE(isolate, context, class_name, function_name, \
bailout_value, HandleScopeClass, false); \
i::DisallowJavascriptExecutionDebugOnly __no_script__((isolate))
#define ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate) \
i::VMState<v8::OTHER> __state__((isolate)); \
i::DisallowJavascriptExecutionDebugOnly __no_script__((isolate)); \
i::DisallowExceptions __no_exceptions__((isolate))
#define ENTER_V8_FOR_NEW_CONTEXT(isolate) \
i::VMState<v8::OTHER> __state__((isolate)); \
i::DisallowExceptions __no_exceptions__((isolate))
#else
#define ENTER_V8_NO_SCRIPT(isolate, context, class_name, function_name, \
bailout_value, HandleScopeClass) \
ENTER_V8_HELPER_DO_NOT_USE(isolate, context, class_name, function_name, \
bailout_value, HandleScopeClass, false)
#define ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate) \
i::VMState<v8::OTHER> __state__((isolate));
#define ENTER_V8_FOR_NEW_CONTEXT(isolate) \
i::VMState<v8::OTHER> __state__((isolate));
#endif // DEBUG
#define EXCEPTION_BAILOUT_CHECK_SCOPED_DO_NOT_USE(isolate, value) \
do { \
if (has_pending_exception) { \
call_depth_scope.Escape(); \
return value; \
} \
} while (false)
#define RETURN_ON_FAILED_EXECUTION(T) \
EXCEPTION_BAILOUT_CHECK_SCOPED_DO_NOT_USE(isolate, MaybeLocal<T>())
#define RETURN_ON_FAILED_EXECUTION_PRIMITIVE(T) \
EXCEPTION_BAILOUT_CHECK_SCOPED_DO_NOT_USE(isolate, Nothing<T>())
#define RETURN_ESCAPED(value) return handle_scope.Escape(value);
namespace {
class InternalEscapableScope : public v8::EscapableHandleScope {
public:
explicit inline InternalEscapableScope(i::Isolate* isolate)
: v8::EscapableHandleScope(reinterpret_cast<v8::Isolate*>(isolate)) {}
};
// TODO(jochen): This should be #ifdef DEBUG
#ifdef V8_CHECK_MICROTASKS_SCOPES_CONSISTENCY
void CheckMicrotasksScopesConsistency(i::MicrotaskQueue* microtask_queue) {
if (microtask_queue &&
microtask_queue->microtasks_policy() == v8::MicrotasksPolicy::kScoped) {
DCHECK(microtask_queue->GetMicrotasksScopeDepth() ||
!microtask_queue->DebugMicrotasksScopeDepthIsZero());
}
}
#endif
template <bool do_callback>
class CallDepthScope {
public:
CallDepthScope(i::Isolate* isolate, Local<Context> context)
: isolate_(isolate),
context_(context),
escaped_(false),
safe_for_termination_(isolate->next_v8_call_is_safe_for_termination()),
interrupts_scope_(isolate_, i::StackGuard::TERMINATE_EXECUTION,
isolate_->only_terminate_in_safe_scope()
? (safe_for_termination_
? i::InterruptsScope::kRunInterrupts
: i::InterruptsScope::kPostponeInterrupts)
: i::InterruptsScope::kNoop) {
isolate_->thread_local_top()->IncrementCallDepth(this);
isolate_->set_next_v8_call_is_safe_for_termination(false);
if (!context.IsEmpty()) {
i::Handle<i::Context> env = Utils::OpenHandle(*context);
i::HandleScopeImplementer* impl = isolate->handle_scope_implementer();
if (!isolate->context().is_null() &&
isolate->context().native_context() == env->native_context()) {
context_ = Local<Context>();
} else {
impl->SaveContext(isolate->context());
isolate->set_context(*env);
}
}
if (do_callback) isolate_->FireBeforeCallEnteredCallback();
}
~CallDepthScope() {
i::MicrotaskQueue* microtask_queue = isolate_->default_microtask_queue();
if (!context_.IsEmpty()) {
i::HandleScopeImplementer* impl = isolate_->handle_scope_implementer();
isolate_->set_context(impl->RestoreContext());
i::Handle<i::Context> env = Utils::OpenHandle(*context_);
microtask_queue = env->native_context().microtask_queue();
}
if (!escaped_) isolate_->thread_local_top()->DecrementCallDepth(this);
if (do_callback) isolate_->FireCallCompletedCallback(microtask_queue);
// TODO(jochen): This should be #ifdef DEBUG
#ifdef V8_CHECK_MICROTASKS_SCOPES_CONSISTENCY
if (do_callback) CheckMicrotasksScopesConsistency(microtask_queue);
#endif
DCHECK(CheckKeptObjectsClearedAfterMicrotaskCheckpoint(microtask_queue));
isolate_->set_next_v8_call_is_safe_for_termination(safe_for_termination_);
}
void Escape() {
DCHECK(!escaped_);
escaped_ = true;
auto thread_local_top = isolate_->thread_local_top();
thread_local_top->DecrementCallDepth(this);
bool clear_exception = thread_local_top->CallDepthIsZero() &&
thread_local_top->try_catch_handler_ == nullptr;
isolate_->OptionalRescheduleException(clear_exception);
}
private:
bool CheckKeptObjectsClearedAfterMicrotaskCheckpoint(
i::MicrotaskQueue* microtask_queue) {
bool did_perform_microtask_checkpoint =
isolate_->thread_local_top()->CallDepthIsZero() &&
do_callback && microtask_queue &&
microtask_queue->microtasks_policy() == MicrotasksPolicy::kAuto;
return !did_perform_microtask_checkpoint ||
isolate_->heap()->weak_refs_keep_during_job().IsUndefined(isolate_);
}
i::Isolate* const isolate_;
Local<Context> context_;
bool escaped_;
bool do_callback_;
bool safe_for_termination_;
i::InterruptsScope interrupts_scope_;
i::Address previous_stack_height_;
friend class i::ThreadLocalTop;
DISALLOW_NEW_AND_DELETE()
DISALLOW_COPY_AND_ASSIGN(CallDepthScope);
};
} // namespace
static ScriptOrigin GetScriptOriginForScript(i::Isolate* isolate,
i::Handle<i::Script> script) {
i::Handle<i::Object> scriptName(script->GetNameOrSourceURL(), isolate);
i::Handle<i::Object> source_map_url(script->source_mapping_url(), isolate);
i::Handle<i::FixedArray> host_defined_options(script->host_defined_options(),
isolate);
v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate);
ScriptOriginOptions options(script->origin_options());
v8::ScriptOrigin origin(
Utils::ToLocal(scriptName),
v8::Integer::New(v8_isolate, script->line_offset()),
v8::Integer::New(v8_isolate, script->column_offset()),
v8::Boolean::New(v8_isolate, options.IsSharedCrossOrigin()),
v8::Integer::New(v8_isolate, script->id()),
Utils::ToLocal(source_map_url),
v8::Boolean::New(v8_isolate, options.IsOpaque()),
v8::Boolean::New(v8_isolate, script->type() == i::Script::TYPE_WASM),
v8::Boolean::New(v8_isolate, options.IsModule()),
Utils::ToLocal(host_defined_options));
return origin;
}
// --- E x c e p t i o n B e h a v i o r ---
void i::FatalProcessOutOfMemory(i::Isolate* isolate, const char* location) {
i::V8::FatalProcessOutOfMemory(isolate, location, false);
}
// When V8 cannot allocate memory FatalProcessOutOfMemory is called. The default
// OOM error handler is called and execution is stopped.
void i::V8::FatalProcessOutOfMemory(i::Isolate* isolate, const char* location,
bool is_heap_oom) {
char last_few_messages[Heap::kTraceRingBufferSize + 1];
char js_stacktrace[Heap::kStacktraceBufferSize + 1];
i::HeapStats heap_stats;
if (isolate == nullptr) {
isolate = Isolate::TryGetCurrent();
}
if (isolate == nullptr) {
// If the Isolate is not available for the current thread we cannot retrieve
// memory information from the Isolate. Write easy-to-recognize values on
// the stack.
memset(last_few_messages, 0x0BADC0DE, Heap::kTraceRingBufferSize + 1);
memset(js_stacktrace, 0x0BADC0DE, Heap::kStacktraceBufferSize + 1);
memset(&heap_stats, 0xBADC0DE, sizeof(heap_stats));
// Note that the embedder's oom handler is also not available and therefore
// won't be called in this case. We just crash.
FATAL("Fatal process out of memory: %s", location);
UNREACHABLE();
}
memset(last_few_messages, 0, Heap::kTraceRingBufferSize + 1);
memset(js_stacktrace, 0, Heap::kStacktraceBufferSize + 1);
intptr_t start_marker;
heap_stats.start_marker = &start_marker;
size_t ro_space_size;
heap_stats.ro_space_size = &ro_space_size;
size_t ro_space_capacity;
heap_stats.ro_space_capacity = &ro_space_capacity;
size_t new_space_size;
heap_stats.new_space_size = &new_space_size;
size_t new_space_capacity;
heap_stats.new_space_capacity = &new_space_capacity;
size_t old_space_size;
heap_stats.old_space_size = &old_space_size;
size_t old_space_capacity;
heap_stats.old_space_capacity = &old_space_capacity;
size_t code_space_size;
heap_stats.code_space_size = &code_space_size;
size_t code_space_capacity;
heap_stats.code_space_capacity = &code_space_capacity;
size_t map_space_size;
heap_stats.map_space_size = &map_space_size;
size_t map_space_capacity;
heap_stats.map_space_capacity = &map_space_capacity;
size_t lo_space_size;
heap_stats.lo_space_size = &lo_space_size;
size_t code_lo_space_size;
heap_stats.code_lo_space_size = &code_lo_space_size;
size_t global_handle_count;
heap_stats.global_handle_count = &global_handle_count;
size_t weak_global_handle_count;
heap_stats.weak_global_handle_count = &weak_global_handle_count;
size_t pending_global_handle_count;
heap_stats.pending_global_handle_count = &pending_global_handle_count;
size_t near_death_global_handle_count;
heap_stats.near_death_global_handle_count = &near_death_global_handle_count;
size_t free_global_handle_count;
heap_stats.free_global_handle_count = &free_global_handle_count;
size_t memory_allocator_size;
heap_stats.memory_allocator_size = &memory_allocator_size;
size_t memory_allocator_capacity;
heap_stats.memory_allocator_capacity = &memory_allocator_capacity;
size_t malloced_memory;
heap_stats.malloced_memory = &malloced_memory;
size_t malloced_peak_memory;
heap_stats.malloced_peak_memory = &malloced_peak_memory;
size_t objects_per_type[LAST_TYPE + 1] = {0};
heap_stats.objects_per_type = objects_per_type;
size_t size_per_type[LAST_TYPE + 1] = {0};
heap_stats.size_per_type = size_per_type;
int os_error;
heap_stats.os_error = &os_error;
heap_stats.last_few_messages = last_few_messages;
heap_stats.js_stacktrace = js_stacktrace;
intptr_t end_marker;
heap_stats.end_marker = &end_marker;
if (isolate->heap()->HasBeenSetUp()) {
// BUG(1718): Don't use the take_snapshot since we don't support
// HeapObjectIterator here without doing a special GC.
isolate->heap()->RecordStats(&heap_stats, false);
if (!FLAG_correctness_fuzzer_suppressions) {
char* first_newline = strchr(last_few_messages, '\n');
if (first_newline == nullptr || first_newline[1] == '\0')
first_newline = last_few_messages;
base::OS::PrintError("\n<--- Last few GCs --->\n%s\n", first_newline);
base::OS::PrintError("\n<--- JS stacktrace --->\n%s\n", js_stacktrace);
}
}
Utils::ReportOOMFailure(isolate, location, is_heap_oom);
// If the fatal error handler returns, we stop execution.
FATAL("API fatal error handler returned after process out of memory");
}
void Utils::ReportApiFailure(const char* location, const char* message) {
i::Isolate* isolate = i::Isolate::TryGetCurrent();
FatalErrorCallback callback = nullptr;
if (isolate != nullptr) {
callback = isolate->exception_behavior();
}
if (callback == nullptr) {
base::OS::PrintError("\n#\n# Fatal error in %s\n# %s\n#\n\n", location,
message);
base::OS::Abort();
} else {
callback(location, message);
}
isolate->SignalFatalError();
}
void Utils::ReportOOMFailure(i::Isolate* isolate, const char* location,
bool is_heap_oom) {
OOMErrorCallback oom_callback = isolate->oom_behavior();
if (oom_callback == nullptr) {
// TODO(wfh): Remove this fallback once Blink is setting OOM handler. See
// crbug.com/614440.
FatalErrorCallback fatal_callback = isolate->exception_behavior();
if (fatal_callback == nullptr) {
base::OS::PrintError("\n#\n# Fatal %s OOM in %s\n#\n\n",
is_heap_oom ? "javascript" : "process", location);
#ifdef V8_FUZZILLI
exit(0);
#else
base::OS::Abort();
#endif // V8_FUZZILLI
} else {
fatal_callback(location,
is_heap_oom
? "Allocation failed - JavaScript heap out of memory"
: "Allocation failed - process out of memory");
}
} else {
oom_callback(location, is_heap_oom);
}
isolate->SignalFatalError();
}
static inline bool IsExecutionTerminatingCheck(i::Isolate* isolate) {
if (isolate->has_scheduled_exception()) {
return isolate->scheduled_exception() ==
i::ReadOnlyRoots(isolate).termination_exception();
}
return false;
}
void V8::SetSnapshotDataBlob(StartupData* snapshot_blob) {
i::V8::SetSnapshotBlob(snapshot_blob);
}
namespace {
class ArrayBufferAllocator : public v8::ArrayBuffer::Allocator {
public:
void* Allocate(size_t length) override {
#if V8_OS_AIX && _LINUX_SOURCE_COMPAT
// Work around for GCC bug on AIX
// See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79839
void* data = __linux_calloc(length, 1);
#else
void* data = base::Calloc(length, 1);
#endif
return data;
}
void* AllocateUninitialized(size_t length) override {
#if V8_OS_AIX && _LINUX_SOURCE_COMPAT
// Work around for GCC bug on AIX
// See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79839
void* data = __linux_malloc(length);
#else
void* data = base::Malloc(length);
#endif
return data;
}
void Free(void* data, size_t) override { base::Free(data); }
void* Reallocate(void* data, size_t old_length, size_t new_length) override {
#if V8_OS_AIX && _LINUX_SOURCE_COMPAT
// Work around for GCC bug on AIX
// See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79839
void* new_data = __linux_realloc(data, new_length);
#else
void* new_data = base::Realloc(data, new_length);
#endif
if (new_length > old_length) {
memset(reinterpret_cast<uint8_t*>(new_data) + old_length, 0,
new_length - old_length);
}
return new_data;
}
};
struct SnapshotCreatorData {
explicit SnapshotCreatorData(Isolate* isolate)
: isolate_(isolate),
default_context_(),
contexts_(isolate),
created_(false) {}
static SnapshotCreatorData* cast(void* data) {
return reinterpret_cast<SnapshotCreatorData*>(data);
}
ArrayBufferAllocator allocator_;
Isolate* isolate_;
Persistent<Context> default_context_;
SerializeInternalFieldsCallback default_embedder_fields_serializer_;
PersistentValueVector<Context> contexts_;
std::vector<SerializeInternalFieldsCallback> embedder_fields_serializers_;
bool created_;
};
} // namespace
SnapshotCreator::SnapshotCreator(Isolate* isolate,
const intptr_t* external_references,
StartupData* existing_snapshot) {
SnapshotCreatorData* data = new SnapshotCreatorData(isolate);
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
internal_isolate->set_array_buffer_allocator(&data->allocator_);
internal_isolate->set_api_external_references(external_references);
internal_isolate->enable_serializer();
isolate->Enter();
const StartupData* blob = existing_snapshot
? existing_snapshot
: i::Snapshot::DefaultSnapshotBlob();
if (blob && blob->raw_size > 0) {
internal_isolate->set_snapshot_blob(blob);
i::Snapshot::Initialize(internal_isolate);
} else {
internal_isolate->InitWithoutSnapshot();
}
data_ = data;
}
SnapshotCreator::SnapshotCreator(const intptr_t* external_references,
StartupData* existing_snapshot)
: SnapshotCreator(Isolate::Allocate(), external_references,
existing_snapshot) {}
SnapshotCreator::~SnapshotCreator() {
SnapshotCreatorData* data = SnapshotCreatorData::cast(data_);
DCHECK(data->created_);
Isolate* isolate = data->isolate_;
isolate->Exit();
isolate->Dispose();
delete data;
}
Isolate* SnapshotCreator::GetIsolate() {
return SnapshotCreatorData::cast(data_)->isolate_;
}
void SnapshotCreator::SetDefaultContext(
Local<Context> context, SerializeInternalFieldsCallback callback) {
DCHECK(!context.IsEmpty());
SnapshotCreatorData* data = SnapshotCreatorData::cast(data_);
DCHECK(!data->created_);
DCHECK(data->default_context_.IsEmpty());
Isolate* isolate = data->isolate_;
CHECK_EQ(isolate, context->GetIsolate());
data->default_context_.Reset(isolate, context);
data->default_embedder_fields_serializer_ = callback;
}
size_t SnapshotCreator::AddContext(Local<Context> context,
SerializeInternalFieldsCallback callback) {
DCHECK(!context.IsEmpty());
SnapshotCreatorData* data = SnapshotCreatorData::cast(data_);
DCHECK(!data->created_);
Isolate* isolate = data->isolate_;
CHECK_EQ(isolate, context->GetIsolate());
size_t index = data->contexts_.Size();
data->contexts_.Append(context);
data->embedder_fields_serializers_.push_back(callback);
return index;
}
size_t SnapshotCreator::AddData(i::Address object) {
DCHECK_NE(object, i::kNullAddress);
SnapshotCreatorData* data = SnapshotCreatorData::cast(data_);
DCHECK(!data->created_);
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(data->isolate_);
i::HandleScope scope(isolate);
i::Handle<i::Object> obj(i::Object(object), isolate);
i::Handle<i::ArrayList> list;
if (!isolate->heap()->serialized_objects().IsArrayList()) {
list = i::ArrayList::New(isolate, 1);
} else {
list = i::Handle<i::ArrayList>(
i::ArrayList::cast(isolate->heap()->serialized_objects()), isolate);
}
size_t index = static_cast<size_t>(list->Length());
list = i::ArrayList::Add(isolate, list, obj);
isolate->heap()->SetSerializedObjects(*list);
return index;
}
size_t SnapshotCreator::AddData(Local<Context> context, i::Address object) {
DCHECK_NE(object, i::kNullAddress);
DCHECK(!SnapshotCreatorData::cast(data_)->created_);
i::Handle<i::Context> ctx = Utils::OpenHandle(*context);
i::Isolate* isolate = ctx->GetIsolate();
i::HandleScope scope(isolate);
i::Handle<i::Object> obj(i::Object(object), isolate);
i::Handle<i::ArrayList> list;
if (!ctx->serialized_objects().IsArrayList()) {
list = i::ArrayList::New(isolate, 1);
} else {
list = i::Handle<i::ArrayList>(
i::ArrayList::cast(ctx->serialized_objects()), isolate);
}
size_t index = static_cast<size_t>(list->Length());
list = i::ArrayList::Add(isolate, list, obj);
ctx->set_serialized_objects(*list);
return index;
}
namespace {
void ConvertSerializedObjectsToFixedArray(Local<Context> context) {
i::Handle<i::Context> ctx = Utils::OpenHandle(*context);
i::Isolate* isolate = ctx->GetIsolate();
if (!ctx->serialized_objects().IsArrayList()) {
ctx->set_serialized_objects(i::ReadOnlyRoots(isolate).empty_fixed_array());
} else {
i::Handle<i::ArrayList> list(i::ArrayList::cast(ctx->serialized_objects()),
isolate);
i::Handle<i::FixedArray> elements = i::ArrayList::Elements(isolate, list);
ctx->set_serialized_objects(*elements);
}
}
void ConvertSerializedObjectsToFixedArray(i::Isolate* isolate) {
if (!isolate->heap()->serialized_objects().IsArrayList()) {
isolate->heap()->SetSerializedObjects(
i::ReadOnlyRoots(isolate).empty_fixed_array());
} else {
i::Handle<i::ArrayList> list(
i::ArrayList::cast(isolate->heap()->serialized_objects()), isolate);
i::Handle<i::FixedArray> elements = i::ArrayList::Elements(isolate, list);
isolate->heap()->SetSerializedObjects(*elements);
}
}
} // anonymous namespace
StartupData SnapshotCreator::CreateBlob(
SnapshotCreator::FunctionCodeHandling function_code_handling) {
SnapshotCreatorData* data = SnapshotCreatorData::cast(data_);
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(data->isolate_);
DCHECK(!data->created_);
DCHECK(!data->default_context_.IsEmpty());
const int num_additional_contexts = static_cast<int>(data->contexts_.Size());
const int num_contexts = num_additional_contexts + 1; // The default context.
// Create and store lists of embedder-provided data needed during
// serialization.
{
i::HandleScope scope(isolate);
// Convert list of context-independent data to FixedArray.
ConvertSerializedObjectsToFixedArray(isolate);
// Convert lists of context-dependent data to FixedArray.
ConvertSerializedObjectsToFixedArray(
data->default_context_.Get(data->isolate_));
for (int i = 0; i < num_additional_contexts; i++) {
ConvertSerializedObjectsToFixedArray(data->contexts_.Get(i));
}
// We need to store the global proxy size upfront in case we need the
// bootstrapper to create a global proxy before we deserialize the context.
i::Handle<i::FixedArray> global_proxy_sizes =
isolate->factory()->NewFixedArray(num_additional_contexts,
i::AllocationType::kOld);
for (int i = 0; i < num_additional_contexts; i++) {
i::Handle<i::Context> context =
v8::Utils::OpenHandle(*data->contexts_.Get(i));
global_proxy_sizes->set(i,
i::Smi::FromInt(context->global_proxy().Size()));
}
isolate->heap()->SetSerializedGlobalProxySizes(*global_proxy_sizes);
}
// We might rehash strings and re-sort descriptors. Clear the lookup cache.
isolate->descriptor_lookup_cache()->Clear();
// If we don't do this then we end up with a stray root pointing at the
// context even after we have disposed of the context.
isolate->heap()->CollectAllAvailableGarbage(
i::GarbageCollectionReason::kSnapshotCreator);
{
i::HandleScope scope(isolate);
isolate->heap()->CompactWeakArrayLists(internal::AllocationType::kOld);
}
i::Snapshot::ClearReconstructableDataForSerialization(
isolate, function_code_handling == FunctionCodeHandling::kClear);
i::DisallowGarbageCollection no_gc_from_here_on;
// Create a vector with all contexts and clear associated Persistent fields.
// Note these contexts may be dead after calling Clear(), but will not be
// collected until serialization completes and the DisallowHeapAllocation
// scope above goes out of scope.
std::vector<i::Context> contexts;
contexts.reserve(num_contexts);
{
i::HandleScope scope(isolate);
contexts.push_back(
*v8::Utils::OpenHandle(*data->default_context_.Get(data->isolate_)));
data->default_context_.Reset();
for (int i = 0; i < num_additional_contexts; i++) {
i::Handle<i::Context> context =
v8::Utils::OpenHandle(*data->contexts_.Get(i));
contexts.push_back(*context);
}
data->contexts_.Clear();
}
// Check that values referenced by global/eternal handles are accounted for.
i::SerializedHandleChecker handle_checker(isolate, &contexts);
CHECK(handle_checker.CheckGlobalAndEternalHandles());
// Create a vector with all embedder fields serializers.
std::vector<SerializeInternalFieldsCallback> embedder_fields_serializers;
embedder_fields_serializers.reserve(num_contexts);
embedder_fields_serializers.push_back(
data->default_embedder_fields_serializer_);
for (int i = 0; i < num_additional_contexts; i++) {
embedder_fields_serializers.push_back(
data->embedder_fields_serializers_[i]);
}
data->created_ = true;
return i::Snapshot::Create(isolate, &contexts, embedder_fields_serializers,
no_gc_from_here_on);
}
bool StartupData::CanBeRehashed() const {
DCHECK(i::Snapshot::VerifyChecksum(this));
return i::Snapshot::ExtractRehashability(this);
}
bool StartupData::IsValid() const { return i::Snapshot::VersionIsValid(this); }
void V8::SetDcheckErrorHandler(DcheckErrorCallback that) {
v8::base::SetDcheckFunction(that);
}
void V8::SetFlagsFromString(const char* str) {
SetFlagsFromString(str, strlen(str));
}
void V8::SetFlagsFromString(const char* str, size_t length) {
i::FlagList::SetFlagsFromString(str, length);
i::FlagList::EnforceFlagImplications();
}
void V8::SetFlagsFromCommandLine(int* argc, char** argv, bool remove_flags) {
using HelpOptions = i::FlagList::HelpOptions;
i::FlagList::SetFlagsFromCommandLine(argc, argv, remove_flags,
HelpOptions(HelpOptions::kDontExit));
}
RegisteredExtension* RegisteredExtension::first_extension_ = nullptr;
RegisteredExtension::RegisteredExtension(std::unique_ptr<Extension> extension)
: extension_(std::move(extension)) {}
// static
void RegisteredExtension::Register(std::unique_ptr<Extension> extension) {
RegisteredExtension* new_extension =
new RegisteredExtension(std::move(extension));
new_extension->next_ = first_extension_;
first_extension_ = new_extension;
}
// static
void RegisteredExtension::UnregisterAll() {
RegisteredExtension* re = first_extension_;
while (re != nullptr) {
RegisteredExtension* next = re->next();
delete re;
re = next;
}
first_extension_ = nullptr;
}
namespace {
class ExtensionResource : public String::ExternalOneByteStringResource {
public:
ExtensionResource() : data_(nullptr), length_(0) {}
ExtensionResource(const char* data, size_t length)
: data_(data), length_(length) {}
const char* data() const override { return data_; }
size_t length() const override { return length_; }
void Dispose() override {}
private:
const char* data_;
size_t length_;
};
} // anonymous namespace
void RegisterExtension(std::unique_ptr<Extension> extension) {
RegisteredExtension::Register(std::move(extension));
}
Extension::Extension(const char* name, const char* source, int dep_count,
const char** deps, int source_length)
: name_(name),
source_length_(source_length >= 0
? source_length
: (source ? static_cast<int>(strlen(source)) : 0)),
dep_count_(dep_count),
deps_(deps),
auto_enable_(false) {
source_ = new ExtensionResource(source, source_length_);
CHECK(source != nullptr || source_length_ == 0);
}
void ResourceConstraints::ConfigureDefaultsFromHeapSize(
size_t initial_heap_size_in_bytes, size_t maximum_heap_size_in_bytes) {
CHECK_LE(initial_heap_size_in_bytes, maximum_heap_size_in_bytes);
if (maximum_heap_size_in_bytes == 0) {
return;
}
size_t young_generation, old_generation;
i::Heap::GenerationSizesFromHeapSize(maximum_heap_size_in_bytes,
&young_generation, &old_generation);
set_max_young_generation_size_in_bytes(
std::max(young_generation, i::Heap::MinYoungGenerationSize()));
set_max_old_generation_size_in_bytes(
std::max(old_generation, i::Heap::MinOldGenerationSize()));
if (initial_heap_size_in_bytes > 0) {
i::Heap::GenerationSizesFromHeapSize(initial_heap_size_in_bytes,
&young_generation, &old_generation);
// We do not set lower bounds for the initial sizes.
set_initial_young_generation_size_in_bytes(young_generation);
set_initial_old_generation_size_in_bytes(old_generation);
}
if (i::kPlatformRequiresCodeRange) {
set_code_range_size_in_bytes(
std::min(i::kMaximalCodeRangeSize, maximum_heap_size_in_bytes));
}
}
void ResourceConstraints::ConfigureDefaults(uint64_t physical_memory,
uint64_t virtual_memory_limit) {
size_t heap_size = i::Heap::HeapSizeFromPhysicalMemory(physical_memory);
size_t young_generation, old_generation;
i::Heap::GenerationSizesFromHeapSize(heap_size, &young_generation,
&old_generation);
set_max_young_generation_size_in_bytes(young_generation);
set_max_old_generation_size_in_bytes(old_generation);
if (virtual_memory_limit > 0 && i::kPlatformRequiresCodeRange) {
set_code_range_size_in_bytes(
std::min(i::kMaximalCodeRangeSize,
static_cast<size_t>(virtual_memory_limit / 8)));
}
}
size_t ResourceConstraints::max_semi_space_size_in_kb() const {
return i::Heap::SemiSpaceSizeFromYoungGenerationSize(
max_young_generation_size_) /
i::KB;
}
void ResourceConstraints::set_max_semi_space_size_in_kb(size_t limit_in_kb) {
set_max_young_generation_size_in_bytes(
i::Heap::YoungGenerationSizeFromSemiSpaceSize(limit_in_kb * i::KB));
}
i::Address* V8::GlobalizeReference(i::Isolate* isolate, i::Address* obj) {
LOG_API(isolate, Persistent, New);
i::Handle<i::Object> result = isolate->global_handles()->Create(*obj);
#ifdef VERIFY_HEAP
if (i::FLAG_verify_heap) {
i::Object(*obj).ObjectVerify(isolate);
}
#endif // VERIFY_HEAP
return result.location();
}
i::Address* V8::GlobalizeTracedReference(i::Isolate* isolate, i::Address* obj,
internal::Address* slot,
bool has_destructor) {
LOG_API(isolate, TracedGlobal, New);
#ifdef DEBUG
Utils::ApiCheck((slot != nullptr), "v8::GlobalizeTracedReference",
"the address slot must be not null");
#endif
i::Handle<i::Object> result =
isolate->global_handles()->CreateTraced(*obj, slot, has_destructor);
#ifdef VERIFY_HEAP
if (i::FLAG_verify_heap) {
i::Object(*obj).ObjectVerify(isolate);
}
#endif // VERIFY_HEAP
return result.location();
}
i::Address* V8::CopyGlobalReference(i::Address* from) {
i::Handle<i::Object> result = i::GlobalHandles::CopyGlobal(from);
return result.location();
}
void V8::MoveGlobalReference(internal::Address** from, internal::Address** to) {
i::GlobalHandles::MoveGlobal(from, to);
}
void V8::MoveTracedGlobalReference(internal::Address** from,
internal::Address** to) {
i::GlobalHandles::MoveTracedGlobal(from, to);
}
void V8::CopyTracedGlobalReference(const internal::Address* const* from,
internal::Address** to) {
i::GlobalHandles::CopyTracedGlobal(from, to);
}
void V8::MakeWeak(i::Address* location, void* parameter,
WeakCallbackInfo<void>::Callback weak_callback,
WeakCallbackType type) {
i::GlobalHandles::MakeWeak(location, parameter, weak_callback, type);
}
void V8::MakeWeak(i::Address** location_addr) {
i::GlobalHandles::MakeWeak(location_addr);
}
void* V8::ClearWeak(i::Address* location) {
return i::GlobalHandles::ClearWeakness(location);
}
void V8::AnnotateStrongRetainer(i::Address* location, const char* label) {
i::GlobalHandles::AnnotateStrongRetainer(location, label);
}
void V8::DisposeGlobal(i::Address* location) {
i::GlobalHandles::Destroy(location);
}
void V8::DisposeTracedGlobal(internal::Address* location) {
i::GlobalHandles::DestroyTraced(location);
}
void V8::SetFinalizationCallbackTraced(
internal::Address* location, void* parameter,
WeakCallbackInfo<void>::Callback callback) {
i::GlobalHandles::SetFinalizationCallbackForTraced(location, parameter,
callback);
}
Value* V8::Eternalize(Isolate* v8_isolate, Value* value) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Object object = *Utils::OpenHandle(value);
int index = -1;
isolate->eternal_handles()->Create(isolate, object, &index);
return reinterpret_cast<Value*>(
isolate->eternal_handles()->Get(index).location());
}
void V8::FromJustIsNothing() {
Utils::ApiCheck(false, "v8::FromJust", "Maybe value is Nothing.");
}
void V8::ToLocalEmpty() {
Utils::ApiCheck(false, "v8::ToLocalChecked", "Empty MaybeLocal.");
}
void V8::InternalFieldOutOfBounds(int index) {
Utils::ApiCheck(0 <= index && index < kInternalFieldsInWeakCallback,
"WeakCallbackInfo::GetInternalField",
"Internal field out of bounds.");
}
// --- H a n d l e s ---
HandleScope::HandleScope(Isolate* isolate) { Initialize(isolate); }
void HandleScope::Initialize(Isolate* isolate) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
// We do not want to check the correct usage of the Locker class all over the
// place, so we do it only here: Without a HandleScope, an embedder can do
// almost nothing, so it is enough to check in this central place.
// We make an exception if the serializer is enabled, which means that the
// Isolate is exclusively used to create a snapshot.
Utils::ApiCheck(
!v8::Locker::IsActive() ||
internal_isolate->thread_manager()->IsLockedByCurrentThread() ||
internal_isolate->serializer_enabled(),
"HandleScope::HandleScope",
"Entering the V8 API without proper locking in place");
i::HandleScopeData* current = internal_isolate->handle_scope_data();
isolate_ = internal_isolate;
prev_next_ = current->next;
prev_limit_ = current->limit;
current->level++;
}
HandleScope::~HandleScope() {
i::HandleScope::CloseScope(isolate_, prev_next_, prev_limit_);
}
void* HandleScope::operator new(size_t) { base::OS::Abort(); }
void* HandleScope::operator new[](size_t) { base::OS::Abort(); }
void HandleScope::operator delete(void*, size_t) { base::OS::Abort(); }
void HandleScope::operator delete[](void*, size_t) { base::OS::Abort(); }
int HandleScope::NumberOfHandles(Isolate* isolate) {
return i::HandleScope::NumberOfHandles(
reinterpret_cast<i::Isolate*>(isolate));
}
i::Address* HandleScope::CreateHandle(i::Isolate* isolate, i::Address value) {
return i::HandleScope::CreateHandle(isolate, value);
}
EscapableHandleScope::EscapableHandleScope(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
escape_slot_ =
CreateHandle(isolate, i::ReadOnlyRoots(isolate).the_hole_value().ptr());
Initialize(v8_isolate);
}
i::Address* EscapableHandleScope::Escape(i::Address* escape_value) {
i::Heap* heap = reinterpret_cast<i::Isolate*>(GetIsolate())->heap();
Utils::ApiCheck(i::Object(*escape_slot_).IsTheHole(heap->isolate()),
"EscapableHandleScope::Escape", "Escape value set twice");
if (escape_value == nullptr) {
*escape_slot_ = i::ReadOnlyRoots(heap).undefined_value().ptr();
return nullptr;
}
*escape_slot_ = *escape_value;
return escape_slot_;
}
void* EscapableHandleScope::operator new(size_t) { base::OS::Abort(); }
void* EscapableHandleScope::operator new[](size_t) { base::OS::Abort(); }
void EscapableHandleScope::operator delete(void*, size_t) { base::OS::Abort(); }
void EscapableHandleScope::operator delete[](void*, size_t) {
base::OS::Abort();
}
SealHandleScope::SealHandleScope(Isolate* isolate)
: isolate_(reinterpret_cast<i::Isolate*>(isolate)) {
i::HandleScopeData* current = isolate_->handle_scope_data();
prev_limit_ = current->limit;
current->limit = current->next;
prev_sealed_level_ = current->sealed_level;
current->sealed_level = current->level;
}
SealHandleScope::~SealHandleScope() {
i::HandleScopeData* current = isolate_->handle_scope_data();
DCHECK_EQ(current->next, current->limit);
current->limit = prev_limit_;
DCHECK_EQ(current->level, current->sealed_level);
current->sealed_level = prev_sealed_level_;
}
void* SealHandleScope::operator new(size_t) { base::OS::Abort(); }
void* SealHandleScope::operator new[](size_t) { base::OS::Abort(); }
void SealHandleScope::operator delete(void*, size_t) { base::OS::Abort(); }
void SealHandleScope::operator delete[](void*, size_t) { base::OS::Abort(); }
bool Data::IsModule() const { return Utils::OpenHandle(this)->IsModule(); }
bool Data::IsValue() const {
i::DisallowHeapAllocation no_gc;
i::Handle<i::Object> self = Utils::OpenHandle(this);
if (self->IsSmi()) {
return true;
}
i::HeapObject heap_object = i::HeapObject::cast(*self);
DCHECK(!heap_object.IsTheHole());
if (heap_object.IsSymbol()) {
return !i::Symbol::cast(heap_object).is_private();
}
return heap_object.IsPrimitiveHeapObject() || heap_object.IsJSReceiver();
}
bool Data::IsPrivate() const {
return Utils::OpenHandle(this)->IsPrivateSymbol();
}
bool Data::IsObjectTemplate() const {
return Utils::OpenHandle(this)->IsObjectTemplateInfo();
}
bool Data::IsFunctionTemplate() const {
return Utils::OpenHandle(this)->IsFunctionTemplateInfo();
}
void Context::Enter() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
i::Isolate* isolate = env->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScopeImplementer* impl = isolate->handle_scope_implementer();
impl->EnterContext(*env);
impl->SaveContext(isolate->context());
isolate->set_context(*env);
}
void Context::Exit() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
i::Isolate* isolate = env->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScopeImplementer* impl = isolate->handle_scope_implementer();
if (!Utils::ApiCheck(impl->LastEnteredContextWas(*env), "v8::Context::Exit()",
"Cannot exit non-entered context")) {
return;
}
impl->LeaveContext();
isolate->set_context(impl->RestoreContext());
}
Context::BackupIncumbentScope::BackupIncumbentScope(
Local<Context> backup_incumbent_context)
: backup_incumbent_context_(backup_incumbent_context) {
DCHECK(!backup_incumbent_context_.IsEmpty());
i::Handle<i::Context> env = Utils::OpenHandle(*backup_incumbent_context_);
i::Isolate* isolate = env->GetIsolate();
js_stack_comparable_address_ =
i::SimulatorStack::RegisterJSStackComparableAddress(isolate);
prev_ = isolate->top_backup_incumbent_scope();
isolate->set_top_backup_incumbent_scope(this);
}
Context::BackupIncumbentScope::~BackupIncumbentScope() {
i::Handle<i::Context> env = Utils::OpenHandle(*backup_incumbent_context_);
i::Isolate* isolate = env->GetIsolate();
i::SimulatorStack::UnregisterJSStackComparableAddress(isolate);
isolate->set_top_backup_incumbent_scope(prev_);
}
STATIC_ASSERT(i::Internals::kEmbedderDataSlotSize == i::kEmbedderDataSlotSize);
static i::Handle<i::EmbedderDataArray> EmbedderDataFor(Context* context,
int index, bool can_grow,
const char* location) {
i::Handle<i::Context> env = Utils::OpenHandle(context);
i::Isolate* isolate = env->GetIsolate();
bool ok = Utils::ApiCheck(env->IsNativeContext(), location,
"Not a native context") &&
Utils::ApiCheck(index >= 0, location, "Negative index");
if (!ok) return i::Handle<i::EmbedderDataArray>();
// TODO(ishell): remove cast once embedder_data slot has a proper type.
i::Handle<i::EmbedderDataArray> data(
i::EmbedderDataArray::cast(env->embedder_data()), isolate);
if (index < data->length()) return data;
if (!Utils::ApiCheck(can_grow && index < i::EmbedderDataArray::kMaxLength,
location, "Index too large")) {
return i::Handle<i::EmbedderDataArray>();
}
data = i::EmbedderDataArray::EnsureCapacity(isolate, data, index);
env->set_embedder_data(*data);
return data;
}
uint32_t Context::GetNumberOfEmbedderDataFields() {
i::Handle<i::Context> context = Utils::OpenHandle(this);
CHECK(context->IsNativeContext());
// TODO(ishell): remove cast once embedder_data slot has a proper type.
return static_cast<uint32_t>(
i::EmbedderDataArray::cast(context->embedder_data()).length());
}
v8::Local<v8::Value> Context::SlowGetEmbedderData(int index) {
const char* location = "v8::Context::GetEmbedderData()";
i::Handle<i::EmbedderDataArray> data =
EmbedderDataFor(this, index, false, location);
if (data.is_null()) return Local<Value>();
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
i::Handle<i::Object> result(i::EmbedderDataSlot(*data, index).load_tagged(),
isolate);
return Utils::ToLocal(result);
}
void Context::SetEmbedderData(int index, v8::Local<Value> value) {
const char* location = "v8::Context::SetEmbedderData()";
i::Handle<i::EmbedderDataArray> data =
EmbedderDataFor(this, index, true, location);
if (data.is_null()) return;
i::Handle<i::Object> val = Utils::OpenHandle(*value);
i::EmbedderDataSlot::store_tagged(*data, index, *val);
DCHECK_EQ(*Utils::OpenHandle(*value),
*Utils::OpenHandle(*GetEmbedderData(index)));
}
void* Context::SlowGetAlignedPointerFromEmbedderData(int index) {
const char* location = "v8::Context::GetAlignedPointerFromEmbedderData()";
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
i::HandleScope handle_scope(isolate);
i::Handle<i::EmbedderDataArray> data =
EmbedderDataFor(this, index, false, location);
if (data.is_null()) return nullptr;
void* result;
Utils::ApiCheck(
i::EmbedderDataSlot(*data, index).ToAlignedPointer(isolate, &result),
location, "Pointer is not aligned");
return result;
}
void Context::SetAlignedPointerInEmbedderData(int index, void* value) {
const char* location = "v8::Context::SetAlignedPointerInEmbedderData()";
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
i::Handle<i::EmbedderDataArray> data =
EmbedderDataFor(this, index, true, location);
bool ok =
i::EmbedderDataSlot(*data, index).store_aligned_pointer(isolate, value);
Utils::ApiCheck(ok, location, "Pointer is not aligned");
DCHECK_EQ(value, GetAlignedPointerFromEmbedderData(index));
}
// --- T e m p l a t e ---
static void InitializeTemplate(i::Handle<i::TemplateInfo> that, int type) {
that->set_number_of_properties(0);
that->set_tag(type);
}
void Template::Set(v8::Local<Name> name, v8::Local<Data> value,
v8::PropertyAttribute attribute) {
auto templ = Utils::OpenHandle(this);
i::Isolate* isolate = templ->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScope scope(isolate);
auto value_obj = Utils::OpenHandle(*value);
CHECK(!value_obj->IsJSReceiver() || value_obj->IsTemplateInfo());
if (value_obj->IsObjectTemplateInfo()) {
templ->set_serial_number(0);
if (templ->IsFunctionTemplateInfo()) {
i::Handle<i::FunctionTemplateInfo>::cast(templ)->set_do_not_cache(true);
}
}
i::ApiNatives::AddDataProperty(isolate, templ, Utils::OpenHandle(*name),
value_obj,
static_cast<i::PropertyAttributes>(attribute));
}
void Template::SetPrivate(v8::Local<Private> name, v8::Local<Data> value,
v8::PropertyAttribute attribute) {
Set(Utils::ToLocal(Utils::OpenHandle(reinterpret_cast<Name*>(*name))), value,
attribute);
}
void Template::SetAccessorProperty(v8::Local<v8::Name> name,
v8::Local<FunctionTemplate> getter,
v8::Local<FunctionTemplate> setter,
v8::PropertyAttribute attribute,
v8::AccessControl access_control) {
// TODO(verwaest): Remove |access_control|.
DCHECK_EQ(v8::DEFAULT, access_control);
auto templ = Utils::OpenHandle(this);
auto isolate = templ->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
DCHECK(!name.IsEmpty());
DCHECK(!getter.IsEmpty() || !setter.IsEmpty());
i::HandleScope scope(isolate);
i::ApiNatives::AddAccessorProperty(
isolate, templ, Utils::OpenHandle(*name),
Utils::OpenHandle(*getter, true), Utils::OpenHandle(*setter, true),
static_cast<i::PropertyAttributes>(attribute));
}
// --- F u n c t i o n T e m p l a t e ---
static void InitializeFunctionTemplate(
i::Handle<i::FunctionTemplateInfo> info) {
InitializeTemplate(info, Consts::FUNCTION_TEMPLATE);
info->set_flag(0);
}
static Local<ObjectTemplate> ObjectTemplateNew(
i::Isolate* isolate, v8::Local<FunctionTemplate> constructor,
bool do_not_cache);
Local<ObjectTemplate> FunctionTemplate::PrototypeTemplate() {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::HeapObject> result(self->GetPrototypeTemplate(), i_isolate);
if (result->IsUndefined(i_isolate)) {
// Do not cache prototype objects.
result = Utils::OpenHandle(
*ObjectTemplateNew(i_isolate, Local<FunctionTemplate>(), true));
i::FunctionTemplateInfo::SetPrototypeTemplate(i_isolate, self, result);
}
return ToApiHandle<ObjectTemplate>(result);
}
void FunctionTemplate::SetPrototypeProviderTemplate(
Local<FunctionTemplate> prototype_provider) {
auto self = Utils::OpenHandle(this);
i::Isolate* i_isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::FunctionTemplateInfo> result =
Utils::OpenHandle(*prototype_provider);
CHECK(self->GetPrototypeTemplate().IsUndefined(i_isolate));
CHECK(self->GetParentTemplate().IsUndefined(i_isolate));
i::FunctionTemplateInfo::SetPrototypeProviderTemplate(i_isolate, self,
result);
}
static void EnsureNotInstantiated(i::Handle<i::FunctionTemplateInfo> info,
const char* func) {
Utils::ApiCheck(!info->instantiated(), func,
"FunctionTemplate already instantiated");
}
void FunctionTemplate::Inherit(v8::Local<FunctionTemplate> value) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::Inherit");
i::Isolate* i_isolate = info->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
CHECK(info->GetPrototypeProviderTemplate().IsUndefined(i_isolate));
i::FunctionTemplateInfo::SetParentTemplate(i_isolate, info,
Utils::OpenHandle(*value));
}
static Local<FunctionTemplate> FunctionTemplateNew(
i::Isolate* isolate, FunctionCallback callback, v8::Local<Value> data,
v8::Local<Signature> signature, int length, bool do_not_cache,
v8::Local<Private> cached_property_name = v8::Local<Private>(),
SideEffectType side_effect_type = SideEffectType::kHasSideEffect,
const CFunction* c_function = nullptr) {
i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(
i::FUNCTION_TEMPLATE_INFO_TYPE, i::AllocationType::kOld);
i::Handle<i::FunctionTemplateInfo> obj =
i::Handle<i::FunctionTemplateInfo>::cast(struct_obj);
{
// Disallow GC until all fields of obj have acceptable types.
i::DisallowHeapAllocation no_gc;
InitializeFunctionTemplate(obj);
obj->set_length(length);
obj->set_do_not_cache(do_not_cache);
int next_serial_number = i::FunctionTemplateInfo::kInvalidSerialNumber;
if (!do_not_cache) {
next_serial_number = isolate->heap()->GetNextTemplateSerialNumber();
}
obj->set_serial_number(next_serial_number);
}
if (callback != nullptr) {
Utils::ToLocal(obj)->SetCallHandler(callback, data, side_effect_type,
c_function);
}
obj->set_undetectable(false);
obj->set_needs_access_check(false);
obj->set_accept_any_receiver(true);
if (!signature.IsEmpty()) {
obj->set_signature(*Utils::OpenHandle(*signature));
}
obj->set_cached_property_name(
cached_property_name.IsEmpty()
? i::ReadOnlyRoots(isolate).the_hole_value()
: *Utils::OpenHandle(*cached_property_name));
return Utils::ToLocal(obj);
}
Local<FunctionTemplate> FunctionTemplate::New(
Isolate* isolate, FunctionCallback callback, v8::Local<Value> data,
v8::Local<Signature> signature, int length, ConstructorBehavior behavior,
SideEffectType side_effect_type, const CFunction* c_function) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
// Changes to the environment cannot be captured in the snapshot. Expect no
// function templates when the isolate is created for serialization.
LOG_API(i_isolate, FunctionTemplate, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
auto templ =
FunctionTemplateNew(i_isolate, callback, data, signature, length, false,
Local<Private>(), side_effect_type, c_function);
if (behavior == ConstructorBehavior::kThrow) templ->RemovePrototype();
return templ;
}
Local<FunctionTemplate> FunctionTemplate::NewWithCache(
Isolate* isolate, FunctionCallback callback, Local<Private> cache_property,
Local<Value> data, Local<Signature> signature, int length,
SideEffectType side_effect_type) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, FunctionTemplate, NewWithCache);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
return FunctionTemplateNew(i_isolate, callback, data, signature, length,
false, cache_property, side_effect_type);
}
Local<Signature> Signature::New(Isolate* isolate,
Local<FunctionTemplate> receiver) {
return Utils::SignatureToLocal(Utils::OpenHandle(*receiver));
}
Local<AccessorSignature> AccessorSignature::New(
Isolate* isolate, Local<FunctionTemplate> receiver) {
return Utils::AccessorSignatureToLocal(Utils::OpenHandle(*receiver));
}
#define SET_FIELD_WRAPPED(isolate, obj, setter, cdata) \
do { \
i::Handle<i::Object> foreign = FromCData(isolate, cdata); \
(obj)->setter(*foreign); \
} while (false)
void FunctionTemplate::SetCallHandler(FunctionCallback callback,
v8::Local<Value> data,
SideEffectType side_effect_type,
const CFunction* c_function) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::SetCallHandler");
i::Isolate* isolate = info->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScope scope(isolate);
i::Handle<i::CallHandlerInfo> obj = isolate->factory()->NewCallHandlerInfo(
side_effect_type == SideEffectType::kHasNoSideEffect);
SET_FIELD_WRAPPED(isolate, obj, set_callback, callback);
SET_FIELD_WRAPPED(isolate, obj, set_js_callback, obj->redirected_callback());
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
// Blink passes CFunction's constructed with the default constructor
// for non-fast calls, so we should check the address too.
if (c_function != nullptr && c_function->GetAddress()) {
i::FunctionTemplateInfo::SetCFunction(
isolate, info,
i::handle(*FromCData(isolate, c_function->GetAddress()), isolate));
i::FunctionTemplateInfo::SetCSignature(
isolate, info,
i::handle(*FromCData(isolate, c_function->GetTypeInfo()), isolate));
}
info->set_call_code(*obj, kReleaseStore);
}
namespace {
template <typename Getter, typename Setter>
i::Handle<i::AccessorInfo> MakeAccessorInfo(
i::Isolate* isolate, v8::Local<Name> name, Getter getter, Setter setter,
v8::Local<Value> data, v8::AccessControl settings,
v8::Local<AccessorSignature> signature, bool is_special_data_property,
bool replace_on_access) {
i::Handle<i::AccessorInfo> obj = isolate->factory()->NewAccessorInfo();
SET_FIELD_WRAPPED(isolate, obj, set_getter, getter);
DCHECK_IMPLIES(replace_on_access,
is_special_data_property && setter == nullptr);
if (is_special_data_property && setter == nullptr) {
setter = reinterpret_cast<Setter>(&i::Accessors::ReconfigureToDataProperty);
}
SET_FIELD_WRAPPED(isolate, obj, set_setter, setter);
i::Address redirected = obj->redirected_getter();
if (redirected != i::kNullAddress) {
SET_FIELD_WRAPPED(isolate, obj, set_js_getter, redirected);
}
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
obj->set_is_special_data_property(is_special_data_property);
obj->set_replace_on_access(replace_on_access);
i::Handle<i::Name> accessor_name = Utils::OpenHandle(*name);
if (!accessor_name->IsUniqueName()) {
accessor_name = isolate->factory()->InternalizeString(
i::Handle<i::String>::cast(accessor_name));
}
obj->set_name(*accessor_name);
if (settings & ALL_CAN_READ) obj->set_all_can_read(true);
if (settings & ALL_CAN_WRITE) obj->set_all_can_write(true);
obj->set_initial_property_attributes(i::NONE);
if (!signature.IsEmpty()) {
obj->set_expected_receiver_type(*Utils::OpenHandle(*signature));
}
return obj;
}
} // namespace
Local<ObjectTemplate> FunctionTemplate::InstanceTemplate() {
i::Handle<i::FunctionTemplateInfo> handle = Utils::OpenHandle(this, true);
if (!Utils::ApiCheck(!handle.is_null(),
"v8::FunctionTemplate::InstanceTemplate()",
"Reading from empty handle")) {
return Local<ObjectTemplate>();
}
i::Isolate* isolate = handle->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
if (handle->GetInstanceTemplate().IsUndefined(isolate)) {
Local<ObjectTemplate> templ =
ObjectTemplate::New(isolate, ToApiHandle<FunctionTemplate>(handle));
i::FunctionTemplateInfo::SetInstanceTemplate(isolate, handle,
Utils::OpenHandle(*templ));
}
i::Handle<i::ObjectTemplateInfo> result(
i::ObjectTemplateInfo::cast(handle->GetInstanceTemplate()), isolate);
return Utils::ToLocal(result);
}
void FunctionTemplate::SetLength(int length) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::SetLength");
auto isolate = info->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
info->set_length(length);
}
void FunctionTemplate::SetClassName(Local<String> name) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::SetClassName");
auto isolate = info->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
info->set_class_name(*Utils::OpenHandle(*name));
}
void FunctionTemplate::SetAcceptAnyReceiver(bool value) {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::SetAcceptAnyReceiver");
auto isolate = info->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
info->set_accept_any_receiver(value);
}
void FunctionTemplate::ReadOnlyPrototype() {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::ReadOnlyPrototype");
auto isolate = info->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
info->set_read_only_prototype(true);
}
void FunctionTemplate::RemovePrototype() {
auto info = Utils::OpenHandle(this);
EnsureNotInstantiated(info, "v8::FunctionTemplate::RemovePrototype");
auto isolate = info->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
info->set_remove_prototype(true);
}
// --- O b j e c t T e m p l a t e ---
Local<ObjectTemplate> ObjectTemplate::New(
Isolate* isolate, v8::Local<FunctionTemplate> constructor) {
return New(reinterpret_cast<i::Isolate*>(isolate), constructor);
}
static Local<ObjectTemplate> ObjectTemplateNew(
i::Isolate* isolate, v8::Local<FunctionTemplate> constructor,
bool do_not_cache) {
LOG_API(isolate, ObjectTemplate, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(
i::OBJECT_TEMPLATE_INFO_TYPE, i::AllocationType::kOld);
i::Handle<i::ObjectTemplateInfo> obj =
i::Handle<i::ObjectTemplateInfo>::cast(struct_obj);
{
// Disallow GC until all fields of obj have acceptable types.
i::DisallowHeapAllocation no_gc;
InitializeTemplate(obj, Consts::OBJECT_TEMPLATE);
int next_serial_number = 0;
if (!do_not_cache) {
next_serial_number = isolate->heap()->GetNextTemplateSerialNumber();
}
obj->set_serial_number(next_serial_number);
obj->set_data(0);
}
if (!constructor.IsEmpty())
obj->set_constructor(*Utils::OpenHandle(*constructor));
return Utils::ToLocal(obj);
}
Local<ObjectTemplate> ObjectTemplate::New(
i::Isolate* isolate, v8::Local<FunctionTemplate> constructor) {
return ObjectTemplateNew(isolate, constructor, false);
}
// Ensure that the object template has a constructor. If no
// constructor is available we create one.
static i::Handle<i::FunctionTemplateInfo> EnsureConstructor(
i::Isolate* isolate, ObjectTemplate* object_template) {
i::Object obj = Utils::OpenHandle(object_template)->constructor();
if (!obj.IsUndefined(isolate)) {
i::FunctionTemplateInfo info = i::FunctionTemplateInfo::cast(obj);
return i::Handle<i::FunctionTemplateInfo>(info, isolate);
}
Local<FunctionTemplate> templ =
FunctionTemplate::New(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::FunctionTemplateInfo> constructor = Utils::OpenHandle(*templ);
i::FunctionTemplateInfo::SetInstanceTemplate(
isolate, constructor, Utils::OpenHandle(object_template));
Utils::OpenHandle(object_template)->set_constructor(*constructor);
return constructor;
}
template <typename Getter, typename Setter, typename Data, typename Template>
static void TemplateSetAccessor(
Template* template_obj, v8::Local<Name> name, Getter getter, Setter setter,
Data data, AccessControl settings, PropertyAttribute attribute,
v8::Local<AccessorSignature> signature, bool is_special_data_property,
bool replace_on_access, SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
auto info = Utils::OpenHandle(template_obj);
auto isolate = info->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScope scope(isolate);
i::Handle<i::AccessorInfo> accessor_info =
MakeAccessorInfo(isolate, name, getter, setter, data, settings, signature,
is_special_data_property, replace_on_access);
accessor_info->set_initial_property_attributes(
static_cast<i::PropertyAttributes>(attribute));
accessor_info->set_getter_side_effect_type(getter_side_effect_type);
accessor_info->set_setter_side_effect_type(setter_side_effect_type);
i::ApiNatives::AddNativeDataProperty(isolate, info, accessor_info);
}
void Template::SetNativeDataProperty(
v8::Local<String> name, AccessorGetterCallback getter,
AccessorSetterCallback setter, v8::Local<Value> data,
PropertyAttribute attribute, v8::Local<AccessorSignature> signature,
AccessControl settings, SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
TemplateSetAccessor(this, name, getter, setter, data, settings, attribute,
signature, true, false, getter_side_effect_type,
setter_side_effect_type);
}
void Template::SetNativeDataProperty(
v8::Local<Name> name, AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter, v8::Local<Value> data,
PropertyAttribute attribute, v8::Local<AccessorSignature> signature,
AccessControl settings, SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
TemplateSetAccessor(this, name, getter, setter, data, settings, attribute,
signature, true, false, getter_side_effect_type,
setter_side_effect_type);
}
void Template::SetLazyDataProperty(v8::Local<Name> name,
AccessorNameGetterCallback getter,
v8::Local<Value> data,
PropertyAttribute attribute,
SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
TemplateSetAccessor(this, name, getter,
static_cast<AccessorNameSetterCallback>(nullptr), data,
DEFAULT, attribute, Local<AccessorSignature>(), true,
true, getter_side_effect_type, setter_side_effect_type);
}
void Template::SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic,
PropertyAttribute attribute) {
auto templ = Utils::OpenHandle(this);
i::Isolate* isolate = templ->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScope scope(isolate);
i::ApiNatives::AddDataProperty(isolate, templ, Utils::OpenHandle(*name),
intrinsic,
static_cast<i::PropertyAttributes>(attribute));
}
void ObjectTemplate::SetAccessor(v8::Local<String> name,
AccessorGetterCallback getter,
AccessorSetterCallback setter,
v8::Local<Value> data, AccessControl settings,
PropertyAttribute attribute,
v8::Local<AccessorSignature> signature,
SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
TemplateSetAccessor(this, name, getter, setter, data, settings, attribute,
signature, i::FLAG_disable_old_api_accessors, false,
getter_side_effect_type, setter_side_effect_type);
}
void ObjectTemplate::SetAccessor(v8::Local<Name> name,
AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter,
v8::Local<Value> data, AccessControl settings,
PropertyAttribute attribute,
v8::Local<AccessorSignature> signature,
SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
TemplateSetAccessor(this, name, getter, setter, data, settings, attribute,
signature, i::FLAG_disable_old_api_accessors, false,
getter_side_effect_type, setter_side_effect_type);
}
template <typename Getter, typename Setter, typename Query, typename Descriptor,
typename Deleter, typename Enumerator, typename Definer>
static i::Handle<i::InterceptorInfo> CreateInterceptorInfo(
i::Isolate* isolate, Getter getter, Setter setter, Query query,
Descriptor descriptor, Deleter remover, Enumerator enumerator,
Definer definer, Local<Value> data, PropertyHandlerFlags flags) {
auto obj = i::Handle<i::InterceptorInfo>::cast(isolate->factory()->NewStruct(
i::INTERCEPTOR_INFO_TYPE, i::AllocationType::kOld));
obj->set_flags(0);
if (getter != nullptr) SET_FIELD_WRAPPED(isolate, obj, set_getter, getter);
if (setter != nullptr) SET_FIELD_WRAPPED(isolate, obj, set_setter, setter);
if (query != nullptr) SET_FIELD_WRAPPED(isolate, obj, set_query, query);
if (descriptor != nullptr)
SET_FIELD_WRAPPED(isolate, obj, set_descriptor, descriptor);
if (remover != nullptr) SET_FIELD_WRAPPED(isolate, obj, set_deleter, remover);
if (enumerator != nullptr)
SET_FIELD_WRAPPED(isolate, obj, set_enumerator, enumerator);
if (definer != nullptr) SET_FIELD_WRAPPED(isolate, obj, set_definer, definer);
obj->set_can_intercept_symbols(
!(static_cast<int>(flags) &
static_cast<int>(PropertyHandlerFlags::kOnlyInterceptStrings)));
obj->set_all_can_read(static_cast<int>(flags) &
static_cast<int>(PropertyHandlerFlags::kAllCanRead));
obj->set_non_masking(static_cast<int>(flags) &
static_cast<int>(PropertyHandlerFlags::kNonMasking));
obj->set_has_no_side_effect(
static_cast<int>(flags) &
static_cast<int>(PropertyHandlerFlags::kHasNoSideEffect));
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
return obj;
}
template <typename Getter, typename Setter, typename Query, typename Descriptor,
typename Deleter, typename Enumerator, typename Definer>
static i::Handle<i::InterceptorInfo> CreateNamedInterceptorInfo(
i::Isolate* isolate, Getter getter, Setter setter, Query query,
Descriptor descriptor, Deleter remover, Enumerator enumerator,
Definer definer, Local<Value> data, PropertyHandlerFlags flags) {
auto interceptor =
CreateInterceptorInfo(isolate, getter, setter, query, descriptor, remover,
enumerator, definer, data, flags);
interceptor->set_is_named(true);
return interceptor;
}
template <typename Getter, typename Setter, typename Query, typename Descriptor,
typename Deleter, typename Enumerator, typename Definer>
static i::Handle<i::InterceptorInfo> CreateIndexedInterceptorInfo(
i::Isolate* isolate, Getter getter, Setter setter, Query query,
Descriptor descriptor, Deleter remover, Enumerator enumerator,
Definer definer, Local<Value> data, PropertyHandlerFlags flags) {
auto interceptor =
CreateInterceptorInfo(isolate, getter, setter, query, descriptor, remover,
enumerator, definer, data, flags);
interceptor->set_is_named(false);
return interceptor;
}
template <typename Getter, typename Setter, typename Query, typename Descriptor,
typename Deleter, typename Enumerator, typename Definer>
static void ObjectTemplateSetNamedPropertyHandler(
ObjectTemplate* templ, Getter getter, Setter setter, Query query,
Descriptor descriptor, Deleter remover, Enumerator enumerator,
Definer definer, Local<Value> data, PropertyHandlerFlags flags) {
i::Isolate* isolate = Utils::OpenHandle(templ)->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, templ);
EnsureNotInstantiated(cons, "ObjectTemplateSetNamedPropertyHandler");
auto obj =
CreateNamedInterceptorInfo(isolate, getter, setter, query, descriptor,
remover, enumerator, definer, data, flags);
i::FunctionTemplateInfo::SetNamedPropertyHandler(isolate, cons, obj);
}
void ObjectTemplate::SetHandler(
const NamedPropertyHandlerConfiguration& config) {
ObjectTemplateSetNamedPropertyHandler(
this, config.getter, config.setter, config.query, config.descriptor,
config.deleter, config.enumerator, config.definer, config.data,
config.flags);
}
void ObjectTemplate::MarkAsUndetectable() {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, this);
EnsureNotInstantiated(cons, "v8::ObjectTemplate::MarkAsUndetectable");
cons->set_undetectable(true);
}
void ObjectTemplate::SetAccessCheckCallback(AccessCheckCallback callback,
Local<Value> data) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, this);
EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetAccessCheckCallback");
i::Handle<i::Struct> struct_info = isolate->factory()->NewStruct(
i::ACCESS_CHECK_INFO_TYPE, i::AllocationType::kOld);
i::Handle<i::AccessCheckInfo> info =
i::Handle<i::AccessCheckInfo>::cast(struct_info);
SET_FIELD_WRAPPED(isolate, info, set_callback, callback);
info->set_named_interceptor(i::Object());
info->set_indexed_interceptor(i::Object());
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
info->set_data(*Utils::OpenHandle(*data));
i::FunctionTemplateInfo::SetAccessCheckInfo(isolate, cons, info);
cons->set_needs_access_check(true);
}
void ObjectTemplate::SetAccessCheckCallbackAndHandler(
AccessCheckCallback callback,
const NamedPropertyHandlerConfiguration& named_handler,
const IndexedPropertyHandlerConfiguration& indexed_handler,
Local<Value> data) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, this);
EnsureNotInstantiated(
cons, "v8::ObjectTemplate::SetAccessCheckCallbackWithHandler");
i::Handle<i::Struct> struct_info = isolate->factory()->NewStruct(
i::ACCESS_CHECK_INFO_TYPE, i::AllocationType::kOld);
i::Handle<i::AccessCheckInfo> info =
i::Handle<i::AccessCheckInfo>::cast(struct_info);
SET_FIELD_WRAPPED(isolate, info, set_callback, callback);
auto named_interceptor = CreateNamedInterceptorInfo(
isolate, named_handler.getter, named_handler.setter, named_handler.query,
named_handler.descriptor, named_handler.deleter, named_handler.enumerator,
named_handler.definer, named_handler.data, named_handler.flags);
info->set_named_interceptor(*named_interceptor);
auto indexed_interceptor = CreateIndexedInterceptorInfo(
isolate, indexed_handler.getter, indexed_handler.setter,
indexed_handler.query, indexed_handler.descriptor,
indexed_handler.deleter, indexed_handler.enumerator,
indexed_handler.definer, indexed_handler.data, indexed_handler.flags);
info->set_indexed_interceptor(*indexed_interceptor);
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
info->set_data(*Utils::OpenHandle(*data));
i::FunctionTemplateInfo::SetAccessCheckInfo(isolate, cons, info);
cons->set_needs_access_check(true);
}
void ObjectTemplate::SetHandler(
const IndexedPropertyHandlerConfiguration& config) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, this);
EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetHandler");
auto obj = CreateIndexedInterceptorInfo(
isolate, config.getter, config.setter, config.query, config.descriptor,
config.deleter, config.enumerator, config.definer, config.data,
config.flags);
i::FunctionTemplateInfo::SetIndexedPropertyHandler(isolate, cons, obj);
}
void ObjectTemplate::SetCallAsFunctionHandler(FunctionCallback callback,
Local<Value> data) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScope scope(isolate);
auto cons = EnsureConstructor(isolate, this);
EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetCallAsFunctionHandler");
i::Handle<i::CallHandlerInfo> obj = isolate->factory()->NewCallHandlerInfo();
SET_FIELD_WRAPPED(isolate, obj, set_callback, callback);
SET_FIELD_WRAPPED(isolate, obj, set_js_callback, obj->redirected_callback());
if (data.IsEmpty()) {
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
obj->set_data(*Utils::OpenHandle(*data));
i::FunctionTemplateInfo::SetInstanceCallHandler(isolate, cons, obj);
}
int ObjectTemplate::InternalFieldCount() {
return Utils::OpenHandle(this)->embedder_field_count();
}
void ObjectTemplate::SetInternalFieldCount(int value) {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
if (!Utils::ApiCheck(i::Smi::IsValid(value),
"v8::ObjectTemplate::SetInternalFieldCount()",
"Invalid embedder field count")) {
return;
}
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
if (value > 0) {
// The embedder field count is set by the constructor function's
// construct code, so we ensure that there is a constructor
// function to do the setting.
EnsureConstructor(isolate, this);
}
Utils::OpenHandle(this)->set_embedder_field_count(value);
}
bool ObjectTemplate::IsImmutableProto() {
return Utils::OpenHandle(this)->immutable_proto();
}
void ObjectTemplate::SetImmutableProto() {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
self->set_immutable_proto(true);
}
bool ObjectTemplate::IsCodeLike() {
return Utils::OpenHandle(this)->code_like();
}
void ObjectTemplate::SetCodeLike() {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
self->set_code_like(true);
}
// --- S c r i p t s ---
// Internally, UnboundScript is a SharedFunctionInfo, and Script is a
// JSFunction.
ScriptCompiler::CachedData::CachedData(const uint8_t* data_, int length_,
BufferPolicy buffer_policy_)
: data(data_),
length(length_),
rejected(false),
buffer_policy(buffer_policy_) {}
ScriptCompiler::CachedData::~CachedData() {
if (buffer_policy == BufferOwned) {
delete[] data;
}
}
bool ScriptCompiler::ExternalSourceStream::SetBookmark() { return false; }
void ScriptCompiler::ExternalSourceStream::ResetToBookmark() { UNREACHABLE(); }
ScriptCompiler::StreamedSource::StreamedSource(ExternalSourceStream* stream,
Encoding encoding)
: StreamedSource(std::unique_ptr<ExternalSourceStream>(stream), encoding) {}
ScriptCompiler::StreamedSource::StreamedSource(
std::unique_ptr<ExternalSourceStream> stream, Encoding encoding)
: impl_(new i::ScriptStreamingData(std::move(stream), encoding)) {}
ScriptCompiler::StreamedSource::~StreamedSource() = default;
Local<Script> UnboundScript::BindToCurrentContext() {
auto function_info =
i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = function_info->GetIsolate();
i::Handle<i::JSFunction> function =
isolate->factory()->NewFunctionFromSharedFunctionInfo(
function_info, isolate->native_context());
return ToApiHandle<Script>(function);
}
int UnboundScript::GetId() {
auto function_info =
i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = function_info->GetIsolate();
LOG_API(isolate, UnboundScript, GetId);
i::HandleScope scope(isolate);
i::Handle<i::Script> script(i::Script::cast(function_info->script()),
isolate);
return script->id();
}
int UnboundScript::GetLineNumber(int code_pos) {
i::Handle<i::SharedFunctionInfo> obj =
i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = obj->GetIsolate();
LOG_API(isolate, UnboundScript, GetLineNumber);
if (obj->script().IsScript()) {
i::Handle<i::Script> script(i::Script::cast(obj->script()), isolate);
return i::Script::GetLineNumber(script, code_pos);
} else {
return -1;
}
}
Local<Value> UnboundScript::GetScriptName() {
i::Handle<i::SharedFunctionInfo> obj =
i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = obj->GetIsolate();
LOG_API(isolate, UnboundScript, GetName);
if (obj->script().IsScript()) {
i::Object name = i::Script::cast(obj->script()).name();
return Utils::ToLocal(i::Handle<i::Object>(name, isolate));
} else {
return Local<String>();
}
}
Local<Value> UnboundScript::GetSourceURL() {
i::Handle<i::SharedFunctionInfo> obj =
i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = obj->GetIsolate();
LOG_API(isolate, UnboundScript, GetSourceURL);
if (obj->script().IsScript()) {
i::Object url = i::Script::cast(obj->script()).source_url();
return Utils::ToLocal(i::Handle<i::Object>(url, isolate));
} else {
return Local<String>();
}
}
Local<Value> UnboundScript::GetSourceMappingURL() {
i::Handle<i::SharedFunctionInfo> obj =
i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this));
i::Isolate* isolate = obj->GetIsolate();
LOG_API(isolate, UnboundScript, GetSourceMappingURL);
if (obj->script().IsScript()) {
i::Object url = i::Script::cast(obj->script()).source_mapping_url();
return Utils::ToLocal(i::Handle<i::Object>(url, isolate));
} else {
return Local<String>();
}
}
MaybeLocal<Value> Script::Run(Local<Context> context) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.Execute");
ENTER_V8(isolate, context, Script, Run, MaybeLocal<Value>(),
InternalEscapableScope);
i::HistogramTimerScope execute_timer(isolate->counters()->execute(), true);
i::AggregatingHistogramTimerScope timer(isolate->counters()->compile_lazy());
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
auto fun = i::Handle<i::JSFunction>::cast(Utils::OpenHandle(this));
i::Handle<i::Object> receiver = isolate->global_proxy();
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::Execution::Call(isolate, fun, receiver, 0, nullptr), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
Local<Value> ScriptOrModule::GetResourceName() {
i::Handle<i::Script> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::Handle<i::Object> val(obj->name(), isolate);
return ToApiHandle<Value>(val);
}
Local<PrimitiveArray> ScriptOrModule::GetHostDefinedOptions() {
i::Handle<i::Script> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::Handle<i::FixedArray> val(obj->host_defined_options(), isolate);
return ToApiHandle<PrimitiveArray>(val);
}
Local<UnboundScript> Script::GetUnboundScript() {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::SharedFunctionInfo sfi = i::JSFunction::cast(*obj).shared();
i::Isolate* isolate = sfi.GetIsolate();
return ToApiHandle<UnboundScript>(i::handle(sfi, isolate));
}
// static
Local<PrimitiveArray> PrimitiveArray::New(Isolate* v8_isolate, int length) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
Utils::ApiCheck(length >= 0, "v8::PrimitiveArray::New",
"length must be equal or greater than zero");
i::Handle<i::FixedArray> array = isolate->factory()->NewFixedArray(length);
return ToApiHandle<PrimitiveArray>(array);
}
int PrimitiveArray::Length() const {
i::Handle<i::FixedArray> array = Utils::OpenHandle(this);
return array->length();
}
void PrimitiveArray::Set(Isolate* v8_isolate, int index,
Local<Primitive> item) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Handle<i::FixedArray> array = Utils::OpenHandle(this);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
Utils::ApiCheck(index >= 0 && index < array->length(),
"v8::PrimitiveArray::Set",
"index must be greater than or equal to 0 and less than the "
"array length");
i::Handle<i::Object> i_item = Utils::OpenHandle(*item);
array->set(index, *i_item);
}
Local<Primitive> PrimitiveArray::Get(Isolate* v8_isolate, int index) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Handle<i::FixedArray> array = Utils::OpenHandle(this);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
Utils::ApiCheck(index >= 0 && index < array->length(),
"v8::PrimitiveArray::Get",
"index must be greater than or equal to 0 and less than the "
"array length");
i::Handle<i::Object> i_item(array->get(index), isolate);
return ToApiHandle<Primitive>(i_item);
}
Module::Status Module::GetStatus() const {
i::Handle<i::Module> self = Utils::OpenHandle(this);
switch (self->status()) {
case i::Module::kUninstantiated:
case i::Module::kPreInstantiating:
return kUninstantiated;
case i::Module::kInstantiating:
return kInstantiating;
case i::Module::kInstantiated:
return kInstantiated;
case i::Module::kEvaluating:
return kEvaluating;
case i::Module::kEvaluated:
return kEvaluated;
case i::Module::kErrored:
return kErrored;
}
UNREACHABLE();
}
Local<Value> Module::GetException() const {
Utils::ApiCheck(GetStatus() == kErrored, "v8::Module::GetException",
"Module status must be kErrored");
i::Handle<i::Module> self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
return ToApiHandle<Value>(i::handle(self->GetException(), isolate));
}
int Module::GetModuleRequestsLength() const {
i::Handle<i::Module> self = Utils::OpenHandle(this);
if (self->IsSyntheticModule()) return 0;
return i::Handle<i::SourceTextModule>::cast(self)
->info()
.module_requests()
.length();
}
Local<String> Module::GetModuleRequest(int i) const {
CHECK_GE(i, 0);
i::Handle<i::Module> self = Utils::OpenHandle(this);
CHECK(self->IsSourceTextModule());
i::Isolate* isolate = self->GetIsolate();
i::Handle<i::FixedArray> module_requests(
i::Handle<i::SourceTextModule>::cast(self)->info().module_requests(),
isolate);
CHECK_LT(i, module_requests->length());
i::Handle<i::ModuleRequest> module_request(
i::ModuleRequest::cast(module_requests->get(i)), isolate);
return ToApiHandle<String>(i::handle(module_request->specifier(), isolate));
}
Location Module::GetModuleRequestLocation(int i) const {
CHECK_GE(i, 0);
i::Handle<i::Module> self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
i::HandleScope scope(isolate);
CHECK(self->IsSourceTextModule());
i::Handle<i::FixedArray> module_request_positions(
i::Handle<i::SourceTextModule>::cast(self)
->info()
.module_request_positions(),
isolate);
CHECK_LT(i, module_request_positions->length());
int position = i::Smi::ToInt(module_request_positions->get(i));
i::Handle<i::Script> script(
i::Handle<i::SourceTextModule>::cast(self)->script(), isolate);
i::Script::PositionInfo info;
i::Script::GetPositionInfo(script, position, &info, i::Script::WITH_OFFSET);
return v8::Location(info.line, info.column);
}
Local<Value> Module::GetModuleNamespace() {
Utils::ApiCheck(
GetStatus() >= kInstantiated, "v8::Module::GetModuleNamespace",
"v8::Module::GetModuleNamespace must be used on an instantiated module");
i::Handle<i::Module> self = Utils::OpenHandle(this);
i::Handle<i::JSModuleNamespace> module_namespace =
i::Module::GetModuleNamespace(self->GetIsolate(), self);
return ToApiHandle<Value>(module_namespace);
}
Local<UnboundModuleScript> Module::GetUnboundModuleScript() {
Utils::ApiCheck(
GetStatus() < kEvaluating, "v8::Module::GetUnboundScript",
"v8::Module::GetUnboundScript must be used on an unevaluated module");
i::Handle<i::Module> self = Utils::OpenHandle(this);
CHECK(self->IsSourceTextModule());
return ToApiHandle<UnboundModuleScript>(i::Handle<i::SharedFunctionInfo>(
i::Handle<i::SourceTextModule>::cast(self)->GetSharedFunctionInfo(),
self->GetIsolate()));
}
int Module::ScriptId() {
i::Handle<i::Module> self = Utils::OpenHandle(this);
Utils::ApiCheck(self->IsSourceTextModule(), "v8::Module::ScriptId",
"v8::Module::ScriptId must be used on an SourceTextModule");
// The SharedFunctionInfo is not available for errored modules.
Utils::ApiCheck(GetStatus() != kErrored, "v8::Module::ScriptId",
"v8::Module::ScriptId must not be used on an errored module");
i::Handle<i::SharedFunctionInfo> sfi(
i::Handle<i::SourceTextModule>::cast(self)->GetSharedFunctionInfo(),
self->GetIsolate());
return ToApiHandle<UnboundScript>(sfi)->GetId();
}
bool Module::IsGraphAsync() const {
Utils::ApiCheck(
GetStatus() >= kInstantiated, "v8::Module::IsGraphAsync",
"v8::Module::IsGraphAsync must be used on an instantiated module");
i::Handle<i::Module> self = Utils::OpenHandle(this);
auto isolate = reinterpret_cast<i::Isolate*>(self->GetIsolate());
return self->IsGraphAsync(isolate);
}
bool Module::IsSourceTextModule() const {
return Utils::OpenHandle(this)->IsSourceTextModule();
}
bool Module::IsSyntheticModule() const {
return Utils::OpenHandle(this)->IsSyntheticModule();
}
int Module::GetIdentityHash() const { return Utils::OpenHandle(this)->hash(); }
Maybe<bool> Module::InstantiateModule(Local<Context> context,
Module::ResolveCallback callback) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Module, InstantiateModule, Nothing<bool>(),
i::HandleScope);
has_pending_exception = !i::Module::Instantiate(
isolate, Utils::OpenHandle(this), context, callback);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
MaybeLocal<Value> Module::Evaluate(Local<Context> context) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.Execute");
ENTER_V8(isolate, context, Module, Evaluate, MaybeLocal<Value>(),
InternalEscapableScope);
i::HistogramTimerScope execute_timer(isolate->counters()->execute(), true);
i::AggregatingHistogramTimerScope timer(isolate->counters()->compile_lazy());
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
i::Handle<i::Module> self = Utils::OpenHandle(this);
// It's an API error to call Evaluate before Instantiate.
CHECK_GE(self->status(), i::Module::kInstantiated);
Local<Value> result;
has_pending_exception = !ToLocal(i::Module::Evaluate(isolate, self), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
Local<Module> Module::CreateSyntheticModule(
Isolate* isolate, Local<String> module_name,
const std::vector<Local<v8::String>>& export_names,
v8::Module::SyntheticModuleEvaluationSteps evaluation_steps) {
auto i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Handle<i::String> i_module_name = Utils::OpenHandle(*module_name);
i::Handle<i::FixedArray> i_export_names = i_isolate->factory()->NewFixedArray(
static_cast<int>(export_names.size()));
for (int i = 0; i < i_export_names->length(); ++i) {
i::Handle<i::String> str = i_isolate->factory()->InternalizeString(
Utils::OpenHandle(*export_names[i]));
i_export_names->set(i, *str);
}
return v8::Utils::ToLocal(
i::Handle<i::Module>(i_isolate->factory()->NewSyntheticModule(
i_module_name, i_export_names, evaluation_steps)));
}
Maybe<bool> Module::SetSyntheticModuleExport(Isolate* isolate,
Local<String> export_name,
Local<v8::Value> export_value) {
auto i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Handle<i::String> i_export_name = Utils::OpenHandle(*export_name);
i::Handle<i::Object> i_export_value = Utils::OpenHandle(*export_value);
i::Handle<i::Module> self = Utils::OpenHandle(this);
Utils::ApiCheck(self->IsSyntheticModule(),
"v8::Module::SyntheticModuleSetExport",
"v8::Module::SyntheticModuleSetExport must only be called on "
"a SyntheticModule");
ENTER_V8_NO_SCRIPT(i_isolate, isolate->GetCurrentContext(), Module,
SetSyntheticModuleExport, Nothing<bool>(), i::HandleScope);
has_pending_exception =
i::SyntheticModule::SetExport(i_isolate,
i::Handle<i::SyntheticModule>::cast(self),
i_export_name, i_export_value)
.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
void Module::SetSyntheticModuleExport(Local<String> export_name,
Local<v8::Value> export_value) {
i::Handle<i::String> i_export_name = Utils::OpenHandle(*export_name);
i::Handle<i::Object> i_export_value = Utils::OpenHandle(*export_value);
i::Handle<i::Module> self = Utils::OpenHandle(this);
Utils::ApiCheck(self->IsSyntheticModule(),
"v8::Module::SetSyntheticModuleExport",
"v8::Module::SetSyntheticModuleExport must only be called on "
"a SyntheticModule");
i::SyntheticModule::SetExportStrict(self->GetIsolate(),
i::Handle<i::SyntheticModule>::cast(self),
i_export_name, i_export_value);
}
namespace {
i::Compiler::ScriptDetails GetScriptDetails(
i::Isolate* isolate, Local<Value> resource_name,
Local<Integer> resource_line_offset, Local<Integer> resource_column_offset,
Local<Value> source_map_url, Local<PrimitiveArray> host_defined_options) {
i::Compiler::ScriptDetails script_details;
if (!resource_name.IsEmpty()) {
script_details.name_obj = Utils::OpenHandle(*(resource_name));
}
if (!resource_line_offset.IsEmpty()) {
script_details.line_offset =
static_cast<int>(resource_line_offset->Value());
}
if (!resource_column_offset.IsEmpty()) {
script_details.column_offset =
static_cast<int>(resource_column_offset->Value());
}
script_details.host_defined_options = isolate->factory()->empty_fixed_array();
if (!host_defined_options.IsEmpty()) {
script_details.host_defined_options =
Utils::OpenHandle(*(host_defined_options));
}
if (!source_map_url.IsEmpty()) {
script_details.source_map_url = Utils::OpenHandle(*(source_map_url));
}
return script_details;
}
} // namespace
MaybeLocal<UnboundScript> ScriptCompiler::CompileUnboundInternal(
Isolate* v8_isolate, Source* source, CompileOptions options,
NoCacheReason no_cache_reason) {
auto isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.ScriptCompiler");
ENTER_V8_NO_SCRIPT(isolate, v8_isolate->GetCurrentContext(), ScriptCompiler,
CompileUnbound, MaybeLocal<UnboundScript>(),
InternalEscapableScope);
i::ScriptData* script_data = nullptr;
if (options == kConsumeCodeCache) {
DCHECK(source->cached_data);
// ScriptData takes care of pointer-aligning the data.
script_data = new i::ScriptData(source->cached_data->data,
source->cached_data->length);
}
i::Handle<i::String> str = Utils::OpenHandle(*(source->source_string));
i::Handle<i::SharedFunctionInfo> result;
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.CompileScript");
i::Compiler::ScriptDetails script_details = GetScriptDetails(
isolate, source->resource_name, source->resource_line_offset,
source->resource_column_offset, source->source_map_url,
source->host_defined_options);
i::MaybeHandle<i::SharedFunctionInfo> maybe_function_info =
i::Compiler::GetSharedFunctionInfoForScript(
isolate, str, script_details, source->resource_options, nullptr,
script_data, options, no_cache_reason, i::NOT_NATIVES_CODE);
if (options == kConsumeCodeCache) {
source->cached_data->rejected = script_data->rejected();
}
delete script_data;
has_pending_exception = !maybe_function_info.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(UnboundScript);
RETURN_ESCAPED(ToApiHandle<UnboundScript>(result));
}
MaybeLocal<UnboundScript> ScriptCompiler::CompileUnboundScript(
Isolate* v8_isolate, Source* source, CompileOptions options,
NoCacheReason no_cache_reason) {
Utils::ApiCheck(
!source->GetResourceOptions().IsModule(),
"v8::ScriptCompiler::CompileUnboundScript",
"v8::ScriptCompiler::CompileModule must be used to compile modules");
return CompileUnboundInternal(v8_isolate, source, options, no_cache_reason);
}
MaybeLocal<Script> ScriptCompiler::Compile(Local<Context> context,
Source* source,
CompileOptions options,
NoCacheReason no_cache_reason) {
Utils::ApiCheck(
!source->GetResourceOptions().IsModule(), "v8::ScriptCompiler::Compile",
"v8::ScriptCompiler::CompileModule must be used to compile modules");
auto isolate = context->GetIsolate();
auto maybe =
CompileUnboundInternal(isolate, source, options, no_cache_reason);
Local<UnboundScript> result;
if (!maybe.ToLocal(&result)) return MaybeLocal<Script>();
v8::Context::Scope scope(context);
return result->BindToCurrentContext();
}
MaybeLocal<Module> ScriptCompiler::CompileModule(
Isolate* isolate, Source* source, CompileOptions options,
NoCacheReason no_cache_reason) {
CHECK(options == kNoCompileOptions || options == kConsumeCodeCache);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
Utils::ApiCheck(source->GetResourceOptions().IsModule(),
"v8::ScriptCompiler::CompileModule",
"Invalid ScriptOrigin: is_module must be true");
auto maybe =
CompileUnboundInternal(isolate, source, options, no_cache_reason);
Local<UnboundScript> unbound;
if (!maybe.ToLocal(&unbound)) return MaybeLocal<Module>();
i::Handle<i::SharedFunctionInfo> shared = Utils::OpenHandle(*unbound);
return ToApiHandle<Module>(i_isolate->factory()->NewSourceTextModule(shared));
}
namespace {
bool IsIdentifier(i::Isolate* isolate, i::Handle<i::String> string) {
string = i::String::Flatten(isolate, string);
const int length = string->length();
if (length == 0) return false;
if (!i::IsIdentifierStart(string->Get(0))) return false;
i::DisallowHeapAllocation no_gc;
i::String::FlatContent flat = string->GetFlatContent(no_gc);
if (flat.IsOneByte()) {
auto vector = flat.ToOneByteVector();
for (int i = 1; i < length; i++) {
if (!i::IsIdentifierPart(vector[i])) return false;
}
} else {
auto vector = flat.ToUC16Vector();
for (int i = 1; i < length; i++) {
if (!i::IsIdentifierPart(vector[i])) return false;
}
}
return true;
}
} // anonymous namespace
MaybeLocal<Function> ScriptCompiler::CompileFunctionInContext(
Local<Context> v8_context, Source* source, size_t arguments_count,
Local<String> arguments[], size_t context_extension_count,
Local<Object> context_extensions[], CompileOptions options,
NoCacheReason no_cache_reason,
Local<ScriptOrModule>* script_or_module_out) {
Local<Function> result;
{
PREPARE_FOR_EXECUTION(v8_context, ScriptCompiler, CompileFunctionInContext,
Function);
TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.ScriptCompiler");
DCHECK(options == CompileOptions::kConsumeCodeCache ||
options == CompileOptions::kEagerCompile ||
options == CompileOptions::kNoCompileOptions);
i::Handle<i::Context> context = Utils::OpenHandle(*v8_context);
DCHECK(context->IsNativeContext());
i::Handle<i::FixedArray> arguments_list =
isolate->factory()->NewFixedArray(static_cast<int>(arguments_count));
for (int i = 0; i < static_cast<int>(arguments_count); i++) {
i::Handle<i::String> argument = Utils::OpenHandle(*arguments[i]);
if (!IsIdentifier(isolate, argument)) return Local<Function>();
arguments_list->set(i, *argument);
}
for (size_t i = 0; i < context_extension_count; ++i) {
i::Handle<i::JSReceiver> extension =
Utils::OpenHandle(*context_extensions[i]);
if (!extension->IsJSObject()) return Local<Function>();
context = isolate->factory()->NewWithContext(
context,
i::ScopeInfo::CreateForWithScope(
isolate,
context->IsNativeContext()
? i::Handle<i::ScopeInfo>::null()
: i::Handle<i::ScopeInfo>(context->scope_info(), isolate)),
extension);
}
i::Compiler::ScriptDetails script_details = GetScriptDetails(
isolate, source->resource_name, source->resource_line_offset,
source->resource_column_offset, source->source_map_url,
source->host_defined_options);
i::ScriptData* script_data = nullptr;
if (options == kConsumeCodeCache) {
DCHECK(source->cached_data);
// ScriptData takes care of pointer-aligning the data.
script_data = new i::ScriptData(source->cached_data->data,
source->cached_data->length);
}
i::Handle<i::JSFunction> scoped_result;
has_pending_exception =
!i::Compiler::GetWrappedFunction(
Utils::OpenHandle(*source->source_string), arguments_list, context,
script_details, source->resource_options, script_data, options,
no_cache_reason)
.ToHandle(&scoped_result);
if (options == kConsumeCodeCache) {
source->cached_data->rejected = script_data->rejected();
}
delete script_data;
RETURN_ON_FAILED_EXECUTION(Function);
result = handle_scope.Escape(Utils::CallableToLocal(scoped_result));
}
if (script_or_module_out != nullptr) {
i::Handle<i::JSFunction> function =
i::Handle<i::JSFunction>::cast(Utils::OpenHandle(*result));
i::Isolate* isolate = function->GetIsolate();
i::Handle<i::SharedFunctionInfo> shared(function->shared(), isolate);
i::Handle<i::Script> script(i::Script::cast(shared->script()), isolate);
*script_or_module_out = v8::Utils::ScriptOrModuleToLocal(script);
}
return result;
}
void ScriptCompiler::ScriptStreamingTask::Run() { data_->task->Run(); }
ScriptCompiler::ScriptStreamingTask* ScriptCompiler::StartStreamingScript(
Isolate* v8_isolate, StreamedSource* source, CompileOptions options) {
// We don't support other compile options on streaming background compiles.
// TODO(rmcilroy): remove CompileOptions from the API.
CHECK(options == ScriptCompiler::kNoCompileOptions);
return StartStreaming(v8_isolate, source);
}
ScriptCompiler::ScriptStreamingTask* ScriptCompiler::StartStreaming(
Isolate* v8_isolate, StreamedSource* source) {
if (!i::FLAG_script_streaming) return nullptr;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::ScriptStreamingData* data = source->impl();
std::unique_ptr<i::BackgroundCompileTask> task =
std::make_unique<i::BackgroundCompileTask>(data, isolate);
data->task = std::move(task);
return new ScriptCompiler::ScriptStreamingTask(data);
}
MaybeLocal<Script> ScriptCompiler::Compile(Local<Context> context,
StreamedSource* v8_source,
Local<String> full_source_string,
const ScriptOrigin& origin) {
PREPARE_FOR_EXECUTION(context, ScriptCompiler, Compile, Script);
TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.ScriptCompiler");
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"),
"V8.CompileStreamedScript");
i::Handle<i::String> str = Utils::OpenHandle(*(full_source_string));
i::Compiler::ScriptDetails script_details = GetScriptDetails(
isolate, origin.ResourceName(), origin.ResourceLineOffset(),
origin.ResourceColumnOffset(), origin.SourceMapUrl(),
origin.HostDefinedOptions());
i::ScriptStreamingData* data = v8_source->impl();
i::MaybeHandle<i::SharedFunctionInfo> maybe_function_info =
i::Compiler::GetSharedFunctionInfoForStreamedScript(
isolate, str, script_details, origin.Options(), data);
i::Handle<i::SharedFunctionInfo> result;
has_pending_exception = !maybe_function_info.ToHandle(&result);
if (has_pending_exception) isolate->ReportPendingMessages();
RETURN_ON_FAILED_EXECUTION(Script);
Local<UnboundScript> generic = ToApiHandle<UnboundScript>(result);
if (generic.IsEmpty()) return Local<Script>();
Local<Script> bound = generic->BindToCurrentContext();
if (bound.IsEmpty()) return Local<Script>();
RETURN_ESCAPED(bound);
}
uint32_t ScriptCompiler::CachedDataVersionTag() {
return static_cast<uint32_t>(base::hash_combine(
internal::Version::Hash(), internal::FlagList::Hash(),
static_cast<uint32_t>(internal::CpuFeatures::SupportedFeatures())));
}
ScriptCompiler::CachedData* ScriptCompiler::CreateCodeCache(
Local<UnboundScript> unbound_script) {
i::Handle<i::SharedFunctionInfo> shared =
i::Handle<i::SharedFunctionInfo>::cast(
Utils::OpenHandle(*unbound_script));
DCHECK(shared->is_toplevel());
return i::CodeSerializer::Serialize(shared);
}
// static
ScriptCompiler::CachedData* ScriptCompiler::CreateCodeCache(
Local<UnboundModuleScript> unbound_module_script) {
i::Handle<i::SharedFunctionInfo> shared =
i::Handle<i::SharedFunctionInfo>::cast(
Utils::OpenHandle(*unbound_module_script));
DCHECK(shared->is_toplevel());
return i::CodeSerializer::Serialize(shared);
}
ScriptCompiler::CachedData* ScriptCompiler::CreateCodeCacheForFunction(
Local<Function> function) {
auto js_function =
i::Handle<i::JSFunction>::cast(Utils::OpenHandle(*function));
i::Handle<i::SharedFunctionInfo> shared(js_function->shared(),
js_function->GetIsolate());
CHECK(shared->is_wrapped());
return i::CodeSerializer::Serialize(shared);
}
MaybeLocal<Script> Script::Compile(Local<Context> context, Local<String> source,
ScriptOrigin* origin) {
if (origin) {
ScriptCompiler::Source script_source(source, *origin);
return ScriptCompiler::Compile(context, &script_source);
}
ScriptCompiler::Source script_source(source);
return ScriptCompiler::Compile(context, &script_source);
}
// --- E x c e p t i o n s ---
v8::TryCatch::TryCatch(v8::Isolate* isolate)
: isolate_(reinterpret_cast<i::Isolate*>(isolate)),
next_(isolate_->try_catch_handler()),
is_verbose_(false),
can_continue_(true),
capture_message_(true),
rethrow_(false),
has_terminated_(false) {
ResetInternal();
// Special handling for simulators which have a separate JS stack.
js_stack_comparable_address_ = reinterpret_cast<void*>(
i::SimulatorStack::RegisterJSStackComparableAddress(isolate_));
isolate_->RegisterTryCatchHandler(this);
}
v8::TryCatch::~TryCatch() {
if (rethrow_) {
v8::Isolate* isolate = reinterpret_cast<Isolate*>(isolate_);
v8::HandleScope scope(isolate);
v8::Local<v8::Value> exc = v8::Local<v8::Value>::New(isolate, Exception());
if (HasCaught() && capture_message_) {
// If an exception was caught and rethrow_ is indicated, the saved
// message, script, and location need to be restored to Isolate TLS
// for reuse. capture_message_ needs to be disabled so that Throw()
// does not create a new message.
isolate_->thread_local_top()->rethrowing_message_ = true;
isolate_->RestorePendingMessageFromTryCatch(this);
}
isolate_->UnregisterTryCatchHandler(this);
i::SimulatorStack::UnregisterJSStackComparableAddress(isolate_);
reinterpret_cast<Isolate*>(isolate_)->ThrowException(exc);
DCHECK(!isolate_->thread_local_top()->rethrowing_message_);
} else {
if (HasCaught() && isolate_->has_scheduled_exception()) {
// If an exception was caught but is still scheduled because no API call
// promoted it, then it is canceled to prevent it from being propagated.
// Note that this will not cancel termination exceptions.
isolate_->CancelScheduledExceptionFromTryCatch(this);
}
isolate_->UnregisterTryCatchHandler(this);
i::SimulatorStack::UnregisterJSStackComparableAddress(isolate_);
}
}
void* v8::TryCatch::operator new(size_t) { base::OS::Abort(); }
void* v8::TryCatch::operator new[](size_t) { base::OS::Abort(); }
void v8::TryCatch::operator delete(void*, size_t) { base::OS::Abort(); }
void v8::TryCatch::operator delete[](void*, size_t) { base::OS::Abort(); }
bool v8::TryCatch::HasCaught() const {
return !i::Object(reinterpret_cast<i::Address>(exception_))
.IsTheHole(isolate_);
}
bool v8::TryCatch::CanContinue() const { return can_continue_; }
bool v8::TryCatch::HasTerminated() const { return has_terminated_; }
v8::Local<v8::Value> v8::TryCatch::ReThrow() {
if (!HasCaught()) return v8::Local<v8::Value>();
rethrow_ = true;
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate_));
}
v8::Local<Value> v8::TryCatch::Exception() const {
if (HasCaught()) {
// Check for out of memory exception.
i::Object exception(reinterpret_cast<i::Address>(exception_));
return v8::Utils::ToLocal(i::Handle<i::Object>(exception, isolate_));
} else {
return v8::Local<Value>();
}
}
MaybeLocal<Value> v8::TryCatch::StackTrace(Local<Context> context,
Local<Value> exception) {
i::Handle<i::Object> i_exception = Utils::OpenHandle(*exception);
if (!i_exception->IsJSObject()) return v8::Local<Value>();
PREPARE_FOR_EXECUTION(context, TryCatch, StackTrace, Value);
auto obj = i::Handle<i::JSObject>::cast(i_exception);
i::Handle<i::String> name = isolate->factory()->stack_string();
Maybe<bool> maybe = i::JSReceiver::HasProperty(obj, name);
has_pending_exception = maybe.IsNothing();
RETURN_ON_FAILED_EXECUTION(Value);
if (!maybe.FromJust()) return v8::Local<Value>();
Local<Value> result;
has_pending_exception =
!ToLocal<Value>(i::JSReceiver::GetProperty(isolate, obj, name), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
MaybeLocal<Value> v8::TryCatch::StackTrace(Local<Context> context) const {
if (!HasCaught()) return v8::Local<Value>();
return StackTrace(context, Exception());
}
v8::Local<v8::Message> v8::TryCatch::Message() const {
i::Object message(reinterpret_cast<i::Address>(message_obj_));
DCHECK(message.IsJSMessageObject() || message.IsTheHole(isolate_));
if (HasCaught() && !message.IsTheHole(isolate_)) {
return v8::Utils::MessageToLocal(i::Handle<i::Object>(message, isolate_));
} else {
return v8::Local<v8::Message>();
}
}
void v8::TryCatch::Reset() {
if (!rethrow_ && HasCaught() && isolate_->has_scheduled_exception()) {
// If an exception was caught but is still scheduled because no API call
// promoted it, then it is canceled to prevent it from being propagated.
// Note that this will not cancel termination exceptions.
isolate_->CancelScheduledExceptionFromTryCatch(this);
}
ResetInternal();
}
void v8::TryCatch::ResetInternal() {
i::Object the_hole = i::ReadOnlyRoots(isolate_).the_hole_value();
exception_ = reinterpret_cast<void*>(the_hole.ptr());
message_obj_ = reinterpret_cast<void*>(the_hole.ptr());
}
void v8::TryCatch::SetVerbose(bool value) { is_verbose_ = value; }
bool v8::TryCatch::IsVerbose() const { return is_verbose_; }
void v8::TryCatch::SetCaptureMessage(bool value) { capture_message_ = value; }
// --- M e s s a g e ---
Local<String> Message::Get() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::String> raw_result =
i::MessageHandler::GetMessage(isolate, self);
Local<String> result = Utils::ToLocal(raw_result);
return scope.Escape(result);
}
v8::Isolate* Message::GetIsolate() const {
i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate();
return reinterpret_cast<Isolate*>(isolate);
}
ScriptOrigin Message::GetScriptOrigin() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::Handle<i::Script> script(self->script(), isolate);
return GetScriptOriginForScript(isolate, script);
}
v8::Local<Value> Message::GetScriptResourceName() const {
return GetScriptOrigin().ResourceName();
}
v8::Local<v8::StackTrace> Message::GetStackTrace() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::Object> stackFramesObj(self->stack_frames(), isolate);
if (!stackFramesObj->IsFixedArray()) return v8::Local<v8::StackTrace>();
auto stackTrace = i::Handle<i::FixedArray>::cast(stackFramesObj);
return scope.Escape(Utils::StackTraceToLocal(stackTrace));
}
Maybe<int> Message::GetLineNumber(Local<Context> context) const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(isolate));
i::JSMessageObject::EnsureSourcePositionsAvailable(isolate, self);
return Just(self->GetLineNumber());
}
int Message::GetStartPosition() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(isolate));
i::JSMessageObject::EnsureSourcePositionsAvailable(isolate, self);
return self->GetStartPosition();
}
int Message::GetEndPosition() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(isolate));
i::JSMessageObject::EnsureSourcePositionsAvailable(isolate, self);
return self->GetEndPosition();
}
int Message::ErrorLevel() const {
auto self = Utils::OpenHandle(this);
return self->error_level();
}
int Message::GetStartColumn() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(isolate));
i::JSMessageObject::EnsureSourcePositionsAvailable(isolate, self);
return self->GetColumnNumber();
}
int Message::GetWasmFunctionIndex() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(isolate));
i::JSMessageObject::EnsureSourcePositionsAvailable(isolate, self);
int start_position = self->GetColumnNumber();
if (start_position == -1) return Message::kNoWasmFunctionIndexInfo;
i::Handle<i::Script> script(self->script(), isolate);
if (script->type() != i::Script::TYPE_WASM) {
return Message::kNoWasmFunctionIndexInfo;
}
auto debug_script = ToApiHandle<debug::Script>(script);
return Local<debug::WasmScript>::Cast(debug_script)
->GetContainingFunction(start_position);
}
Maybe<int> Message::GetStartColumn(Local<Context> context) const {
return Just(GetStartColumn());
}
int Message::GetEndColumn() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(isolate));
i::JSMessageObject::EnsureSourcePositionsAvailable(isolate, self);
const int column_number = self->GetColumnNumber();
if (column_number == -1) return -1;
const int start = self->GetStartPosition();
const int end = self->GetEndPosition();
return column_number + (end - start);
}
Maybe<int> Message::GetEndColumn(Local<Context> context) const {
return Just(GetEndColumn());
}
bool Message::IsSharedCrossOrigin() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
return self->script().origin_options().IsSharedCrossOrigin();
}
bool Message::IsOpaque() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
return self->script().origin_options().IsOpaque();
}
MaybeLocal<String> Message::GetSourceLine(Local<Context> context) const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(isolate));
i::JSMessageObject::EnsureSourcePositionsAvailable(isolate, self);
RETURN_ESCAPED(Utils::ToLocal(self->GetSourceLine()));
}
void Message::PrintCurrentStackTrace(Isolate* isolate, FILE* out) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i_isolate->PrintCurrentStackTrace(nullptr);
}
// --- S t a c k T r a c e ---
Local<StackFrame> StackTrace::GetFrame(Isolate* v8_isolate,
uint32_t index) const {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
EscapableHandleScope scope(v8_isolate);
auto obj = handle(Utils::OpenHandle(this)->get(index), isolate);
auto frame = i::Handle<i::StackTraceFrame>::cast(obj);
return scope.Escape(Utils::StackFrameToLocal(frame));
}
int StackTrace::GetFrameCount() const {
return Utils::OpenHandle(this)->length();
}
Local<StackTrace> StackTrace::CurrentStackTrace(Isolate* isolate,
int frame_limit,
StackTraceOptions options) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::FixedArray> stackTrace =
i_isolate->CaptureCurrentStackTrace(frame_limit, options);
return Utils::StackTraceToLocal(stackTrace);
}
// --- S t a c k F r a m e ---
int StackFrame::GetLineNumber() const {
return i::StackTraceFrame::GetOneBasedLineNumber(Utils::OpenHandle(this));
}
int StackFrame::GetColumn() const {
return i::StackTraceFrame::GetOneBasedColumnNumber(Utils::OpenHandle(this));
}
int StackFrame::GetScriptId() const {
return i::StackTraceFrame::GetScriptId(Utils::OpenHandle(this));
}
Local<String> StackFrame::GetScriptName() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::Object> name = i::StackTraceFrame::GetFileName(self);
return name->IsString()
? scope.Escape(Local<String>::Cast(Utils::ToLocal(name)))
: Local<String>();
}
Local<String> StackFrame::GetScriptNameOrSourceURL() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::Object> name =
i::StackTraceFrame::GetScriptNameOrSourceUrl(self);
return name->IsString()
? scope.Escape(Local<String>::Cast(Utils::ToLocal(name)))
: Local<String>();
}
Local<String> StackFrame::GetFunctionName() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate));
i::Handle<i::Object> name = i::StackTraceFrame::GetFunctionName(self);
return name->IsString()
? scope.Escape(Local<String>::Cast(Utils::ToLocal(name)))
: Local<String>();
}
bool StackFrame::IsEval() const {
return i::StackTraceFrame::IsEval(Utils::OpenHandle(this));
}
bool StackFrame::IsConstructor() const {
return i::StackTraceFrame::IsConstructor(Utils::OpenHandle(this));
}
bool StackFrame::IsWasm() const {
return i::StackTraceFrame::IsWasm(Utils::OpenHandle(this));
}
bool StackFrame::IsUserJavaScript() const {
return i::StackTraceFrame::IsUserJavaScript(Utils::OpenHandle(this));
}
// --- J S O N ---
MaybeLocal<Value> JSON::Parse(Local<Context> context,
Local<String> json_string) {
PREPARE_FOR_EXECUTION(context, JSON, Parse, Value);
i::Handle<i::String> string = Utils::OpenHandle(*json_string);
i::Handle<i::String> source = i::String::Flatten(isolate, string);
i::Handle<i::Object> undefined = isolate->factory()->undefined_value();
auto maybe = source->IsOneByteRepresentation()
? i::JsonParser<uint8_t>::Parse(isolate, source, undefined)
: i::JsonParser<uint16_t>::Parse(isolate, source, undefined);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(maybe, &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
MaybeLocal<String> JSON::Stringify(Local<Context> context,
Local<Value> json_object,
Local<String> gap) {
PREPARE_FOR_EXECUTION(context, JSON, Stringify, String);
i::Handle<i::Object> object = Utils::OpenHandle(*json_object);
i::Handle<i::Object> replacer = isolate->factory()->undefined_value();
i::Handle<i::String> gap_string = gap.IsEmpty()
? isolate->factory()->empty_string()
: Utils::OpenHandle(*gap);
i::Handle<i::Object> maybe;
has_pending_exception =
!i::JsonStringify(isolate, object, replacer, gap_string).ToHandle(&maybe);
RETURN_ON_FAILED_EXECUTION(String);
Local<String> result;
has_pending_exception =
!ToLocal<String>(i::Object::ToString(isolate, maybe), &result);
RETURN_ON_FAILED_EXECUTION(String);
RETURN_ESCAPED(result);
}
// --- V a l u e S e r i a l i z a t i o n ---
Maybe<bool> ValueSerializer::Delegate::WriteHostObject(Isolate* v8_isolate,
Local<Object> object) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
isolate->ScheduleThrow(*isolate->factory()->NewError(
isolate->error_function(), i::MessageTemplate::kDataCloneError,
Utils::OpenHandle(*object)));
return Nothing<bool>();
}
Maybe<uint32_t> ValueSerializer::Delegate::GetSharedArrayBufferId(
Isolate* v8_isolate, Local<SharedArrayBuffer> shared_array_buffer) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
isolate->ScheduleThrow(*isolate->factory()->NewError(
isolate->error_function(), i::MessageTemplate::kDataCloneError,
Utils::OpenHandle(*shared_array_buffer)));
return Nothing<uint32_t>();
}
Maybe<uint32_t> ValueSerializer::Delegate::GetWasmModuleTransferId(
Isolate* v8_isolate, Local<WasmModuleObject> module) {
return Nothing<uint32_t>();
}
void* ValueSerializer::Delegate::ReallocateBufferMemory(void* old_buffer,
size_t size,
size_t* actual_size) {
*actual_size = size;
return base::Realloc(old_buffer, size);
}
void ValueSerializer::Delegate::FreeBufferMemory(void* buffer) {
return base::Free(buffer);
}
struct ValueSerializer::PrivateData {
explicit PrivateData(i::Isolate* i, ValueSerializer::Delegate* delegate)
: isolate(i), serializer(i, delegate) {}
i::Isolate* isolate;
i::ValueSerializer serializer;
};
ValueSerializer::ValueSerializer(Isolate* isolate)
: ValueSerializer(isolate, nullptr) {}
ValueSerializer::ValueSerializer(Isolate* isolate, Delegate* delegate)
: private_(
new PrivateData(reinterpret_cast<i::Isolate*>(isolate), delegate)) {}
ValueSerializer::~ValueSerializer() { delete private_; }
void ValueSerializer::WriteHeader() { private_->serializer.WriteHeader(); }
void ValueSerializer::SetTreatArrayBufferViewsAsHostObjects(bool mode) {
private_->serializer.SetTreatArrayBufferViewsAsHostObjects(mode);
}
Maybe<bool> ValueSerializer::WriteValue(Local<Context> context,
Local<Value> value) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, ValueSerializer, WriteValue, Nothing<bool>(),
i::HandleScope);
i::Handle<i::Object> object = Utils::OpenHandle(*value);
Maybe<bool> result = private_->serializer.WriteObject(object);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
std::pair<uint8_t*, size_t> ValueSerializer::Release() {
return private_->serializer.Release();
}
void ValueSerializer::TransferArrayBuffer(uint32_t transfer_id,
Local<ArrayBuffer> array_buffer) {
private_->serializer.TransferArrayBuffer(transfer_id,
Utils::OpenHandle(*array_buffer));
}
void ValueSerializer::WriteUint32(uint32_t value) {
private_->serializer.WriteUint32(value);
}
void ValueSerializer::WriteUint64(uint64_t value) {
private_->serializer.WriteUint64(value);
}
void ValueSerializer::WriteDouble(double value) {
private_->serializer.WriteDouble(value);
}
void ValueSerializer::WriteRawBytes(const void* source, size_t length) {
private_->serializer.WriteRawBytes(source, length);
}
MaybeLocal<Object> ValueDeserializer::Delegate::ReadHostObject(
Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
isolate->ScheduleThrow(*isolate->factory()->NewError(
isolate->error_function(),
i::MessageTemplate::kDataCloneDeserializationError));
return MaybeLocal<Object>();
}
MaybeLocal<WasmModuleObject> ValueDeserializer::Delegate::GetWasmModuleFromId(
Isolate* v8_isolate, uint32_t id) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
isolate->ScheduleThrow(*isolate->factory()->NewError(
isolate->error_function(),
i::MessageTemplate::kDataCloneDeserializationError));
return MaybeLocal<WasmModuleObject>();
}
MaybeLocal<SharedArrayBuffer>
ValueDeserializer::Delegate::GetSharedArrayBufferFromId(Isolate* v8_isolate,
uint32_t id) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
isolate->ScheduleThrow(*isolate->factory()->NewError(
isolate->error_function(),
i::MessageTemplate::kDataCloneDeserializationError));
return MaybeLocal<SharedArrayBuffer>();
}
struct ValueDeserializer::PrivateData {
PrivateData(i::Isolate* i, i::Vector<const uint8_t> data, Delegate* delegate)
: isolate(i), deserializer(i, data, delegate) {}
i::Isolate* isolate;
i::ValueDeserializer deserializer;
bool has_aborted = false;
bool supports_legacy_wire_format = false;
};
ValueDeserializer::ValueDeserializer(Isolate* isolate, const uint8_t* data,
size_t size)
: ValueDeserializer(isolate, data, size, nullptr) {}
ValueDeserializer::ValueDeserializer(Isolate* isolate, const uint8_t* data,
size_t size, Delegate* delegate) {
if (base::IsValueInRangeForNumericType<int>(size)) {
private_ = new PrivateData(
reinterpret_cast<i::Isolate*>(isolate),
i::Vector<const uint8_t>(data, static_cast<int>(size)), delegate);
} else {
private_ = new PrivateData(reinterpret_cast<i::Isolate*>(isolate),
i::Vector<const uint8_t>(nullptr, 0), nullptr);
private_->has_aborted = true;
}
}
ValueDeserializer::~ValueDeserializer() { delete private_; }
Maybe<bool> ValueDeserializer::ReadHeader(Local<Context> context) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8_NO_SCRIPT(isolate, context, ValueDeserializer, ReadHeader,
Nothing<bool>(), i::HandleScope);
// We could have aborted during the constructor.
// If so, ReadHeader is where we report it.
if (private_->has_aborted) {
isolate->Throw(*isolate->factory()->NewError(
i::MessageTemplate::kDataCloneDeserializationError));
has_pending_exception = true;
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
}
bool read_header = false;
has_pending_exception = !private_->deserializer.ReadHeader().To(&read_header);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
DCHECK(read_header);
static const uint32_t kMinimumNonLegacyVersion = 13;
if (GetWireFormatVersion() < kMinimumNonLegacyVersion &&
!private_->supports_legacy_wire_format) {
isolate->Throw(*isolate->factory()->NewError(
i::MessageTemplate::kDataCloneDeserializationVersionError));
has_pending_exception = true;
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
}
return Just(true);
}
void ValueDeserializer::SetSupportsLegacyWireFormat(
bool supports_legacy_wire_format) {
private_->supports_legacy_wire_format = supports_legacy_wire_format;
}
uint32_t ValueDeserializer::GetWireFormatVersion() const {
CHECK(!private_->has_aborted);
return private_->deserializer.GetWireFormatVersion();
}
MaybeLocal<Value> ValueDeserializer::ReadValue(Local<Context> context) {
CHECK(!private_->has_aborted);
PREPARE_FOR_EXECUTION(context, ValueDeserializer, ReadValue, Value);
i::MaybeHandle<i::Object> result;
if (GetWireFormatVersion() > 0) {
result = private_->deserializer.ReadObject();
} else {
result =
private_->deserializer.ReadObjectUsingEntireBufferForLegacyFormat();
}
Local<Value> value;
has_pending_exception = !ToLocal(result, &value);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(value);
}
void ValueDeserializer::TransferArrayBuffer(uint32_t transfer_id,
Local<ArrayBuffer> array_buffer) {
CHECK(!private_->has_aborted);
private_->deserializer.TransferArrayBuffer(transfer_id,
Utils::OpenHandle(*array_buffer));
}
void ValueDeserializer::TransferSharedArrayBuffer(
uint32_t transfer_id, Local<SharedArrayBuffer> shared_array_buffer) {
CHECK(!private_->has_aborted);
private_->deserializer.TransferArrayBuffer(
transfer_id, Utils::OpenHandle(*shared_array_buffer));
}
bool ValueDeserializer::ReadUint32(uint32_t* value) {
return private_->deserializer.ReadUint32(value);
}
bool ValueDeserializer::ReadUint64(uint64_t* value) {
return private_->deserializer.ReadUint64(value);
}
bool ValueDeserializer::ReadDouble(double* value) {
return private_->deserializer.ReadDouble(value);
}
bool ValueDeserializer::ReadRawBytes(size_t length, const void** data) {
return private_->deserializer.ReadRawBytes(length, data);
}
// --- D a t a ---
bool Value::FullIsUndefined() const {
i::Handle<i::Object> object = Utils::OpenHandle(this);
bool result = object->IsUndefined();
DCHECK_EQ(result, QuickIsUndefined());
return result;
}
bool Value::FullIsNull() const {
i::Handle<i::Object> object = Utils::OpenHandle(this);
bool result = object->IsNull();
DCHECK_EQ(result, QuickIsNull());
return result;
}
bool Value::IsTrue() const {
i::Handle<i::Object> object = Utils::OpenHandle(this);
if (object->IsSmi()) return false;
return object->IsTrue();
}
bool Value::IsFalse() const {
i::Handle<i::Object> object = Utils::OpenHandle(this);
if (object->IsSmi()) return false;
return object->IsFalse();
}
bool Value::IsFunction() const { return Utils::OpenHandle(this)->IsCallable(); }
bool Value::IsName() const { return Utils::OpenHandle(this)->IsName(); }
bool Value::FullIsString() const {
bool result = Utils::OpenHandle(this)->IsString();
DCHECK_EQ(result, QuickIsString());
return result;
}
bool Value::IsSymbol() const {
return Utils::OpenHandle(this)->IsPublicSymbol();
}
bool Value::IsArray() const { return Utils::OpenHandle(this)->IsJSArray(); }
bool Value::IsArrayBuffer() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return obj->IsJSArrayBuffer() && !i::JSArrayBuffer::cast(*obj).is_shared();
}
bool Value::IsArrayBufferView() const {
return Utils::OpenHandle(this)->IsJSArrayBufferView();
}
bool Value::IsTypedArray() const {
return Utils::OpenHandle(this)->IsJSTypedArray();
}
#define VALUE_IS_TYPED_ARRAY(Type, typeName, TYPE, ctype) \
bool Value::Is##Type##Array() const { \
i::Handle<i::Object> obj = Utils::OpenHandle(this); \
return obj->IsJSTypedArray() && \
i::JSTypedArray::cast(*obj).type() == i::kExternal##Type##Array; \
}
TYPED_ARRAYS(VALUE_IS_TYPED_ARRAY)
#undef VALUE_IS_TYPED_ARRAY
bool Value::IsDataView() const {
return Utils::OpenHandle(this)->IsJSDataView();
}
bool Value::IsSharedArrayBuffer() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return obj->IsJSArrayBuffer() && i::JSArrayBuffer::cast(*obj).is_shared();
}
bool Value::IsObject() const { return Utils::OpenHandle(this)->IsJSReceiver(); }
bool Value::IsNumber() const { return Utils::OpenHandle(this)->IsNumber(); }
bool Value::IsBigInt() const { return Utils::OpenHandle(this)->IsBigInt(); }
bool Value::IsProxy() const { return Utils::OpenHandle(this)->IsJSProxy(); }
#define VALUE_IS_SPECIFIC_TYPE(Type, Check) \
bool Value::Is##Type() const { \
i::Handle<i::Object> obj = Utils::OpenHandle(this); \
return obj->Is##Check(); \
}
VALUE_IS_SPECIFIC_TYPE(ArgumentsObject, JSArgumentsObject)
VALUE_IS_SPECIFIC_TYPE(BigIntObject, BigIntWrapper)
VALUE_IS_SPECIFIC_TYPE(BooleanObject, BooleanWrapper)
VALUE_IS_SPECIFIC_TYPE(NumberObject, NumberWrapper)
VALUE_IS_SPECIFIC_TYPE(StringObject, StringWrapper)
VALUE_IS_SPECIFIC_TYPE(SymbolObject, SymbolWrapper)
VALUE_IS_SPECIFIC_TYPE(Date, JSDate)
VALUE_IS_SPECIFIC_TYPE(Map, JSMap)
VALUE_IS_SPECIFIC_TYPE(Set, JSSet)
VALUE_IS_SPECIFIC_TYPE(WasmModuleObject, WasmModuleObject)
VALUE_IS_SPECIFIC_TYPE(WeakMap, JSWeakMap)
VALUE_IS_SPECIFIC_TYPE(WeakSet, JSWeakSet)
#undef VALUE_IS_SPECIFIC_TYPE
bool Value::IsBoolean() const { return Utils::OpenHandle(this)->IsBoolean(); }
bool Value::IsExternal() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (!obj->IsHeapObject()) return false;
i::Handle<i::HeapObject> heap_obj = i::Handle<i::HeapObject>::cast(obj);
// Check the instance type is JS_OBJECT (instance type of Externals) before
// attempting to get the Isolate since that guarantees the object is writable
// and GetIsolate will work.
if (heap_obj->map().instance_type() != i::JS_OBJECT_TYPE) return false;
i::Isolate* isolate = i::JSObject::cast(*heap_obj).GetIsolate();
return heap_obj->IsExternal(isolate);
}
bool Value::IsInt32() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) return true;
if (obj->IsNumber()) {
return i::IsInt32Double(obj->Number());
}
return false;
}
bool Value::IsUint32() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) return i::Smi::ToInt(*obj) >= 0;
if (obj->IsNumber()) {
double value = obj->Number();
return !i::IsMinusZero(value) && value >= 0 && value <= i::kMaxUInt32 &&
value == i::FastUI2D(i::FastD2UI(value));
}
return false;
}
bool Value::IsNativeError() const {
return Utils::OpenHandle(this)->IsJSError();
}
bool Value::IsRegExp() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return obj->IsJSRegExp();
}
bool Value::IsAsyncFunction() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (!obj->IsJSFunction()) return false;
i::Handle<i::JSFunction> func = i::Handle<i::JSFunction>::cast(obj);
return i::IsAsyncFunction(func->shared().kind());
}
bool Value::IsGeneratorFunction() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (!obj->IsJSFunction()) return false;
i::Handle<i::JSFunction> func = i::Handle<i::JSFunction>::cast(obj);
return i::IsGeneratorFunction(func->shared().kind());
}
bool Value::IsGeneratorObject() const {
return Utils::OpenHandle(this)->IsJSGeneratorObject();
}
bool Value::IsMapIterator() const {
return Utils::OpenHandle(this)->IsJSMapIterator();
}
bool Value::IsSetIterator() const {
return Utils::OpenHandle(this)->IsJSSetIterator();
}
bool Value::IsPromise() const { return Utils::OpenHandle(this)->IsJSPromise(); }
bool Value::IsModuleNamespaceObject() const {
return Utils::OpenHandle(this)->IsJSModuleNamespace();
}
MaybeLocal<String> Value::ToString(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsString()) return ToApiHandle<String>(obj);
PREPARE_FOR_EXECUTION(context, Object, ToString, String);
Local<String> result;
has_pending_exception =
!ToLocal<String>(i::Object::ToString(isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(String);
RETURN_ESCAPED(result);
}
MaybeLocal<String> Value::ToDetailString(Local<Context> context) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsString()) return ToApiHandle<String>(obj);
PREPARE_FOR_EXECUTION(context, Object, ToDetailString, String);
Local<String> result =
Utils::ToLocal(i::Object::NoSideEffectsToString(isolate, obj));
RETURN_ON_FAILED_EXECUTION(String);
RETURN_ESCAPED(result);
}
MaybeLocal<Object> Value::ToObject(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsJSReceiver()) return ToApiHandle<Object>(obj);
PREPARE_FOR_EXECUTION(context, Object, ToObject, Object);
Local<Object> result;
has_pending_exception =
!ToLocal<Object>(i::Object::ToObject(isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Object);
RETURN_ESCAPED(result);
}
MaybeLocal<BigInt> Value::ToBigInt(Local<Context> context) const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsBigInt()) return ToApiHandle<BigInt>(obj);
PREPARE_FOR_EXECUTION(context, Object, ToBigInt, BigInt);
Local<BigInt> result;
has_pending_exception =
!ToLocal<BigInt>(i::BigInt::FromObject(isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(BigInt);
RETURN_ESCAPED(result);
}
bool Value::BooleanValue(Isolate* v8_isolate) const {
return Utils::OpenHandle(this)->BooleanValue(
reinterpret_cast<i::Isolate*>(v8_isolate));
}
Local<Boolean> Value::ToBoolean(Isolate* v8_isolate) const {
auto isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
return ToApiHandle<Boolean>(
isolate->factory()->ToBoolean(BooleanValue(v8_isolate)));
}
MaybeLocal<Number> Value::ToNumber(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsNumber()) return ToApiHandle<Number>(obj);
PREPARE_FOR_EXECUTION(context, Object, ToNumber, Number);
Local<Number> result;
has_pending_exception =
!ToLocal<Number>(i::Object::ToNumber(isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Number);
RETURN_ESCAPED(result);
}
MaybeLocal<Integer> Value::ToInteger(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsSmi()) return ToApiHandle<Integer>(obj);
PREPARE_FOR_EXECUTION(context, Object, ToInteger, Integer);
Local<Integer> result;
has_pending_exception =
!ToLocal<Integer>(i::Object::ToInteger(isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Integer);
RETURN_ESCAPED(result);
}
MaybeLocal<Int32> Value::ToInt32(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsSmi()) return ToApiHandle<Int32>(obj);
Local<Int32> result;
PREPARE_FOR_EXECUTION(context, Object, ToInt32, Int32);
has_pending_exception =
!ToLocal<Int32>(i::Object::ToInt32(isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Int32);
RETURN_ESCAPED(result);
}
MaybeLocal<Uint32> Value::ToUint32(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsSmi()) return ToApiHandle<Uint32>(obj);
Local<Uint32> result;
PREPARE_FOR_EXECUTION(context, Object, ToUint32, Uint32);
has_pending_exception =
!ToLocal<Uint32>(i::Object::ToUint32(isolate, obj), &result);
RETURN_ON_FAILED_EXECUTION(Uint32);
RETURN_ESCAPED(result);
}
i::Address i::DecodeExternalPointerImpl(const i::Isolate* isolate,
i::ExternalPointer_t encoded_pointer,
ExternalPointerTag tag) {
return i::DecodeExternalPointer(isolate, encoded_pointer, tag);
}
i::Isolate* i::IsolateFromNeverReadOnlySpaceObject(i::Address obj) {
return i::GetIsolateFromWritableObject(i::HeapObject::cast(i::Object(obj)));
}
bool i::ShouldThrowOnError(i::Isolate* isolate) {
return i::GetShouldThrow(isolate, Nothing<i::ShouldThrow>()) ==
i::ShouldThrow::kThrowOnError;
}
void i::Internals::CheckInitializedImpl(v8::Isolate* external_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate);
Utils::ApiCheck(isolate != nullptr && !isolate->IsDead(),
"v8::internal::Internals::CheckInitialized",
"Isolate is not initialized or V8 has died");
}
void v8::Value::CheckCast(Data* that) {
Utils::ApiCheck(that->IsValue(), "v8::Value::Cast", "Data is not a Value");
}
void External::CheckCast(v8::Value* that) {
Utils::ApiCheck(that->IsExternal(), "v8::External::Cast",
"Value is not an External");
}
void v8::Object::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSReceiver(), "v8::Object::Cast",
"Value is not an Object");
}
void v8::Function::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsCallable(), "v8::Function::Cast",
"Value is not a Function");
}
void v8::Boolean::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsBoolean(), "v8::Boolean::Cast",
"Value is not a Boolean");
}
void v8::Name::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsName(), "v8::Name::Cast", "Value is not a Name");
}
void v8::String::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsString(), "v8::String::Cast", "Value is not a String");
}
void v8::Symbol::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsSymbol(), "v8::Symbol::Cast", "Value is not a Symbol");
}
void v8::Private::CheckCast(v8::Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(
obj->IsSymbol() && i::Handle<i::Symbol>::cast(obj)->is_private(),
"v8::Private::Cast", "Value is not a Private");
}
void v8::Module::CheckCast(v8::Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsModule(), "v8::Module::Cast", "Value is not a Module");
}
void v8::Number::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsNumber(), "v8::Number::Cast()",
"Value is not a Number");
}
void v8::Integer::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsNumber(), "v8::Integer::Cast",
"Value is not an Integer");
}
void v8::Int32::CheckCast(v8::Value* that) {
Utils::ApiCheck(that->IsInt32(), "v8::Int32::Cast",
"Value is not a 32-bit signed integer");
}
void v8::Uint32::CheckCast(v8::Value* that) {
Utils::ApiCheck(that->IsUint32(), "v8::Uint32::Cast",
"Value is not a 32-bit unsigned integer");
}
void v8::BigInt::CheckCast(v8::Value* that) {
Utils::ApiCheck(that->IsBigInt(), "v8::BigInt::Cast",
"Value is not a BigInt");
}
void v8::Array::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSArray(), "v8::Array::Cast", "Value is not an Array");
}
void v8::Map::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSMap(), "v8::Map::Cast", "Value is not a Map");
}
void v8::Set::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSSet(), "v8_Set_Cast", "Value is not a Set");
}
void v8::Promise::CheckCast(Value* that) {
Utils::ApiCheck(that->IsPromise(), "v8::Promise::Cast",
"Value is not a Promise");
}
void v8::Promise::Resolver::CheckCast(Value* that) {
Utils::ApiCheck(that->IsPromise(), "v8::Promise::Resolver::Cast",
"Value is not a Promise::Resolver");
}
void v8::Proxy::CheckCast(Value* that) {
Utils::ApiCheck(that->IsProxy(), "v8::Proxy::Cast", "Value is not a Proxy");
}
void v8::WasmModuleObject::CheckCast(Value* that) {
Utils::ApiCheck(that->IsWasmModuleObject(), "v8::WasmModuleObject::Cast",
"Value is not a WasmModuleObject");
}
void v8::debug::AccessorPair::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsAccessorPair(), "v8::AccessorPair::Cast",
"Value is not a debug::AccessorPair");
}
void v8::debug::WasmValue::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsWasmValue(), "v8::WasmValue::Cast",
"Value is not a debug::WasmValue");
}
v8::BackingStore::~BackingStore() {
auto i_this = reinterpret_cast<const i::BackingStore*>(this);
i_this->~BackingStore(); // manually call internal destructor
}
void* v8::BackingStore::Data() const {
return reinterpret_cast<const i::BackingStore*>(this)->buffer_start();
}
size_t v8::BackingStore::ByteLength() const {
return reinterpret_cast<const i::BackingStore*>(this)->byte_length();
}
bool v8::BackingStore::IsShared() const {
return reinterpret_cast<const i::BackingStore*>(this)->is_shared();
}
// static
std::unique_ptr<v8::BackingStore> v8::BackingStore::Reallocate(
v8::Isolate* isolate, std::unique_ptr<v8::BackingStore> backing_store,
size_t byte_length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, ArrayBuffer, BackingStore_Reallocate);
CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::BackingStore* i_backing_store =
reinterpret_cast<i::BackingStore*>(backing_store.get());
if (!i_backing_store->Reallocate(i_isolate, byte_length)) {
i::FatalProcessOutOfMemory(i_isolate, "v8::BackingStore::Reallocate");
}
return backing_store;
}
// static
void v8::BackingStore::EmptyDeleter(void* data, size_t length,
void* deleter_data) {
DCHECK_NULL(deleter_data);
}
std::shared_ptr<v8::BackingStore> v8::ArrayBuffer::GetBackingStore() {
i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this);
std::shared_ptr<i::BackingStore> backing_store = self->GetBackingStore();
if (!backing_store) {
backing_store =
i::BackingStore::EmptyBackingStore(i::SharedFlag::kNotShared);
}
i::GlobalBackingStoreRegistry::Register(backing_store);
std::shared_ptr<i::BackingStoreBase> bs_base = backing_store;
return std::static_pointer_cast<v8::BackingStore>(bs_base);
}
std::shared_ptr<v8::BackingStore> v8::SharedArrayBuffer::GetBackingStore() {
i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this);
std::shared_ptr<i::BackingStore> backing_store = self->GetBackingStore();
if (!backing_store) {
backing_store = i::BackingStore::EmptyBackingStore(i::SharedFlag::kShared);
}
i::GlobalBackingStoreRegistry::Register(backing_store);
std::shared_ptr<i::BackingStoreBase> bs_base = backing_store;
return std::static_pointer_cast<v8::BackingStore>(bs_base);
}
void v8::ArrayBuffer::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(
obj->IsJSArrayBuffer() && !i::JSArrayBuffer::cast(*obj).is_shared(),
"v8::ArrayBuffer::Cast()", "Value is not an ArrayBuffer");
}
void v8::ArrayBufferView::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSArrayBufferView(), "v8::ArrayBufferView::Cast()",
"Value is not an ArrayBufferView");
}
constexpr size_t v8::TypedArray::kMaxLength;
void v8::TypedArray::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSTypedArray(), "v8::TypedArray::Cast()",
"Value is not a TypedArray");
}
#define CHECK_TYPED_ARRAY_CAST(Type, typeName, TYPE, ctype) \
void v8::Type##Array::CheckCast(Value* that) { \
i::Handle<i::Object> obj = Utils::OpenHandle(that); \
Utils::ApiCheck( \
obj->IsJSTypedArray() && \
i::JSTypedArray::cast(*obj).type() == i::kExternal##Type##Array, \
"v8::" #Type "Array::Cast()", "Value is not a " #Type "Array"); \
}
TYPED_ARRAYS(CHECK_TYPED_ARRAY_CAST)
#undef CHECK_TYPED_ARRAY_CAST
void v8::DataView::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSDataView(), "v8::DataView::Cast()",
"Value is not a DataView");
}
void v8::SharedArrayBuffer::CheckCast(Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(
obj->IsJSArrayBuffer() && i::JSArrayBuffer::cast(*obj).is_shared(),
"v8::SharedArrayBuffer::Cast()", "Value is not a SharedArrayBuffer");
}
void v8::Date::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSDate(), "v8::Date::Cast()", "Value is not a Date");
}
void v8::StringObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsStringWrapper(), "v8::StringObject::Cast()",
"Value is not a StringObject");
}
void v8::SymbolObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsSymbolWrapper(), "v8::SymbolObject::Cast()",
"Value is not a SymbolObject");
}
void v8::NumberObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsNumberWrapper(), "v8::NumberObject::Cast()",
"Value is not a NumberObject");
}
void v8::BigIntObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsBigIntWrapper(), "v8::BigIntObject::Cast()",
"Value is not a BigIntObject");
}
void v8::BooleanObject::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsBooleanWrapper(), "v8::BooleanObject::Cast()",
"Value is not a BooleanObject");
}
void v8::RegExp::CheckCast(v8::Value* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsJSRegExp(), "v8::RegExp::Cast()",
"Value is not a RegExp");
}
Maybe<double> Value::NumberValue(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsNumber()) return Just(obj->Number());
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Value, NumberValue, Nothing<double>(),
i::HandleScope);
i::Handle<i::Object> num;
has_pending_exception = !i::Object::ToNumber(isolate, obj).ToHandle(&num);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(double);
return Just(num->Number());
}
Maybe<int64_t> Value::IntegerValue(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsNumber()) {
return Just(NumberToInt64(*obj));
}
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Value, IntegerValue, Nothing<int64_t>(),
i::HandleScope);
i::Handle<i::Object> num;
has_pending_exception = !i::Object::ToInteger(isolate, obj).ToHandle(&num);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int64_t);
return Just(NumberToInt64(*num));
}
Maybe<int32_t> Value::Int32Value(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsNumber()) return Just(NumberToInt32(*obj));
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Value, Int32Value, Nothing<int32_t>(),
i::HandleScope);
i::Handle<i::Object> num;
has_pending_exception = !i::Object::ToInt32(isolate, obj).ToHandle(&num);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int32_t);
return Just(num->IsSmi() ? i::Smi::ToInt(*num)
: static_cast<int32_t>(num->Number()));
}
Maybe<uint32_t> Value::Uint32Value(Local<Context> context) const {
auto obj = Utils::OpenHandle(this);
if (obj->IsNumber()) return Just(NumberToUint32(*obj));
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Value, Uint32Value, Nothing<uint32_t>(),
i::HandleScope);
i::Handle<i::Object> num;
has_pending_exception = !i::Object::ToUint32(isolate, obj).ToHandle(&num);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(uint32_t);
return Just(num->IsSmi() ? static_cast<uint32_t>(i::Smi::ToInt(*num))
: static_cast<uint32_t>(num->Number()));
}
MaybeLocal<Uint32> Value::ToArrayIndex(Local<Context> context) const {
auto self = Utils::OpenHandle(this);
if (self->IsSmi()) {
if (i::Smi::ToInt(*self) >= 0) return Utils::Uint32ToLocal(self);
return Local<Uint32>();
}
PREPARE_FOR_EXECUTION(context, Object, ToArrayIndex, Uint32);
i::Handle<i::Object> string_obj;
has_pending_exception =
!i::Object::ToString(isolate, self).ToHandle(&string_obj);
RETURN_ON_FAILED_EXECUTION(Uint32);
i::Handle<i::String> str = i::Handle<i::String>::cast(string_obj);
uint32_t index;
if (str->AsArrayIndex(&index)) {
i::Handle<i::Object> value;
if (index <= static_cast<uint32_t>(i::Smi::kMaxValue)) {
value = i::Handle<i::Object>(i::Smi::FromInt(index), isolate);
} else {
value = isolate->factory()->NewNumber(index);
}
RETURN_ESCAPED(Utils::Uint32ToLocal(value));
}
return Local<Uint32>();
}
Maybe<bool> Value::Equals(Local<Context> context, Local<Value> that) const {
i::Isolate* isolate = Utils::OpenHandle(*context)->GetIsolate();
auto self = Utils::OpenHandle(this);
auto other = Utils::OpenHandle(*that);
return i::Object::Equals(isolate, self, other);
}
bool Value::StrictEquals(Local<Value> that) const {
auto self = Utils::OpenHandle(this);
auto other = Utils::OpenHandle(*that);
return self->StrictEquals(*other);
}
bool Value::SameValue(Local<Value> that) const {
auto self = Utils::OpenHandle(this);
auto other = Utils::OpenHandle(*that);
return self->SameValue(*other);
}
Local<String> Value::TypeOf(v8::Isolate* external_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
LOG_API(isolate, Value, TypeOf);
return Utils::ToLocal(i::Object::TypeOf(isolate, Utils::OpenHandle(this)));
}
Maybe<bool> Value::InstanceOf(v8::Local<v8::Context> context,
v8::Local<v8::Object> object) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Value, InstanceOf, Nothing<bool>(),
i::HandleScope);
auto left = Utils::OpenHandle(this);
auto right = Utils::OpenHandle(*object);
i::Handle<i::Object> result;
has_pending_exception =
!i::Object::InstanceOf(isolate, left, right).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(result->IsTrue(isolate));
}
Maybe<bool> v8::Object::Set(v8::Local<v8::Context> context,
v8::Local<Value> key, v8::Local<Value> value) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object, Set, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
auto value_obj = Utils::OpenHandle(*value);
has_pending_exception =
i::Runtime::SetObjectProperty(isolate, self, key_obj, value_obj,
i::StoreOrigin::kMaybeKeyed,
Just(i::ShouldThrow::kDontThrow))
.is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
Maybe<bool> v8::Object::Set(v8::Local<v8::Context> context, uint32_t index,
v8::Local<Value> value) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object, Set, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
auto value_obj = Utils::OpenHandle(*value);
has_pending_exception = i::Object::SetElement(isolate, self, index, value_obj,
i::ShouldThrow::kDontThrow)
.is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
Maybe<bool> v8::Object::CreateDataProperty(v8::Local<v8::Context> context,
v8::Local<Name> key,
v8::Local<Value> value) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object, CreateDataProperty, Nothing<bool>(),
i::HandleScope);
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
Maybe<bool> result = i::JSReceiver::CreateDataProperty(
isolate, self, key_obj, value_obj, Just(i::kDontThrow));
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::CreateDataProperty(v8::Local<v8::Context> context,
uint32_t index,
v8::Local<Value> value) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object, CreateDataProperty, Nothing<bool>(),
i::HandleScope);
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
i::LookupIterator it(isolate, self, index, self, i::LookupIterator::OWN);
Maybe<bool> result =
i::JSReceiver::CreateDataProperty(&it, value_obj, Just(i::kDontThrow));
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
struct v8::PropertyDescriptor::PrivateData {
PrivateData() : desc() {}
i::PropertyDescriptor desc;
};
v8::PropertyDescriptor::PropertyDescriptor() : private_(new PrivateData()) {}
// DataDescriptor
v8::PropertyDescriptor::PropertyDescriptor(v8::Local<v8::Value> value)
: private_(new PrivateData()) {
private_->desc.set_value(Utils::OpenHandle(*value, true));
}
// DataDescriptor with writable field
v8::PropertyDescriptor::PropertyDescriptor(v8::Local<v8::Value> value,
bool writable)
: private_(new PrivateData()) {
private_->desc.set_value(Utils::OpenHandle(*value, true));
private_->desc.set_writable(writable);
}
// AccessorDescriptor
v8::PropertyDescriptor::PropertyDescriptor(v8::Local<v8::Value> get,
v8::Local<v8::Value> set)
: private_(new PrivateData()) {
DCHECK(get.IsEmpty() || get->IsUndefined() || get->IsFunction());
DCHECK(set.IsEmpty() || set->IsUndefined() || set->IsFunction());
private_->desc.set_get(Utils::OpenHandle(*get, true));
private_->desc.set_set(Utils::OpenHandle(*set, true));
}
v8::PropertyDescriptor::~PropertyDescriptor() { delete private_; }
v8::Local<Value> v8::PropertyDescriptor::value() const {
DCHECK(private_->desc.has_value());
return Utils::ToLocal(private_->desc.value());
}
v8::Local<Value> v8::PropertyDescriptor::get() const {
DCHECK(private_->desc.has_get());
return Utils::ToLocal(private_->desc.get());
}
v8::Local<Value> v8::PropertyDescriptor::set() const {
DCHECK(private_->desc.has_set());
return Utils::ToLocal(private_->desc.set());
}
bool v8::PropertyDescriptor::has_value() const {
return private_->desc.has_value();
}
bool v8::PropertyDescriptor::has_get() const {
return private_->desc.has_get();
}
bool v8::PropertyDescriptor::has_set() const {
return private_->desc.has_set();
}
bool v8::PropertyDescriptor::writable() const {
DCHECK(private_->desc.has_writable());
return private_->desc.writable();
}
bool v8::PropertyDescriptor::has_writable() const {
return private_->desc.has_writable();
}
void v8::PropertyDescriptor::set_enumerable(bool enumerable) {
private_->desc.set_enumerable(enumerable);
}
bool v8::PropertyDescriptor::enumerable() const {
DCHECK(private_->desc.has_enumerable());
return private_->desc.enumerable();
}
bool v8::PropertyDescriptor::has_enumerable() const {
return private_->desc.has_enumerable();
}
void v8::PropertyDescriptor::set_configurable(bool configurable) {
private_->desc.set_configurable(configurable);
}
bool v8::PropertyDescriptor::configurable() const {
DCHECK(private_->desc.has_configurable());
return private_->desc.configurable();
}
bool v8::PropertyDescriptor::has_configurable() const {
return private_->desc.has_configurable();
}
Maybe<bool> v8::Object::DefineOwnProperty(v8::Local<v8::Context> context,
v8::Local<Name> key,
v8::Local<Value> value,
v8::PropertyAttribute attributes) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
i::Handle<i::Object> value_obj = Utils::OpenHandle(*value);
i::PropertyDescriptor desc;
desc.set_writable(!(attributes & v8::ReadOnly));
desc.set_enumerable(!(attributes & v8::DontEnum));
desc.set_configurable(!(attributes & v8::DontDelete));
desc.set_value(value_obj);
if (self->IsJSProxy()) {
ENTER_V8(isolate, context, Object, DefineOwnProperty, Nothing<bool>(),
i::HandleScope);
Maybe<bool> success = i::JSReceiver::DefineOwnProperty(
isolate, self, key_obj, &desc, Just(i::kDontThrow));
// Even though we said kDontThrow, there might be accessors that do throw.
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return success;
} else {
// If it's not a JSProxy, i::JSReceiver::DefineOwnProperty should never run
// a script.
ENTER_V8_NO_SCRIPT(isolate, context, Object, DefineOwnProperty,
Nothing<bool>(), i::HandleScope);
Maybe<bool> success = i::JSReceiver::DefineOwnProperty(
isolate, self, key_obj, &desc, Just(i::kDontThrow));
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return success;
}
}
Maybe<bool> v8::Object::DefineProperty(v8::Local<v8::Context> context,
v8::Local<Name> key,
PropertyDescriptor& descriptor) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object, DefineOwnProperty, Nothing<bool>(),
i::HandleScope);
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
Maybe<bool> success = i::JSReceiver::DefineOwnProperty(
isolate, self, key_obj, &descriptor.get_private()->desc,
Just(i::kDontThrow));
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return success;
}
Maybe<bool> v8::Object::SetPrivate(Local<Context> context, Local<Private> key,
Local<Value> value) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8_NO_SCRIPT(isolate, context, Object, SetPrivate, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(reinterpret_cast<Name*>(*key));
auto value_obj = Utils::OpenHandle(*value);
if (self->IsJSProxy()) {
i::PropertyDescriptor desc;
desc.set_writable(true);
desc.set_enumerable(false);
desc.set_configurable(true);
desc.set_value(value_obj);
return i::JSProxy::SetPrivateSymbol(
isolate, i::Handle<i::JSProxy>::cast(self),
i::Handle<i::Symbol>::cast(key_obj), &desc, Just(i::kDontThrow));
}
auto js_object = i::Handle<i::JSObject>::cast(self);
i::LookupIterator it(isolate, js_object, key_obj, js_object);
has_pending_exception = i::JSObject::DefineOwnPropertyIgnoreAttributes(
&it, value_obj, i::DONT_ENUM)
.is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
MaybeLocal<Value> v8::Object::Get(Local<v8::Context> context,
Local<Value> key) {
PREPARE_FOR_EXECUTION(context, Object, Get, Value);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
i::Handle<i::Object> result;
has_pending_exception =
!i::Runtime::GetObjectProperty(isolate, self, key_obj).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(Utils::ToLocal(result));
}
MaybeLocal<Value> v8::Object::Get(Local<Context> context, uint32_t index) {
PREPARE_FOR_EXECUTION(context, Object, Get, Value);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
has_pending_exception =
!i::JSReceiver::GetElement(isolate, self, index).ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(Utils::ToLocal(result));
}
MaybeLocal<Value> v8::Object::GetPrivate(Local<Context> context,
Local<Private> key) {
return Get(context, Local<Value>(reinterpret_cast<Value*>(*key)));
}
Maybe<PropertyAttribute> v8::Object::GetPropertyAttributes(
Local<Context> context, Local<Value> key) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object, GetPropertyAttributes,
Nothing<PropertyAttribute>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
if (!key_obj->IsName()) {
has_pending_exception =
!i::Object::ToString(isolate, key_obj).ToHandle(&key_obj);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute);
}
auto key_name = i::Handle<i::Name>::cast(key_obj);
auto result = i::JSReceiver::GetPropertyAttributes(self, key_name);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute);
if (result.FromJust() == i::ABSENT) {
return Just(static_cast<PropertyAttribute>(i::NONE));
}
return Just(static_cast<PropertyAttribute>(result.FromJust()));
}
MaybeLocal<Value> v8::Object::GetOwnPropertyDescriptor(Local<Context> context,
Local<Name> key) {
PREPARE_FOR_EXECUTION(context, Object, GetOwnPropertyDescriptor, Value);
i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this);
i::Handle<i::Name> key_name = Utils::OpenHandle(*key);
i::PropertyDescriptor desc;
Maybe<bool> found =
i::JSReceiver::GetOwnPropertyDescriptor(isolate, obj, key_name, &desc);
has_pending_exception = found.IsNothing();
RETURN_ON_FAILED_EXECUTION(Value);
if (!found.FromJust()) {
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
RETURN_ESCAPED(Utils::ToLocal(desc.ToObject(isolate)));
}
Local<Value> v8::Object::GetPrototype() {
auto self = Utils::OpenHandle(this);
auto isolate = self->GetIsolate();
i::PrototypeIterator iter(isolate, self);
return Utils::ToLocal(i::PrototypeIterator::GetCurrent(iter));
}
Maybe<bool> v8::Object::SetPrototype(Local<Context> context,
Local<Value> value) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object, SetPrototype, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
auto value_obj = Utils::OpenHandle(*value);
// We do not allow exceptions thrown while setting the prototype
// to propagate outside.
TryCatch try_catch(reinterpret_cast<v8::Isolate*>(isolate));
auto result =
i::JSReceiver::SetPrototype(self, value_obj, false, i::kThrowOnError);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
Local<Object> v8::Object::FindInstanceInPrototypeChain(
v8::Local<FunctionTemplate> tmpl) {
auto self = Utils::OpenHandle(this);
auto isolate = self->GetIsolate();
i::PrototypeIterator iter(isolate, *self, i::kStartAtReceiver);
auto tmpl_info = *Utils::OpenHandle(*tmpl);
while (!tmpl_info.IsTemplateFor(iter.GetCurrent<i::JSObject>())) {
iter.Advance();
if (iter.IsAtEnd()) return Local<Object>();
if (!iter.GetCurrent().IsJSObject()) return Local<Object>();
}
// IsTemplateFor() ensures that iter.GetCurrent() can't be a Proxy here.
return Utils::ToLocal(i::handle(iter.GetCurrent<i::JSObject>(), isolate));
}
MaybeLocal<Array> v8::Object::GetPropertyNames(Local<Context> context) {
return GetPropertyNames(
context, v8::KeyCollectionMode::kIncludePrototypes,
static_cast<v8::PropertyFilter>(ONLY_ENUMERABLE | SKIP_SYMBOLS),
v8::IndexFilter::kIncludeIndices);
}
MaybeLocal<Array> v8::Object::GetPropertyNames(
Local<Context> context, KeyCollectionMode mode,
PropertyFilter property_filter, IndexFilter index_filter,
KeyConversionMode key_conversion) {
PREPARE_FOR_EXECUTION(context, Object, GetPropertyNames, Array);
auto self = Utils::OpenHandle(this);
i::Handle<i::FixedArray> value;
i::KeyAccumulator accumulator(
isolate, static_cast<i::KeyCollectionMode>(mode),
static_cast<i::PropertyFilter>(property_filter));
accumulator.set_skip_indices(index_filter == IndexFilter::kSkipIndices);
has_pending_exception = accumulator.CollectKeys(self, self).IsNothing();
RETURN_ON_FAILED_EXECUTION(Array);
value =
accumulator.GetKeys(static_cast<i::GetKeysConversion>(key_conversion));
DCHECK(self->map().EnumLength() == i::kInvalidEnumCacheSentinel ||
self->map().EnumLength() == 0 ||
self->map().instance_descriptors(kRelaxedLoad).enum_cache().keys() !=
*value);
auto result = isolate->factory()->NewJSArrayWithElements(value);
RETURN_ESCAPED(Utils::ToLocal(result));
}
MaybeLocal<Array> v8::Object::GetOwnPropertyNames(Local<Context> context) {
return GetOwnPropertyNames(
context, static_cast<v8::PropertyFilter>(ONLY_ENUMERABLE | SKIP_SYMBOLS));
}
MaybeLocal<Array> v8::Object::GetOwnPropertyNames(
Local<Context> context, PropertyFilter filter,
KeyConversionMode key_conversion) {
return GetPropertyNames(context, KeyCollectionMode::kOwnOnly, filter,
v8::IndexFilter::kIncludeIndices, key_conversion);
}
MaybeLocal<String> v8::Object::ObjectProtoToString(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, Object, ObjectProtoToString, String);
auto self = Utils::OpenHandle(this);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::Execution::CallBuiltin(isolate, isolate->object_to_string(), self, 0,
nullptr),
&result);
RETURN_ON_FAILED_EXECUTION(String);
RETURN_ESCAPED(Local<String>::Cast(result));
}
Local<String> v8::Object::GetConstructorName() {
auto self = Utils::OpenHandle(this);
i::Handle<i::String> name = i::JSReceiver::GetConstructorName(self);
return Utils::ToLocal(name);
}
Maybe<bool> v8::Object::SetIntegrityLevel(Local<Context> context,
IntegrityLevel level) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object, SetIntegrityLevel, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
i::JSReceiver::IntegrityLevel i_level =
level == IntegrityLevel::kFrozen ? i::FROZEN : i::SEALED;
Maybe<bool> result =
i::JSReceiver::SetIntegrityLevel(self, i_level, i::kThrowOnError);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::Delete(Local<Context> context, Local<Value> key) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
if (self->IsJSProxy()) {
ENTER_V8(isolate, context, Object, Delete, Nothing<bool>(), i::HandleScope);
Maybe<bool> result = i::Runtime::DeleteObjectProperty(
isolate, self, key_obj, i::LanguageMode::kSloppy);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
} else {
// If it's not a JSProxy, i::Runtime::DeleteObjectProperty should never run
// a script.
ENTER_V8_NO_SCRIPT(isolate, context, Object, Delete, Nothing<bool>(),
i::HandleScope);
Maybe<bool> result = i::Runtime::DeleteObjectProperty(
isolate, self, key_obj, i::LanguageMode::kSloppy);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
}
Maybe<bool> v8::Object::DeletePrivate(Local<Context> context,
Local<Private> key) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
// In case of private symbols, i::Runtime::DeleteObjectProperty does not run
// any author script.
ENTER_V8_NO_SCRIPT(isolate, context, Object, Delete, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
Maybe<bool> result = i::Runtime::DeleteObjectProperty(
isolate, self, key_obj, i::LanguageMode::kSloppy);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::Has(Local<Context> context, Local<Value> key) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object, Has, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
auto key_obj = Utils::OpenHandle(*key);
Maybe<bool> maybe = Nothing<bool>();
// Check if the given key is an array index.
uint32_t index = 0;
if (key_obj->ToArrayIndex(&index)) {
maybe = i::JSReceiver::HasElement(self, index);
} else {
// Convert the key to a name - possibly by calling back into JavaScript.
i::Handle<i::Name> name;
if (i::Object::ToName(isolate, key_obj).ToHandle(&name)) {
maybe = i::JSReceiver::HasProperty(self, name);
}
}
has_pending_exception = maybe.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return maybe;
}
Maybe<bool> v8::Object::HasPrivate(Local<Context> context, Local<Private> key) {
return HasOwnProperty(context, Local<Name>(reinterpret_cast<Name*>(*key)));
}
Maybe<bool> v8::Object::Delete(Local<Context> context, uint32_t index) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object, Delete, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
Maybe<bool> result = i::JSReceiver::DeleteElement(self, index);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::Has(Local<Context> context, uint32_t index) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object, Has, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
auto maybe = i::JSReceiver::HasElement(self, index);
has_pending_exception = maybe.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return maybe;
}
template <typename Getter, typename Setter, typename Data>
static Maybe<bool> ObjectSetAccessor(
Local<Context> context, Object* self, Local<Name> name, Getter getter,
Setter setter, Data data, AccessControl settings,
PropertyAttribute attributes, bool is_special_data_property,
bool replace_on_access, SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8_NO_SCRIPT(isolate, context, Object, SetAccessor, Nothing<bool>(),
i::HandleScope);
if (!Utils::OpenHandle(self)->IsJSObject()) return Just(false);
i::Handle<i::JSObject> obj =
i::Handle<i::JSObject>::cast(Utils::OpenHandle(self));
v8::Local<AccessorSignature> signature;
i::Handle<i::AccessorInfo> info =
MakeAccessorInfo(isolate, name, getter, setter, data, settings, signature,
is_special_data_property, replace_on_access);
info->set_getter_side_effect_type(getter_side_effect_type);
info->set_setter_side_effect_type(setter_side_effect_type);
if (info.is_null()) return Nothing<bool>();
bool fast = obj->HasFastProperties();
i::Handle<i::Object> result;
i::Handle<i::Name> accessor_name(info->name(), isolate);
i::PropertyAttributes attrs = static_cast<i::PropertyAttributes>(attributes);
has_pending_exception =
!i::JSObject::SetAccessor(obj, accessor_name, info, attrs)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
if (result->IsUndefined(isolate)) return Just(false);
if (fast) {
i::JSObject::MigrateSlowToFast(obj, 0, "APISetAccessor");
}
return Just(true);
}
Maybe<bool> Object::SetAccessor(Local<Context> context, Local<Name> name,
AccessorNameGetterCallback getter,
AccessorNameSetterCallback setter,
MaybeLocal<Value> data, AccessControl settings,
PropertyAttribute attribute,
SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
return ObjectSetAccessor(context, this, name, getter, setter,
data.FromMaybe(Local<Value>()), settings, attribute,
i::FLAG_disable_old_api_accessors, false,
getter_side_effect_type, setter_side_effect_type);
}
void Object::SetAccessorProperty(Local<Name> name, Local<Function> getter,
Local<Function> setter,
PropertyAttribute attribute,
AccessControl settings) {
// TODO(verwaest): Remove |settings|.
DCHECK_EQ(v8::DEFAULT, settings);
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScope scope(isolate);
if (!self->IsJSObject()) return;
i::Handle<i::Object> getter_i = v8::Utils::OpenHandle(*getter);
i::Handle<i::Object> setter_i = v8::Utils::OpenHandle(*setter, true);
if (setter_i.is_null()) setter_i = isolate->factory()->null_value();
i::JSObject::DefineAccessor(i::Handle<i::JSObject>::cast(self),
v8::Utils::OpenHandle(*name), getter_i, setter_i,
static_cast<i::PropertyAttributes>(attribute));
}
Maybe<bool> Object::SetNativeDataProperty(
v8::Local<v8::Context> context, v8::Local<Name> name,
AccessorNameGetterCallback getter, AccessorNameSetterCallback setter,
v8::Local<Value> data, PropertyAttribute attributes,
SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
return ObjectSetAccessor(context, this, name, getter, setter, data, DEFAULT,
attributes, true, false, getter_side_effect_type,
setter_side_effect_type);
}
Maybe<bool> Object::SetLazyDataProperty(
v8::Local<v8::Context> context, v8::Local<Name> name,
AccessorNameGetterCallback getter, v8::Local<Value> data,
PropertyAttribute attributes, SideEffectType getter_side_effect_type,
SideEffectType setter_side_effect_type) {
return ObjectSetAccessor(context, this, name, getter,
static_cast<AccessorNameSetterCallback>(nullptr),
data, DEFAULT, attributes, true, true,
getter_side_effect_type, setter_side_effect_type);
}
Maybe<bool> v8::Object::HasOwnProperty(Local<Context> context,
Local<Name> key) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object, HasOwnProperty, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
auto key_val = Utils::OpenHandle(*key);
auto result = i::JSReceiver::HasOwnProperty(self, key_val);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::HasOwnProperty(Local<Context> context, uint32_t index) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object, HasOwnProperty, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
auto result = i::JSReceiver::HasOwnProperty(self, index);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::HasRealNamedProperty(Local<Context> context,
Local<Name> key) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8_NO_SCRIPT(isolate, context, Object, HasRealNamedProperty,
Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
if (!self->IsJSObject()) return Just(false);
auto key_val = Utils::OpenHandle(*key);
auto result = i::JSObject::HasRealNamedProperty(
i::Handle<i::JSObject>::cast(self), key_val);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::HasRealIndexedProperty(Local<Context> context,
uint32_t index) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8_NO_SCRIPT(isolate, context, Object, HasRealIndexedProperty,
Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
if (!self->IsJSObject()) return Just(false);
auto result = i::JSObject::HasRealElementProperty(
i::Handle<i::JSObject>::cast(self), index);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
Maybe<bool> v8::Object::HasRealNamedCallbackProperty(Local<Context> context,
Local<Name> key) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8_NO_SCRIPT(isolate, context, Object, HasRealNamedCallbackProperty,
Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
if (!self->IsJSObject()) return Just(false);
auto key_val = Utils::OpenHandle(*key);
auto result = i::JSObject::HasRealNamedCallbackProperty(
i::Handle<i::JSObject>::cast(self), key_val);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
bool v8::Object::HasNamedLookupInterceptor() {
auto self = Utils::OpenHandle(this);
return self->IsJSObject() &&
i::Handle<i::JSObject>::cast(self)->HasNamedInterceptor();
}
bool v8::Object::HasIndexedLookupInterceptor() {
auto self = Utils::OpenHandle(this);
return self->IsJSObject() &&
i::Handle<i::JSObject>::cast(self)->HasIndexedInterceptor();
}
MaybeLocal<Value> v8::Object::GetRealNamedPropertyInPrototypeChain(
Local<Context> context, Local<Name> key) {
PREPARE_FOR_EXECUTION(context, Object, GetRealNamedPropertyInPrototypeChain,
Value);
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
if (!self->IsJSObject()) return MaybeLocal<Value>();
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
i::PrototypeIterator iter(isolate, self);
if (iter.IsAtEnd()) return MaybeLocal<Value>();
i::Handle<i::JSReceiver> proto =
i::PrototypeIterator::GetCurrent<i::JSReceiver>(iter);
i::LookupIterator::Key lookup_key(isolate, key_obj);
i::LookupIterator it(isolate, self, lookup_key, proto,
i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(i::Object::GetProperty(&it), &result);
RETURN_ON_FAILED_EXECUTION(Value);
if (!it.IsFound()) return MaybeLocal<Value>();
RETURN_ESCAPED(result);
}
Maybe<PropertyAttribute>
v8::Object::GetRealNamedPropertyAttributesInPrototypeChain(
Local<Context> context, Local<Name> key) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object,
GetRealNamedPropertyAttributesInPrototypeChain,
Nothing<PropertyAttribute>(), i::HandleScope);
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
if (!self->IsJSObject()) return Nothing<PropertyAttribute>();
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
i::PrototypeIterator iter(isolate, self);
if (iter.IsAtEnd()) return Nothing<PropertyAttribute>();
i::Handle<i::JSReceiver> proto =
i::PrototypeIterator::GetCurrent<i::JSReceiver>(iter);
i::LookupIterator::Key lookup_key(isolate, key_obj);
i::LookupIterator it(isolate, self, lookup_key, proto,
i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
Maybe<i::PropertyAttributes> result =
i::JSReceiver::GetPropertyAttributes(&it);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute);
if (!it.IsFound()) return Nothing<PropertyAttribute>();
if (result.FromJust() == i::ABSENT) return Just(None);
return Just(static_cast<PropertyAttribute>(result.FromJust()));
}
MaybeLocal<Value> v8::Object::GetRealNamedProperty(Local<Context> context,
Local<Name> key) {
PREPARE_FOR_EXECUTION(context, Object, GetRealNamedProperty, Value);
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
i::LookupIterator::Key lookup_key(isolate, key_obj);
i::LookupIterator it(isolate, self, lookup_key, self,
i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(i::Object::GetProperty(&it), &result);
RETURN_ON_FAILED_EXECUTION(Value);
if (!it.IsFound()) return MaybeLocal<Value>();
RETURN_ESCAPED(result);
}
Maybe<PropertyAttribute> v8::Object::GetRealNamedPropertyAttributes(
Local<Context> context, Local<Name> key) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Object, GetRealNamedPropertyAttributes,
Nothing<PropertyAttribute>(), i::HandleScope);
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
i::Handle<i::Name> key_obj = Utils::OpenHandle(*key);
i::LookupIterator::Key lookup_key(isolate, key_obj);
i::LookupIterator it(isolate, self, lookup_key, self,
i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
auto result = i::JSReceiver::GetPropertyAttributes(&it);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute);
if (!it.IsFound()) return Nothing<PropertyAttribute>();
if (result.FromJust() == i::ABSENT) {
return Just(static_cast<PropertyAttribute>(i::NONE));
}
return Just<PropertyAttribute>(
static_cast<PropertyAttribute>(result.FromJust()));
}
Local<v8::Object> v8::Object::Clone() {
auto self = i::Handle<i::JSObject>::cast(Utils::OpenHandle(this));
auto isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
auto result = isolate->factory()->CopyJSObject(self);
CHECK(!result.is_null());
return Utils::ToLocal(result);
}
Local<v8::Context> v8::Object::CreationContext() {
auto self = Utils::OpenHandle(this);
i::Handle<i::Context> context = self->GetCreationContext();
return Utils::ToLocal(context);
}
int v8::Object::GetIdentityHash() {
i::DisallowHeapAllocation no_gc;
auto self = Utils::OpenHandle(this);
auto isolate = self->GetIsolate();
i::HandleScope scope(isolate);
return self->GetOrCreateIdentityHash(isolate).value();
}
bool v8::Object::IsCallable() {
auto self = Utils::OpenHandle(this);
return self->IsCallable();
}
bool v8::Object::IsConstructor() {
auto self = Utils::OpenHandle(this);
return self->IsConstructor();
}
bool v8::Object::IsApiWrapper() {
auto self = i::Handle<i::JSObject>::cast(Utils::OpenHandle(this));
return self->IsApiWrapper();
}
bool v8::Object::IsUndetectable() {
auto self = i::Handle<i::JSObject>::cast(Utils::OpenHandle(this));
return self->IsUndetectable();
}
MaybeLocal<Value> Object::CallAsFunction(Local<Context> context,
Local<Value> recv, int argc,
Local<Value> argv[]) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.Execute");
ENTER_V8(isolate, context, Object, CallAsFunction, MaybeLocal<Value>(),
InternalEscapableScope);
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
auto self = Utils::OpenHandle(this);
auto recv_obj = Utils::OpenHandle(*recv);
STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Handle<i::Object>));
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::Execution::Call(isolate, self, recv_obj, argc, args), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
MaybeLocal<Value> Object::CallAsConstructor(Local<Context> context, int argc,
Local<Value> argv[]) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.Execute");
ENTER_V8(isolate, context, Object, CallAsConstructor, MaybeLocal<Value>(),
InternalEscapableScope);
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
auto self = Utils::OpenHandle(this);
STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Handle<i::Object>));
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::Execution::New(isolate, self, self, argc, args), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
MaybeLocal<Function> Function::New(Local<Context> context,
FunctionCallback callback, Local<Value> data,
int length, ConstructorBehavior behavior,
SideEffectType side_effect_type) {
i::Isolate* isolate = Utils::OpenHandle(*context)->GetIsolate();
LOG_API(isolate, Function, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
auto templ =
FunctionTemplateNew(isolate, callback, data, Local<Signature>(), length,
true, Local<Private>(), side_effect_type);
if (behavior == ConstructorBehavior::kThrow) templ->RemovePrototype();
return templ->GetFunction(context);
}
MaybeLocal<Object> Function::NewInstance(Local<Context> context, int argc,
v8::Local<v8::Value> argv[]) const {
return NewInstanceWithSideEffectType(context, argc, argv,
SideEffectType::kHasSideEffect);
}
MaybeLocal<Object> Function::NewInstanceWithSideEffectType(
Local<Context> context, int argc, v8::Local<v8::Value> argv[],
SideEffectType side_effect_type) const {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.Execute");
ENTER_V8(isolate, context, Function, NewInstance, MaybeLocal<Object>(),
InternalEscapableScope);
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
auto self = Utils::OpenHandle(this);
STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Handle<i::Object>));
bool should_set_has_no_side_effect =
side_effect_type == SideEffectType::kHasNoSideEffect &&
isolate->debug_execution_mode() == i::DebugInfo::kSideEffects;
if (should_set_has_no_side_effect) {
CHECK(self->IsJSFunction() &&
i::JSFunction::cast(*self).shared().IsApiFunction());
i::Object obj =
i::JSFunction::cast(*self).shared().get_api_func_data().call_code(
kAcquireLoad);
if (obj.IsCallHandlerInfo()) {
i::CallHandlerInfo handler_info = i::CallHandlerInfo::cast(obj);
if (!handler_info.IsSideEffectFreeCallHandlerInfo()) {
handler_info.SetNextCallHasNoSideEffect();
}
}
}
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
Local<Object> result;
has_pending_exception = !ToLocal<Object>(
i::Execution::New(isolate, self, self, argc, args), &result);
if (should_set_has_no_side_effect) {
i::Object obj =
i::JSFunction::cast(*self).shared().get_api_func_data().call_code(
kAcquireLoad);
if (obj.IsCallHandlerInfo()) {
i::CallHandlerInfo handler_info = i::CallHandlerInfo::cast(obj);
if (has_pending_exception) {
// Restore the map if an exception prevented restoration.
handler_info.NextCallHasNoSideEffect();
} else {
DCHECK(handler_info.IsSideEffectCallHandlerInfo() ||
handler_info.IsSideEffectFreeCallHandlerInfo());
}
}
}
RETURN_ON_FAILED_EXECUTION(Object);
RETURN_ESCAPED(result);
}
MaybeLocal<v8::Value> Function::Call(Local<Context> context,
v8::Local<v8::Value> recv, int argc,
v8::Local<v8::Value> argv[]) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.Execute");
ENTER_V8(isolate, context, Function, Call, MaybeLocal<Value>(),
InternalEscapableScope);
i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate);
auto self = Utils::OpenHandle(this);
Utils::ApiCheck(!self.is_null(), "v8::Function::Call",
"Function to be called is a null pointer");
i::Handle<i::Object> recv_obj = Utils::OpenHandle(*recv);
STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Handle<i::Object>));
i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::Execution::Call(isolate, self, recv_obj, argc, args), &result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
void Function::SetName(v8::Local<v8::String> name) {
auto self = Utils::OpenHandle(this);
if (!self->IsJSFunction()) return;
auto func = i::Handle<i::JSFunction>::cast(self);
func->shared().SetName(*Utils::OpenHandle(*name));
}
Local<Value> Function::GetName() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
if (self->IsJSBoundFunction()) {
auto func = i::Handle<i::JSBoundFunction>::cast(self);
i::Handle<i::Object> name;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, name,
i::JSBoundFunction::GetName(isolate, func),
Local<Value>());
return Utils::ToLocal(name);
}
if (self->IsJSFunction()) {
auto func = i::Handle<i::JSFunction>::cast(self);
return Utils::ToLocal(handle(func->shared().Name(), isolate));
}
return ToApiHandle<Primitive>(isolate->factory()->undefined_value());
}
Local<Value> Function::GetInferredName() const {
auto self = Utils::OpenHandle(this);
if (!self->IsJSFunction()) {
return ToApiHandle<Primitive>(
self->GetIsolate()->factory()->undefined_value());
}
auto func = i::Handle<i::JSFunction>::cast(self);
return Utils::ToLocal(
i::Handle<i::Object>(func->shared().inferred_name(), func->GetIsolate()));
}
Local<Value> Function::GetDebugName() const {
auto self = Utils::OpenHandle(this);
if (!self->IsJSFunction()) {
return ToApiHandle<Primitive>(
self->GetIsolate()->factory()->undefined_value());
}
auto func = i::Handle<i::JSFunction>::cast(self);
i::Handle<i::String> name = i::JSFunction::GetDebugName(func);
return Utils::ToLocal(i::Handle<i::Object>(*name, self->GetIsolate()));
}
Local<Value> Function::GetDisplayName() const {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
if (!self->IsJSFunction()) {
return ToApiHandle<Primitive>(isolate->factory()->undefined_value());
}
auto func = i::Handle<i::JSFunction>::cast(self);
i::Handle<i::String> property_name =
isolate->factory()->display_name_string();
i::Handle<i::Object> value =
i::JSReceiver::GetDataProperty(func, property_name);
if (value->IsString()) {
i::Handle<i::String> name = i::Handle<i::String>::cast(value);
if (name->length() > 0) return Utils::ToLocal(name);
}
return ToApiHandle<Primitive>(isolate->factory()->undefined_value());
}
ScriptOrigin Function::GetScriptOrigin() const {
auto self = Utils::OpenHandle(this);
if (!self->IsJSFunction()) {
return v8::ScriptOrigin(Local<Value>());
}
auto func = i::Handle<i::JSFunction>::cast(self);
if (func->shared().script().IsScript()) {
i::Handle<i::Script> script(i::Script::cast(func->shared().script()),
func->GetIsolate());
return GetScriptOriginForScript(func->GetIsolate(), script);
}
return v8::ScriptOrigin(Local<Value>());
}
const int Function::kLineOffsetNotFound = -1;
int Function::GetScriptLineNumber() const {
auto self = Utils::OpenHandle(this);
if (!self->IsJSFunction()) {
return kLineOffsetNotFound;
}
auto func = i::Handle<i::JSFunction>::cast(self);
if (func->shared().script().IsScript()) {
i::Handle<i::Script> script(i::Script::cast(func->shared().script()),
func->GetIsolate());
return i::Script::GetLineNumber(script, func->shared().StartPosition());
}
return kLineOffsetNotFound;
}
int Function::GetScriptColumnNumber() const {
auto self = Utils::OpenHandle(this);
if (!self->IsJSFunction()) {
return kLineOffsetNotFound;
}
auto func = i::Handle<i::JSFunction>::cast(self);
if (func->shared().script().IsScript()) {
i::Handle<i::Script> script(i::Script::cast(func->shared().script()),
func->GetIsolate());
return i::Script::GetColumnNumber(script, func->shared().StartPosition());
}
return kLineOffsetNotFound;
}
int Function::ScriptId() const {
auto self = Utils::OpenHandle(this);
if (!self->IsJSFunction()) {
return v8::UnboundScript::kNoScriptId;
}
auto func = i::Handle<i::JSFunction>::cast(self);
if (!func->shared().script().IsScript()) {
return v8::UnboundScript::kNoScriptId;
}
i::Handle<i::Script> script(i::Script::cast(func->shared().script()),
func->GetIsolate());
return script->id();
}
Local<v8::Value> Function::GetBoundFunction() const {
auto self = Utils::OpenHandle(this);
if (self->IsJSBoundFunction()) {
auto bound_function = i::Handle<i::JSBoundFunction>::cast(self);
auto bound_target_function = i::handle(
bound_function->bound_target_function(), bound_function->GetIsolate());
return Utils::CallableToLocal(bound_target_function);
}
return v8::Undefined(reinterpret_cast<v8::Isolate*>(self->GetIsolate()));
}
MaybeLocal<String> v8::Function::FunctionProtoToString(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, Function, FunctionProtoToString, String);
auto self = Utils::OpenHandle(this);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::Execution::CallBuiltin(isolate, isolate->function_to_string(), self, 0,
nullptr),
&result);
RETURN_ON_FAILED_EXECUTION(String);
RETURN_ESCAPED(Local<String>::Cast(result));
}
int Name::GetIdentityHash() {
auto self = Utils::OpenHandle(this);
return static_cast<int>(self->Hash());
}
int String::Length() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return str->length();
}
bool String::IsOneByte() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return str->IsOneByteRepresentation();
}
// Helpers for ContainsOnlyOneByteHelper
template <size_t size>
struct OneByteMask;
template <>
struct OneByteMask<4> {
static const uint32_t value = 0xFF00FF00;
};
template <>
struct OneByteMask<8> {
static const uint64_t value = 0xFF00'FF00'FF00'FF00;
};
static const uintptr_t kOneByteMask = OneByteMask<sizeof(uintptr_t)>::value;
static const uintptr_t kAlignmentMask = sizeof(uintptr_t) - 1;
static inline bool Unaligned(const uint16_t* chars) {
return reinterpret_cast<const uintptr_t>(chars) & kAlignmentMask;
}
static inline const uint16_t* Align(const uint16_t* chars) {
return reinterpret_cast<uint16_t*>(reinterpret_cast<uintptr_t>(chars) &
~kAlignmentMask);
}
class ContainsOnlyOneByteHelper {
public:
ContainsOnlyOneByteHelper() : is_one_byte_(true) {}
bool Check(i::String string) {
i::ConsString cons_string = i::String::VisitFlat(this, string, 0);
if (cons_string.is_null()) return is_one_byte_;
return CheckCons(cons_string);
}
void VisitOneByteString(const uint8_t* chars, int length) {
// Nothing to do.
}
void VisitTwoByteString(const uint16_t* chars, int length) {
// Accumulated bits.
uintptr_t acc = 0;
// Align to uintptr_t.
const uint16_t* end = chars + length;
while (Unaligned(chars) && chars != end) {
acc |= *chars++;
}
// Read word aligned in blocks,
// checking the return value at the end of each block.
const uint16_t* aligned_end = Align(end);
const int increment = sizeof(uintptr_t) / sizeof(uint16_t);
const int inner_loops = 16;
while (chars + inner_loops * increment < aligned_end) {
for (int i = 0; i < inner_loops; i++) {
acc |= *reinterpret_cast<const uintptr_t*>(chars);
chars += increment;
}
// Check for early return.
if ((acc & kOneByteMask) != 0) {
is_one_byte_ = false;
return;
}
}
// Read the rest.
while (chars != end) {
acc |= *chars++;
}
// Check result.
if ((acc & kOneByteMask) != 0) is_one_byte_ = false;
}
private:
bool CheckCons(i::ConsString cons_string) {
while (true) {
// Check left side if flat.
i::String left = cons_string.first();
i::ConsString left_as_cons = i::String::VisitFlat(this, left, 0);
if (!is_one_byte_) return false;
// Check right side if flat.
i::String right = cons_string.second();
i::ConsString right_as_cons = i::String::VisitFlat(this, right, 0);
if (!is_one_byte_) return false;
// Standard recurse/iterate trick.
if (!left_as_cons.is_null() && !right_as_cons.is_null()) {
if (left.length() < right.length()) {
CheckCons(left_as_cons);
cons_string = right_as_cons;
} else {
CheckCons(right_as_cons);
cons_string = left_as_cons;
}
// Check fast return.
if (!is_one_byte_) return false;
continue;
}
// Descend left in place.
if (!left_as_cons.is_null()) {
cons_string = left_as_cons;
continue;
}
// Descend right in place.
if (!right_as_cons.is_null()) {
cons_string = right_as_cons;
continue;
}
// Terminate.
break;
}
return is_one_byte_;
}
bool is_one_byte_;
DISALLOW_COPY_AND_ASSIGN(ContainsOnlyOneByteHelper);
};
bool String::ContainsOnlyOneByte() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
if (str->IsOneByteRepresentation()) return true;
ContainsOnlyOneByteHelper helper;
return helper.Check(*str);
}
int String::Utf8Length(Isolate* isolate) const {
i::Handle<i::String> str = Utils::OpenHandle(this);
str = i::String::Flatten(reinterpret_cast<i::Isolate*>(isolate), str);
int length = str->length();
if (length == 0) return 0;
i::DisallowHeapAllocation no_gc;
i::String::FlatContent flat = str->GetFlatContent(no_gc);
DCHECK(flat.IsFlat());
int utf8_length = 0;
if (flat.IsOneByte()) {
for (uint8_t c : flat.ToOneByteVector()) {
utf8_length += c >> 7;
}
utf8_length += length;
} else {
int last_character = unibrow::Utf16::kNoPreviousCharacter;
for (uint16_t c : flat.ToUC16Vector()) {
utf8_length += unibrow::Utf8::Length(c, last_character);
last_character = c;
}
}
return utf8_length;
}
namespace {
// Writes the flat content of a string to a buffer. This is done in two phases.
// The first phase calculates a pessimistic estimate (writable_length) on how
// many code units can be safely written without exceeding the buffer capacity
// and without leaving at a lone surrogate. The estimated number of code units
// is then written out in one go, and the reported byte usage is used to
// correct the estimate. This is repeated until the estimate becomes <= 0 or
// all code units have been written out. The second phase writes out code
// units until the buffer capacity is reached, would be exceeded by the next
// unit, or all code units have been written out.
template <typename Char>
static int WriteUtf8Impl(i::Vector<const Char> string, char* write_start,
int write_capacity, int options,
int* utf16_chars_read_out) {
bool write_null = !(options & v8::String::NO_NULL_TERMINATION);
bool replace_invalid_utf8 = (options & v8::String::REPLACE_INVALID_UTF8);
char* current_write = write_start;
const Char* read_start = string.begin();
int read_index = 0;
int read_length = string.length();
int prev_char = unibrow::Utf16::kNoPreviousCharacter;
// Do a fast loop where there is no exit capacity check.
// Need enough space to write everything but one character.
STATIC_ASSERT(unibrow::Utf16::kMaxExtraUtf8BytesForOneUtf16CodeUnit == 3);
static const int kMaxSizePerChar = sizeof(Char) == 1 ? 2 : 3;
while (read_index < read_length) {
int up_to = read_length;
if (write_capacity != -1) {
int remaining_capacity =
write_capacity - static_cast<int>(current_write - write_start);
int writable_length =
(remaining_capacity - kMaxSizePerChar) / kMaxSizePerChar;
// Need to drop into slow loop.
if (writable_length <= 0) break;
up_to = std::min(up_to, read_index + writable_length);
}
// Write the characters to the stream.
if (sizeof(Char) == 1) {
// Simply memcpy if we only have ASCII characters.
uint8_t char_mask = 0;
for (int i = read_index; i < up_to; i++) char_mask |= read_start[i];
if ((char_mask & 0x80) == 0) {
int copy_length = up_to - read_index;
memcpy(current_write, read_start + read_index, copy_length);
current_write += copy_length;
read_index = up_to;
} else {
for (; read_index < up_to; read_index++) {
current_write += unibrow::Utf8::EncodeOneByte(
current_write, static_cast<uint8_t>(read_start[read_index]));
DCHECK(write_capacity == -1 ||
(current_write - write_start) <= write_capacity);
}
}
} else {
for (; read_index < up_to; read_index++) {
uint16_t character = read_start[read_index];
current_write += unibrow::Utf8::Encode(current_write, character,
prev_char, replace_invalid_utf8);
prev_char = character;
DCHECK(write_capacity == -1 ||
(current_write - write_start) <= write_capacity);
}
}
}
if (read_index < read_length) {
DCHECK_NE(-1, write_capacity);
// Aborted due to limited capacity. Check capacity on each iteration.
int remaining_capacity =
write_capacity - static_cast<int>(current_write - write_start);
DCHECK_GE(remaining_capacity, 0);
for (; read_index < read_length && remaining_capacity > 0; read_index++) {
uint32_t character = read_start[read_index];
int written = 0;
// We can't use a local buffer here because Encode needs to modify
// previous characters in the stream. We know, however, that
// exactly one character will be advanced.
if (unibrow::Utf16::IsSurrogatePair(prev_char, character)) {
written = unibrow::Utf8::Encode(current_write, character, prev_char,
replace_invalid_utf8);
DCHECK_EQ(written, 1);
} else {
// Use a scratch buffer to check the required characters.
char temp_buffer[unibrow::Utf8::kMaxEncodedSize];
// Encoding a surrogate pair to Utf8 always takes 4 bytes.
static const int kSurrogatePairEncodedSize =
static_cast<int>(unibrow::Utf8::kMaxEncodedSize);
// For REPLACE_INVALID_UTF8, catch the case where we cut off in the
// middle of a surrogate pair. Abort before encoding the pair instead.
if (replace_invalid_utf8 &&
remaining_capacity < kSurrogatePairEncodedSize &&
unibrow::Utf16::IsLeadSurrogate(character) &&
read_index + 1 < read_length &&
unibrow::Utf16::IsTrailSurrogate(read_start[read_index + 1])) {
write_null = false;
break;
}
// Can't encode using prev_char as gcc has array bounds issues.
written = unibrow::Utf8::Encode(temp_buffer, character,
unibrow::Utf16::kNoPreviousCharacter,
replace_invalid_utf8);
if (written > remaining_capacity) {
// Won't fit. Abort and do not null-terminate the result.
write_null = false;
break;
}
// Copy over the character from temp_buffer.
for (int i = 0; i < written; i++) current_write[i] = temp_buffer[i];
}
current_write += written;
remaining_capacity -= written;
prev_char = character;
}
}
// Write out number of utf16 characters written to the stream.
if (utf16_chars_read_out != nullptr) *utf16_chars_read_out = read_index;
// Only null-terminate if there's space.
if (write_null && (write_capacity == -1 ||
(current_write - write_start) < write_capacity)) {
*current_write++ = '\0';
}
return static_cast<int>(current_write - write_start);
}
} // anonymous namespace
int String::WriteUtf8(Isolate* v8_isolate, char* buffer, int capacity,
int* nchars_ref, int options) const {
i::Handle<i::String> str = Utils::OpenHandle(this);
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
LOG_API(isolate, String, WriteUtf8);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
str = i::String::Flatten(isolate, str);
i::DisallowHeapAllocation no_gc;
i::String::FlatContent content = str->GetFlatContent(no_gc);
if (content.IsOneByte()) {
return WriteUtf8Impl<uint8_t>(content.ToOneByteVector(), buffer, capacity,
options, nchars_ref);
} else {
return WriteUtf8Impl<uint16_t>(content.ToUC16Vector(), buffer, capacity,
options, nchars_ref);
}
}
template <typename CharType>
static inline int WriteHelper(i::Isolate* isolate, const String* string,
CharType* buffer, int start, int length,
int options) {
LOG_API(isolate, String, Write);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
DCHECK(start >= 0 && length >= -1);
i::Handle<i::String> str = Utils::OpenHandle(string);
str = i::String::Flatten(isolate, str);
int end = start + length;
if ((length == -1) || (length > str->length() - start)) end = str->length();
if (end < 0) return 0;
if (start < end) i::String::WriteToFlat(*str, buffer, start, end);
if (!(options & String::NO_NULL_TERMINATION) &&
(length == -1 || end - start < length)) {
buffer[end - start] = '\0';
}
return end - start;
}
int String::WriteOneByte(Isolate* isolate, uint8_t* buffer, int start,
int length, int options) const {
return WriteHelper(reinterpret_cast<i::Isolate*>(isolate), this, buffer,
start, length, options);
}
int String::Write(Isolate* isolate, uint16_t* buffer, int start, int length,
int options) const {
return WriteHelper(reinterpret_cast<i::Isolate*>(isolate), this, buffer,
start, length, options);
}
bool v8::String::IsExternal() const {
return IsExternalTwoByte();
}
bool v8::String::IsExternalTwoByte() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return i::StringShape(*str).IsExternalTwoByte();
}
bool v8::String::IsExternalOneByte() const {
i::Handle<i::String> str = Utils::OpenHandle(this);
return i::StringShape(*str).IsExternalOneByte();
}
void v8::String::VerifyExternalStringResource(
v8::String::ExternalStringResource* value) const {
i::DisallowHeapAllocation no_allocation;
i::String str = *Utils::OpenHandle(this);
const v8::String::ExternalStringResource* expected;
if (str.IsThinString()) {
str = i::ThinString::cast(str).actual();
}
if (i::StringShape(str).IsExternalTwoByte()) {
const void* resource = i::ExternalTwoByteString::cast(str).resource();
expected = reinterpret_cast<const ExternalStringResource*>(resource);
} else {
expected = nullptr;
}
CHECK_EQ(expected, value);
}
void v8::String::VerifyExternalStringResourceBase(
v8::String::ExternalStringResourceBase* value, Encoding encoding) const {
i::DisallowHeapAllocation no_allocation;
i::String str = *Utils::OpenHandle(this);
const v8::String::ExternalStringResourceBase* expected;
Encoding expectedEncoding;
if (str.IsThinString()) {
str = i::ThinString::cast(str).actual();
}
if (i::StringShape(str).IsExternalOneByte()) {
const void* resource = i::ExternalOneByteString::cast(str).resource();
expected = reinterpret_cast<const ExternalStringResourceBase*>(resource);
expectedEncoding = ONE_BYTE_ENCODING;
} else if (i::StringShape(str).IsExternalTwoByte()) {
const void* resource = i::ExternalTwoByteString::cast(str).resource();
expected = reinterpret_cast<const ExternalStringResourceBase*>(resource);
expectedEncoding = TWO_BYTE_ENCODING;
} else {
expected = nullptr;
expectedEncoding =
str.IsOneByteRepresentation() ? ONE_BYTE_ENCODING : TWO_BYTE_ENCODING;
}
CHECK_EQ(expected, value);
CHECK_EQ(expectedEncoding, encoding);
}
String::ExternalStringResource* String::GetExternalStringResourceSlow() const {
i::DisallowHeapAllocation no_allocation;
using I = internal::Internals;
i::String str = *Utils::OpenHandle(this);
if (str.IsThinString()) {
str = i::ThinString::cast(str).actual();
}
if (i::StringShape(str).IsExternalTwoByte()) {
internal::Isolate* isolate = I::GetIsolateForHeapSandbox(str.ptr());
internal::Address value = I::ReadExternalPointerField(
isolate, str.ptr(), I::kStringResourceOffset,
internal::kExternalStringResourceTag);
return reinterpret_cast<String::ExternalStringResource*>(value);
}
return nullptr;
}
String::ExternalStringResourceBase* String::GetExternalStringResourceBaseSlow(
String::Encoding* encoding_out) const {
i::DisallowHeapAllocation no_allocation;
using I = internal::Internals;
ExternalStringResourceBase* resource = nullptr;
i::String str = *Utils::OpenHandle(this);
if (str.IsThinString()) {
str = i::ThinString::cast(str).actual();
}
internal::Address string = str.ptr();
int type = I::GetInstanceType(string) & I::kFullStringRepresentationMask;
*encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
if (i::StringShape(str).IsExternalOneByte() ||
i::StringShape(str).IsExternalTwoByte()) {
internal::Isolate* isolate = I::GetIsolateForHeapSandbox(string);
internal::Address value =
I::ReadExternalPointerField(isolate, string, I::kStringResourceOffset,
internal::kExternalStringResourceTag);
resource = reinterpret_cast<ExternalStringResourceBase*>(value);
}
return resource;
}
const v8::String::ExternalOneByteStringResource*
v8::String::GetExternalOneByteStringResource() const {
i::DisallowHeapAllocation no_allocation;
i::String str = *Utils::OpenHandle(this);
if (i::StringShape(str).IsExternalOneByte()) {
return i::ExternalOneByteString::cast(str).resource();
} else if (str.IsThinString()) {
str = i::ThinString::cast(str).actual();
if (i::StringShape(str).IsExternalOneByte()) {
return i::ExternalOneByteString::cast(str).resource();
}
}
return nullptr;
}
Local<Value> Symbol::Description() const {
i::Handle<i::Symbol> sym = Utils::OpenHandle(this);
i::Isolate* isolate;
if (!i::GetIsolateFromHeapObject(*sym, &isolate)) {
// Symbol is in RO_SPACE, which means that its description is also in
// RO_SPACE. Since RO_SPACE objects are immovable we can use the
// Handle(Address*) constructor with the address of the description
// field in the Symbol object without needing an isolate.
DCHECK(!COMPRESS_POINTERS_BOOL);
i::Handle<i::HeapObject> ro_description(reinterpret_cast<i::Address*>(
sym->GetFieldAddress(i::Symbol::kDescriptionOffset)));
return Utils::ToLocal(ro_description);
}
i::Handle<i::Object> description(sym->description(), isolate);
return Utils::ToLocal(description);
}
Local<Value> Private::Name() const {
return reinterpret_cast<const Symbol*>(this)->Description();
}
double Number::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return obj->Number();
}
bool Boolean::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
return obj->IsTrue();
}
int64_t Integer::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) {
return i::Smi::ToInt(*obj);
} else {
return static_cast<int64_t>(obj->Number());
}
}
int32_t Int32::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) {
return i::Smi::ToInt(*obj);
} else {
return static_cast<int32_t>(obj->Number());
}
}
uint32_t Uint32::Value() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
if (obj->IsSmi()) {
return i::Smi::ToInt(*obj);
} else {
return static_cast<uint32_t>(obj->Number());
}
}
int v8::Object::InternalFieldCount() {
i::Handle<i::JSReceiver> self = Utils::OpenHandle(this);
if (!self->IsJSObject()) return 0;
return i::Handle<i::JSObject>::cast(self)->GetEmbedderFieldCount();
}
static bool InternalFieldOK(i::Handle<i::JSReceiver> obj, int index,
const char* location) {
return Utils::ApiCheck(
obj->IsJSObject() &&
(index < i::Handle<i::JSObject>::cast(obj)->GetEmbedderFieldCount()),
location, "Internal field out of bounds");
}
Local<Value> v8::Object::SlowGetInternalField(int index) {
i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::GetInternalField()";
if (!InternalFieldOK(obj, index, location)) return Local<Value>();
i::Handle<i::Object> value(i::JSObject::cast(*obj).GetEmbedderField(index),
obj->GetIsolate());
return Utils::ToLocal(value);
}
void v8::Object::SetInternalField(int index, v8::Local<Value> value) {
i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::SetInternalField()";
if (!InternalFieldOK(obj, index, location)) return;
i::Handle<i::Object> val = Utils::OpenHandle(*value);
i::Handle<i::JSObject>::cast(obj)->SetEmbedderField(index, *val);
}
void* v8::Object::SlowGetAlignedPointerFromInternalField(int index) {
i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::GetAlignedPointerFromInternalField()";
if (!InternalFieldOK(obj, index, location)) return nullptr;
void* result;
Utils::ApiCheck(i::EmbedderDataSlot(i::JSObject::cast(*obj), index)
.ToAlignedPointer(obj->GetIsolate(), &result),
location, "Unaligned pointer");
return result;
}
void v8::Object::SetAlignedPointerInInternalField(int index, void* value) {
i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::SetAlignedPointerInInternalField()";
if (!InternalFieldOK(obj, index, location)) return;
Utils::ApiCheck(i::EmbedderDataSlot(i::JSObject::cast(*obj), index)
.store_aligned_pointer(obj->GetIsolate(), value),
location, "Unaligned pointer");
DCHECK_EQ(value, GetAlignedPointerFromInternalField(index));
}
void v8::Object::SetAlignedPointerInInternalFields(int argc, int indices[],
void* values[]) {
i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this);
const char* location = "v8::Object::SetAlignedPointerInInternalFields()";
i::DisallowHeapAllocation no_gc;
i::JSObject js_obj = i::JSObject::cast(*obj);
int nof_embedder_fields = js_obj.GetEmbedderFieldCount();
for (int i = 0; i < argc; i++) {
int index = indices[i];
if (!Utils::ApiCheck(index < nof_embedder_fields, location,
"Internal field out of bounds")) {
return;
}
void* value = values[i];
Utils::ApiCheck(i::EmbedderDataSlot(js_obj, index)
.store_aligned_pointer(obj->GetIsolate(), value),
location, "Unaligned pointer");
DCHECK_EQ(value, GetAlignedPointerFromInternalField(index));
}
}
static void* ExternalValue(i::Object obj) {
// Obscure semantics for undefined, but somehow checked in our unit tests...
if (obj.IsUndefined()) {
return nullptr;
}
i::Object foreign = i::JSObject::cast(obj).GetEmbedderField(0);
return reinterpret_cast<void*>(i::Foreign::cast(foreign).foreign_address());
}
// --- E n v i r o n m e n t ---
void v8::V8::InitializePlatform(Platform* platform) {
i::V8::InitializePlatform(platform);
}
void v8::V8::ShutdownPlatform() { i::V8::ShutdownPlatform(); }
bool v8::V8::Initialize(const int build_config) {
const bool kEmbedderPointerCompression =
(build_config & kPointerCompression) != 0;
if (kEmbedderPointerCompression != COMPRESS_POINTERS_BOOL) {
FATAL(
"Embedder-vs-V8 build configuration mismatch. On embedder side "
"pointer compression is %s while on V8 side it's %s.",
kEmbedderPointerCompression ? "ENABLED" : "DISABLED",
COMPRESS_POINTERS_BOOL ? "ENABLED" : "DISABLED");
}
const int kEmbedderSmiValueSize = (build_config & k31BitSmis) ? 31 : 32;
if (kEmbedderSmiValueSize != internal::kSmiValueSize) {
FATAL(
"Embedder-vs-V8 build configuration mismatch. On embedder side "
"Smi value size is %d while on V8 side it's %d.",
kEmbedderSmiValueSize, internal::kSmiValueSize);
}
const bool kEmbedderHeapSandbox = (build_config & kHeapSandbox) != 0;
if (kEmbedderHeapSandbox != V8_HEAP_SANDBOX_BOOL) {
FATAL(
"Embedder-vs-V8 build configuration mismatch. On embedder side "
"heap sandbox is %s while on V8 side it's %s.",
kEmbedderHeapSandbox ? "ENABLED" : "DISABLED",
V8_HEAP_SANDBOX_BOOL ? "ENABLED" : "DISABLED");
}
i::V8::Initialize();
return true;
}
#if V8_OS_LINUX || V8_OS_MACOSX
bool TryHandleWebAssemblyTrapPosix(int sig_code, siginfo_t* info,
void* context) {
#if V8_TARGET_ARCH_X64 && !V8_OS_ANDROID
return i::trap_handler::TryHandleSignal(sig_code, info, context);
#else
return false;
#endif
}
bool V8::TryHandleSignal(int signum, void* info, void* context) {
return TryHandleWebAssemblyTrapPosix(
signum, reinterpret_cast<siginfo_t*>(info), context);
}
#endif
#if V8_OS_WIN
bool TryHandleWebAssemblyTrapWindows(EXCEPTION_POINTERS* exception) {
#if V8_TARGET_ARCH_X64 && !DISABLE_WASM_STARBOARD
return i::trap_handler::TryHandleWasmTrap(exception);
#endif
return false;
}
#endif
bool V8::EnableWebAssemblyTrapHandler(bool use_v8_signal_handler) {
return v8::internal::trap_handler::EnableTrapHandler(use_v8_signal_handler);
}
#if defined(V8_OS_WIN)
void V8::SetUnhandledExceptionCallback(
UnhandledExceptionCallback unhandled_exception_callback) {
#if defined(V8_OS_WIN64)
v8::internal::win64_unwindinfo::SetUnhandledExceptionCallback(
unhandled_exception_callback);
#else
// Not implemented, port needed.
#endif // V8_OS_WIN64
}
#endif // V8_OS_WIN
void v8::V8::SetEntropySource(EntropySource entropy_source) {
base::RandomNumberGenerator::SetEntropySource(entropy_source);
}
void v8::V8::SetReturnAddressLocationResolver(
ReturnAddressLocationResolver return_address_resolver) {
i::StackFrame::SetReturnAddressLocationResolver(return_address_resolver);
}
bool v8::V8::Dispose() {
i::V8::TearDown();
return true;
}
SharedMemoryStatistics::SharedMemoryStatistics()
: read_only_space_size_(0),
read_only_space_used_size_(0),
read_only_space_physical_size_(0) {}
HeapStatistics::HeapStatistics()
: total_heap_size_(0),
total_heap_size_executable_(0),
total_physical_size_(0),
total_available_size_(0),
used_heap_size_(0),
heap_size_limit_(0),
malloced_memory_(0),
external_memory_(0),
peak_malloced_memory_(0),
does_zap_garbage_(false),
number_of_native_contexts_(0),
number_of_detached_contexts_(0) {}
HeapSpaceStatistics::HeapSpaceStatistics()
: space_name_(nullptr),
space_size_(0),
space_used_size_(0),
space_available_size_(0),
physical_space_size_(0) {}
HeapObjectStatistics::HeapObjectStatistics()
: object_type_(nullptr),
object_sub_type_(nullptr),
object_count_(0),
object_size_(0) {}
HeapCodeStatistics::HeapCodeStatistics()
: code_and_metadata_size_(0),
bytecode_and_metadata_size_(0),
external_script_source_size_(0) {}
bool v8::V8::InitializeICU(const char* icu_data_file) {
return i::InitializeICU(icu_data_file);
}
bool v8::V8::InitializeICUDefaultLocation(const char* exec_path,
const char* icu_data_file) {
return i::InitializeICUDefaultLocation(exec_path, icu_data_file);
}
void v8::V8::InitializeExternalStartupData(const char* directory_path) {
i::InitializeExternalStartupData(directory_path);
}
// static
void v8::V8::InitializeExternalStartupDataFromFile(const char* snapshot_blob) {
i::InitializeExternalStartupDataFromFile(snapshot_blob);
}
const char* v8::V8::GetVersion() { return i::Version::GetVersion(); }
void V8::GetSharedMemoryStatistics(SharedMemoryStatistics* statistics) {
i::ReadOnlyHeap::PopulateReadOnlySpaceStatistics(statistics);
}
void V8::SetIsCrossOriginIsolated() {
i::FLAG_harmony_sharedarraybuffer = true;
}
template <typename ObjectType>
struct InvokeBootstrapper;
template <>
struct InvokeBootstrapper<i::Context> {
i::Handle<i::Context> Invoke(
i::Isolate* isolate, i::MaybeHandle<i::JSGlobalProxy> maybe_global_proxy,
v8::Local<v8::ObjectTemplate> global_proxy_template,
v8::ExtensionConfiguration* extensions, size_t context_snapshot_index,
v8::DeserializeInternalFieldsCallback embedder_fields_deserializer,
v8::MicrotaskQueue* microtask_queue) {
return isolate->bootstrapper()->CreateEnvironment(
maybe_global_proxy, global_proxy_template, extensions,
context_snapshot_index, embedder_fields_deserializer, microtask_queue);
}
};
template <>
struct InvokeBootstrapper<i::JSGlobalProxy> {
i::Handle<i::JSGlobalProxy> Invoke(
i::Isolate* isolate, i::MaybeHandle<i::JSGlobalProxy> maybe_global_proxy,
v8::Local<v8::ObjectTemplate> global_proxy_template,
v8::ExtensionConfiguration* extensions, size_t context_snapshot_index,
v8::DeserializeInternalFieldsCallback embedder_fields_deserializer,
v8::MicrotaskQueue* microtask_queue) {
USE(extensions);
USE(context_snapshot_index);
return isolate->bootstrapper()->NewRemoteContext(maybe_global_proxy,
global_proxy_template);
}
};
template <typename ObjectType>
static i::Handle<ObjectType> CreateEnvironment(
i::Isolate* isolate, v8::ExtensionConfiguration* extensions,
v8::MaybeLocal<ObjectTemplate> maybe_global_template,
v8::MaybeLocal<Value> maybe_global_proxy, size_t context_snapshot_index,
v8::DeserializeInternalFieldsCallback embedder_fields_deserializer,
v8::MicrotaskQueue* microtask_queue) {
i::Handle<ObjectType> result;
{
ENTER_V8_FOR_NEW_CONTEXT(isolate);
v8::Local<ObjectTemplate> proxy_template;
i::Handle<i::FunctionTemplateInfo> proxy_constructor;
i::Handle<i::FunctionTemplateInfo> global_constructor;
i::Handle<i::HeapObject> named_interceptor(
isolate->factory()->undefined_value());
i::Handle<i::HeapObject> indexed_interceptor(
isolate->factory()->undefined_value());
if (!maybe_global_template.IsEmpty()) {
v8::Local<v8::ObjectTemplate> global_template =
maybe_global_template.ToLocalChecked();
// Make sure that the global_template has a constructor.
global_constructor = EnsureConstructor(isolate, *global_template);
// Create a fresh template for the global proxy object.
proxy_template =
ObjectTemplate::New(reinterpret_cast<v8::Isolate*>(isolate));
proxy_constructor = EnsureConstructor(isolate, *proxy_template);
// Set the global template to be the prototype template of
// global proxy template.
i::FunctionTemplateInfo::SetPrototypeTemplate(
isolate, proxy_constructor, Utils::OpenHandle(*global_template));
proxy_template->SetInternalFieldCount(
global_template->InternalFieldCount());
// Migrate security handlers from global_template to
// proxy_template. Temporarily removing access check
// information from the global template.
if (!global_constructor->GetAccessCheckInfo().IsUndefined(isolate)) {
i::FunctionTemplateInfo::SetAccessCheckInfo(
isolate, proxy_constructor,
i::handle(global_constructor->GetAccessCheckInfo(), isolate));
proxy_constructor->set_needs_access_check(
global_constructor->needs_access_check());
global_constructor->set_needs_access_check(false);
i::FunctionTemplateInfo::SetAccessCheckInfo(
isolate, global_constructor,
i::ReadOnlyRoots(isolate).undefined_value_handle());
}
// Same for other interceptors. If the global constructor has
// interceptors, we need to replace them temporarily with noop
// interceptors, so the map is correctly marked as having interceptors,
// but we don't invoke any.
if (!global_constructor->GetNamedPropertyHandler().IsUndefined(isolate)) {
named_interceptor =
handle(global_constructor->GetNamedPropertyHandler(), isolate);
i::FunctionTemplateInfo::SetNamedPropertyHandler(
isolate, global_constructor,
i::ReadOnlyRoots(isolate).noop_interceptor_info_handle());
}
if (!global_constructor->GetIndexedPropertyHandler().IsUndefined(
isolate)) {
indexed_interceptor =
handle(global_constructor->GetIndexedPropertyHandler(), isolate);
i::FunctionTemplateInfo::SetIndexedPropertyHandler(
isolate, global_constructor,
i::ReadOnlyRoots(isolate).noop_interceptor_info_handle());
}
}
i::MaybeHandle<i::JSGlobalProxy> maybe_proxy;
if (!maybe_global_proxy.IsEmpty()) {
maybe_proxy = i::Handle<i::JSGlobalProxy>::cast(
Utils::OpenHandle(*maybe_global_proxy.ToLocalChecked()));
}
// Create the environment.
InvokeBootstrapper<ObjectType> invoke;
result = invoke.Invoke(isolate, maybe_proxy, proxy_template, extensions,
context_snapshot_index, embedder_fields_deserializer,
microtask_queue);
// Restore the access check info and interceptors on the global template.
if (!maybe_global_template.IsEmpty()) {
DCHECK(!global_constructor.is_null());
DCHECK(!proxy_constructor.is_null());
i::FunctionTemplateInfo::SetAccessCheckInfo(
isolate, global_constructor,
i::handle(proxy_constructor->GetAccessCheckInfo(), isolate));
global_constructor->set_needs_access_check(
proxy_constructor->needs_access_check());
i::FunctionTemplateInfo::SetNamedPropertyHandler(
isolate, global_constructor, named_interceptor);
i::FunctionTemplateInfo::SetIndexedPropertyHandler(
isolate, global_constructor, indexed_interceptor);
}
}
// Leave V8.
return result;
}
Local<Context> NewContext(
v8::Isolate* external_isolate, v8::ExtensionConfiguration* extensions,
v8::MaybeLocal<ObjectTemplate> global_template,
v8::MaybeLocal<Value> global_object, size_t context_snapshot_index,
v8::DeserializeInternalFieldsCallback embedder_fields_deserializer,
v8::MicrotaskQueue* microtask_queue) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate);
// TODO(jkummerow): This is for crbug.com/713699. Remove it if it doesn't
// fail.
// Sanity-check that the isolate is initialized and usable.
CHECK(isolate->builtins()->builtin(i::Builtins::kIllegal).IsCode());
TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.NewContext");
LOG_API(isolate, Context, New);
i::HandleScope scope(isolate);
ExtensionConfiguration no_extensions;
if (extensions == nullptr) extensions = &no_extensions;
i::Handle<i::Context> env = CreateEnvironment<i::Context>(
isolate, extensions, global_template, global_object,
context_snapshot_index, embedder_fields_deserializer, microtask_queue);
if (env.is_null()) {
if (isolate->has_pending_exception()) isolate->clear_pending_exception();
return Local<Context>();
}
return Utils::ToLocal(scope.CloseAndEscape(env));
}
Local<Context> v8::Context::New(
v8::Isolate* external_isolate, v8::ExtensionConfiguration* extensions,
v8::MaybeLocal<ObjectTemplate> global_template,
v8::MaybeLocal<Value> global_object,
DeserializeInternalFieldsCallback internal_fields_deserializer,
v8::MicrotaskQueue* microtask_queue) {
return NewContext(external_isolate, extensions, global_template,
global_object, 0, internal_fields_deserializer,
microtask_queue);
}
MaybeLocal<Context> v8::Context::FromSnapshot(
v8::Isolate* external_isolate, size_t context_snapshot_index,
v8::DeserializeInternalFieldsCallback embedder_fields_deserializer,
v8::ExtensionConfiguration* extensions, MaybeLocal<Value> global_object,
v8::MicrotaskQueue* microtask_queue) {
size_t index_including_default_context = context_snapshot_index + 1;
if (!i::Snapshot::HasContextSnapshot(
reinterpret_cast<i::Isolate*>(external_isolate),
index_including_default_context)) {
return MaybeLocal<Context>();
}
return NewContext(external_isolate, extensions, MaybeLocal<ObjectTemplate>(),
global_object, index_including_default_context,
embedder_fields_deserializer, microtask_queue);
}
MaybeLocal<Object> v8::Context::NewRemoteContext(
v8::Isolate* external_isolate, v8::Local<ObjectTemplate> global_template,
v8::MaybeLocal<v8::Value> global_object) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate);
LOG_API(isolate, Context, NewRemoteContext);
i::HandleScope scope(isolate);
i::Handle<i::FunctionTemplateInfo> global_constructor =
EnsureConstructor(isolate, *global_template);
Utils::ApiCheck(global_constructor->needs_access_check(),
"v8::Context::NewRemoteContext",
"Global template needs to have access checks enabled.");
i::Handle<i::AccessCheckInfo> access_check_info = i::handle(
i::AccessCheckInfo::cast(global_constructor->GetAccessCheckInfo()),
isolate);
Utils::ApiCheck(access_check_info->named_interceptor() != i::Object(),
"v8::Context::NewRemoteContext",
"Global template needs to have access check handlers.");
i::Handle<i::JSObject> global_proxy = CreateEnvironment<i::JSGlobalProxy>(
isolate, nullptr, global_template, global_object, 0,
DeserializeInternalFieldsCallback(), nullptr);
if (global_proxy.is_null()) {
if (isolate->has_pending_exception()) isolate->clear_pending_exception();
return MaybeLocal<Object>();
}
return Utils::ToLocal(scope.CloseAndEscape(global_proxy));
}
void v8::Context::SetSecurityToken(Local<Value> token) {
i::Handle<i::Context> env = Utils::OpenHandle(this);
i::Handle<i::Object> token_handle = Utils::OpenHandle(*token);
env->set_security_token(*token_handle);
}
void v8::Context::UseDefaultSecurityToken() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
env->set_security_token(env->global_object());
}
Local<Value> v8::Context::GetSecurityToken() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
i::Isolate* isolate = env->GetIsolate();
i::Object security_token = env->security_token();
i::Handle<i::Object> token_handle(security_token, isolate);
return Utils::ToLocal(token_handle);
}
v8::Isolate* Context::GetIsolate() {
i::Handle<i::Context> env = Utils::OpenHandle(this);
return reinterpret_cast<Isolate*>(env->GetIsolate());
}
v8::Local<v8::Object> Context::Global() {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Isolate* isolate = context->GetIsolate();
i::Handle<i::Object> global(context->global_proxy(), isolate);
// TODO(dcarney): This should always return the global proxy
// but can't presently as calls to GetProtoype will return the wrong result.
if (i::Handle<i::JSGlobalProxy>::cast(global)->IsDetachedFrom(
context->global_object())) {
global = i::Handle<i::Object>(context->global_object(), isolate);
}
return Utils::ToLocal(i::Handle<i::JSObject>::cast(global));
}
void Context::DetachGlobal() {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Isolate* isolate = context->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
isolate->bootstrapper()->DetachGlobal(context);
}
Local<v8::Object> Context::GetExtrasBindingObject() {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Isolate* isolate = context->GetIsolate();
i::Handle<i::JSObject> binding(context->extras_binding_object(), isolate);
return Utils::ToLocal(binding);
}
void Context::AllowCodeGenerationFromStrings(bool allow) {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Isolate* isolate = context->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
context->set_allow_code_gen_from_strings(
allow ? i::ReadOnlyRoots(isolate).true_value()
: i::ReadOnlyRoots(isolate).false_value());
}
bool Context::IsCodeGenerationFromStringsAllowed() {
i::Handle<i::Context> context = Utils::OpenHandle(this);
return !context->allow_code_gen_from_strings().IsFalse(context->GetIsolate());
}
void Context::SetErrorMessageForCodeGenerationFromStrings(Local<String> error) {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Handle<i::String> error_handle = Utils::OpenHandle(*error);
context->set_error_message_for_code_gen_from_strings(*error_handle);
}
void Context::SetAbortScriptExecution(
Context::AbortScriptExecutionCallback callback) {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Isolate* isolate = context->GetIsolate();
if (callback == nullptr) {
context->set_script_execution_callback(
i::ReadOnlyRoots(isolate).undefined_value());
} else {
SET_FIELD_WRAPPED(isolate, context, set_script_execution_callback,
callback);
}
}
Local<Value> Context::GetContinuationPreservedEmbedderData() const {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Isolate* isolate = context->GetIsolate();
i::Handle<i::Object> data(
context->native_context().continuation_preserved_embedder_data(),
isolate);
return ToApiHandle<Object>(data);
}
void Context::SetContinuationPreservedEmbedderData(Local<Value> data) {
i::Handle<i::Context> context = Utils::OpenHandle(this);
i::Isolate* isolate = context->GetIsolate();
if (data.IsEmpty())
data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
context->native_context().set_continuation_preserved_embedder_data(
*i::Handle<i::HeapObject>::cast(Utils::OpenHandle(*data)));
}
MaybeLocal<Context> metrics::Recorder::GetContext(
Isolate* isolate, metrics::Recorder::ContextId id) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
return i_isolate->GetContextFromRecorderContextId(id);
}
metrics::Recorder::ContextId metrics::Recorder::GetContextId(
Local<Context> context) {
i::Handle<i::Context> i_context = Utils::OpenHandle(*context);
i::Isolate* isolate = i_context->GetIsolate();
return isolate->GetOrRegisterRecorderContextId(
handle(i_context->native_context(), isolate));
}
namespace {
i::Address* GetSerializedDataFromFixedArray(i::Isolate* isolate,
i::FixedArray list, size_t index) {
if (index < static_cast<size_t>(list.length())) {
int int_index = static_cast<int>(index);
i::Object object = list.get(int_index);
if (!object.IsTheHole(isolate)) {
list.set_the_hole(isolate, int_index);
// Shrink the list so that the last element is not the hole (unless it's
// the first element, because we don't want to end up with a non-canonical
// empty FixedArray).
int last = list.length() - 1;
while (last >= 0 && list.is_the_hole(isolate, last)) last--;
if (last != -1) list.Shrink(isolate, last + 1);
return i::Handle<i::Object>(object, isolate).location();
}
}
return nullptr;
}
} // anonymous namespace
i::Address* Context::GetDataFromSnapshotOnce(size_t index) {
auto context = Utils::OpenHandle(this);
i::Isolate* i_isolate = context->GetIsolate();
i::FixedArray list = context->serialized_objects();
return GetSerializedDataFromFixedArray(i_isolate, list, index);
}
MaybeLocal<v8::Object> ObjectTemplate::NewInstance(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, ObjectTemplate, NewInstance, Object);
auto self = Utils::OpenHandle(this);
Local<Object> result;
has_pending_exception = !ToLocal<Object>(
i::ApiNatives::InstantiateObject(isolate, self), &result);
RETURN_ON_FAILED_EXECUTION(Object);
RETURN_ESCAPED(result);
}
void v8::ObjectTemplate::CheckCast(Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsObjectTemplateInfo(), "v8::ObjectTemplate::Cast",
"Value is not an ObjectTemplate");
}
void v8::FunctionTemplate::CheckCast(Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsFunctionTemplateInfo(), "v8::FunctionTemplate::Cast",
"Value is not a FunctionTemplate");
}
void v8::Signature::CheckCast(Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsFunctionTemplateInfo(), "v8::Signature::Cast",
"Value is not a Signature");
}
void v8::AccessorSignature::CheckCast(Data* that) {
i::Handle<i::Object> obj = Utils::OpenHandle(that);
Utils::ApiCheck(obj->IsFunctionTemplateInfo(), "v8::AccessorSignature::Cast",
"Value is not an AccessorSignature");
}
MaybeLocal<v8::Function> FunctionTemplate::GetFunction(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, FunctionTemplate, GetFunction, Function);
auto self = Utils::OpenHandle(this);
Local<Function> result;
has_pending_exception =
!ToLocal<Function>(i::ApiNatives::InstantiateFunction(self), &result);
RETURN_ON_FAILED_EXECUTION(Function);
RETURN_ESCAPED(result);
}
MaybeLocal<v8::Object> FunctionTemplate::NewRemoteInstance() {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
LOG_API(isolate, FunctionTemplate, NewRemoteInstance);
i::HandleScope scope(isolate);
i::Handle<i::FunctionTemplateInfo> constructor =
EnsureConstructor(isolate, *InstanceTemplate());
Utils::ApiCheck(constructor->needs_access_check(),
"v8::FunctionTemplate::NewRemoteInstance",
"InstanceTemplate needs to have access checks enabled.");
i::Handle<i::AccessCheckInfo> access_check_info = i::handle(
i::AccessCheckInfo::cast(constructor->GetAccessCheckInfo()), isolate);
Utils::ApiCheck(access_check_info->named_interceptor() != i::Object(),
"v8::FunctionTemplate::NewRemoteInstance",
"InstanceTemplate needs to have access check handlers.");
i::Handle<i::JSObject> object;
if (!i::ApiNatives::InstantiateRemoteObject(
Utils::OpenHandle(*InstanceTemplate()))
.ToHandle(&object)) {
if (isolate->has_pending_exception()) {
isolate->OptionalRescheduleException(true);
}
return MaybeLocal<Object>();
}
return Utils::ToLocal(scope.CloseAndEscape(object));
}
bool FunctionTemplate::HasInstance(v8::Local<v8::Value> value) {
auto self = Utils::OpenHandle(this);
auto obj = Utils::OpenHandle(*value);
if (obj->IsJSObject() && self->IsTemplateFor(i::JSObject::cast(*obj))) {
return true;
}
if (obj->IsJSGlobalProxy()) {
// If it's a global proxy, then test with the global object. Note that the
// inner global object may not necessarily be a JSGlobalObject.
i::PrototypeIterator iter(self->GetIsolate(),
i::JSObject::cast(*obj).map());
// The global proxy should always have a prototype, as it is a bug to call
// this on a detached JSGlobalProxy.
DCHECK(!iter.IsAtEnd());
return self->IsTemplateFor(iter.GetCurrent<i::JSObject>());
}
return false;
}
Local<External> v8::External::New(Isolate* isolate, void* value) {
STATIC_ASSERT(sizeof(value) == sizeof(i::Address));
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, External, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::JSObject> external = i_isolate->factory()->NewExternal(value);
return Utils::ExternalToLocal(external);
}
void* External::Value() const {
return ExternalValue(*Utils::OpenHandle(this));
}
// anonymous namespace for string creation helper functions
namespace {
inline int StringLength(const char* string) {
size_t len = strlen(string);
CHECK_GE(i::kMaxInt, len);
return static_cast<int>(len);
}
inline int StringLength(const uint8_t* string) {
return StringLength(reinterpret_cast<const char*>(string));
}
inline int StringLength(const uint16_t* string) {
size_t length = 0;
while (string[length] != '\0') length++;
CHECK_GE(i::kMaxInt, length);
return static_cast<int>(length);
}
V8_WARN_UNUSED_RESULT
inline i::MaybeHandle<i::String> NewString(i::Factory* factory,
NewStringType type,
i::Vector<const char> string) {
if (type == NewStringType::kInternalized) {
return factory->InternalizeUtf8String(string);
}
return factory->NewStringFromUtf8(string);
}
V8_WARN_UNUSED_RESULT
inline i::MaybeHandle<i::String> NewString(i::Factory* factory,
NewStringType type,
i::Vector<const uint8_t> string) {
if (type == NewStringType::kInternalized) {
return factory->InternalizeString(string);
}
return factory->NewStringFromOneByte(string);
}
V8_WARN_UNUSED_RESULT
inline i::MaybeHandle<i::String> NewString(i::Factory* factory,
NewStringType type,
i::Vector<const uint16_t> string) {
if (type == NewStringType::kInternalized) {
return factory->InternalizeString(string);
}
return factory->NewStringFromTwoByte(string);
}
STATIC_ASSERT(v8::String::kMaxLength == i::String::kMaxLength);
} // anonymous namespace
// TODO(dcarney): throw a context free exception.
#define NEW_STRING(isolate, class_name, function_name, Char, data, type, \
length) \
MaybeLocal<String> result; \
if (length == 0) { \
result = String::Empty(isolate); \
} else if (length > i::String::kMaxLength) { \
result = MaybeLocal<String>(); \
} else { \
i::Isolate* i_isolate = reinterpret_cast<internal::Isolate*>(isolate); \
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); \
LOG_API(i_isolate, class_name, function_name); \
if (length < 0) length = StringLength(data); \
i::Handle<i::String> handle_result = \
NewString(i_isolate->factory(), type, \
i::Vector<const Char>(data, length)) \
.ToHandleChecked(); \
result = Utils::ToLocal(handle_result); \
}
Local<String> String::NewFromUtf8Literal(Isolate* isolate, const char* literal,
NewStringType type, int length) {
DCHECK_LE(length, i::String::kMaxLength);
i::Isolate* i_isolate = reinterpret_cast<internal::Isolate*>(isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
LOG_API(i_isolate, String, NewFromUtf8Literal);
i::Handle<i::String> handle_result =
NewString(i_isolate->factory(), type,
i::Vector<const char>(literal, length))
.ToHandleChecked();
return Utils::ToLocal(handle_result);
}
MaybeLocal<String> String::NewFromUtf8(Isolate* isolate, const char* data,
NewStringType type, int length) {
NEW_STRING(isolate, String, NewFromUtf8, char, data, type, length);
return result;
}
MaybeLocal<String> String::NewFromOneByte(Isolate* isolate, const uint8_t* data,
NewStringType type, int length) {
NEW_STRING(isolate, String, NewFromOneByte, uint8_t, data, type, length);
return result;
}
MaybeLocal<String> String::NewFromTwoByte(Isolate* isolate,
const uint16_t* data,
NewStringType type, int length) {
NEW_STRING(isolate, String, NewFromTwoByte, uint16_t, data, type, length);
return result;
}
Local<String> v8::String::Concat(Isolate* v8_isolate, Local<String> left,
Local<String> right) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Handle<i::String> left_string = Utils::OpenHandle(*left);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
LOG_API(isolate, String, Concat);
i::Handle<i::String> right_string = Utils::OpenHandle(*right);
// If we are steering towards a range error, do not wait for the error to be
// thrown, and return the null handle instead.
if (left_string->length() + right_string->length() > i::String::kMaxLength) {
return Local<String>();
}
i::Handle<i::String> result = isolate->factory()
->NewConsString(left_string, right_string)
.ToHandleChecked();
return Utils::ToLocal(result);
}
MaybeLocal<String> v8::String::NewExternalTwoByte(
Isolate* isolate, v8::String::ExternalStringResource* resource) {
CHECK(resource && resource->data());
// TODO(dcarney): throw a context free exception.
if (resource->length() > static_cast<size_t>(i::String::kMaxLength)) {
return MaybeLocal<String>();
}
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
LOG_API(i_isolate, String, NewExternalTwoByte);
if (resource->length() > 0) {
i::Handle<i::String> string = i_isolate->factory()
->NewExternalStringFromTwoByte(resource)
.ToHandleChecked();
return Utils::ToLocal(string);
} else {
// The resource isn't going to be used, free it immediately.
resource->Dispose();
return Utils::ToLocal(i_isolate->factory()->empty_string());
}
}
MaybeLocal<String> v8::String::NewExternalOneByte(
Isolate* isolate, v8::String::ExternalOneByteStringResource* resource) {
CHECK_NOT_NULL(resource);
// TODO(dcarney): throw a context free exception.
if (resource->length() > static_cast<size_t>(i::String::kMaxLength)) {
return MaybeLocal<String>();
}
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
LOG_API(i_isolate, String, NewExternalOneByte);
if (resource->length() == 0) {
// The resource isn't going to be used, free it immediately.
resource->Dispose();
return Utils::ToLocal(i_isolate->factory()->empty_string());
}
CHECK_NOT_NULL(resource->data());
i::Handle<i::String> string = i_isolate->factory()
->NewExternalStringFromOneByte(resource)
.ToHandleChecked();
return Utils::ToLocal(string);
}
bool v8::String::MakeExternal(v8::String::ExternalStringResource* resource) {
i::DisallowHeapAllocation no_allocation;
i::String obj = *Utils::OpenHandle(this);
if (obj.IsThinString()) {
obj = i::ThinString::cast(obj).actual();
}
if (!obj.SupportsExternalization()) {
return false;
}
// It is safe to call GetIsolateFromWritableHeapObject because
// SupportsExternalization already checked that the object is writable.
i::Isolate* isolate = i::GetIsolateFromWritableObject(obj);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
CHECK(resource && resource->data());
bool result = obj.MakeExternal(resource);
DCHECK(result);
DCHECK(obj.IsExternalString());
return result;
}
bool v8::String::MakeExternal(
v8::String::ExternalOneByteStringResource* resource) {
i::DisallowHeapAllocation no_allocation;
i::String obj = *Utils::OpenHandle(this);
if (obj.IsThinString()) {
obj = i::ThinString::cast(obj).actual();
}
if (!obj.SupportsExternalization()) {
return false;
}
// It is safe to call GetIsolateFromWritableHeapObject because
// SupportsExternalization already checked that the object is writable.
i::Isolate* isolate = i::GetIsolateFromWritableObject(obj);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
CHECK(resource && resource->data());
bool result = obj.MakeExternal(resource);
DCHECK_IMPLIES(result, obj.IsExternalString());
return result;
}
bool v8::String::CanMakeExternal() {
i::DisallowHeapAllocation no_allocation;
i::String obj = *Utils::OpenHandle(this);
if (obj.IsThinString()) {
obj = i::ThinString::cast(obj).actual();
}
if (!obj.SupportsExternalization()) {
return false;
}
// Only old space strings should be externalized.
return !i::Heap::InYoungGeneration(obj);
}
bool v8::String::StringEquals(Local<String> that) {
auto self = Utils::OpenHandle(this);
auto other = Utils::OpenHandle(*that);
return self->Equals(*other);
}
Isolate* v8::Object::GetIsolate() {
i::Isolate* i_isolate = Utils::OpenHandle(this)->GetIsolate();
return reinterpret_cast<Isolate*>(i_isolate);
}
Local<v8::Object> v8::Object::New(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, Object, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::JSObject> obj =
i_isolate->factory()->NewJSObject(i_isolate->object_function());
return Utils::ToLocal(obj);
}
Local<v8::Object> v8::Object::New(Isolate* isolate,
Local<Value> prototype_or_null,
Local<Name>* names, Local<Value>* values,
size_t length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Handle<i::Object> proto = Utils::OpenHandle(*prototype_or_null);
if (!Utils::ApiCheck(proto->IsNull() || proto->IsJSReceiver(),
"v8::Object::New", "prototype must be null or object")) {
return Local<v8::Object>();
}
LOG_API(i_isolate, Object, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
// We assume that this API is mostly used to create objects with named
// properties, and so we default to creating a properties backing store
// large enough to hold all of them, while we start with no elements
// (see http://bit.ly/v8-fast-object-create-cpp for the motivation).
i::Handle<i::NameDictionary> properties =
i::NameDictionary::New(i_isolate, static_cast<int>(length));
i::Handle<i::FixedArrayBase> elements =
i_isolate->factory()->empty_fixed_array();
for (size_t i = 0; i < length; ++i) {
i::Handle<i::Name> name = Utils::OpenHandle(*names[i]);
i::Handle<i::Object> value = Utils::OpenHandle(*values[i]);
// See if the {name} is a valid array index, in which case we need to
// add the {name}/{value} pair to the {elements}, otherwise they end
// up in the {properties} backing store.
uint32_t index;
if (name->AsArrayIndex(&index)) {
// If this is the first element, allocate a proper
// dictionary elements backing store for {elements}.
if (!elements->IsNumberDictionary()) {
elements =
i::NumberDictionary::New(i_isolate, static_cast<int>(length));
}
elements = i::NumberDictionary::Set(
i_isolate, i::Handle<i::NumberDictionary>::cast(elements), index,
value);
} else {
// Internalize the {name} first.
name = i_isolate->factory()->InternalizeName(name);
i::InternalIndex const entry = properties->FindEntry(i_isolate, name);
if (entry.is_not_found()) {
// Add the {name}/{value} pair as a new entry.
properties = i::NameDictionary::Add(i_isolate, properties, name, value,
i::PropertyDetails::Empty());
} else {
// Overwrite the {entry} with the {value}.
properties->ValueAtPut(entry, *value);
}
}
}
i::Handle<i::JSObject> obj =
i_isolate->factory()->NewSlowJSObjectWithPropertiesAndElements(
i::Handle<i::HeapObject>::cast(proto), properties, elements);
return Utils::ToLocal(obj);
}
Local<v8::Value> v8::NumberObject::New(Isolate* isolate, double value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, NumberObject, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Object> number = i_isolate->factory()->NewNumber(value);
i::Handle<i::Object> obj =
i::Object::ToObject(i_isolate, number).ToHandleChecked();
return Utils::ToLocal(obj);
}
double v8::NumberObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSPrimitiveWrapper> js_primitive_wrapper =
i::Handle<i::JSPrimitiveWrapper>::cast(obj);
i::Isolate* isolate = js_primitive_wrapper->GetIsolate();
LOG_API(isolate, NumberObject, NumberValue);
return js_primitive_wrapper->value().Number();
}
Local<v8::Value> v8::BigIntObject::New(Isolate* isolate, int64_t value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, BigIntObject, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Object> bigint = i::BigInt::FromInt64(i_isolate, value);
i::Handle<i::Object> obj =
i::Object::ToObject(i_isolate, bigint).ToHandleChecked();
return Utils::ToLocal(obj);
}
Local<v8::BigInt> v8::BigIntObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSPrimitiveWrapper> js_primitive_wrapper =
i::Handle<i::JSPrimitiveWrapper>::cast(obj);
i::Isolate* isolate = js_primitive_wrapper->GetIsolate();
LOG_API(isolate, BigIntObject, BigIntValue);
return Utils::ToLocal(i::Handle<i::BigInt>(
i::BigInt::cast(js_primitive_wrapper->value()), isolate));
}
Local<v8::Value> v8::BooleanObject::New(Isolate* isolate, bool value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, BooleanObject, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Object> boolean(value
? i::ReadOnlyRoots(i_isolate).true_value()
: i::ReadOnlyRoots(i_isolate).false_value(),
i_isolate);
i::Handle<i::Object> obj =
i::Object::ToObject(i_isolate, boolean).ToHandleChecked();
return Utils::ToLocal(obj);
}
bool v8::BooleanObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSPrimitiveWrapper> js_primitive_wrapper =
i::Handle<i::JSPrimitiveWrapper>::cast(obj);
i::Isolate* isolate = js_primitive_wrapper->GetIsolate();
LOG_API(isolate, BooleanObject, BooleanValue);
return js_primitive_wrapper->value().IsTrue(isolate);
}
Local<v8::Value> v8::StringObject::New(Isolate* v8_isolate,
Local<String> value) {
i::Handle<i::String> string = Utils::OpenHandle(*value);
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
LOG_API(isolate, StringObject, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::Handle<i::Object> obj =
i::Object::ToObject(isolate, string).ToHandleChecked();
return Utils::ToLocal(obj);
}
Local<v8::String> v8::StringObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSPrimitiveWrapper> js_primitive_wrapper =
i::Handle<i::JSPrimitiveWrapper>::cast(obj);
i::Isolate* isolate = js_primitive_wrapper->GetIsolate();
LOG_API(isolate, StringObject, StringValue);
return Utils::ToLocal(i::Handle<i::String>(
i::String::cast(js_primitive_wrapper->value()), isolate));
}
Local<v8::Value> v8::SymbolObject::New(Isolate* isolate, Local<Symbol> value) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, SymbolObject, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Object> obj =
i::Object::ToObject(i_isolate, Utils::OpenHandle(*value))
.ToHandleChecked();
return Utils::ToLocal(obj);
}
Local<v8::Symbol> v8::SymbolObject::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSPrimitiveWrapper> js_primitive_wrapper =
i::Handle<i::JSPrimitiveWrapper>::cast(obj);
i::Isolate* isolate = js_primitive_wrapper->GetIsolate();
LOG_API(isolate, SymbolObject, SymbolValue);
return Utils::ToLocal(i::Handle<i::Symbol>(
i::Symbol::cast(js_primitive_wrapper->value()), isolate));
}
MaybeLocal<v8::Value> v8::Date::New(Local<Context> context, double time) {
if (std::isnan(time)) {
// Introduce only canonical NaN value into the VM, to avoid signaling NaNs.
time = std::numeric_limits<double>::quiet_NaN();
}
PREPARE_FOR_EXECUTION(context, Date, New, Value);
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::JSDate::New(isolate->date_function(), isolate->date_function(), time),
&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
double v8::Date::ValueOf() const {
i::Handle<i::Object> obj = Utils::OpenHandle(this);
i::Handle<i::JSDate> jsdate = i::Handle<i::JSDate>::cast(obj);
i::Isolate* isolate = jsdate->GetIsolate();
LOG_API(isolate, Date, NumberValue);
return jsdate->value().Number();
}
// Assert that the static TimeZoneDetection cast in
// DateTimeConfigurationChangeNotification is valid.
#define TIME_ZONE_DETECTION_ASSERT_EQ(value) \
STATIC_ASSERT( \
static_cast<int>(v8::Isolate::TimeZoneDetection::value) == \
static_cast<int>(base::TimezoneCache::TimeZoneDetection::value));
TIME_ZONE_DETECTION_ASSERT_EQ(kSkip)
TIME_ZONE_DETECTION_ASSERT_EQ(kRedetect)
#undef TIME_ZONE_DETECTION_ASSERT_EQ
MaybeLocal<v8::RegExp> v8::RegExp::New(Local<Context> context,
Local<String> pattern, Flags flags) {
PREPARE_FOR_EXECUTION(context, RegExp, New, RegExp);
Local<v8::RegExp> result;
has_pending_exception =
!ToLocal<RegExp>(i::JSRegExp::New(isolate, Utils::OpenHandle(*pattern),
static_cast<i::JSRegExp::Flags>(flags)),
&result);
RETURN_ON_FAILED_EXECUTION(RegExp);
RETURN_ESCAPED(result);
}
MaybeLocal<v8::RegExp> v8::RegExp::NewWithBacktrackLimit(
Local<Context> context, Local<String> pattern, Flags flags,
uint32_t backtrack_limit) {
CHECK(i::Smi::IsValid(backtrack_limit));
CHECK_NE(backtrack_limit, i::JSRegExp::kNoBacktrackLimit);
PREPARE_FOR_EXECUTION(context, RegExp, New, RegExp);
Local<v8::RegExp> result;
has_pending_exception = !ToLocal<RegExp>(
i::JSRegExp::New(isolate, Utils::OpenHandle(*pattern),
static_cast<i::JSRegExp::Flags>(flags), backtrack_limit),
&result);
RETURN_ON_FAILED_EXECUTION(RegExp);
RETURN_ESCAPED(result);
}
Local<v8::String> v8::RegExp::GetSource() const {
i::Handle<i::JSRegExp> obj = Utils::OpenHandle(this);
return Utils::ToLocal(
i::Handle<i::String>(obj->Pattern(), obj->GetIsolate()));
}
// Assert that the static flags cast in GetFlags is valid.
#define REGEXP_FLAG_ASSERT_EQ(flag) \
STATIC_ASSERT(static_cast<int>(v8::RegExp::flag) == \
static_cast<int>(i::JSRegExp::flag))
REGEXP_FLAG_ASSERT_EQ(kNone);
REGEXP_FLAG_ASSERT_EQ(kGlobal);
REGEXP_FLAG_ASSERT_EQ(kIgnoreCase);
REGEXP_FLAG_ASSERT_EQ(kMultiline);
REGEXP_FLAG_ASSERT_EQ(kSticky);
REGEXP_FLAG_ASSERT_EQ(kUnicode);
REGEXP_FLAG_ASSERT_EQ(kLinear);
#undef REGEXP_FLAG_ASSERT_EQ
v8::RegExp::Flags v8::RegExp::GetFlags() const {
i::Handle<i::JSRegExp> obj = Utils::OpenHandle(this);
return RegExp::Flags(static_cast<int>(obj->GetFlags()));
}
MaybeLocal<v8::Object> v8::RegExp::Exec(Local<Context> context,
Local<v8::String> subject) {
PREPARE_FOR_EXECUTION(context, RegExp, Exec, Object);
i::Handle<i::JSRegExp> regexp = Utils::OpenHandle(this);
i::Handle<i::String> subject_string = Utils::OpenHandle(*subject);
// TODO(jgruber): RegExpUtils::RegExpExec was not written with efficiency in
// mind. It fetches the 'exec' property and then calls it through JSEntry.
// Unfortunately, this is currently the only full implementation of
// RegExp.prototype.exec available in C++.
Local<v8::Object> result;
has_pending_exception = !ToLocal<Object>(
i::RegExpUtils::RegExpExec(isolate, regexp, subject_string,
isolate->factory()->undefined_value()),
&result);
RETURN_ON_FAILED_EXECUTION(Object);
RETURN_ESCAPED(result);
}
Local<v8::Array> v8::Array::New(Isolate* isolate, int length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, Array, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
int real_length = length > 0 ? length : 0;
i::Handle<i::JSArray> obj = i_isolate->factory()->NewJSArray(real_length);
i::Handle<i::Object> length_obj =
i_isolate->factory()->NewNumberFromInt(real_length);
obj->set_length(*length_obj);
return Utils::ToLocal(obj);
}
Local<v8::Array> v8::Array::New(Isolate* isolate, Local<Value>* elements,
size_t length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Factory* factory = i_isolate->factory();
LOG_API(i_isolate, Array, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
int len = static_cast<int>(length);
i::Handle<i::FixedArray> result = factory->NewFixedArray(len);
for (int i = 0; i < len; i++) {
i::Handle<i::Object> element = Utils::OpenHandle(*elements[i]);
result->set(i, *element);
}
return Utils::ToLocal(
factory->NewJSArrayWithElements(result, i::PACKED_ELEMENTS, len));
}
uint32_t v8::Array::Length() const {
i::Handle<i::JSArray> obj = Utils::OpenHandle(this);
i::Object length = obj->length();
if (length.IsSmi()) {
return i::Smi::ToInt(length);
} else {
return static_cast<uint32_t>(length.Number());
}
}
Local<v8::Map> v8::Map::New(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, Map, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::JSMap> obj = i_isolate->factory()->NewJSMap();
return Utils::ToLocal(obj);
}
size_t v8::Map::Size() const {
i::Handle<i::JSMap> obj = Utils::OpenHandle(this);
return i::OrderedHashMap::cast(obj->table()).NumberOfElements();
}
void Map::Clear() {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
LOG_API(isolate, Map, Clear);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::JSMap::Clear(isolate, self);
}
MaybeLocal<Value> Map::Get(Local<Context> context, Local<Value> key) {
PREPARE_FOR_EXECUTION(context, Map, Get, Value);
auto self = Utils::OpenHandle(this);
Local<Value> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!ToLocal<Value>(i::Execution::CallBuiltin(isolate, isolate->map_get(),
self, arraysize(argv), argv),
&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
MaybeLocal<Map> Map::Set(Local<Context> context, Local<Value> key,
Local<Value> value) {
PREPARE_FOR_EXECUTION(context, Map, Set, Map);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key),
Utils::OpenHandle(*value)};
has_pending_exception =
!i::Execution::CallBuiltin(isolate, isolate->map_set(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Map);
RETURN_ESCAPED(Local<Map>::Cast(Utils::ToLocal(result)));
}
Maybe<bool> Map::Has(Local<Context> context, Local<Value> key) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Map, Has, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::CallBuiltin(isolate, isolate->map_has(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(result->IsTrue(isolate));
}
Maybe<bool> Map::Delete(Local<Context> context, Local<Value> key) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Map, Delete, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::CallBuiltin(isolate, isolate->map_delete(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(result->IsTrue(isolate));
}
namespace {
enum class MapAsArrayKind {
kEntries = i::JS_MAP_KEY_VALUE_ITERATOR_TYPE,
kKeys = i::JS_MAP_KEY_ITERATOR_TYPE,
kValues = i::JS_MAP_VALUE_ITERATOR_TYPE
};
enum class SetAsArrayKind {
kEntries = i::JS_SET_KEY_VALUE_ITERATOR_TYPE,
kValues = i::JS_SET_VALUE_ITERATOR_TYPE
};
i::Handle<i::JSArray> MapAsArray(i::Isolate* isolate, i::Object table_obj,
int offset, MapAsArrayKind kind) {
i::Factory* factory = isolate->factory();
i::Handle<i::OrderedHashMap> table(i::OrderedHashMap::cast(table_obj),
isolate);
const bool collect_keys =
kind == MapAsArrayKind::kEntries || kind == MapAsArrayKind::kKeys;
const bool collect_values =
kind == MapAsArrayKind::kEntries || kind == MapAsArrayKind::kValues;
int capacity = table->UsedCapacity();
int max_length =
(capacity - offset) * ((collect_keys && collect_values) ? 2 : 1);
i::Handle<i::FixedArray> result = factory->NewFixedArray(max_length);
int result_index = 0;
{
i::DisallowHeapAllocation no_gc;
i::Oddball the_hole = i::ReadOnlyRoots(isolate).the_hole_value();
for (int i = offset; i < capacity; ++i) {
i::InternalIndex entry(i);
i::Object key = table->KeyAt(entry);
if (key == the_hole) continue;
if (collect_keys) result->set(result_index++, key);
if (collect_values) result->set(result_index++, table->ValueAt(entry));
}
}
DCHECK_GE(max_length, result_index);
if (result_index == 0) return factory->NewJSArray(0);
result->Shrink(isolate, result_index);
return factory->NewJSArrayWithElements(result, i::PACKED_ELEMENTS,
result_index);
}
} // namespace
Local<Array> Map::AsArray() const {
i::Handle<i::JSMap> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
LOG_API(isolate, Map, AsArray);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
return Utils::ToLocal(
MapAsArray(isolate, obj->table(), 0, MapAsArrayKind::kEntries));
}
Local<v8::Set> v8::Set::New(Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, Set, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::JSSet> obj = i_isolate->factory()->NewJSSet();
return Utils::ToLocal(obj);
}
size_t v8::Set::Size() const {
i::Handle<i::JSSet> obj = Utils::OpenHandle(this);
return i::OrderedHashSet::cast(obj->table()).NumberOfElements();
}
void Set::Clear() {
auto self = Utils::OpenHandle(this);
i::Isolate* isolate = self->GetIsolate();
LOG_API(isolate, Set, Clear);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::JSSet::Clear(isolate, self);
}
MaybeLocal<Set> Set::Add(Local<Context> context, Local<Value> key) {
PREPARE_FOR_EXECUTION(context, Set, Add, Set);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::CallBuiltin(isolate, isolate->set_add(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Set);
RETURN_ESCAPED(Local<Set>::Cast(Utils::ToLocal(result)));
}
Maybe<bool> Set::Has(Local<Context> context, Local<Value> key) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Set, Has, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::CallBuiltin(isolate, isolate->set_has(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(result->IsTrue(isolate));
}
Maybe<bool> Set::Delete(Local<Context> context, Local<Value> key) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Set, Delete, Nothing<bool>(), i::HandleScope);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!i::Execution::CallBuiltin(isolate, isolate->set_delete(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(result->IsTrue(isolate));
}
namespace {
i::Handle<i::JSArray> SetAsArray(i::Isolate* isolate, i::Object table_obj,
int offset, SetAsArrayKind kind) {
i::Factory* factory = isolate->factory();
i::Handle<i::OrderedHashSet> table(i::OrderedHashSet::cast(table_obj),
isolate);
// Elements skipped by |offset| may already be deleted.
int capacity = table->UsedCapacity();
const bool collect_key_values = kind == SetAsArrayKind::kEntries;
int max_length = (capacity - offset) * (collect_key_values ? 2 : 1);
if (max_length == 0) return factory->NewJSArray(0);
i::Handle<i::FixedArray> result = factory->NewFixedArray(max_length);
int result_index = 0;
{
i::DisallowHeapAllocation no_gc;
i::Oddball the_hole = i::ReadOnlyRoots(isolate).the_hole_value();
for (int i = offset; i < capacity; ++i) {
i::InternalIndex entry(i);
i::Object key = table->KeyAt(entry);
if (key == the_hole) continue;
result->set(result_index++, key);
if (collect_key_values) result->set(result_index++, key);
}
}
DCHECK_GE(max_length, result_index);
if (result_index == 0) return factory->NewJSArray(0);
result->Shrink(isolate, result_index);
return factory->NewJSArrayWithElements(result, i::PACKED_ELEMENTS,
result_index);
}
} // namespace
Local<Array> Set::AsArray() const {
i::Handle<i::JSSet> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
LOG_API(isolate, Set, AsArray);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
return Utils::ToLocal(
SetAsArray(isolate, obj->table(), 0, SetAsArrayKind::kValues));
}
MaybeLocal<Promise::Resolver> Promise::Resolver::New(Local<Context> context) {
PREPARE_FOR_EXECUTION(context, Promise_Resolver, New, Resolver);
Local<Promise::Resolver> result;
has_pending_exception =
!ToLocal<Promise::Resolver>(isolate->factory()->NewJSPromise(), &result);
RETURN_ON_FAILED_EXECUTION(Promise::Resolver);
RETURN_ESCAPED(result);
}
Local<Promise> Promise::Resolver::GetPromise() {
i::Handle<i::JSReceiver> promise = Utils::OpenHandle(this);
return Local<Promise>::Cast(Utils::ToLocal(promise));
}
Maybe<bool> Promise::Resolver::Resolve(Local<Context> context,
Local<Value> value) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Promise_Resolver, Resolve, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
auto promise = i::Handle<i::JSPromise>::cast(self);
if (promise->status() != Promise::kPending) {
return Just(true);
}
has_pending_exception =
i::JSPromise::Resolve(promise, Utils::OpenHandle(*value)).is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
Maybe<bool> Promise::Resolver::Reject(Local<Context> context,
Local<Value> value) {
auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8(isolate, context, Promise_Resolver, Reject, Nothing<bool>(),
i::HandleScope);
auto self = Utils::OpenHandle(this);
auto promise = i::Handle<i::JSPromise>::cast(self);
if (promise->status() != Promise::kPending) {
return Just(true);
}
has_pending_exception =
i::JSPromise::Reject(promise, Utils::OpenHandle(*value)).is_null();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return Just(true);
}
MaybeLocal<Promise> Promise::Catch(Local<Context> context,
Local<Function> handler) {
PREPARE_FOR_EXECUTION(context, Promise, Catch, Promise);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*handler)};
i::Handle<i::Object> result;
has_pending_exception =
!i::Execution::CallBuiltin(isolate, isolate->promise_catch(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Promise);
RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result)));
}
MaybeLocal<Promise> Promise::Then(Local<Context> context,
Local<Function> handler) {
PREPARE_FOR_EXECUTION(context, Promise, Then, Promise);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*handler)};
i::Handle<i::Object> result;
has_pending_exception =
!i::Execution::CallBuiltin(isolate, isolate->promise_then(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Promise);
RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result)));
}
MaybeLocal<Promise> Promise::Then(Local<Context> context,
Local<Function> on_fulfilled,
Local<Function> on_rejected) {
PREPARE_FOR_EXECUTION(context, Promise, Then, Promise);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*on_fulfilled),
Utils::OpenHandle(*on_rejected)};
i::Handle<i::Object> result;
has_pending_exception =
!i::Execution::CallBuiltin(isolate, isolate->promise_then(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(Promise);
RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result)));
}
bool Promise::HasHandler() {
i::Handle<i::JSReceiver> promise = Utils::OpenHandle(this);
i::Isolate* isolate = promise->GetIsolate();
LOG_API(isolate, Promise, HasRejectHandler);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
if (promise->IsJSPromise()) {
i::Handle<i::JSPromise> js_promise = i::Handle<i::JSPromise>::cast(promise);
return js_promise->has_handler();
}
return false;
}
Local<Value> Promise::Result() {
i::Handle<i::JSReceiver> promise = Utils::OpenHandle(this);
i::Isolate* isolate = promise->GetIsolate();
LOG_API(isolate, Promise, Result);
i::Handle<i::JSPromise> js_promise = i::Handle<i::JSPromise>::cast(promise);
Utils::ApiCheck(js_promise->status() != kPending, "v8_Promise_Result",
"Promise is still pending");
i::Handle<i::Object> result(js_promise->result(), isolate);
return Utils::ToLocal(result);
}
Promise::PromiseState Promise::State() {
i::Handle<i::JSReceiver> promise = Utils::OpenHandle(this);
i::Isolate* isolate = promise->GetIsolate();
LOG_API(isolate, Promise, Status);
i::Handle<i::JSPromise> js_promise = i::Handle<i::JSPromise>::cast(promise);
return static_cast<PromiseState>(js_promise->status());
}
void Promise::MarkAsHandled() {
i::Handle<i::JSPromise> js_promise = Utils::OpenHandle(this);
js_promise->set_has_handler(true);
}
Local<Value> Proxy::GetTarget() {
i::Handle<i::JSProxy> self = Utils::OpenHandle(this);
i::Handle<i::Object> target(self->target(), self->GetIsolate());
return Utils::ToLocal(target);
}
Local<Value> Proxy::GetHandler() {
i::Handle<i::JSProxy> self = Utils::OpenHandle(this);
i::Handle<i::Object> handler(self->handler(), self->GetIsolate());
return Utils::ToLocal(handler);
}
bool Proxy::IsRevoked() {
i::Handle<i::JSProxy> self = Utils::OpenHandle(this);
return self->IsRevoked();
}
void Proxy::Revoke() {
i::Handle<i::JSProxy> self = Utils::OpenHandle(this);
i::JSProxy::Revoke(self);
}
MaybeLocal<Proxy> Proxy::New(Local<Context> context, Local<Object> local_target,
Local<Object> local_handler) {
PREPARE_FOR_EXECUTION(context, Proxy, New, Proxy);
i::Handle<i::JSReceiver> target = Utils::OpenHandle(*local_target);
i::Handle<i::JSReceiver> handler = Utils::OpenHandle(*local_handler);
Local<Proxy> result;
has_pending_exception =
!ToLocal<Proxy>(i::JSProxy::New(isolate, target, handler), &result);
RETURN_ON_FAILED_EXECUTION(Proxy);
RETURN_ESCAPED(result);
}
CompiledWasmModule::CompiledWasmModule(
std::shared_ptr<internal::wasm::NativeModule> native_module,
const char* source_url, size_t url_length)
: native_module_(std::move(native_module)),
source_url_(source_url, url_length) {
CHECK_NOT_NULL(native_module_);
}
OwnedBuffer CompiledWasmModule::Serialize() {
#if !defined(DISABLE_WASM_COMPILER_ISSUE_STARBOARD)
TRACE_EVENT0("v8.wasm", "wasm.SerializeModule");
i::wasm::WasmSerializer wasm_serializer(native_module_.get());
size_t buffer_size = wasm_serializer.GetSerializedNativeModuleSize();
std::unique_ptr<uint8_t[]> buffer(new uint8_t[buffer_size]);
if (!wasm_serializer.SerializeNativeModule({buffer.get(), buffer_size}))
return {};
return {std::move(buffer), buffer_size};
#else
// The std::move(uint8_t[]) issue
return OwnedBuffer();
#endif
}
MemorySpan<const uint8_t> CompiledWasmModule::GetWireBytesRef() {
i::Vector<const uint8_t> bytes_vec = native_module_->wire_bytes();
return {bytes_vec.begin(), bytes_vec.size()};
}
CompiledWasmModule WasmModuleObject::GetCompiledModule() {
i::Handle<i::WasmModuleObject> obj =
i::Handle<i::WasmModuleObject>::cast(Utils::OpenHandle(this));
auto source_url = i::String::cast(obj->script().source_url());
int length;
std::unique_ptr<char[]> cstring = source_url.ToCString(
i::DISALLOW_NULLS, i::FAST_STRING_TRAVERSAL, &length);
i::Handle<i::String> url(source_url, obj->GetIsolate());
return CompiledWasmModule(std::move(obj->shared_native_module()),
cstring.get(), length);
}
MaybeLocal<WasmModuleObject> WasmModuleObject::FromCompiledModule(
Isolate* isolate, const CompiledWasmModule& compiled_module) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Handle<i::WasmModuleObject> module_object =
i_isolate->wasm_engine()->ImportNativeModule(
i_isolate, compiled_module.native_module_,
i::VectorOf(compiled_module.source_url()));
return Local<WasmModuleObject>::Cast(
Utils::ToLocal(i::Handle<i::JSObject>::cast(module_object)));
}
WasmModuleObjectBuilderStreaming::WasmModuleObjectBuilderStreaming(
Isolate* isolate) {
USE(isolate_);
}
Local<Promise> WasmModuleObjectBuilderStreaming::GetPromise() { return {}; }
void WasmModuleObjectBuilderStreaming::OnBytesReceived(const uint8_t* bytes,
size_t size) {}
void WasmModuleObjectBuilderStreaming::Finish() {}
void WasmModuleObjectBuilderStreaming::Abort(MaybeLocal<Value> exception) {}
void* v8::ArrayBuffer::Allocator::Reallocate(void* data, size_t old_length,
size_t new_length) {
if (old_length == new_length) return data;
uint8_t* new_data =
reinterpret_cast<uint8_t*>(AllocateUninitialized(new_length));
if (new_data == nullptr) return nullptr;
size_t bytes_to_copy = std::min(old_length, new_length);
memcpy(new_data, data, bytes_to_copy);
if (new_length > bytes_to_copy) {
memset(new_data + bytes_to_copy, 0, new_length - bytes_to_copy);
}
Free(data, old_length);
return new_data;
}
// static
v8::ArrayBuffer::Allocator* v8::ArrayBuffer::Allocator::NewDefaultAllocator() {
return new ArrayBufferAllocator();
}
bool v8::ArrayBuffer::IsExternal() const {
return Utils::OpenHandle(this)->is_external();
}
bool v8::ArrayBuffer::IsDetachable() const {
return Utils::OpenHandle(this)->is_detachable();
}
namespace {
// The backing store deleter just deletes the indirection, which downrefs
// the shared pointer. It will get collected normally.
void BackingStoreDeleter(void* buffer, size_t length, void* info) {
std::shared_ptr<i::BackingStore>* bs_indirection =
reinterpret_cast<std::shared_ptr<i::BackingStore>*>(info);
if (bs_indirection) {
i::BackingStore* backing_store = bs_indirection->get();
TRACE_BS("API:delete bs=%p mem=%p (length=%zu)\n", backing_store,
backing_store->buffer_start(), backing_store->byte_length());
USE(backing_store);
}
delete bs_indirection;
}
void* MakeDeleterData(std::shared_ptr<i::BackingStore> backing_store) {
if (!backing_store) return nullptr;
TRACE_BS("API:extern bs=%p mem=%p (length=%zu)\n", backing_store.get(),
backing_store->buffer_start(), backing_store->byte_length());
return new std::shared_ptr<i::BackingStore>(backing_store);
}
std::shared_ptr<i::BackingStore> LookupOrCreateBackingStore(
i::Isolate* i_isolate, void* data, size_t byte_length, i::SharedFlag shared,
ArrayBufferCreationMode mode) {
// "internalized" means that the storage was allocated by the
// ArrayBufferAllocator and thus should be freed upon destruction.
bool free_on_destruct = mode == ArrayBufferCreationMode::kInternalized;
// Try to lookup a previously-registered backing store in the global
// registry. If found, use that instead of wrapping an embedder allocation.
std::shared_ptr<i::BackingStore> backing_store =
i::GlobalBackingStoreRegistry::Lookup(data, byte_length);
if (backing_store) {
// Check invariants for a previously-found backing store.
// 1. We cannot allow an embedder to first allocate a backing store that
// should not be freed upon destruct, and then allocate an alias that should
// destruct it. The other order is fine.
bool changing_destruct_mode =
free_on_destruct && !backing_store->free_on_destruct();
Utils::ApiCheck(
!changing_destruct_mode, "v8_[Shared]ArrayBuffer_New",
"previous backing store found that should not be freed on destruct");
// 2. We cannot allow embedders to use the same backing store for both
// SharedArrayBuffers and regular ArrayBuffers.
bool changing_shared_flag =
(shared == i::SharedFlag::kShared) != backing_store->is_shared();
Utils::ApiCheck(
!changing_shared_flag, "v8_[Shared]ArrayBuffer_New",
"previous backing store found that does not match shared flag");
} else {
// No previous backing store found.
backing_store = i::BackingStore::WrapAllocation(
i_isolate, data, byte_length, shared, free_on_destruct);
// The embedder already has a direct pointer to the buffer start, so
// globally register the backing store in case they come back with the
// same buffer start and the backing store is marked as free_on_destruct.
i::GlobalBackingStoreRegistry::Register(backing_store);
}
return backing_store;
}
std::shared_ptr<i::BackingStore> ToInternal(
std::shared_ptr<i::BackingStoreBase> backing_store) {
return std::static_pointer_cast<i::BackingStore>(backing_store);
}
} // namespace
v8::ArrayBuffer::Contents::Contents(void* data, size_t byte_length,
void* allocation_base,
size_t allocation_length,
Allocator::AllocationMode allocation_mode,
DeleterCallback deleter, void* deleter_data)
: data_(data),
byte_length_(byte_length),
allocation_base_(allocation_base),
allocation_length_(allocation_length),
allocation_mode_(allocation_mode),
deleter_(deleter),
deleter_data_(deleter_data) {
DCHECK_LE(allocation_base_, data_);
DCHECK_LE(byte_length_, allocation_length_);
}
v8::ArrayBuffer::Contents v8::ArrayBuffer::Externalize() {
return GetContents(true);
}
void v8::ArrayBuffer::Externalize(
const std::shared_ptr<BackingStore>& backing_store) {
i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this);
Utils::ApiCheck(!self->is_external(), "v8_ArrayBuffer_Externalize",
"ArrayBuffer already externalized");
self->set_is_external(true);
DCHECK_EQ(self->backing_store(), backing_store->Data());
}
v8::ArrayBuffer::Contents v8::ArrayBuffer::GetContents() {
return GetContents(false);
}
v8::ArrayBuffer::Contents v8::ArrayBuffer::GetContents(bool externalize) {
// TODO(titzer): reduce duplication between shared/unshared GetContents()
using BufferType = v8::ArrayBuffer;
i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this);
std::shared_ptr<i::BackingStore> backing_store = self->GetBackingStore();
void* deleter_data = nullptr;
if (externalize) {
Utils::ApiCheck(!self->is_external(), "v8_ArrayBuffer_Externalize",
"ArrayBuffer already externalized");
self->set_is_external(true);
// When externalizing, upref the shared pointer to the backing store
// and store that as the deleter data. When the embedder calls the deleter
// callback, we will delete the additional (on-heap) shared_ptr.
deleter_data = MakeDeleterData(backing_store);
}
if (!backing_store) {
// If the array buffer has zero length or was detached, return empty
// contents.
DCHECK_EQ(0, self->byte_length());
BufferType::Contents contents(
nullptr, 0, nullptr, 0,
v8::ArrayBuffer::Allocator::AllocationMode::kNormal,
BackingStoreDeleter, deleter_data);
return contents;
}
// Backing stores that given to the embedder might be passed back through
// the API using only the start of the buffer. We need to find such
// backing stores using global registration until the API is changed.
i::GlobalBackingStoreRegistry::Register(backing_store);
auto allocation_mode =
backing_store->is_wasm_memory()
? v8::ArrayBuffer::Allocator::AllocationMode::kReservation
: v8::ArrayBuffer::Allocator::AllocationMode::kNormal;
BufferType::Contents contents(backing_store->buffer_start(), // --
backing_store->byte_length(), // --
backing_store->buffer_start(), // --
backing_store->byte_length(), // --
allocation_mode, // --
BackingStoreDeleter, // --
deleter_data);
return contents;
}
void v8::ArrayBuffer::Detach() {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
i::Isolate* isolate = obj->GetIsolate();
Utils::ApiCheck(obj->is_detachable(), "v8::ArrayBuffer::Detach",
"Only detachable ArrayBuffers can be detached");
LOG_API(isolate, ArrayBuffer, Detach);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
obj->Detach();
}
size_t v8::ArrayBuffer::ByteLength() const {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
return obj->byte_length();
}
Local<ArrayBuffer> v8::ArrayBuffer::New(Isolate* isolate, size_t byte_length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, ArrayBuffer, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::MaybeHandle<i::JSArrayBuffer> result =
i_isolate->factory()->NewJSArrayBufferAndBackingStore(
byte_length, i::InitializedFlag::kZeroInitialized);
i::Handle<i::JSArrayBuffer> array_buffer;
if (!result.ToHandle(&array_buffer)) {
// TODO(jbroman): It may be useful in the future to provide a MaybeLocal
// version that throws an exception or otherwise does not crash.
i::FatalProcessOutOfMemory(i_isolate, "v8::ArrayBuffer::New");
}
return Utils::ToLocal(array_buffer);
}
Local<ArrayBuffer> v8::ArrayBuffer::New(Isolate* isolate, void* data,
size_t byte_length,
ArrayBufferCreationMode mode) {
// Embedders must guarantee that the external backing store is valid.
CHECK_IMPLIES(byte_length != 0, data != nullptr);
CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, ArrayBuffer, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
std::shared_ptr<i::BackingStore> backing_store = LookupOrCreateBackingStore(
i_isolate, data, byte_length, i::SharedFlag::kNotShared, mode);
i::Handle<i::JSArrayBuffer> obj =
i_isolate->factory()->NewJSArrayBuffer(std::move(backing_store));
if (mode == ArrayBufferCreationMode::kExternalized) {
obj->set_is_external(true);
}
return Utils::ToLocal(obj);
}
Local<ArrayBuffer> v8::ArrayBuffer::New(
Isolate* isolate, std::shared_ptr<BackingStore> backing_store) {
CHECK_IMPLIES(backing_store->ByteLength() != 0,
backing_store->Data() != nullptr);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, ArrayBuffer, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
std::shared_ptr<i::BackingStore> i_backing_store(
ToInternal(std::move(backing_store)));
Utils::ApiCheck(
!i_backing_store->is_shared(), "v8_ArrayBuffer_New",
"Cannot construct ArrayBuffer with a BackingStore of SharedArrayBuffer");
i::Handle<i::JSArrayBuffer> obj =
i_isolate->factory()->NewJSArrayBuffer(std::move(i_backing_store));
return Utils::ToLocal(obj);
}
std::unique_ptr<v8::BackingStore> v8::ArrayBuffer::NewBackingStore(
Isolate* isolate, size_t byte_length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, ArrayBuffer, NewBackingStore);
CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
std::unique_ptr<i::BackingStoreBase> backing_store =
i::BackingStore::Allocate(i_isolate, byte_length,
i::SharedFlag::kNotShared,
i::InitializedFlag::kZeroInitialized);
if (!backing_store) {
i::FatalProcessOutOfMemory(i_isolate, "v8::ArrayBuffer::NewBackingStore");
}
return std::unique_ptr<v8::BackingStore>(
static_cast<v8::BackingStore*>(backing_store.release()));
}
std::unique_ptr<v8::BackingStore> v8::ArrayBuffer::NewBackingStore(
void* data, size_t byte_length, v8::BackingStore::DeleterCallback deleter,
void* deleter_data) {
CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength);
std::unique_ptr<i::BackingStoreBase> backing_store =
i::BackingStore::WrapAllocation(data, byte_length, deleter, deleter_data,
i::SharedFlag::kNotShared);
return std::unique_ptr<v8::BackingStore>(
static_cast<v8::BackingStore*>(backing_store.release()));
}
Local<ArrayBuffer> v8::ArrayBufferView::Buffer() {
i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this);
i::Handle<i::JSArrayBuffer> buffer;
if (obj->IsJSDataView()) {
i::Handle<i::JSDataView> data_view(i::JSDataView::cast(*obj),
obj->GetIsolate());
DCHECK(data_view->buffer().IsJSArrayBuffer());
buffer = i::handle(i::JSArrayBuffer::cast(data_view->buffer()),
data_view->GetIsolate());
} else {
DCHECK(obj->IsJSTypedArray());
buffer = i::JSTypedArray::cast(*obj).GetBuffer();
}
return Utils::ToLocal(buffer);
}
size_t v8::ArrayBufferView::CopyContents(void* dest, size_t byte_length) {
i::Handle<i::JSArrayBufferView> self = Utils::OpenHandle(this);
size_t byte_offset = self->byte_offset();
size_t bytes_to_copy = std::min(byte_length, self->byte_length());
if (bytes_to_copy) {
i::DisallowHeapAllocation no_gc;
i::Isolate* isolate = self->GetIsolate();
i::Handle<i::JSArrayBuffer> buffer(i::JSArrayBuffer::cast(self->buffer()),
isolate);
const char* source = reinterpret_cast<char*>(buffer->backing_store());
if (source == nullptr) {
DCHECK(self->IsJSTypedArray());
i::Handle<i::JSTypedArray> typed_array(i::JSTypedArray::cast(*self),
isolate);
source = reinterpret_cast<char*>(typed_array->DataPtr());
}
memcpy(dest, source + byte_offset, bytes_to_copy);
}
return bytes_to_copy;
}
bool v8::ArrayBufferView::HasBuffer() const {
i::Handle<i::JSArrayBufferView> self = Utils::OpenHandle(this);
if (!self->IsJSTypedArray()) return true;
auto typed_array = i::Handle<i::JSTypedArray>::cast(self);
return !typed_array->is_on_heap();
}
size_t v8::ArrayBufferView::ByteOffset() {
i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this);
return obj->WasDetached() ? 0 : obj->byte_offset();
}
size_t v8::ArrayBufferView::ByteLength() {
i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this);
return obj->WasDetached() ? 0 : obj->byte_length();
}
size_t v8::TypedArray::Length() {
i::Handle<i::JSTypedArray> obj = Utils::OpenHandle(this);
return obj->WasDetached() ? 0 : obj->length();
}
static_assert(
v8::TypedArray::kMaxLength == i::JSTypedArray::kMaxLength,
"v8::TypedArray::kMaxLength must match i::JSTypedArray::kMaxLength");
#define TYPED_ARRAY_NEW(Type, type, TYPE, ctype) \
Local<Type##Array> Type##Array::New(Local<ArrayBuffer> array_buffer, \
size_t byte_offset, size_t length) { \
i::Isolate* isolate = Utils::OpenHandle(*array_buffer)->GetIsolate(); \
LOG_API(isolate, Type##Array, New); \
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); \
if (!Utils::ApiCheck(length <= kMaxLength, \
"v8::" #Type \
"Array::New(Local<ArrayBuffer>, size_t, size_t)", \
"length exceeds max allowed value")) { \
return Local<Type##Array>(); \
} \
i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*array_buffer); \
i::Handle<i::JSTypedArray> obj = isolate->factory()->NewJSTypedArray( \
i::kExternal##Type##Array, buffer, byte_offset, length); \
return Utils::ToLocal##Type##Array(obj); \
} \
Local<Type##Array> Type##Array::New( \
Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, \
size_t length) { \
CHECK(i::FLAG_harmony_sharedarraybuffer); \
i::Isolate* isolate = \
Utils::OpenHandle(*shared_array_buffer)->GetIsolate(); \
LOG_API(isolate, Type##Array, New); \
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); \
if (!Utils::ApiCheck( \
length <= kMaxLength, \
"v8::" #Type \
"Array::New(Local<SharedArrayBuffer>, size_t, size_t)", \
"length exceeds max allowed value")) { \
return Local<Type##Array>(); \
} \
i::Handle<i::JSArrayBuffer> buffer = \
Utils::OpenHandle(*shared_array_buffer); \
i::Handle<i::JSTypedArray> obj = isolate->factory()->NewJSTypedArray( \
i::kExternal##Type##Array, buffer, byte_offset, length); \
return Utils::ToLocal##Type##Array(obj); \
}
TYPED_ARRAYS(TYPED_ARRAY_NEW)
#undef TYPED_ARRAY_NEW
Local<DataView> DataView::New(Local<ArrayBuffer> array_buffer,
size_t byte_offset, size_t byte_length) {
i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*array_buffer);
i::Isolate* isolate = buffer->GetIsolate();
LOG_API(isolate, DataView, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::Handle<i::JSDataView> obj =
isolate->factory()->NewJSDataView(buffer, byte_offset, byte_length);
return Utils::ToLocal(obj);
}
Local<DataView> DataView::New(Local<SharedArrayBuffer> shared_array_buffer,
size_t byte_offset, size_t byte_length) {
CHECK(i::FLAG_harmony_sharedarraybuffer);
i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*shared_array_buffer);
i::Isolate* isolate = buffer->GetIsolate();
LOG_API(isolate, DataView, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::Handle<i::JSDataView> obj =
isolate->factory()->NewJSDataView(buffer, byte_offset, byte_length);
return Utils::ToLocal(obj);
}
namespace {
i::Handle<i::JSArrayBuffer> SetupSharedArrayBuffer(
Isolate* isolate, void* data, size_t byte_length,
ArrayBufferCreationMode mode) {
CHECK(i::FLAG_harmony_sharedarraybuffer);
// Embedders must guarantee that the external backing store is valid.
CHECK(byte_length == 0 || data != nullptr);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, SharedArrayBuffer, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
std::shared_ptr<i::BackingStore> backing_store = LookupOrCreateBackingStore(
i_isolate, data, byte_length, i::SharedFlag::kShared, mode);
i::Handle<i::JSArrayBuffer> obj =
i_isolate->factory()->NewJSSharedArrayBuffer(std::move(backing_store));
if (mode == ArrayBufferCreationMode::kExternalized) {
obj->set_is_external(true);
}
return obj;
}
} // namespace
bool v8::SharedArrayBuffer::IsExternal() const {
return Utils::OpenHandle(this)->is_external();
}
v8::SharedArrayBuffer::Contents::Contents(
void* data, size_t byte_length, void* allocation_base,
size_t allocation_length, Allocator::AllocationMode allocation_mode,
DeleterCallback deleter, void* deleter_data)
: data_(data),
byte_length_(byte_length),
allocation_base_(allocation_base),
allocation_length_(allocation_length),
allocation_mode_(allocation_mode),
deleter_(deleter),
deleter_data_(deleter_data) {
DCHECK_LE(allocation_base_, data_);
DCHECK_LE(byte_length_, allocation_length_);
}
v8::SharedArrayBuffer::Contents v8::SharedArrayBuffer::Externalize() {
return GetContents(true);
}
void v8::SharedArrayBuffer::Externalize(
const std::shared_ptr<BackingStore>& backing_store) {
i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this);
Utils::ApiCheck(!self->is_external(), "v8_SharedArrayBuffer_Externalize",
"SharedArrayBuffer already externalized");
self->set_is_external(true);
DCHECK_EQ(self->backing_store(), backing_store->Data());
}
v8::SharedArrayBuffer::Contents v8::SharedArrayBuffer::GetContents() {
return GetContents(false);
}
v8::SharedArrayBuffer::Contents v8::SharedArrayBuffer::GetContents(
bool externalize) {
// TODO(titzer): reduce duplication between shared/unshared GetContents()
using BufferType = v8::SharedArrayBuffer;
i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this);
std::shared_ptr<i::BackingStore> backing_store = self->GetBackingStore();
void* deleter_data = nullptr;
if (externalize) {
Utils::ApiCheck(!self->is_external(), "v8_SharedArrayBuffer_Externalize",
"SharedArrayBuffer already externalized");
self->set_is_external(true);
// When externalizing, upref the shared pointer to the backing store
// and store that as the deleter data. When the embedder calls the deleter
// callback, we will delete the additional (on-heap) shared_ptr.
deleter_data = MakeDeleterData(backing_store);
}
if (!backing_store) {
// If the array buffer has zero length or was detached, return empty
// contents.
DCHECK_EQ(0, self->byte_length());
BufferType::Contents contents(
nullptr, 0, nullptr, 0,
v8::ArrayBuffer::Allocator::AllocationMode::kNormal,
BackingStoreDeleter, deleter_data);
return contents;
}
// Backing stores that given to the embedder might be passed back through
// the API using only the start of the buffer. We need to find such
// backing stores using global registration until the API is changed.
i::GlobalBackingStoreRegistry::Register(backing_store);
auto allocation_mode =
backing_store->is_wasm_memory()
? v8::ArrayBuffer::Allocator::AllocationMode::kReservation
: v8::ArrayBuffer::Allocator::AllocationMode::kNormal;
BufferType::Contents contents(backing_store->buffer_start(), // --
backing_store->byte_length(), // --
backing_store->buffer_start(), // --
backing_store->byte_length(), // --
allocation_mode, // --
BackingStoreDeleter, // --
deleter_data);
return contents;
}
size_t v8::SharedArrayBuffer::ByteLength() const {
i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this);
return obj->byte_length();
}
Local<SharedArrayBuffer> v8::SharedArrayBuffer::New(Isolate* isolate,
size_t byte_length) {
CHECK(i::FLAG_harmony_sharedarraybuffer);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, SharedArrayBuffer, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
std::unique_ptr<i::BackingStore> backing_store =
i::BackingStore::Allocate(i_isolate, byte_length, i::SharedFlag::kShared,
i::InitializedFlag::kZeroInitialized);
if (!backing_store) {
// TODO(jbroman): It may be useful in the future to provide a MaybeLocal
// version that throws an exception or otherwise does not crash.
i::FatalProcessOutOfMemory(i_isolate, "v8::SharedArrayBuffer::New");
}
i::Handle<i::JSArrayBuffer> obj =
i_isolate->factory()->NewJSSharedArrayBuffer(std::move(backing_store));
return Utils::ToLocalShared(obj);
}
Local<SharedArrayBuffer> v8::SharedArrayBuffer::New(
Isolate* isolate, void* data, size_t byte_length,
ArrayBufferCreationMode mode) {
i::Handle<i::JSArrayBuffer> buffer =
SetupSharedArrayBuffer(isolate, data, byte_length, mode);
return Utils::ToLocalShared(buffer);
}
Local<SharedArrayBuffer> v8::SharedArrayBuffer::New(
Isolate* isolate, std::shared_ptr<BackingStore> backing_store) {
CHECK(i::FLAG_harmony_sharedarraybuffer);
CHECK_IMPLIES(backing_store->ByteLength() != 0,
backing_store->Data() != nullptr);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, SharedArrayBuffer, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
std::shared_ptr<i::BackingStore> i_backing_store(ToInternal(backing_store));
Utils::ApiCheck(
i_backing_store->is_shared(), "v8_SharedArrayBuffer_New",
"Cannot construct SharedArrayBuffer with BackingStore of ArrayBuffer");
i::Handle<i::JSArrayBuffer> obj =
i_isolate->factory()->NewJSSharedArrayBuffer(std::move(i_backing_store));
return Utils::ToLocalShared(obj);
}
Local<SharedArrayBuffer> v8::SharedArrayBuffer::New(
Isolate* isolate, const SharedArrayBuffer::Contents& contents,
ArrayBufferCreationMode mode) {
i::Handle<i::JSArrayBuffer> buffer = SetupSharedArrayBuffer(
isolate, contents.Data(), contents.ByteLength(), mode);
return Utils::ToLocalShared(buffer);
}
std::unique_ptr<v8::BackingStore> v8::SharedArrayBuffer::NewBackingStore(
Isolate* isolate, size_t byte_length) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, SharedArrayBuffer, NewBackingStore);
CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
std::unique_ptr<i::BackingStoreBase> backing_store =
i::BackingStore::Allocate(i_isolate, byte_length, i::SharedFlag::kShared,
i::InitializedFlag::kZeroInitialized);
if (!backing_store) {
i::FatalProcessOutOfMemory(i_isolate,
"v8::SharedArrayBuffer::NewBackingStore");
}
return std::unique_ptr<v8::BackingStore>(
static_cast<v8::BackingStore*>(backing_store.release()));
}
std::unique_ptr<v8::BackingStore> v8::SharedArrayBuffer::NewBackingStore(
void* data, size_t byte_length, v8::BackingStore::DeleterCallback deleter,
void* deleter_data) {
CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength);
std::unique_ptr<i::BackingStoreBase> backing_store =
i::BackingStore::WrapAllocation(data, byte_length, deleter, deleter_data,
i::SharedFlag::kShared);
return std::unique_ptr<v8::BackingStore>(
static_cast<v8::BackingStore*>(backing_store.release()));
}
Local<Symbol> v8::Symbol::New(Isolate* isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, Symbol, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Symbol> result = i_isolate->factory()->NewSymbol();
if (!name.IsEmpty()) result->set_description(*Utils::OpenHandle(*name));
return Utils::ToLocal(result);
}
Local<Symbol> v8::Symbol::For(Isolate* isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Handle<i::String> i_name = Utils::OpenHandle(*name);
return Utils::ToLocal(
i_isolate->SymbolFor(i::RootIndex::kPublicSymbolTable, i_name, false));
}
Local<Symbol> v8::Symbol::ForApi(Isolate* isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Handle<i::String> i_name = Utils::OpenHandle(*name);
return Utils::ToLocal(
i_isolate->SymbolFor(i::RootIndex::kApiSymbolTable, i_name, false));
}
#define WELL_KNOWN_SYMBOLS(V) \
V(AsyncIterator, async_iterator) \
V(HasInstance, has_instance) \
V(IsConcatSpreadable, is_concat_spreadable) \
V(Iterator, iterator) \
V(Match, match) \
V(Replace, replace) \
V(Search, search) \
V(Split, split) \
V(ToPrimitive, to_primitive) \
V(ToStringTag, to_string_tag) \
V(Unscopables, unscopables)
#define SYMBOL_GETTER(Name, name) \
Local<Symbol> v8::Symbol::Get##Name(Isolate* isolate) { \
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); \
return Utils::ToLocal(i_isolate->factory()->name##_symbol()); \
}
WELL_KNOWN_SYMBOLS(SYMBOL_GETTER)
#undef SYMBOL_GETTER
#undef WELL_KNOWN_SYMBOLS
Local<Private> v8::Private::New(Isolate* isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, Private, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::Symbol> symbol = i_isolate->factory()->NewPrivateSymbol();
if (!name.IsEmpty()) symbol->set_description(*Utils::OpenHandle(*name));
Local<Symbol> result = Utils::ToLocal(symbol);
return v8::Local<Private>(reinterpret_cast<Private*>(*result));
}
Local<Private> v8::Private::ForApi(Isolate* isolate, Local<String> name) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Handle<i::String> i_name = Utils::OpenHandle(*name);
Local<Symbol> result = Utils::ToLocal(
i_isolate->SymbolFor(i::RootIndex::kApiPrivateSymbolTable, i_name, true));
return v8::Local<Private>(reinterpret_cast<Private*>(*result));
}
Local<Number> v8::Number::New(Isolate* isolate, double value) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
if (std::isnan(value)) {
// Introduce only canonical NaN value into the VM, to avoid signaling NaNs.
value = std::numeric_limits<double>::quiet_NaN();
}
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(internal_isolate);
i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value);
return Utils::NumberToLocal(result);
}
Local<Integer> v8::Integer::New(Isolate* isolate, int32_t value) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
if (i::Smi::IsValid(value)) {
return Utils::IntegerToLocal(
i::Handle<i::Object>(i::Smi::FromInt(value), internal_isolate));
}
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(internal_isolate);
i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value);
return Utils::IntegerToLocal(result);
}
Local<Integer> v8::Integer::NewFromUnsigned(Isolate* isolate, uint32_t value) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
bool fits_into_int32_t = (value & (1 << 31)) == 0;
if (fits_into_int32_t) {
return Integer::New(isolate, static_cast<int32_t>(value));
}
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(internal_isolate);
i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value);
return Utils::IntegerToLocal(result);
}
Local<BigInt> v8::BigInt::New(Isolate* isolate, int64_t value) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(internal_isolate);
i::Handle<i::BigInt> result = i::BigInt::FromInt64(internal_isolate, value);
return Utils::ToLocal(result);
}
Local<BigInt> v8::BigInt::NewFromUnsigned(Isolate* isolate, uint64_t value) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(internal_isolate);
i::Handle<i::BigInt> result = i::BigInt::FromUint64(internal_isolate, value);
return Utils::ToLocal(result);
}
MaybeLocal<BigInt> v8::BigInt::NewFromWords(Local<Context> context,
int sign_bit, int word_count,
const uint64_t* words) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
ENTER_V8_NO_SCRIPT(isolate, context, BigInt, NewFromWords,
MaybeLocal<BigInt>(), InternalEscapableScope);
i::MaybeHandle<i::BigInt> result =
i::BigInt::FromWords64(isolate, sign_bit, word_count, words);
has_pending_exception = result.is_null();
RETURN_ON_FAILED_EXECUTION(BigInt);
RETURN_ESCAPED(Utils::ToLocal(result.ToHandleChecked()));
}
uint64_t v8::BigInt::Uint64Value(bool* lossless) const {
i::Handle<i::BigInt> handle = Utils::OpenHandle(this);
return handle->AsUint64(lossless);
}
int64_t v8::BigInt::Int64Value(bool* lossless) const {
i::Handle<i::BigInt> handle = Utils::OpenHandle(this);
return handle->AsInt64(lossless);
}
int BigInt::WordCount() const {
i::Handle<i::BigInt> handle = Utils::OpenHandle(this);
return handle->Words64Count();
}
void BigInt::ToWordsArray(int* sign_bit, int* word_count,
uint64_t* words) const {
i::Handle<i::BigInt> handle = Utils::OpenHandle(this);
return handle->ToWordsArray64(sign_bit, word_count, words);
}
void Isolate::ReportExternalAllocationLimitReached() {
i::Heap* heap = reinterpret_cast<i::Isolate*>(this)->heap();
if (heap->gc_state() != i::Heap::NOT_IN_GC) return;
heap->ReportExternalMemoryPressure();
}
HeapProfiler* Isolate::GetHeapProfiler() {
i::HeapProfiler* heap_profiler =
reinterpret_cast<i::Isolate*>(this)->heap_profiler();
return reinterpret_cast<HeapProfiler*>(heap_profiler);
}
void Isolate::SetIdle(bool is_idle) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetIdle(is_idle);
}
ArrayBuffer::Allocator* Isolate::GetArrayBufferAllocator() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->array_buffer_allocator();
}
bool Isolate::InContext() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return !isolate->context().is_null();
}
void Isolate::ClearKeptObjects() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->ClearKeptObjects();
}
v8::Local<v8::Context> Isolate::GetCurrentContext() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Context context = isolate->context();
if (context.is_null()) return Local<Context>();
i::Context native_context = context.native_context();
if (native_context.is_null()) return Local<Context>();
return Utils::ToLocal(i::Handle<i::Context>(native_context, isolate));
}
v8::Local<v8::Context> Isolate::GetEnteredContext() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Handle<i::Object> last =
isolate->handle_scope_implementer()->LastEnteredContext();
if (last.is_null()) return Local<Context>();
return Utils::ToLocal(i::Handle<i::Context>::cast(last));
}
v8::Local<v8::Context> Isolate::GetEnteredOrMicrotaskContext() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Handle<i::Object> last =
isolate->handle_scope_implementer()->LastEnteredOrMicrotaskContext();
if (last.is_null()) return Local<Context>();
DCHECK(last->IsNativeContext());
return Utils::ToLocal(i::Handle<i::Context>::cast(last));
}
v8::Local<v8::Context> Isolate::GetIncumbentContext() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Handle<i::Context> context = isolate->GetIncumbentContext();
return Utils::ToLocal(context);
}
v8::Local<Value> Isolate::ThrowException(v8::Local<v8::Value> value) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
ENTER_V8_DO_NOT_USE(isolate);
// If we're passed an empty handle, we throw an undefined exception
// to deal more gracefully with out of memory situations.
if (value.IsEmpty()) {
isolate->ScheduleThrow(i::ReadOnlyRoots(isolate).undefined_value());
} else {
isolate->ScheduleThrow(*Utils::OpenHandle(*value));
}
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
void Isolate::AddGCPrologueCallback(GCCallbackWithData callback, void* data,
GCType gc_type) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->AddGCPrologueCallback(callback, gc_type, data);
}
void Isolate::RemoveGCPrologueCallback(GCCallbackWithData callback,
void* data) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->RemoveGCPrologueCallback(callback, data);
}
void Isolate::AddGCEpilogueCallback(GCCallbackWithData callback, void* data,
GCType gc_type) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->AddGCEpilogueCallback(callback, gc_type, data);
}
void Isolate::RemoveGCEpilogueCallback(GCCallbackWithData callback,
void* data) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->RemoveGCEpilogueCallback(callback, data);
}
static void CallGCCallbackWithoutData(Isolate* isolate, GCType type,
GCCallbackFlags flags, void* data) {
reinterpret_cast<Isolate::GCCallback>(data)(isolate, type, flags);
}
void Isolate::AddGCPrologueCallback(GCCallback callback, GCType gc_type) {
void* data = reinterpret_cast<void*>(callback);
AddGCPrologueCallback(CallGCCallbackWithoutData, data, gc_type);
}
void Isolate::RemoveGCPrologueCallback(GCCallback callback) {
void* data = reinterpret_cast<void*>(callback);
RemoveGCPrologueCallback(CallGCCallbackWithoutData, data);
}
void Isolate::AddGCEpilogueCallback(GCCallback callback, GCType gc_type) {
void* data = reinterpret_cast<void*>(callback);
AddGCEpilogueCallback(CallGCCallbackWithoutData, data, gc_type);
}
void Isolate::RemoveGCEpilogueCallback(GCCallback callback) {
void* data = reinterpret_cast<void*>(callback);
RemoveGCEpilogueCallback(CallGCCallbackWithoutData, data);
}
void Isolate::SetEmbedderHeapTracer(EmbedderHeapTracer* tracer) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->SetEmbedderHeapTracer(tracer);
}
EmbedderHeapTracer* Isolate::GetEmbedderHeapTracer() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->heap()->GetEmbedderHeapTracer();
}
void Isolate::SetGetExternallyAllocatedMemoryInBytesCallback(
GetExternallyAllocatedMemoryInBytesCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->SetGetExternallyAllocatedMemoryInBytesCallback(callback);
}
void Isolate::TerminateExecution() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->stack_guard()->RequestTerminateExecution();
}
bool Isolate::IsExecutionTerminating() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return IsExecutionTerminatingCheck(isolate);
}
void Isolate::CancelTerminateExecution() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->stack_guard()->ClearTerminateExecution();
isolate->CancelTerminateExecution();
}
void Isolate::RequestInterrupt(InterruptCallback callback, void* data) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->RequestInterrupt(callback, data);
}
bool Isolate::HasPendingBackgroundTasks() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->wasm_engine()->HasRunningCompileJob(isolate);
}
void Isolate::RequestGarbageCollectionForTesting(GarbageCollectionType type) {
CHECK(i::FLAG_expose_gc);
if (type == kMinorGarbageCollection) {
reinterpret_cast<i::Isolate*>(this)->heap()->CollectGarbage(
i::NEW_SPACE, i::GarbageCollectionReason::kTesting,
kGCCallbackFlagForced);
} else {
DCHECK_EQ(kFullGarbageCollection, type);
reinterpret_cast<i::Isolate*>(this)->heap()->PreciseCollectAllGarbage(
i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting,
kGCCallbackFlagForced);
}
}
Isolate* Isolate::GetCurrent() {
i::Isolate* isolate = i::Isolate::Current();
return reinterpret_cast<Isolate*>(isolate);
}
// static
Isolate* Isolate::Allocate() {
return reinterpret_cast<Isolate*>(i::Isolate::New());
}
// static
// This is separate so that tests can provide a different |isolate|.
void Isolate::Initialize(Isolate* isolate,
const v8::Isolate::CreateParams& params) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
if (auto allocator = params.array_buffer_allocator_shared) {
CHECK(params.array_buffer_allocator == nullptr ||
params.array_buffer_allocator == allocator.get());
i_isolate->set_array_buffer_allocator(allocator.get());
i_isolate->set_array_buffer_allocator_shared(std::move(allocator));
} else {
CHECK_NOT_NULL(params.array_buffer_allocator);
i_isolate->set_array_buffer_allocator(params.array_buffer_allocator);
}
if (params.snapshot_blob != nullptr) {
i_isolate->set_snapshot_blob(params.snapshot_blob);
} else {
i_isolate->set_snapshot_blob(i::Snapshot::DefaultSnapshotBlob());
}
auto code_event_handler = params.code_event_handler;
#ifdef ENABLE_GDB_JIT_INTERFACE
if (code_event_handler == nullptr && i::FLAG_gdbjit) {
code_event_handler = i::GDBJITInterface::EventHandler;
}
#endif // ENABLE_GDB_JIT_INTERFACE
if (code_event_handler) {
i_isolate->InitializeLoggingAndCounters();
i_isolate->logger()->SetCodeEventHandler(kJitCodeEventDefault,
code_event_handler);
}
if (params.counter_lookup_callback) {
isolate->SetCounterFunction(params.counter_lookup_callback);
}
if (params.create_histogram_callback) {
isolate->SetCreateHistogramFunction(params.create_histogram_callback);
}
if (params.add_histogram_sample_callback) {
isolate->SetAddHistogramSampleFunction(
params.add_histogram_sample_callback);
}
i_isolate->set_api_external_references(params.external_references);
i_isolate->set_allow_atomics_wait(params.allow_atomics_wait);
i_isolate->heap()->ConfigureHeap(params.constraints);
if (params.constraints.stack_limit() != nullptr) {
uintptr_t limit =
reinterpret_cast<uintptr_t>(params.constraints.stack_limit());
i_isolate->stack_guard()->SetStackLimit(limit);
}
// TODO(jochen): Once we got rid of Isolate::Current(), we can remove this.
Isolate::Scope isolate_scope(isolate);
if (!i::Snapshot::Initialize(i_isolate)) {
// If snapshot data was provided and we failed to deserialize it must
// have been corrupted.
if (i_isolate->snapshot_blob() != nullptr) {
FATAL(
"Failed to deserialize the V8 snapshot blob. This can mean that the "
"snapshot blob file is corrupted or missing.");
}
base::ElapsedTimer timer;
if (i::FLAG_profile_deserialization) timer.Start();
i_isolate->InitWithoutSnapshot();
if (i::FLAG_profile_deserialization) {
double ms = timer.Elapsed().InMillisecondsF();
i::PrintF("[Initializing isolate from scratch took %0.3f ms]\n", ms);
}
}
i_isolate->set_only_terminate_in_safe_scope(
params.only_terminate_in_safe_scope);
i_isolate->set_embedder_wrapper_type_index(
params.embedder_wrapper_type_index);
i_isolate->set_embedder_wrapper_object_index(
params.embedder_wrapper_object_index);
if (!i::V8::GetCurrentPlatform()
->GetForegroundTaskRunner(isolate)
->NonNestableTasksEnabled()) {
FATAL(
"The current platform's foreground task runner does not have "
"non-nestable tasks enabled. The embedder must provide one.");
}
}
Isolate* Isolate::New(const Isolate::CreateParams& params) {
Isolate* isolate = Allocate();
Initialize(isolate, params);
return isolate;
}
void Isolate::Dispose() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
if (!Utils::ApiCheck(!isolate->IsInUse(), "v8::Isolate::Dispose()",
"Disposing the isolate that is entered by a thread.")) {
return;
}
i::Isolate::Delete(isolate);
}
void Isolate::DumpAndResetStats() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->DumpAndResetStats();
}
void Isolate::DiscardThreadSpecificMetadata() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->DiscardPerThreadDataForThisThread();
}
void Isolate::Enter() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->Enter();
}
void Isolate::Exit() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->Exit();
}
void Isolate::SetAbortOnUncaughtExceptionCallback(
AbortOnUncaughtExceptionCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetAbortOnUncaughtExceptionCallback(callback);
}
void Isolate::SetHostImportModuleDynamicallyCallback(
HostImportModuleDynamicallyCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetHostImportModuleDynamicallyCallback(callback);
}
void Isolate::SetHostInitializeImportMetaObjectCallback(
HostInitializeImportMetaObjectCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetHostInitializeImportMetaObjectCallback(callback);
}
void Isolate::SetPrepareStackTraceCallback(PrepareStackTraceCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetPrepareStackTraceCallback(callback);
}
Isolate::DisallowJavascriptExecutionScope::DisallowJavascriptExecutionScope(
Isolate* isolate,
Isolate::DisallowJavascriptExecutionScope::OnFailure on_failure)
: on_failure_(on_failure) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
switch (on_failure_) {
case CRASH_ON_FAILURE:
internal_ = reinterpret_cast<void*>(
new i::DisallowJavascriptExecution(i_isolate));
break;
case THROW_ON_FAILURE:
DCHECK_EQ(THROW_ON_FAILURE, on_failure);
internal_ =
reinterpret_cast<void*>(new i::ThrowOnJavascriptExecution(i_isolate));
break;
case DUMP_ON_FAILURE:
internal_ =
reinterpret_cast<void*>(new i::DumpOnJavascriptExecution(i_isolate));
break;
default:
UNREACHABLE();
}
}
Isolate::DisallowJavascriptExecutionScope::~DisallowJavascriptExecutionScope() {
switch (on_failure_) {
case CRASH_ON_FAILURE:
delete reinterpret_cast<i::DisallowJavascriptExecution*>(internal_);
break;
case THROW_ON_FAILURE:
delete reinterpret_cast<i::ThrowOnJavascriptExecution*>(internal_);
break;
case DUMP_ON_FAILURE:
delete reinterpret_cast<i::DumpOnJavascriptExecution*>(internal_);
break;
default:
UNREACHABLE();
}
}
Isolate::AllowJavascriptExecutionScope::AllowJavascriptExecutionScope(
Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
internal_assert_ =
reinterpret_cast<void*>(new i::AllowJavascriptExecution(i_isolate));
internal_throws_ =
reinterpret_cast<void*>(new i::NoThrowOnJavascriptExecution(i_isolate));
internal_dump_ =
reinterpret_cast<void*>(new i::NoDumpOnJavascriptExecution(i_isolate));
}
Isolate::AllowJavascriptExecutionScope::~AllowJavascriptExecutionScope() {
delete reinterpret_cast<i::AllowJavascriptExecution*>(internal_assert_);
delete reinterpret_cast<i::NoThrowOnJavascriptExecution*>(internal_throws_);
delete reinterpret_cast<i::NoDumpOnJavascriptExecution*>(internal_dump_);
}
Isolate::SuppressMicrotaskExecutionScope::SuppressMicrotaskExecutionScope(
Isolate* isolate, MicrotaskQueue* microtask_queue)
: isolate_(reinterpret_cast<i::Isolate*>(isolate)),
microtask_queue_(microtask_queue
? static_cast<i::MicrotaskQueue*>(microtask_queue)
: isolate_->default_microtask_queue()) {
isolate_->thread_local_top()->IncrementCallDepth(this);
microtask_queue_->IncrementMicrotasksSuppressions();
}
Isolate::SuppressMicrotaskExecutionScope::~SuppressMicrotaskExecutionScope() {
microtask_queue_->DecrementMicrotasksSuppressions();
isolate_->thread_local_top()->DecrementCallDepth(this);
}
Isolate::SafeForTerminationScope::SafeForTerminationScope(v8::Isolate* isolate)
: isolate_(reinterpret_cast<i::Isolate*>(isolate)),
prev_value_(isolate_->next_v8_call_is_safe_for_termination()) {
isolate_->set_next_v8_call_is_safe_for_termination(true);
}
Isolate::SafeForTerminationScope::~SafeForTerminationScope() {
isolate_->set_next_v8_call_is_safe_for_termination(prev_value_);
}
i::Address* Isolate::GetDataFromSnapshotOnce(size_t index) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
i::FixedArray list = i_isolate->heap()->serialized_objects();
return GetSerializedDataFromFixedArray(i_isolate, list, index);
}
void Isolate::GetHeapStatistics(HeapStatistics* heap_statistics) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Heap* heap = isolate->heap();
// The order of acquiring memory statistics is important here. We query in
// this order because of concurrent allocation: 1) used memory 2) comitted
// physical memory 3) committed memory. Therefore the condition used <=
// committed physical <= committed should hold.
heap_statistics->used_global_handles_size_ = heap->UsedGlobalHandlesSize();
heap_statistics->total_global_handles_size_ = heap->TotalGlobalHandlesSize();
DCHECK_LE(heap_statistics->used_global_handles_size_,
heap_statistics->total_global_handles_size_);
heap_statistics->used_heap_size_ = heap->SizeOfObjects();
heap_statistics->total_physical_size_ = heap->CommittedPhysicalMemory();
heap_statistics->total_heap_size_ = heap->CommittedMemory();
heap_statistics->total_available_size_ = heap->Available();
if (!i::ReadOnlyHeap::IsReadOnlySpaceShared()) {
i::ReadOnlySpace* ro_space = heap->read_only_space();
heap_statistics->used_heap_size_ += ro_space->Size();
heap_statistics->total_physical_size_ +=
ro_space->CommittedPhysicalMemory();
heap_statistics->total_heap_size_ += ro_space->CommittedMemory();
}
// TODO(dinfuehr): Right now used <= committed physical does not hold. Fix
// this and add DCHECK.
DCHECK_LE(heap_statistics->used_heap_size_,
heap_statistics->total_heap_size_);
heap_statistics->total_heap_size_executable_ =
heap->CommittedMemoryExecutable();
heap_statistics->heap_size_limit_ = heap->MaxReserved();
// TODO(7424): There is no public API for the {WasmEngine} yet. Once such an
// API becomes available we should report the malloced memory separately. For
// now we just add the values, thereby over-approximating the peak slightly.
heap_statistics->malloced_memory_ =
isolate->allocator()->GetCurrentMemoryUsage() +
isolate->wasm_engine()->allocator()->GetCurrentMemoryUsage() +
isolate->string_table()->GetCurrentMemoryUsage();
heap_statistics->external_memory_ = isolate->heap()->backing_store_bytes();
heap_statistics->peak_malloced_memory_ =
isolate->allocator()->GetMaxMemoryUsage() +
isolate->wasm_engine()->allocator()->GetMaxMemoryUsage();
heap_statistics->number_of_native_contexts_ = heap->NumberOfNativeContexts();
heap_statistics->number_of_detached_contexts_ =
heap->NumberOfDetachedContexts();
heap_statistics->does_zap_garbage_ = heap->ShouldZapGarbage();
}
size_t Isolate::NumberOfHeapSpaces() {
return i::LAST_SPACE - i::FIRST_SPACE + 1;
}
bool Isolate::GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics,
size_t index) {
if (!space_statistics) return false;
if (!i::Heap::IsValidAllocationSpace(static_cast<i::AllocationSpace>(index)))
return false;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Heap* heap = isolate->heap();
i::AllocationSpace allocation_space = static_cast<i::AllocationSpace>(index);
space_statistics->space_name_ = i::BaseSpace::GetSpaceName(allocation_space);
if (allocation_space == i::RO_SPACE) {
if (i::ReadOnlyHeap::IsReadOnlySpaceShared()) {
// RO_SPACE memory is accounted for elsewhere when ReadOnlyHeap is shared.
space_statistics->space_size_ = 0;
space_statistics->space_used_size_ = 0;
space_statistics->space_available_size_ = 0;
space_statistics->physical_space_size_ = 0;
} else {
i::ReadOnlySpace* space = heap->read_only_space();
space_statistics->space_size_ = space->CommittedMemory();
space_statistics->space_used_size_ = space->Size();
space_statistics->space_available_size_ = 0;
space_statistics->physical_space_size_ = space->CommittedPhysicalMemory();
}
} else {
i::Space* space = heap->space(static_cast<int>(index));
space_statistics->space_size_ = space->CommittedMemory();
space_statistics->space_used_size_ = space->SizeOfObjects();
space_statistics->space_available_size_ = space->Available();
space_statistics->physical_space_size_ = space->CommittedPhysicalMemory();
}
return true;
}
size_t Isolate::NumberOfTrackedHeapObjectTypes() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Heap* heap = isolate->heap();
return heap->NumberOfTrackedHeapObjectTypes();
}
bool Isolate::GetHeapObjectStatisticsAtLastGC(
HeapObjectStatistics* object_statistics, size_t type_index) {
if (!object_statistics) return false;
if (V8_LIKELY(!i::TracingFlags::is_gc_stats_enabled())) return false;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Heap* heap = isolate->heap();
if (type_index >= heap->NumberOfTrackedHeapObjectTypes()) return false;
const char* object_type;
const char* object_sub_type;
size_t object_count = heap->ObjectCountAtLastGC(type_index);
size_t object_size = heap->ObjectSizeAtLastGC(type_index);
if (!heap->GetObjectTypeName(type_index, &object_type, &object_sub_type)) {
// There should be no objects counted when the type is unknown.
DCHECK_EQ(object_count, 0U);
DCHECK_EQ(object_size, 0U);
return false;
}
object_statistics->object_type_ = object_type;
object_statistics->object_sub_type_ = object_sub_type;
object_statistics->object_count_ = object_count;
object_statistics->object_size_ = object_size;
return true;
}
bool Isolate::GetHeapCodeAndMetadataStatistics(
HeapCodeStatistics* code_statistics) {
if (!code_statistics) return false;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->CollectCodeStatistics();
code_statistics->code_and_metadata_size_ = isolate->code_and_metadata_size();
code_statistics->bytecode_and_metadata_size_ =
isolate->bytecode_and_metadata_size();
code_statistics->external_script_source_size_ =
isolate->external_script_source_size();
return true;
}
v8::MaybeLocal<v8::Promise> Isolate::MeasureMemory(
v8::Local<v8::Context> context, MeasureMemoryMode mode) {
return v8::MaybeLocal<v8::Promise>();
}
bool Isolate::MeasureMemory(std::unique_ptr<MeasureMemoryDelegate> delegate,
MeasureMemoryExecution execution) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->heap()->MeasureMemory(std::move(delegate), execution);
}
std::unique_ptr<MeasureMemoryDelegate> MeasureMemoryDelegate::Default(
Isolate* isolate, Local<Context> context,
Local<Promise::Resolver> promise_resolver, MeasureMemoryMode mode) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i::Handle<i::NativeContext> native_context =
handle(Utils::OpenHandle(*context)->native_context(), i_isolate);
i::Handle<i::JSPromise> js_promise =
i::Handle<i::JSPromise>::cast(Utils::OpenHandle(*promise_resolver));
return i_isolate->heap()->MeasureMemoryDelegate(native_context, js_promise,
mode);
}
void Isolate::GetStackSample(const RegisterState& state, void** frames,
size_t frames_limit, SampleInfo* sample_info) {
RegisterState regs = state;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
if (i::TickSample::GetStackSample(isolate, &regs,
i::TickSample::kSkipCEntryFrame, frames,
frames_limit, sample_info)) {
return;
}
sample_info->frames_count = 0;
sample_info->vm_state = OTHER;
sample_info->external_callback_entry = nullptr;
}
size_t Isolate::NumberOfPhantomHandleResetsSinceLastCall() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->global_handles()->GetAndResetGlobalHandleResetCount();
}
int64_t Isolate::AdjustAmountOfExternalAllocatedMemory(
int64_t change_in_bytes) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
int64_t amount = i_isolate->heap()->update_external_memory(change_in_bytes);
if (change_in_bytes <= 0) return amount;
if (amount > i_isolate->heap()->external_memory_limit()) {
ReportExternalAllocationLimitReached();
}
return amount;
}
void Isolate::SetEventLogger(LogEventCallback that) {
// Do not overwrite the event logger if we want to log explicitly.
if (i::FLAG_log_internal_timer_events) return;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->set_event_logger(that);
}
void Isolate::AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback) {
if (callback == nullptr) return;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->AddBeforeCallEnteredCallback(callback);
}
void Isolate::RemoveBeforeCallEnteredCallback(
BeforeCallEnteredCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->RemoveBeforeCallEnteredCallback(callback);
}
void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) {
if (callback == nullptr) return;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->AddCallCompletedCallback(callback);
}
void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->RemoveCallCompletedCallback(callback);
}
void Isolate::AtomicsWaitWakeHandle::Wake() {
reinterpret_cast<i::AtomicsWaitWakeHandle*>(this)->Wake();
}
void Isolate::SetAtomicsWaitCallback(AtomicsWaitCallback callback, void* data) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetAtomicsWaitCallback(callback, data);
}
void Isolate::SetPromiseHook(PromiseHook hook) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetPromiseHook(hook);
}
void Isolate::SetPromiseRejectCallback(PromiseRejectCallback callback) {
if (callback == nullptr) return;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetPromiseRejectCallback(callback);
}
void Isolate::PerformMicrotaskCheckpoint() {
DCHECK_NE(MicrotasksPolicy::kScoped, GetMicrotasksPolicy());
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->default_microtask_queue()->PerformCheckpoint(this);
}
void Isolate::EnqueueMicrotask(Local<Function> v8_function) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::Handle<i::JSReceiver> function = Utils::OpenHandle(*v8_function);
i::Handle<i::NativeContext> handler_context;
if (!i::JSReceiver::GetContextForMicrotask(function).ToHandle(
&handler_context))
handler_context = isolate->native_context();
MicrotaskQueue* microtask_queue = handler_context->microtask_queue();
if (microtask_queue) microtask_queue->EnqueueMicrotask(this, v8_function);
}
void Isolate::EnqueueMicrotask(MicrotaskCallback callback, void* data) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->default_microtask_queue()->EnqueueMicrotask(this, callback, data);
}
void Isolate::SetMicrotasksPolicy(MicrotasksPolicy policy) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->default_microtask_queue()->set_microtasks_policy(policy);
}
MicrotasksPolicy Isolate::GetMicrotasksPolicy() const {
i::Isolate* isolate =
reinterpret_cast<i::Isolate*>(const_cast<Isolate*>(this));
return isolate->default_microtask_queue()->microtasks_policy();
}
namespace {
void MicrotasksCompletedCallbackAdapter(v8::Isolate* isolate, void* data) {
auto callback = reinterpret_cast<void (*)(v8::Isolate*)>(data);
callback(isolate);
}
} // namespace
void Isolate::AddMicrotasksCompletedCallback(
MicrotasksCompletedCallback callback) {
DCHECK(callback);
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->default_microtask_queue()->AddMicrotasksCompletedCallback(
&MicrotasksCompletedCallbackAdapter, reinterpret_cast<void*>(callback));
}
void Isolate::AddMicrotasksCompletedCallback(
MicrotasksCompletedCallbackWithData callback, void* data) {
DCHECK(callback);
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->default_microtask_queue()->AddMicrotasksCompletedCallback(callback,
data);
}
void Isolate::RemoveMicrotasksCompletedCallback(
MicrotasksCompletedCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->default_microtask_queue()->RemoveMicrotasksCompletedCallback(
&MicrotasksCompletedCallbackAdapter, reinterpret_cast<void*>(callback));
}
void Isolate::RemoveMicrotasksCompletedCallback(
MicrotasksCompletedCallbackWithData callback, void* data) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->default_microtask_queue()->RemoveMicrotasksCompletedCallback(
callback, data);
}
void Isolate::SetUseCounterCallback(UseCounterCallback callback) {
reinterpret_cast<i::Isolate*>(this)->SetUseCounterCallback(callback);
}
void Isolate::SetCounterFunction(CounterLookupCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->counters()->ResetCounterFunction(callback);
}
void Isolate::SetCreateHistogramFunction(CreateHistogramCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->counters()->ResetCreateHistogramFunction(callback);
}
void Isolate::SetAddHistogramSampleFunction(
AddHistogramSampleCallback callback) {
reinterpret_cast<i::Isolate*>(this)
->counters()
->SetAddHistogramSampleFunction(callback);
}
void Isolate::SetMetricsRecorder(
const std::shared_ptr<metrics::Recorder>& metrics_recorder) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->metrics_recorder()->SetRecorder(isolate, metrics_recorder);
}
void Isolate::SetAddCrashKeyCallback(AddCrashKeyCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetAddCrashKeyCallback(callback);
}
bool Isolate::IdleNotificationDeadline(double deadline_in_seconds) {
// Returning true tells the caller that it need not
// continue to call IdleNotification.
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
if (!i::FLAG_use_idle_notification) return true;
return isolate->heap()->IdleNotification(deadline_in_seconds);
}
void Isolate::LowMemoryNotification() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
{
i::HistogramTimerScope idle_notification_scope(
isolate->counters()->gc_low_memory_notification());
TRACE_EVENT0("v8", "V8.GCLowMemoryNotification");
isolate->heap()->CollectAllAvailableGarbage(
i::GarbageCollectionReason::kLowMemoryNotification);
}
}
int Isolate::ContextDisposedNotification(bool dependant_context) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
if (!dependant_context) {
if (!isolate->context().is_null()) {
// We left the current context, we can abort all WebAssembly compilations
// of that context.
// A handle scope for the native context.
i::HandleScope handle_scope(isolate);
#if !defined(DISABLE_WASM_STARBOARD)
isolate->wasm_engine()->DeleteCompileJobsOnContext(
isolate->native_context());
#endif
}
}
// TODO(ahaas): move other non-heap activity out of the heap call.
return isolate->heap()->NotifyContextDisposed(dependant_context);
}
void Isolate::IsolateInForegroundNotification() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->IsolateInForegroundNotification();
}
void Isolate::IsolateInBackgroundNotification() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->IsolateInBackgroundNotification();
}
void Isolate::MemoryPressureNotification(MemoryPressureLevel level) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
bool on_isolate_thread =
v8::Locker::IsActive()
? isolate->thread_manager()->IsLockedByCurrentThread()
: i::ThreadId::Current() == isolate->thread_id();
isolate->heap()->MemoryPressureNotification(level, on_isolate_thread);
}
void Isolate::EnableMemorySavingsMode() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->EnableMemorySavingsMode();
}
void Isolate::DisableMemorySavingsMode() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->DisableMemorySavingsMode();
}
void Isolate::SetRAILMode(RAILMode rail_mode) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->SetRAILMode(rail_mode);
}
void Isolate::IncreaseHeapLimitForDebugging() {
// No-op.
}
void Isolate::RestoreOriginalHeapLimit() {
// No-op.
}
bool Isolate::IsHeapLimitIncreasedForDebugging() { return false; }
void Isolate::SetJitCodeEventHandler(JitCodeEventOptions options,
JitCodeEventHandler event_handler) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
// Ensure that logging is initialized for our isolate.
isolate->InitializeLoggingAndCounters();
isolate->logger()->SetCodeEventHandler(options, event_handler);
}
void Isolate::SetStackLimit(uintptr_t stack_limit) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
CHECK(stack_limit);
isolate->stack_guard()->SetStackLimit(stack_limit);
}
void Isolate::GetCodeRange(void** start, size_t* length_in_bytes) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
const base::AddressRegion& code_range =
isolate->heap()->memory_allocator()->code_range();
*start = reinterpret_cast<void*>(code_range.begin());
*length_in_bytes = code_range.size();
}
void Isolate::GetEmbeddedCodeRange(const void** start,
size_t* length_in_bytes) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::EmbeddedData d = i::EmbeddedData::FromBlob(isolate);
*start = reinterpret_cast<const void*>(d.code());
*length_in_bytes = d.code_size();
}
JSEntryStubs Isolate::GetJSEntryStubs() {
JSEntryStubs entry_stubs;
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
std::array<std::pair<i::Builtins::Name, JSEntryStub*>, 3> stubs = {
{{i::Builtins::kJSEntry, &entry_stubs.js_entry_stub},
{i::Builtins::kJSConstructEntry, &entry_stubs.js_construct_entry_stub},
{i::Builtins::kJSRunMicrotasksEntry,
&entry_stubs.js_run_microtasks_entry_stub}}};
for (auto& pair : stubs) {
i::Code js_entry = isolate->heap()->builtin(pair.first);
pair.second->code.start =
reinterpret_cast<const void*>(js_entry.InstructionStart());
pair.second->code.length_in_bytes = js_entry.InstructionSize();
}
return entry_stubs;
}
size_t Isolate::CopyCodePages(size_t capacity, MemoryRange* code_pages_out) {
#if !defined(V8_TARGET_ARCH_64_BIT) && !defined(V8_TARGET_ARCH_ARM)
// Not implemented on other platforms.
UNREACHABLE();
#else
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
std::vector<MemoryRange>* code_pages = isolate->GetCodePages();
DCHECK_NOT_NULL(code_pages);
// Copy as many elements into the output vector as we can. If the
// caller-provided buffer is not big enough, we fill it, and the caller can
// provide a bigger one next time. We do it this way because allocation is not
// allowed in signal handlers.
size_t limit = std::min(capacity, code_pages->size());
for (size_t i = 0; i < limit; i++) {
code_pages_out[i] = code_pages->at(i);
}
return code_pages->size();
#endif
}
#define CALLBACK_SETTER(ExternalName, Type, InternalName) \
void Isolate::Set##ExternalName(Type callback) { \
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); \
isolate->set_##InternalName(callback); \
}
CALLBACK_SETTER(FatalErrorHandler, FatalErrorCallback, exception_behavior)
CALLBACK_SETTER(OOMErrorHandler, OOMErrorCallback, oom_behavior)
CALLBACK_SETTER(AllowCodeGenerationFromStringsCallback,
AllowCodeGenerationFromStringsCallback, allow_code_gen_callback)
CALLBACK_SETTER(ModifyCodeGenerationFromStringsCallback,
ModifyCodeGenerationFromStringsCallback,
modify_code_gen_callback)
CALLBACK_SETTER(ModifyCodeGenerationFromStringsCallback,
ModifyCodeGenerationFromStringsCallback2,
modify_code_gen_callback2)
CALLBACK_SETTER(AllowWasmCodeGenerationCallback,
AllowWasmCodeGenerationCallback, allow_wasm_code_gen_callback)
CALLBACK_SETTER(WasmModuleCallback, ExtensionCallback, wasm_module_callback)
CALLBACK_SETTER(WasmInstanceCallback, ExtensionCallback, wasm_instance_callback)
CALLBACK_SETTER(WasmStreamingCallback, WasmStreamingCallback,
wasm_streaming_callback)
CALLBACK_SETTER(WasmThreadsEnabledCallback, WasmThreadsEnabledCallback,
wasm_threads_enabled_callback)
CALLBACK_SETTER(WasmLoadSourceMapCallback, WasmLoadSourceMapCallback,
wasm_load_source_map_callback)
CALLBACK_SETTER(WasmSimdEnabledCallback, WasmSimdEnabledCallback,
wasm_simd_enabled_callback)
void Isolate::AddNearHeapLimitCallback(v8::NearHeapLimitCallback callback,
void* data) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->AddNearHeapLimitCallback(callback, data);
}
void Isolate::RemoveNearHeapLimitCallback(v8::NearHeapLimitCallback callback,
size_t heap_limit) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->RemoveNearHeapLimitCallback(callback, heap_limit);
}
void Isolate::AutomaticallyRestoreInitialHeapLimit(double threshold_percent) {
DCHECK_GT(threshold_percent, 0.0);
DCHECK_LT(threshold_percent, 1.0);
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->AutomaticallyRestoreInitialHeapLimit(threshold_percent);
}
bool Isolate::IsDead() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->IsDead();
}
bool Isolate::AddMessageListener(MessageCallback that, Local<Value> data) {
return AddMessageListenerWithErrorLevel(that, kMessageError, data);
}
bool Isolate::AddMessageListenerWithErrorLevel(MessageCallback that,
int message_levels,
Local<Value> data) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScope scope(isolate);
i::Handle<i::TemplateList> list = isolate->factory()->message_listeners();
i::Handle<i::FixedArray> listener = isolate->factory()->NewFixedArray(3);
i::Handle<i::Foreign> foreign =
isolate->factory()->NewForeign(FUNCTION_ADDR(that));
listener->set(0, *foreign);
listener->set(1, data.IsEmpty() ? i::ReadOnlyRoots(isolate).undefined_value()
: *Utils::OpenHandle(*data));
listener->set(2, i::Smi::FromInt(message_levels));
list = i::TemplateList::Add(isolate, list, listener);
isolate->heap()->SetMessageListeners(*list);
return true;
}
void Isolate::RemoveMessageListeners(MessageCallback that) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScope scope(isolate);
i::DisallowHeapAllocation no_gc;
i::TemplateList listeners = isolate->heap()->message_listeners();
for (int i = 0; i < listeners.length(); i++) {
if (listeners.get(i).IsUndefined(isolate)) continue; // skip deleted ones
i::FixedArray listener = i::FixedArray::cast(listeners.get(i));
i::Foreign callback_obj = i::Foreign::cast(listener.get(0));
if (callback_obj.foreign_address() == FUNCTION_ADDR(that)) {
listeners.set(i, i::ReadOnlyRoots(isolate).undefined_value());
}
}
}
void Isolate::SetFailedAccessCheckCallbackFunction(
FailedAccessCheckCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetFailedAccessCheckCallback(callback);
}
void Isolate::SetCaptureStackTraceForUncaughtExceptions(
bool capture, int frame_limit, StackTrace::StackTraceOptions options) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->SetCaptureStackTraceForUncaughtExceptions(capture, frame_limit,
options);
}
void Isolate::VisitExternalResources(ExternalResourceVisitor* visitor) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->heap()->VisitExternalResources(visitor);
}
bool Isolate::IsInUse() {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
return isolate->IsInUse();
}
void Isolate::VisitHandlesWithClassIds(PersistentHandleVisitor* visitor) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::DisallowHeapAllocation no_allocation;
isolate->global_handles()->IterateAllRootsWithClassIds(visitor);
}
void Isolate::VisitWeakHandles(PersistentHandleVisitor* visitor) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
i::DisallowHeapAllocation no_allocation;
isolate->global_handles()->IterateYoungWeakRootsWithClassIds(visitor);
}
void Isolate::SetAllowAtomicsWait(bool allow) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this);
isolate->set_allow_atomics_wait(allow);
}
void v8::Isolate::DateTimeConfigurationChangeNotification(
TimeZoneDetection time_zone_detection) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
LOG_API(i_isolate, Isolate, DateTimeConfigurationChangeNotification);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i_isolate->date_cache()->ResetDateCache(
static_cast<base::TimezoneCache::TimeZoneDetection>(time_zone_detection));
#ifdef V8_INTL_SUPPORT
i_isolate->clear_cached_icu_object(
i::Isolate::ICUObjectCacheType::kDefaultSimpleDateFormat);
i_isolate->clear_cached_icu_object(
i::Isolate::ICUObjectCacheType::kDefaultSimpleDateFormatForTime);
i_isolate->clear_cached_icu_object(
i::Isolate::ICUObjectCacheType::kDefaultSimpleDateFormatForDate);
#endif // V8_INTL_SUPPORT
}
void v8::Isolate::LocaleConfigurationChangeNotification() {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this);
LOG_API(i_isolate, Isolate, LocaleConfigurationChangeNotification);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
#ifdef V8_INTL_SUPPORT
i_isolate->ResetDefaultLocale();
i_isolate->ClearCachedIcuObjects();
#endif // V8_INTL_SUPPORT
}
bool v8::Object::IsCodeLike(v8::Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, Object, IsCodeLike);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
return Utils::OpenHandle(this)->IsCodeLike(i_isolate);
}
// static
std::unique_ptr<MicrotaskQueue> MicrotaskQueue::New(Isolate* isolate,
MicrotasksPolicy policy) {
auto microtask_queue =
i::MicrotaskQueue::New(reinterpret_cast<i::Isolate*>(isolate));
microtask_queue->set_microtasks_policy(policy);
std::unique_ptr<MicrotaskQueue> ret(std::move(microtask_queue));
return ret;
}
MicrotasksScope::MicrotasksScope(Isolate* isolate, MicrotasksScope::Type type)
: MicrotasksScope(isolate, nullptr, type) {}
MicrotasksScope::MicrotasksScope(Isolate* isolate,
MicrotaskQueue* microtask_queue,
MicrotasksScope::Type type)
: isolate_(reinterpret_cast<i::Isolate*>(isolate)),
microtask_queue_(microtask_queue
? static_cast<i::MicrotaskQueue*>(microtask_queue)
: isolate_->default_microtask_queue()),
run_(type == MicrotasksScope::kRunMicrotasks) {
if (run_) microtask_queue_->IncrementMicrotasksScopeDepth();
#ifdef DEBUG
if (!run_) microtask_queue_->IncrementDebugMicrotasksScopeDepth();
#endif
}
MicrotasksScope::~MicrotasksScope() {
if (run_) {
microtask_queue_->DecrementMicrotasksScopeDepth();
if (MicrotasksPolicy::kScoped == microtask_queue_->microtasks_policy() &&
!isolate_->has_scheduled_exception()) {
DCHECK_IMPLIES(isolate_->has_scheduled_exception(),
isolate_->scheduled_exception() ==
i::ReadOnlyRoots(isolate_).termination_exception());
microtask_queue_->PerformCheckpoint(reinterpret_cast<Isolate*>(isolate_));
}
}
#ifdef DEBUG
if (!run_) microtask_queue_->DecrementDebugMicrotasksScopeDepth();
#endif
}
void MicrotasksScope::PerformCheckpoint(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
auto* microtask_queue = isolate->default_microtask_queue();
microtask_queue->PerformCheckpoint(v8_isolate);
}
int MicrotasksScope::GetCurrentDepth(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
auto* microtask_queue = isolate->default_microtask_queue();
return microtask_queue->GetMicrotasksScopeDepth();
}
bool MicrotasksScope::IsRunningMicrotasks(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
auto* microtask_queue = isolate->default_microtask_queue();
return microtask_queue->IsRunningMicrotasks();
}
String::Utf8Value::Utf8Value(v8::Isolate* isolate, v8::Local<v8::Value> obj)
: str_(nullptr), length_(0) {
if (obj.IsEmpty()) return;
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8_DO_NOT_USE(i_isolate);
i::HandleScope scope(i_isolate);
Local<Context> context = isolate->GetCurrentContext();
TryCatch try_catch(isolate);
Local<String> str;
if (!obj->ToString(context).ToLocal(&str)) return;
length_ = str->Utf8Length(isolate);
str_ = i::NewArray<char>(length_ + 1);
str->WriteUtf8(isolate, str_);
}
String::Utf8Value::~Utf8Value() { i::DeleteArray(str_); }
String::Value::Value(v8::Isolate* isolate, v8::Local<v8::Value> obj)
: str_(nullptr), length_(0) {
if (obj.IsEmpty()) return;
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8_DO_NOT_USE(i_isolate);
i::HandleScope scope(i_isolate);
Local<Context> context = isolate->GetCurrentContext();
TryCatch try_catch(isolate);
Local<String> str;
if (!obj->ToString(context).ToLocal(&str)) return;
length_ = str->Length();
str_ = i::NewArray<uint16_t>(length_ + 1);
str->Write(isolate, str_);
}
String::Value::~Value() { i::DeleteArray(str_); }
#define DEFINE_ERROR(NAME, name) \
Local<Value> Exception::NAME(v8::Local<v8::String> raw_message, \
Isolate* v8_isolate) { \
i::Isolate* isolate = v8_isolate \
? reinterpret_cast<i::Isolate*>(v8_isolate) \
: i::Isolate::Current(); \
LOG_API(isolate, NAME, New); \
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); \
i::Object error; \
{ \
i::HandleScope scope(isolate); \
i::Handle<i::String> message = Utils::OpenHandle(*raw_message); \
i::Handle<i::JSFunction> constructor = isolate->name##_function(); \
error = *isolate->factory()->NewError(constructor, message); \
} \
i::Handle<i::Object> result(error, isolate); \
return Utils::ToLocal(result); \
}
DEFINE_ERROR(RangeError, range_error)
DEFINE_ERROR(ReferenceError, reference_error)
DEFINE_ERROR(SyntaxError, syntax_error)
DEFINE_ERROR(TypeError, type_error)
DEFINE_ERROR(WasmCompileError, wasm_compile_error)
DEFINE_ERROR(WasmLinkError, wasm_link_error)
DEFINE_ERROR(WasmRuntimeError, wasm_runtime_error)
DEFINE_ERROR(Error, error)
#undef DEFINE_ERROR
Local<Message> Exception::CreateMessage(Isolate* isolate,
Local<Value> exception) {
i::Handle<i::Object> obj = Utils::OpenHandle(*exception);
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::HandleScope scope(i_isolate);
return Utils::MessageToLocal(
scope.CloseAndEscape(i_isolate->CreateMessage(obj, nullptr)));
}
Local<StackTrace> Exception::GetStackTrace(Local<Value> exception) {
i::Handle<i::Object> obj = Utils::OpenHandle(*exception);
if (!obj->IsJSObject()) return Local<StackTrace>();
i::Handle<i::JSObject> js_obj = i::Handle<i::JSObject>::cast(obj);
i::Isolate* isolate = js_obj->GetIsolate();
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
return Utils::StackTraceToLocal(isolate->GetDetailedStackTrace(js_obj));
}
// --- D e b u g S u p p o r t ---
void debug::SetContextId(Local<Context> context, int id) {
Utils::OpenHandle(*context)->set_debug_context_id(i::Smi::FromInt(id));
}
int debug::GetContextId(Local<Context> context) {
i::Object value = Utils::OpenHandle(*context)->debug_context_id();
return (value.IsSmi()) ? i::Smi::ToInt(value) : 0;
}
void debug::SetInspector(Isolate* isolate,
v8_inspector::V8Inspector* inspector) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
i_isolate->set_inspector(inspector);
}
v8_inspector::V8Inspector* debug::GetInspector(Isolate* isolate) {
return reinterpret_cast<i::Isolate*>(isolate)->inspector();
}
void debug::SetBreakOnNextFunctionCall(Isolate* isolate) {
reinterpret_cast<i::Isolate*>(isolate)->debug()->SetBreakOnNextFunctionCall();
}
void debug::ClearBreakOnNextFunctionCall(Isolate* isolate) {
reinterpret_cast<i::Isolate*>(isolate)
->debug()
->ClearBreakOnNextFunctionCall();
}
MaybeLocal<Array> debug::GetInternalProperties(Isolate* v8_isolate,
Local<Value> value) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::Handle<i::Object> val = Utils::OpenHandle(*value);
i::Handle<i::JSArray> result;
if (!i::Runtime::GetInternalProperties(isolate, val).ToHandle(&result))
return MaybeLocal<Array>();
return Utils::ToLocal(result);
}
namespace {
void CollectPrivateMethodsAndAccessorsFromContext(
i::Isolate* isolate, i::Handle<i::Context> context,
i::IsStaticFlag is_static_flag, std::vector<Local<Value>>* names_out,
std::vector<Local<Value>>* values_out) {
i::Handle<i::ScopeInfo> scope_info(context->scope_info(), isolate);
int local_count = scope_info->ContextLocalCount();
for (int j = 0; j < local_count; ++j) {
i::VariableMode mode = scope_info->ContextLocalMode(j);
i::IsStaticFlag flag = scope_info->ContextLocalIsStaticFlag(j);
if (!i::IsPrivateMethodOrAccessorVariableMode(mode) ||
flag != is_static_flag) {
continue;
}
i::Handle<i::String> name(scope_info->ContextLocalName(j), isolate);
int context_index = scope_info->ContextHeaderLength() + j;
i::Handle<i::Object> slot_value(context->get(context_index), isolate);
DCHECK_IMPLIES(mode == i::VariableMode::kPrivateMethod,
slot_value->IsJSFunction());
DCHECK_IMPLIES(mode != i::VariableMode::kPrivateMethod,
slot_value->IsAccessorPair());
names_out->push_back(Utils::ToLocal(name));
values_out->push_back(Utils::ToLocal(slot_value));
}
}
} // anonymous namespace
bool debug::GetPrivateMembers(Local<Context> context, Local<Object> value,
std::vector<Local<Value>>* names_out,
std::vector<Local<Value>>* values_out) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate());
LOG_API(isolate, debug, GetPrivateMembers);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::Handle<i::JSReceiver> receiver = Utils::OpenHandle(*value);
i::Handle<i::JSArray> names;
i::Handle<i::FixedArray> values;
i::PropertyFilter key_filter =
static_cast<i::PropertyFilter>(i::PropertyFilter::PRIVATE_NAMES_ONLY);
i::Handle<i::FixedArray> keys;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, keys,
i::KeyAccumulator::GetKeys(receiver, i::KeyCollectionMode::kOwnOnly,
key_filter,
i::GetKeysConversion::kConvertToString),
false);
// Estimate number of private fields and private instance methods/accessors.
int private_entries_count = 0;
for (int i = 0; i < keys->length(); ++i) {
// Exclude the private brand symbols.
i::Handle<i::Symbol> key(i::Symbol::cast(keys->get(i)), isolate);
if (key->is_private_brand()) {
i::Handle<i::Object> value;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, value, i::Object::GetProperty(isolate, receiver, key),
false);
i::Handle<i::Context> context(i::Context::cast(*value), isolate);
i::Handle<i::ScopeInfo> scope_info(context->scope_info(), isolate);
// At least one slot contains the brand symbol so it does not count.
private_entries_count += (scope_info->ContextLocalCount() - 1);
} else {
private_entries_count++;
}
}
// Estimate number of static private methods/accessors for classes.
bool has_static_private_methods_or_accessors = false;
if (receiver->IsJSFunction()) {
i::Handle<i::JSFunction> func(i::JSFunction::cast(*receiver), isolate);
i::Handle<i::SharedFunctionInfo> shared(func->shared(), isolate);
if (shared->is_class_constructor() &&
shared->has_static_private_methods_or_accessors()) {
has_static_private_methods_or_accessors = true;
i::Handle<i::Context> context(func->context(), isolate);
i::Handle<i::ScopeInfo> scope_info(context->scope_info(), isolate);
int local_count = scope_info->ContextLocalCount();
for (int j = 0; j < local_count; ++j) {
i::VariableMode mode = scope_info->ContextLocalMode(j);
i::IsStaticFlag is_static_flag =
scope_info->ContextLocalIsStaticFlag(j);
if (i::IsPrivateMethodOrAccessorVariableMode(mode) &&
is_static_flag == i::IsStaticFlag::kStatic) {
private_entries_count += local_count;
break;
}
}
}
}
DCHECK(names_out->empty());
names_out->reserve(private_entries_count);
DCHECK(values_out->empty());
values_out->reserve(private_entries_count);
if (has_static_private_methods_or_accessors) {
i::Handle<i::Context> context(i::JSFunction::cast(*receiver).context(),
isolate);
CollectPrivateMethodsAndAccessorsFromContext(
isolate, context, i::IsStaticFlag::kStatic, names_out, values_out);
}
for (int i = 0; i < keys->length(); ++i) {
i::Handle<i::Object> obj_key(keys->get(i), isolate);
i::Handle<i::Symbol> key(i::Symbol::cast(*obj_key), isolate);
CHECK(key->is_private_name());
i::Handle<i::Object> value;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, value, i::Object::GetProperty(isolate, receiver, key), false);
if (key->is_private_brand()) {
DCHECK(value->IsContext());
i::Handle<i::Context> context(i::Context::cast(*value), isolate);
CollectPrivateMethodsAndAccessorsFromContext(
isolate, context, i::IsStaticFlag::kNotStatic, names_out, values_out);
} else { // Private fields
i::Handle<i::String> name(
i::String::cast(i::Symbol::cast(*key).description()), isolate);
names_out->push_back(Utils::ToLocal(name));
values_out->push_back(Utils::ToLocal(value));
}
}
DCHECK_EQ(names_out->size(), values_out->size());
DCHECK_LE(names_out->size(), private_entries_count);
return true;
}
Local<Context> debug::GetCreationContext(Local<Object> value) {
i::Handle<i::Object> val = Utils::OpenHandle(*value);
if (val->IsJSGlobalProxy()) {
return Local<Context>();
}
return value->CreationContext();
}
void debug::ChangeBreakOnException(Isolate* isolate, ExceptionBreakState type) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
internal_isolate->debug()->ChangeBreakOnException(
i::BreakException, type == BreakOnAnyException);
internal_isolate->debug()->ChangeBreakOnException(i::BreakUncaughtException,
type != NoBreakOnException);
}
void debug::SetBreakPointsActive(Isolate* v8_isolate, bool is_active) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
isolate->debug()->set_break_points_active(is_active);
}
void debug::PrepareStep(Isolate* v8_isolate, StepAction action) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_DO_NOT_USE(isolate);
CHECK(isolate->debug()->CheckExecutionState());
// Clear all current stepping setup.
isolate->debug()->ClearStepping();
// Prepare step.
isolate->debug()->PrepareStep(static_cast<i::StepAction>(action));
}
void debug::ClearStepping(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
// Clear all current stepping setup.
isolate->debug()->ClearStepping();
}
void debug::BreakRightNow(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_DO_NOT_USE(isolate);
isolate->debug()->HandleDebugBreak(i::kIgnoreIfAllFramesBlackboxed);
}
void debug::SetTerminateOnResume(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
isolate->debug()->SetTerminateOnResume();
}
bool debug::AllFramesOnStackAreBlackboxed(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_DO_NOT_USE(isolate);
return isolate->debug()->AllFramesOnStackAreBlackboxed();
}
v8::Isolate* debug::Script::GetIsolate() const {
return reinterpret_cast<v8::Isolate*>(Utils::OpenHandle(this)->GetIsolate());
}
ScriptOriginOptions debug::Script::OriginOptions() const {
return Utils::OpenHandle(this)->origin_options();
}
bool debug::Script::WasCompiled() const {
return Utils::OpenHandle(this)->compilation_state() ==
i::Script::COMPILATION_STATE_COMPILED;
}
bool debug::Script::IsEmbedded() const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
return script->context_data() ==
script->GetReadOnlyRoots().uninitialized_symbol();
}
int debug::Script::Id() const { return Utils::OpenHandle(this)->id(); }
int debug::Script::LineOffset() const {
return Utils::OpenHandle(this)->line_offset();
}
int debug::Script::ColumnOffset() const {
return Utils::OpenHandle(this)->column_offset();
}
std::vector<int> debug::Script::LineEnds() const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
if (script->type() == i::Script::TYPE_WASM) return std::vector<int>();
i::Isolate* isolate = script->GetIsolate();
i::HandleScope scope(isolate);
i::Script::InitLineEnds(isolate, script);
CHECK(script->line_ends().IsFixedArray());
i::Handle<i::FixedArray> line_ends(i::FixedArray::cast(script->line_ends()),
isolate);
std::vector<int> result(line_ends->length());
for (int i = 0; i < line_ends->length(); ++i) {
i::Smi line_end = i::Smi::cast(line_ends->get(i));
result[i] = line_end.value();
}
return result;
}
MaybeLocal<String> debug::Script::Name() const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
i::Isolate* isolate = script->GetIsolate();
i::HandleScope handle_scope(isolate);
i::Handle<i::Object> value(script->name(), isolate);
if (!value->IsString()) return MaybeLocal<String>();
return Utils::ToLocal(
handle_scope.CloseAndEscape(i::Handle<i::String>::cast(value)));
}
MaybeLocal<String> debug::Script::SourceURL() const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
i::Isolate* isolate = script->GetIsolate();
i::HandleScope handle_scope(isolate);
i::Handle<i::Object> value(script->source_url(), isolate);
if (!value->IsString()) return MaybeLocal<String>();
return Utils::ToLocal(
handle_scope.CloseAndEscape(i::Handle<i::String>::cast(value)));
}
MaybeLocal<String> debug::Script::SourceMappingURL() const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
i::Isolate* isolate = script->GetIsolate();
i::HandleScope handle_scope(isolate);
i::Handle<i::Object> value(script->source_mapping_url(), isolate);
if (!value->IsString()) return MaybeLocal<String>();
return Utils::ToLocal(
handle_scope.CloseAndEscape(i::Handle<i::String>::cast(value)));
}
Maybe<int> debug::Script::ContextId() const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
i::Isolate* isolate = script->GetIsolate();
i::HandleScope handle_scope(isolate);
i::Object value = script->context_data();
if (value.IsSmi()) return Just(i::Smi::ToInt(value));
return Nothing<int>();
}
MaybeLocal<String> debug::Script::Source() const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
i::Isolate* isolate = script->GetIsolate();
i::HandleScope handle_scope(isolate);
i::Handle<i::Object> value(script->source(), isolate);
if (!value->IsString()) return MaybeLocal<String>();
return Utils::ToLocal(
handle_scope.CloseAndEscape(i::Handle<i::String>::cast(value)));
}
bool debug::Script::IsWasm() const {
return Utils::OpenHandle(this)->type() == i::Script::TYPE_WASM;
}
bool debug::Script::IsModule() const {
return Utils::OpenHandle(this)->origin_options().IsModule();
}
namespace {
int GetSmiValue(i::Handle<i::FixedArray> array, int index) {
return i::Smi::ToInt(array->get(index));
}
bool CompareBreakLocation(const i::BreakLocation& loc1,
const i::BreakLocation& loc2) {
return loc1.position() < loc2.position();
}
} // namespace
bool debug::Script::GetPossibleBreakpoints(
const debug::Location& start, const debug::Location& end,
bool restrict_to_function,
std::vector<debug::BreakLocation>* locations) const {
CHECK(!start.IsEmpty());
i::Handle<i::Script> script = Utils::OpenHandle(this);
if (script->type() == i::Script::TYPE_WASM) {
i::wasm::NativeModule* native_module = script->wasm_native_module();
return i::WasmScript::GetPossibleBreakpoints(native_module, start, end,
locations);
}
i::Isolate* isolate = script->GetIsolate();
i::Script::InitLineEnds(isolate, script);
CHECK(script->line_ends().IsFixedArray());
i::Handle<i::FixedArray> line_ends =
i::Handle<i::FixedArray>::cast(i::handle(script->line_ends(), isolate));
CHECK(line_ends->length());
int start_offset = GetSourceOffset(start);
int end_offset = end.IsEmpty()
? GetSmiValue(line_ends, line_ends->length() - 1) + 1
: GetSourceOffset(end);
if (start_offset >= end_offset) return true;
std::vector<i::BreakLocation> v8_locations;
if (!isolate->debug()->GetPossibleBreakpoints(
script, start_offset, end_offset, restrict_to_function,
&v8_locations)) {
return false;
}
std::sort(v8_locations.begin(), v8_locations.end(), CompareBreakLocation);
int current_line_end_index = 0;
for (const auto& v8_location : v8_locations) {
int offset = v8_location.position();
while (offset > GetSmiValue(line_ends, current_line_end_index)) {
++current_line_end_index;
CHECK(current_line_end_index < line_ends->length());
}
int line_offset = 0;
if (current_line_end_index > 0) {
line_offset = GetSmiValue(line_ends, current_line_end_index - 1) + 1;
}
locations->emplace_back(
current_line_end_index + script->line_offset(),
offset - line_offset +
(current_line_end_index == 0 ? script->column_offset() : 0),
v8_location.type());
}
return true;
}
int debug::Script::GetSourceOffset(const debug::Location& location) const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
if (script->type() == i::Script::TYPE_WASM) {
DCHECK_EQ(0, location.GetLineNumber());
return location.GetColumnNumber();
}
int line = std::max(location.GetLineNumber() - script->line_offset(), 0);
int column = location.GetColumnNumber();
if (line == 0) {
column = std::max(0, column - script->column_offset());
}
i::Script::InitLineEnds(script->GetIsolate(), script);
CHECK(script->line_ends().IsFixedArray());
i::Handle<i::FixedArray> line_ends = i::Handle<i::FixedArray>::cast(
i::handle(script->line_ends(), script->GetIsolate()));
CHECK(line_ends->length());
if (line >= line_ends->length())
return GetSmiValue(line_ends, line_ends->length() - 1);
int line_offset = GetSmiValue(line_ends, line);
if (line == 0) return std::min(column, line_offset);
int prev_line_offset = GetSmiValue(line_ends, line - 1);
return std::min(prev_line_offset + column + 1, line_offset);
}
v8::debug::Location debug::Script::GetSourceLocation(int offset) const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
i::Script::PositionInfo info;
i::Script::GetPositionInfo(script, offset, &info, i::Script::WITH_OFFSET);
return debug::Location(info.line, info.column);
}
bool debug::Script::SetScriptSource(v8::Local<v8::String> newSource,
bool preview,
debug::LiveEditResult* result) const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
i::Isolate* isolate = script->GetIsolate();
return isolate->debug()->SetScriptSource(
script, Utils::OpenHandle(*newSource), preview, result);
}
bool debug::Script::SetBreakpoint(v8::Local<v8::String> condition,
debug::Location* location,
debug::BreakpointId* id) const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
i::Isolate* isolate = script->GetIsolate();
int offset = GetSourceOffset(*location);
if (!isolate->debug()->SetBreakPointForScript(
script, Utils::OpenHandle(*condition), &offset, id)) {
return false;
}
*location = GetSourceLocation(offset);
return true;
}
bool debug::Script::SetBreakpointOnScriptEntry(BreakpointId* id) const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
i::Isolate* isolate = script->GetIsolate();
i::SharedFunctionInfo::ScriptIterator it(isolate, *script);
for (i::SharedFunctionInfo sfi = it.Next(); !sfi.is_null(); sfi = it.Next()) {
if (sfi.is_toplevel()) {
return isolate->debug()->SetBreakpointForFunction(
handle(sfi, isolate), isolate->factory()->empty_string(), id);
}
}
return false;
}
void debug::Script::RemoveWasmBreakpoint(debug::BreakpointId id) {
i::Handle<i::Script> script = Utils::OpenHandle(this);
i::Isolate* isolate = script->GetIsolate();
isolate->debug()->RemoveBreakpointForWasmScript(script, id);
}
void debug::RemoveBreakpoint(Isolate* v8_isolate, BreakpointId id) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::HandleScope handle_scope(isolate);
isolate->debug()->RemoveBreakpoint(id);
}
v8::Platform* debug::GetCurrentPlatform() {
return i::V8::GetCurrentPlatform();
}
void debug::ForceGarbageCollection(
v8::Isolate* isolate,
v8::EmbedderHeapTracer::EmbedderStackState embedder_stack_state) {
i::Heap* heap = reinterpret_cast<i::Isolate*>(isolate)->heap();
heap->SetEmbedderStackStateForNextFinalization(embedder_stack_state);
isolate->LowMemoryNotification();
}
debug::WasmScript* debug::WasmScript::Cast(debug::Script* script) {
CHECK(script->IsWasm());
return static_cast<WasmScript*>(script);
}
debug::WasmScript::DebugSymbolsType debug::WasmScript::GetDebugSymbolType()
const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
DCHECK_EQ(i::Script::TYPE_WASM, script->type());
switch (script->wasm_native_module()->module()->debug_symbols.type) {
case i::wasm::WasmDebugSymbols::Type::None:
return debug::WasmScript::DebugSymbolsType::None;
case i::wasm::WasmDebugSymbols::Type::EmbeddedDWARF:
return debug::WasmScript::DebugSymbolsType::EmbeddedDWARF;
case i::wasm::WasmDebugSymbols::Type::ExternalDWARF:
return debug::WasmScript::DebugSymbolsType::ExternalDWARF;
case i::wasm::WasmDebugSymbols::Type::SourceMap:
return debug::WasmScript::DebugSymbolsType::SourceMap;
}
}
MemorySpan<const char> debug::WasmScript::ExternalSymbolsURL() const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
DCHECK_EQ(i::Script::TYPE_WASM, script->type());
const i::wasm::WasmDebugSymbols& symbols =
script->wasm_native_module()->module()->debug_symbols;
if (symbols.external_url.is_empty()) return {};
internal::wasm::ModuleWireBytes wire_bytes(
script->wasm_native_module()->wire_bytes());
i::wasm::WasmName external_url =
wire_bytes.GetNameOrNull(symbols.external_url);
return {external_url.data(), external_url.size()};
}
int debug::WasmScript::NumFunctions() const {
i::DisallowHeapAllocation no_gc;
i::Handle<i::Script> script = Utils::OpenHandle(this);
DCHECK_EQ(i::Script::TYPE_WASM, script->type());
i::wasm::NativeModule* native_module = script->wasm_native_module();
const i::wasm::WasmModule* module = native_module->module();
DCHECK_GE(i::kMaxInt, module->functions.size());
return static_cast<int>(module->functions.size());
}
int debug::WasmScript::NumImportedFunctions() const {
i::DisallowHeapAllocation no_gc;
i::Handle<i::Script> script = Utils::OpenHandle(this);
DCHECK_EQ(i::Script::TYPE_WASM, script->type());
i::wasm::NativeModule* native_module = script->wasm_native_module();
const i::wasm::WasmModule* module = native_module->module();
DCHECK_GE(i::kMaxInt, module->num_imported_functions);
return static_cast<int>(module->num_imported_functions);
}
MemorySpan<const uint8_t> debug::WasmScript::Bytecode() const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
i::Vector<const uint8_t> wire_bytes =
script->wasm_native_module()->wire_bytes();
return {wire_bytes.begin(), wire_bytes.size()};
}
std::pair<int, int> debug::WasmScript::GetFunctionRange(
int function_index) const {
i::DisallowHeapAllocation no_gc;
i::Handle<i::Script> script = Utils::OpenHandle(this);
DCHECK_EQ(i::Script::TYPE_WASM, script->type());
i::wasm::NativeModule* native_module = script->wasm_native_module();
const i::wasm::WasmModule* module = native_module->module();
DCHECK_LE(0, function_index);
DCHECK_GT(module->functions.size(), function_index);
const i::wasm::WasmFunction& func = module->functions[function_index];
DCHECK_GE(i::kMaxInt, func.code.offset());
DCHECK_GE(i::kMaxInt, func.code.end_offset());
return std::make_pair(static_cast<int>(func.code.offset()),
static_cast<int>(func.code.end_offset()));
}
int debug::WasmScript::GetContainingFunction(int byte_offset) const {
i::DisallowHeapAllocation no_gc;
i::Handle<i::Script> script = Utils::OpenHandle(this);
DCHECK_EQ(i::Script::TYPE_WASM, script->type());
i::wasm::NativeModule* native_module = script->wasm_native_module();
const i::wasm::WasmModule* module = native_module->module();
DCHECK_LE(0, byte_offset);
return i::wasm::GetContainingWasmFunction(module, byte_offset);
}
uint32_t debug::WasmScript::GetFunctionHash(int function_index) {
i::DisallowHeapAllocation no_gc;
i::Handle<i::Script> script = Utils::OpenHandle(this);
DCHECK_EQ(i::Script::TYPE_WASM, script->type());
i::wasm::NativeModule* native_module = script->wasm_native_module();
const i::wasm::WasmModule* module = native_module->module();
DCHECK_LE(0, function_index);
DCHECK_GT(module->functions.size(), function_index);
const i::wasm::WasmFunction& func = module->functions[function_index];
i::wasm::ModuleWireBytes wire_bytes(native_module->wire_bytes());
i::Vector<const i::byte> function_bytes = wire_bytes.GetFunctionBytes(&func);
// TODO(herhut): Maybe also take module, name and signature into account.
return i::StringHasher::HashSequentialString(function_bytes.begin(),
function_bytes.length(), 0);
}
int debug::WasmScript::CodeOffset() const {
i::Handle<i::Script> script = Utils::OpenHandle(this);
DCHECK_EQ(i::Script::TYPE_WASM, script->type());
i::wasm::NativeModule* native_module = script->wasm_native_module();
const i::wasm::WasmModule* module = native_module->module();
// If the module contains at least one function, the code offset must have
// been initialized, and it cannot be zero.
DCHECK_IMPLIES(module->num_declared_functions > 0,
module->code.offset() != 0);
return module->code.offset();
}
debug::Location::Location(int line_number, int column_number)
: line_number_(line_number),
column_number_(column_number),
is_empty_(false) {}
debug::Location::Location()
: line_number_(v8::Function::kLineOffsetNotFound),
column_number_(v8::Function::kLineOffsetNotFound),
is_empty_(true) {}
int debug::Location::GetLineNumber() const {
DCHECK(!IsEmpty());
return line_number_;
}
int debug::Location::GetColumnNumber() const {
DCHECK(!IsEmpty());
return column_number_;
}
bool debug::Location::IsEmpty() const { return is_empty_; }
void debug::GetLoadedScripts(v8::Isolate* v8_isolate,
PersistentValueVector<debug::Script>& scripts) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
{
i::DisallowHeapAllocation no_gc;
i::Script::Iterator iterator(isolate);
for (i::Script script = iterator.Next(); !script.is_null();
script = iterator.Next()) {
if (script.type() == i::Script::TYPE_NORMAL ||
script.type() == i::Script::TYPE_WASM) {
if (script.HasValidSource()) {
i::HandleScope handle_scope(isolate);
i::Handle<i::Script> script_handle(script, isolate);
scripts.Append(ToApiHandle<Script>(script_handle));
}
}
}
}
}
MaybeLocal<UnboundScript> debug::CompileInspectorScript(Isolate* v8_isolate,
Local<String> source) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
PREPARE_FOR_DEBUG_INTERFACE_EXECUTION_WITH_ISOLATE(isolate, UnboundScript);
i::Handle<i::String> str = Utils::OpenHandle(*source);
i::Handle<i::SharedFunctionInfo> result;
{
ScriptOriginOptions origin_options;
i::ScriptData* script_data = nullptr;
i::MaybeHandle<i::SharedFunctionInfo> maybe_function_info =
i::Compiler::GetSharedFunctionInfoForScript(
isolate, str, i::Compiler::ScriptDetails(), origin_options, nullptr,
script_data, ScriptCompiler::kNoCompileOptions,
ScriptCompiler::kNoCacheBecauseInspector,
i::FLAG_expose_inspector_scripts ? i::NOT_NATIVES_CODE
: i::INSPECTOR_CODE);
has_pending_exception = !maybe_function_info.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(UnboundScript);
}
RETURN_ESCAPED(ToApiHandle<UnboundScript>(result));
}
void debug::TierDownAllModulesPerIsolate(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
isolate->wasm_engine()->TierDownAllModulesPerIsolate(isolate);
}
void debug::TierUpAllModulesPerIsolate(Isolate* v8_isolate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
isolate->wasm_engine()->TierUpAllModulesPerIsolate(isolate);
}
void debug::SetDebugDelegate(Isolate* v8_isolate,
debug::DebugDelegate* delegate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
isolate->debug()->SetDebugDelegate(delegate);
}
void debug::SetAsyncEventDelegate(Isolate* v8_isolate,
debug::AsyncEventDelegate* delegate) {
reinterpret_cast<i::Isolate*>(v8_isolate)->set_async_event_delegate(delegate);
}
void debug::ResetBlackboxedStateCache(Isolate* v8_isolate,
v8::Local<debug::Script> script) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::DisallowHeapAllocation no_gc;
i::SharedFunctionInfo::ScriptIterator iter(isolate,
*Utils::OpenHandle(*script));
for (i::SharedFunctionInfo info = iter.Next(); !info.is_null();
info = iter.Next()) {
if (info.HasDebugInfo()) {
info.GetDebugInfo().set_computed_debug_is_blackboxed(false);
}
}
}
int debug::EstimatedValueSize(Isolate* v8_isolate, v8::Local<v8::Value> value) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::Handle<i::Object> object = Utils::OpenHandle(*value);
if (object->IsSmi()) return i::kTaggedSize;
CHECK(object->IsHeapObject());
return i::Handle<i::HeapObject>::cast(object)->Size();
}
v8::MaybeLocal<v8::Array> v8::Object::PreviewEntries(bool* is_key_value) {
if (IsMap()) {
*is_key_value = true;
return Map::Cast(this)->AsArray();
}
if (IsSet()) {
*is_key_value = false;
return Set::Cast(this)->AsArray();
}
i::Handle<i::JSReceiver> object = Utils::OpenHandle(this);
i::Isolate* isolate = object->GetIsolate();
Isolate* v8_isolate = reinterpret_cast<Isolate*>(isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
if (object->IsJSWeakCollection()) {
*is_key_value = object->IsJSWeakMap();
return Utils::ToLocal(i::JSWeakCollection::GetEntries(
i::Handle<i::JSWeakCollection>::cast(object), 0));
}
if (object->IsJSMapIterator()) {
i::Handle<i::JSMapIterator> it = i::Handle<i::JSMapIterator>::cast(object);
MapAsArrayKind const kind =
static_cast<MapAsArrayKind>(it->map().instance_type());
*is_key_value = kind == MapAsArrayKind::kEntries;
if (!it->HasMore()) return v8::Array::New(v8_isolate);
return Utils::ToLocal(
MapAsArray(isolate, it->table(), i::Smi::ToInt(it->index()), kind));
}
if (object->IsJSSetIterator()) {
i::Handle<i::JSSetIterator> it = i::Handle<i::JSSetIterator>::cast(object);
SetAsArrayKind const kind =
static_cast<SetAsArrayKind>(it->map().instance_type());
*is_key_value = kind == SetAsArrayKind::kEntries;
if (!it->HasMore()) return v8::Array::New(v8_isolate);
return Utils::ToLocal(
SetAsArray(isolate, it->table(), i::Smi::ToInt(it->index()), kind));
}
return v8::MaybeLocal<v8::Array>();
}
Local<Function> debug::GetBuiltin(Isolate* v8_isolate, Builtin builtin) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
i::HandleScope handle_scope(isolate);
i::Builtins::Name builtin_id;
switch (builtin) {
case kStringToLowerCase:
builtin_id = i::Builtins::kStringPrototypeToLocaleLowerCase;
break;
default:
UNREACHABLE();
}
i::Handle<i::String> name = isolate->factory()->empty_string();
i::NewFunctionArgs args = i::NewFunctionArgs::ForBuiltinWithoutPrototype(
name, builtin_id, i::LanguageMode::kStrict);
i::Handle<i::JSFunction> fun = isolate->factory()->NewFunction(args);
fun->shared().set_internal_formal_parameter_count(0);
fun->shared().set_length(0);
return Utils::ToLocal(handle_scope.CloseAndEscape(fun));
}
void debug::SetConsoleDelegate(Isolate* v8_isolate, ConsoleDelegate* delegate) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
isolate->set_console_delegate(delegate);
}
debug::ConsoleCallArguments::ConsoleCallArguments(
const v8::FunctionCallbackInfo<v8::Value>& info)
: v8::FunctionCallbackInfo<v8::Value>(nullptr, info.values_, info.length_) {
}
debug::ConsoleCallArguments::ConsoleCallArguments(
const internal::BuiltinArguments& args)
: v8::FunctionCallbackInfo<v8::Value>(
nullptr,
// Drop the first argument (receiver, i.e. the "console" object).
args.length() > 1 ? args.address_of_first_argument() : nullptr,
args.length() - 1) {}
// Marked V8_DEPRECATED.
int debug::GetStackFrameId(v8::Local<v8::StackFrame> frame) { return 0; }
v8::Local<v8::StackTrace> debug::GetDetailedStackTrace(
Isolate* v8_isolate, v8::Local<v8::Object> v8_error) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
i::Handle<i::JSReceiver> error = Utils::OpenHandle(*v8_error);
if (!error->IsJSObject()) {
return v8::Local<v8::StackTrace>();
}
i::Handle<i::FixedArray> stack_trace =
isolate->GetDetailedStackTrace(i::Handle<i::JSObject>::cast(error));
return Utils::StackTraceToLocal(stack_trace);
}
MaybeLocal<debug::Script> debug::GeneratorObject::Script() {
i::Handle<i::JSGeneratorObject> obj = Utils::OpenHandle(this);
i::Object maybe_script = obj->function().shared().script();
if (!maybe_script.IsScript()) return MaybeLocal<debug::Script>();
i::Handle<i::Script> script(i::Script::cast(maybe_script), obj->GetIsolate());
return ToApiHandle<debug::Script>(script);
}
Local<Function> debug::GeneratorObject::Function() {
i::Handle<i::JSGeneratorObject> obj = Utils::OpenHandle(this);
return Utils::ToLocal(handle(obj->function(), obj->GetIsolate()));
}
debug::Location debug::GeneratorObject::SuspendedLocation() {
i::Handle<i::JSGeneratorObject> obj = Utils::OpenHandle(this);
CHECK(obj->is_suspended());
i::Object maybe_script = obj->function().shared().script();
if (!maybe_script.IsScript()) return debug::Location();
i::Isolate* isolate = obj->GetIsolate();
i::Handle<i::Script> script(i::Script::cast(maybe_script), isolate);
i::Script::PositionInfo info;
i::SharedFunctionInfo::EnsureSourcePositionsAvailable(
isolate, i::handle(obj->function().shared(), isolate));
i::Script::GetPositionInfo(script, obj->source_position(), &info,
i::Script::WITH_OFFSET);
return debug::Location(info.line, info.column);
}
bool debug::GeneratorObject::IsSuspended() {
return Utils::OpenHandle(this)->is_suspended();
}
v8::Local<debug::GeneratorObject> debug::GeneratorObject::Cast(
v8::Local<v8::Value> value) {
CHECK(value->IsGeneratorObject());
return ToApiHandle<debug::GeneratorObject>(Utils::OpenHandle(*value));
}
MaybeLocal<v8::Value> debug::EvaluateGlobal(v8::Isolate* isolate,
v8::Local<v8::String> source,
EvaluateGlobalMode mode,
bool repl) {
i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
PREPARE_FOR_DEBUG_INTERFACE_EXECUTION_WITH_ISOLATE(internal_isolate, Value);
i::REPLMode repl_mode = repl ? i::REPLMode::kYes : i::REPLMode::kNo;
Local<Value> result;
has_pending_exception = !ToLocal<Value>(
i::DebugEvaluate::Global(internal_isolate, Utils::OpenHandle(*source),
mode, repl_mode),
&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
void debug::QueryObjects(v8::Local<v8::Context> v8_context,
QueryObjectPredicate* predicate,
PersistentValueVector<v8::Object>* objects) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_context->GetIsolate());
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
isolate->heap_profiler()->QueryObjects(Utils::OpenHandle(*v8_context),
predicate, objects);
}
void debug::GlobalLexicalScopeNames(
v8::Local<v8::Context> v8_context,
v8::PersistentValueVector<v8::String>* names) {
i::Handle<i::Context> context = Utils::OpenHandle(*v8_context);
i::Isolate* isolate = context->GetIsolate();
i::Handle<i::ScriptContextTable> table(
context->global_object().native_context().script_context_table(),
isolate);
for (int i = 0; i < table->synchronized_used(); i++) {
i::Handle<i::Context> context =
i::ScriptContextTable::GetContext(isolate, table, i);
DCHECK(context->IsScriptContext());
i::Handle<i::ScopeInfo> scope_info(context->scope_info(), isolate);
int local_count = scope_info->ContextLocalCount();
for (int j = 0; j < local_count; ++j) {
i::String name = scope_info->ContextLocalName(j);
if (i::ScopeInfo::VariableIsSynthetic(name)) continue;
names->Append(Utils::ToLocal(handle(name, isolate)));
}
}
}
void debug::SetReturnValue(v8::Isolate* v8_isolate,
v8::Local<v8::Value> value) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
isolate->debug()->set_return_value(*Utils::OpenHandle(*value));
}
int64_t debug::GetNextRandomInt64(v8::Isolate* v8_isolate) {
return reinterpret_cast<i::Isolate*>(v8_isolate)
->random_number_generator()
->NextInt64();
}
void debug::EnumerateRuntimeCallCounters(v8::Isolate* v8_isolate,
RuntimeCallCounterCallback callback) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
if (isolate->counters()) {
isolate->counters()->runtime_call_stats()->EnumerateCounters(callback);
}
}
int debug::GetDebuggingId(v8::Local<v8::Function> function) {
i::Handle<i::JSReceiver> callable = v8::Utils::OpenHandle(*function);
if (!callable->IsJSFunction()) return i::DebugInfo::kNoDebuggingId;
i::Handle<i::JSFunction> func = i::Handle<i::JSFunction>::cast(callable);
int id = func->GetIsolate()->debug()->GetFunctionDebuggingId(func);
DCHECK_NE(i::DebugInfo::kNoDebuggingId, id);
return id;
}
bool debug::SetFunctionBreakpoint(v8::Local<v8::Function> function,
v8::Local<v8::String> condition,
BreakpointId* id) {
i::Handle<i::JSReceiver> callable = Utils::OpenHandle(*function);
if (!callable->IsJSFunction()) return false;
i::Handle<i::JSFunction> jsfunction =
i::Handle<i::JSFunction>::cast(callable);
i::Isolate* isolate = jsfunction->GetIsolate();
i::Handle<i::String> condition_string =
condition.IsEmpty() ? isolate->factory()->empty_string()
: Utils::OpenHandle(*condition);
return isolate->debug()->SetBreakpointForFunction(
handle(jsfunction->shared(), isolate), condition_string, id);
}
debug::PostponeInterruptsScope::PostponeInterruptsScope(v8::Isolate* isolate)
: scope_(
new i::PostponeInterruptsScope(reinterpret_cast<i::Isolate*>(isolate),
i::StackGuard::API_INTERRUPT)) {}
debug::PostponeInterruptsScope::~PostponeInterruptsScope() = default;
debug::DisableBreakScope::DisableBreakScope(v8::Isolate* isolate)
: scope_(std::make_unique<i::DisableBreak>(
reinterpret_cast<i::Isolate*>(isolate)->debug())) {}
debug::DisableBreakScope::~DisableBreakScope() = default;
Local<String> CpuProfileNode::GetFunctionName() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
i::Isolate* isolate = node->isolate();
const i::CodeEntry* entry = node->entry();
i::Handle<i::String> name =
isolate->factory()->InternalizeUtf8String(entry->name());
return ToApiHandle<String>(name);
}
int debug::Coverage::BlockData::StartOffset() const { return block_->start; }
int debug::Coverage::BlockData::EndOffset() const { return block_->end; }
uint32_t debug::Coverage::BlockData::Count() const { return block_->count; }
int debug::Coverage::FunctionData::StartOffset() const {
return function_->start;
}
int debug::Coverage::FunctionData::EndOffset() const { return function_->end; }
uint32_t debug::Coverage::FunctionData::Count() const {
return function_->count;
}
MaybeLocal<String> debug::Coverage::FunctionData::Name() const {
return ToApiHandle<String>(function_->name);
}
size_t debug::Coverage::FunctionData::BlockCount() const {
return function_->blocks.size();
}
bool debug::Coverage::FunctionData::HasBlockCoverage() const {
return function_->has_block_coverage;
}
debug::Coverage::BlockData debug::Coverage::FunctionData::GetBlockData(
size_t i) const {
return BlockData(&function_->blocks.at(i), coverage_);
}
Local<debug::Script> debug::Coverage::ScriptData::GetScript() const {
return ToApiHandle<debug::Script>(script_->script);
}
size_t debug::Coverage::ScriptData::FunctionCount() const {
return script_->functions.size();
}
debug::Coverage::FunctionData debug::Coverage::ScriptData::GetFunctionData(
size_t i) const {
return FunctionData(&script_->functions.at(i), coverage_);
}
debug::Coverage::ScriptData::ScriptData(size_t index,
std::shared_ptr<i::Coverage> coverage)
: script_(&coverage->at(index)), coverage_(std::move(coverage)) {}
size_t debug::Coverage::ScriptCount() const { return coverage_->size(); }
debug::Coverage::ScriptData debug::Coverage::GetScriptData(size_t i) const {
return ScriptData(i, coverage_);
}
debug::Coverage debug::Coverage::CollectPrecise(Isolate* isolate) {
return Coverage(
i::Coverage::CollectPrecise(reinterpret_cast<i::Isolate*>(isolate)));
}
debug::Coverage debug::Coverage::CollectBestEffort(Isolate* isolate) {
return Coverage(
i::Coverage::CollectBestEffort(reinterpret_cast<i::Isolate*>(isolate)));
}
void debug::Coverage::SelectMode(Isolate* isolate, debug::CoverageMode mode) {
i::Coverage::SelectMode(reinterpret_cast<i::Isolate*>(isolate), mode);
}
int debug::TypeProfile::Entry::SourcePosition() const {
return entry_->position;
}
std::vector<MaybeLocal<String>> debug::TypeProfile::Entry::Types() const {
std::vector<MaybeLocal<String>> result;
for (const internal::Handle<internal::String>& type : entry_->types) {
result.emplace_back(ToApiHandle<String>(type));
}
return result;
}
debug::TypeProfile::ScriptData::ScriptData(
size_t index, std::shared_ptr<i::TypeProfile> type_profile)
: script_(&type_profile->at(index)),
type_profile_(std::move(type_profile)) {}
Local<debug::Script> debug::TypeProfile::ScriptData::GetScript() const {
return ToApiHandle<debug::Script>(script_->script);
}
std::vector<debug::TypeProfile::Entry> debug::TypeProfile::ScriptData::Entries()
const {
std::vector<debug::TypeProfile::Entry> result;
for (const internal::TypeProfileEntry& entry : script_->entries) {
result.push_back(debug::TypeProfile::Entry(&entry, type_profile_));
}
return result;
}
debug::TypeProfile debug::TypeProfile::Collect(Isolate* isolate) {
return TypeProfile(
i::TypeProfile::Collect(reinterpret_cast<i::Isolate*>(isolate)));
}
void debug::TypeProfile::SelectMode(Isolate* isolate,
debug::TypeProfileMode mode) {
i::TypeProfile::SelectMode(reinterpret_cast<i::Isolate*>(isolate), mode);
}
size_t debug::TypeProfile::ScriptCount() const { return type_profile_->size(); }
debug::TypeProfile::ScriptData debug::TypeProfile::GetScriptData(
size_t i) const {
return ScriptData(i, type_profile_);
}
v8::MaybeLocal<v8::Value> debug::WeakMap::Get(v8::Local<v8::Context> context,
v8::Local<v8::Value> key) {
PREPARE_FOR_EXECUTION(context, WeakMap, Get, Value);
auto self = Utils::OpenHandle(this);
Local<Value> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)};
has_pending_exception =
!ToLocal<Value>(i::Execution::CallBuiltin(isolate, isolate->weakmap_get(),
self, arraysize(argv), argv),
&result);
RETURN_ON_FAILED_EXECUTION(Value);
RETURN_ESCAPED(result);
}
v8::MaybeLocal<debug::WeakMap> debug::WeakMap::Set(
v8::Local<v8::Context> context, v8::Local<v8::Value> key,
v8::Local<v8::Value> value) {
PREPARE_FOR_EXECUTION(context, WeakMap, Set, WeakMap);
auto self = Utils::OpenHandle(this);
i::Handle<i::Object> result;
i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key),
Utils::OpenHandle(*value)};
has_pending_exception =
!i::Execution::CallBuiltin(isolate, isolate->weakmap_set(), self,
arraysize(argv), argv)
.ToHandle(&result);
RETURN_ON_FAILED_EXECUTION(WeakMap);
RETURN_ESCAPED(Local<WeakMap>::Cast(Utils::ToLocal(result)));
}
Local<debug::WeakMap> debug::WeakMap::New(v8::Isolate* isolate) {
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
LOG_API(i_isolate, WeakMap, New);
ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
i::Handle<i::JSWeakMap> obj = i_isolate->factory()->NewJSWeakMap();
return ToApiHandle<debug::WeakMap>(obj);
}
debug::WeakMap* debug::WeakMap::Cast(v8::Value* value) {
return static_cast<debug::WeakMap*>(value);
}
Local<Value> debug::AccessorPair::getter() {
i::Handle<i::AccessorPair> accessors = Utils::OpenHandle(this);
i::Isolate* isolate = accessors->GetIsolate();
i::Handle<i::Object> getter(accessors->getter(), isolate);
return Utils::ToLocal(getter);
}
Local<Value> debug::AccessorPair::setter() {
i::Handle<i::AccessorPair> accessors = Utils::OpenHandle(this);
i::Isolate* isolate = accessors->GetIsolate();
i::Handle<i::Object> setter(accessors->setter(), isolate);
return Utils::ToLocal(setter);
}
bool debug::AccessorPair::IsAccessorPair(Local<Value> that) {
i::Handle<i::Object> obj = Utils::OpenHandle(*that);
return obj->IsAccessorPair();
}
int debug::WasmValue::value_type() {
i::Handle<i::WasmValue> obj = Utils::OpenHandle(this);
return obj->value_type();
}
v8::Local<v8::Array> debug::WasmValue::bytes() {
i::Handle<i::WasmValue> obj = Utils::OpenHandle(this);
DCHECK(i::wasm::ValueType::Kind::kI32 == obj->value_type() ||
i::wasm::ValueType::Kind::kI64 == obj->value_type() ||
i::wasm::ValueType::Kind::kF32 == obj->value_type() ||
i::wasm::ValueType::Kind::kF64 == obj->value_type() ||
i::wasm::ValueType::Kind::kS128 == obj->value_type());
i::Isolate* isolate = obj->GetIsolate();
i::Handle<i::Object> bytes_or_ref(obj->bytes_or_ref(), isolate);
i::Handle<i::ByteArray> bytes(i::Handle<i::ByteArray>::cast(bytes_or_ref));
int length = bytes->length();
i::Handle<i::FixedArray> fa = isolate->factory()->NewFixedArray(length);
i::Handle<i::JSArray> arr = obj->GetIsolate()->factory()->NewJSArray(
i::PACKED_SMI_ELEMENTS, length, length);
i::JSArray::SetContent(arr, fa);
for (int i = 0; i < length; i++) {
fa->set(i, i::Smi::FromInt(bytes->get(i)));
}
return Utils::ToLocal(arr);
}
v8::Local<v8::Value> debug::WasmValue::ref() {
i::Handle<i::WasmValue> obj = Utils::OpenHandle(this);
DCHECK_EQ(i::wasm::HeapType::kExtern, obj->value_type());
i::Isolate* isolate = obj->GetIsolate();
i::Handle<i::Object> bytes_or_ref(obj->bytes_or_ref(), isolate);
return Utils::ToLocal(bytes_or_ref);
}
bool debug::WasmValue::IsWasmValue(Local<Value> that) {
i::Handle<i::Object> obj = Utils::OpenHandle(*that);
return obj->IsWasmValue();
}
MaybeLocal<Message> debug::GetMessageFromPromise(Local<Promise> p) {
i::Handle<i::JSPromise> promise = Utils::OpenHandle(*p);
i::Isolate* isolate = promise->GetIsolate();
i::Handle<i::Symbol> key = isolate->factory()->promise_debug_message_symbol();
i::Handle<i::Object> maybeMessage =
i::JSReceiver::GetDataProperty(promise, key);
if (!maybeMessage->IsJSMessageObject(isolate)) return MaybeLocal<Message>();
return ToApiHandle<Message>(
i::Handle<i::JSMessageObject>::cast(maybeMessage));
}
const char* CpuProfileNode::GetFunctionNameStr() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->entry()->name();
}
int CpuProfileNode::GetScriptId() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
const i::CodeEntry* entry = node->entry();
return entry->script_id();
}
Local<String> CpuProfileNode::GetScriptResourceName() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
i::Isolate* isolate = node->isolate();
return ToApiHandle<String>(isolate->factory()->InternalizeUtf8String(
node->entry()->resource_name()));
}
const char* CpuProfileNode::GetScriptResourceNameStr() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->entry()->resource_name();
}
bool CpuProfileNode::IsScriptSharedCrossOrigin() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->entry()->is_shared_cross_origin();
}
int CpuProfileNode::GetLineNumber() const {
return reinterpret_cast<const i::ProfileNode*>(this)->line_number();
}
int CpuProfileNode::GetColumnNumber() const {
return reinterpret_cast<const i::ProfileNode*>(this)
->entry()
->column_number();
}
unsigned int CpuProfileNode::GetHitLineCount() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->GetHitLineCount();
}
bool CpuProfileNode::GetLineTicks(LineTick* entries,
unsigned int length) const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->GetLineTicks(entries, length);
}
const char* CpuProfileNode::GetBailoutReason() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->entry()->bailout_reason();
}
unsigned CpuProfileNode::GetHitCount() const {
return reinterpret_cast<const i::ProfileNode*>(this)->self_ticks();
}
unsigned CpuProfileNode::GetNodeId() const {
return reinterpret_cast<const i::ProfileNode*>(this)->id();
}
CpuProfileNode::SourceType CpuProfileNode::GetSourceType() const {
return reinterpret_cast<const i::ProfileNode*>(this)->source_type();
}
int CpuProfileNode::GetChildrenCount() const {
return static_cast<int>(
reinterpret_cast<const i::ProfileNode*>(this)->children()->size());
}
const CpuProfileNode* CpuProfileNode::GetChild(int index) const {
const i::ProfileNode* child =
reinterpret_cast<const i::ProfileNode*>(this)->children()->at(index);
return reinterpret_cast<const CpuProfileNode*>(child);
}
const CpuProfileNode* CpuProfileNode::GetParent() const {
const i::ProfileNode* parent =
reinterpret_cast<const i::ProfileNode*>(this)->parent();
return reinterpret_cast<const CpuProfileNode*>(parent);
}
const std::vector<CpuProfileDeoptInfo>& CpuProfileNode::GetDeoptInfos() const {
const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this);
return node->deopt_infos();
}
void CpuProfile::Delete() {
i::CpuProfile* profile = reinterpret_cast<i::CpuProfile*>(this);
i::CpuProfiler* profiler = profile->cpu_profiler();
DCHECK_NOT_NULL(profiler);
profiler->DeleteProfile(profile);
}
Local<String> CpuProfile::GetTitle() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
i::Isolate* isolate = profile->top_down()->isolate();
return ToApiHandle<String>(
isolate->factory()->InternalizeUtf8String(profile->title()));
}
const CpuProfileNode* CpuProfile::GetTopDownRoot() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return reinterpret_cast<const CpuProfileNode*>(profile->top_down()->root());
}
const CpuProfileNode* CpuProfile::GetSample(int index) const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return reinterpret_cast<const CpuProfileNode*>(profile->sample(index).node);
}
int64_t CpuProfile::GetSampleTimestamp(int index) const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return profile->sample(index).timestamp.since_origin().InMicroseconds();
}
int64_t CpuProfile::GetStartTime() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return profile->start_time().since_origin().InMicroseconds();
}
int64_t CpuProfile::GetEndTime() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return profile->end_time().since_origin().InMicroseconds();
}
int CpuProfile::GetSamplesCount() const {
return reinterpret_cast<const i::CpuProfile*>(this)->samples_count();
}
CpuProfiler* CpuProfiler::New(Isolate* isolate,
CpuProfilingNamingMode naming_mode,
CpuProfilingLoggingMode logging_mode) {
return reinterpret_cast<CpuProfiler*>(new i::CpuProfiler(
reinterpret_cast<i::Isolate*>(isolate), naming_mode, logging_mode));
}
CpuProfilingOptions::CpuProfilingOptions(CpuProfilingMode mode,
unsigned max_samples,
int sampling_interval_us,
MaybeLocal<Context> filter_context)
: mode_(mode),
max_samples_(max_samples),
sampling_interval_us_(sampling_interval_us) {}
void CpuProfiler::Dispose() { delete reinterpret_cast<i::CpuProfiler*>(this); }
// static
void CpuProfiler::CollectSample(Isolate* isolate) {
i::CpuProfiler::CollectSample(reinterpret_cast<i::Isolate*>(isolate));
}
void CpuProfiler::SetSamplingInterval(int us) {
DCHECK_GE(us, 0);
return reinterpret_cast<i::CpuProfiler*>(this)->set_sampling_interval(
base::TimeDelta::FromMicroseconds(us));
}
void CpuProfiler::SetUsePreciseSampling(bool use_precise_sampling) {
reinterpret_cast<i::CpuProfiler*>(this)->set_use_precise_sampling(
use_precise_sampling);
}
CpuProfilingStatus CpuProfiler::StartProfiling(Local<String> title,
CpuProfilingOptions options) {
return reinterpret_cast<i::CpuProfiler*>(this)->StartProfiling(
*Utils::OpenHandle(*title), options);
}
CpuProfilingStatus CpuProfiler::StartProfiling(Local<String> title,
bool record_samples) {
CpuProfilingOptions options(
kLeafNodeLineNumbers,
record_samples ? CpuProfilingOptions::kNoSampleLimit : 0);
return reinterpret_cast<i::CpuProfiler*>(this)->StartProfiling(
*Utils::OpenHandle(*title), options);
}
CpuProfilingStatus CpuProfiler::StartProfiling(Local<String> title,
CpuProfilingMode mode,
bool record_samples,
unsigned max_samples) {
CpuProfilingOptions options(mode, record_samples ? max_samples : 0);
return reinterpret_cast<i::CpuProfiler*>(this)->StartProfiling(
*Utils::OpenHandle(*title), options);
}
CpuProfile* CpuProfiler::StopProfiling(Local<String> title) {
return reinterpret_cast<CpuProfile*>(
reinterpret_cast<i::CpuProfiler*>(this)->StopProfiling(
*Utils::OpenHandle(*title)));
}
void CpuProfiler::UseDetailedSourcePositionsForProfiling(Isolate* isolate) {
reinterpret_cast<i::Isolate*>(isolate)
->set_detailed_source_positions_for_profiling(true);
}
uintptr_t CodeEvent::GetCodeStartAddress() {
return reinterpret_cast<i::CodeEvent*>(this)->code_start_address;
}
size_t CodeEvent::GetCodeSize() {
return reinterpret_cast<i::CodeEvent*>(this)->code_size;
}
Local<String> CodeEvent::GetFunctionName() {
return ToApiHandle<String>(
reinterpret_cast<i::CodeEvent*>(this)->function_name);
}
Local<String> CodeEvent::GetScriptName() {
return ToApiHandle<String>(
reinterpret_cast<i::CodeEvent*>(this)->script_name);
}
int CodeEvent::GetScriptLine() {
return reinterpret_cast<i::CodeEvent*>(this)->script_line;
}
int CodeEvent::GetScriptColumn() {
return reinterpret_cast<i::CodeEvent*>(this)->script_column;
}
CodeEventType CodeEvent::GetCodeType() {
return reinterpret_cast<i::CodeEvent*>(this)->code_type;
}
const char* CodeEvent::GetComment() {
return reinterpret_cast<i::CodeEvent*>(this)->comment;
}
uintptr_t CodeEvent::GetPreviousCodeStartAddress() {
return reinterpret_cast<i::CodeEvent*>(this)->previous_code_start_address;
}
const char* CodeEvent::GetCodeEventTypeName(CodeEventType code_event_type) {
switch (code_event_type) {
case kUnknownType:
return "Unknown";
#define V(Name) \
case k##Name##Type: \
return #Name;
CODE_EVENTS_LIST(V)
#undef V
}
// The execution should never pass here
UNREACHABLE();
// NOTE(mmarchini): Workaround to fix a compiler failure on GCC 4.9
return "Unknown";
}
CodeEventHandler::CodeEventHandler(Isolate* isolate) {
internal_listener_ =
new i::ExternalCodeEventListener(reinterpret_cast<i::Isolate*>(isolate));
}
CodeEventHandler::~CodeEventHandler() {
delete reinterpret_cast<i::ExternalCodeEventListener*>(internal_listener_);
}
void CodeEventHandler::Enable() {
reinterpret_cast<i::ExternalCodeEventListener*>(internal_listener_)
->StartListening(this);
}
void CodeEventHandler::Disable() {
reinterpret_cast<i::ExternalCodeEventListener*>(internal_listener_)
->StopListening();
}
static i::HeapGraphEdge* ToInternal(const HeapGraphEdge* edge) {
return const_cast<i::HeapGraphEdge*>(
reinterpret_cast<const i::HeapGraphEdge*>(edge));
}
HeapGraphEdge::Type HeapGraphEdge::GetType() const {
return static_cast<HeapGraphEdge::Type>(ToInternal(this)->type());
}
Local<Value> HeapGraphEdge::GetName() const {
i::HeapGraphEdge* edge = ToInternal(this);
i::Isolate* isolate = edge->isolate();
switch (edge->type()) {
case i::HeapGraphEdge::kContextVariable:
case i::HeapGraphEdge::kInternal:
case i::HeapGraphEdge::kProperty:
case i::HeapGraphEdge::kShortcut:
case i::HeapGraphEdge::kWeak:
return ToApiHandle<String>(
isolate->factory()->InternalizeUtf8String(edge->name()));
case i::HeapGraphEdge::kElement:
case i::HeapGraphEdge::kHidden:
return ToApiHandle<Number>(
isolate->factory()->NewNumberFromInt(edge->index()));
default:
UNREACHABLE();
}
return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate));
}
const HeapGraphNode* HeapGraphEdge::GetFromNode() const {
const i::HeapEntry* from = ToInternal(this)->from();
return reinterpret_cast<const HeapGraphNode*>(from);
}
const HeapGraphNode* HeapGraphEdge::GetToNode() const {
const i::HeapEntry* to = ToInternal(this)->to();
return reinterpret_cast<const HeapGraphNode*>(to);
}
static i::HeapEntry* ToInternal(const HeapGraphNode* entry) {
return const_cast<i::HeapEntry*>(
reinterpret_cast<const i::HeapEntry*>(entry));
}
HeapGraphNode::Type HeapGraphNode::GetType() const {
return static_cast<HeapGraphNode::Type>(ToInternal(this)->type());
}
Local<String> HeapGraphNode::GetName() const {
i::Isolate* isolate = ToInternal(this)->isolate();
return ToApiHandle<String>(
isolate->factory()->InternalizeUtf8String(ToInternal(this)->name()));
}
SnapshotObjectId HeapGraphNode::GetId() const { return ToInternal(this)->id(); }
size_t HeapGraphNode::GetShallowSize() const {
return ToInternal(this)->self_size();
}
int HeapGraphNode::GetChildrenCount() const {
return ToInternal(this)->children_count();
}
const HeapGraphEdge* HeapGraphNode::GetChild(int index) const {
return reinterpret_cast<const HeapGraphEdge*>(ToInternal(this)->child(index));
}
static i::HeapSnapshot* ToInternal(const HeapSnapshot* snapshot) {
return const_cast<i::HeapSnapshot*>(
reinterpret_cast<const i::HeapSnapshot*>(snapshot));
}
void HeapSnapshot::Delete() {
i::Isolate* isolate = ToInternal(this)->profiler()->isolate();
if (isolate->heap_profiler()->GetSnapshotsCount() > 1 ||
isolate->heap_profiler()->IsTakingSnapshot()) {
ToInternal(this)->Delete();
} else {
// If this is the last snapshot, clean up all accessory data as well.
isolate->heap_profiler()->DeleteAllSnapshots();
}
}
const HeapGraphNode* HeapSnapshot::GetRoot() const {
return reinterpret_cast<const HeapGraphNode*>(ToInternal(this)->root());
}
const HeapGraphNode* HeapSnapshot::GetNodeById(SnapshotObjectId id) const {
return reinterpret_cast<const HeapGraphNode*>(
ToInternal(this)->GetEntryById(id));
}
int HeapSnapshot::GetNodesCount() const {
return static_cast<int>(ToInternal(this)->entries().size());
}
const HeapGraphNode* HeapSnapshot::GetNode(int index) const {
return reinterpret_cast<const HeapGraphNode*>(
&ToInternal(this)->entries().at(index));
}
SnapshotObjectId HeapSnapshot::GetMaxSnapshotJSObjectId() const {
return ToInternal(this)->max_snapshot_js_object_id();
}
void HeapSnapshot::Serialize(OutputStream* stream,
HeapSnapshot::SerializationFormat format) const {
Utils::ApiCheck(format == kJSON, "v8::HeapSnapshot::Serialize",
"Unknown serialization format");
Utils::ApiCheck(stream->GetChunkSize() > 0, "v8::HeapSnapshot::Serialize",
"Invalid stream chunk size");
i::HeapSnapshotJSONSerializer serializer(ToInternal(this));
serializer.Serialize(stream);
}
// static
STATIC_CONST_MEMBER_DEFINITION const SnapshotObjectId
HeapProfiler::kUnknownObjectId;
int HeapProfiler::GetSnapshotCount() {
return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotsCount();
}
const HeapSnapshot* HeapProfiler::GetHeapSnapshot(int index) {
return reinterpret_cast<const HeapSnapshot*>(
reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshot(index));
}
SnapshotObjectId HeapProfiler::GetObjectId(Local<Value> value) {
i::Handle<i::Object> obj = Utils::OpenHandle(*value);
return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotObjectId(obj);
}
SnapshotObjectId HeapProfiler::GetObjectId(NativeObject value) {
return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotObjectId(value);
}
Local<Value> HeapProfiler::FindObjectById(SnapshotObjectId id) {
i::Handle<i::Object> obj =
reinterpret_cast<i::HeapProfiler*>(this)->FindHeapObjectById(id);
if (obj.is_null()) return Local<Value>();
return Utils::ToLocal(obj);
}
void HeapProfiler::ClearObjectIds() {
reinterpret_cast<i::HeapProfiler*>(this)->ClearHeapObjectMap();
}
const HeapSnapshot* HeapProfiler::TakeHeapSnapshot(
ActivityControl* control, ObjectNameResolver* resolver,
bool treat_global_objects_as_roots) {
return reinterpret_cast<const HeapSnapshot*>(
reinterpret_cast<i::HeapProfiler*>(this)->TakeSnapshot(
control, resolver, treat_global_objects_as_roots));
}
void HeapProfiler::StartTrackingHeapObjects(bool track_allocations) {
reinterpret_cast<i::HeapProfiler*>(this)->StartHeapObjectsTracking(
track_allocations);
}
void HeapProfiler::StopTrackingHeapObjects() {
reinterpret_cast<i::HeapProfiler*>(this)->StopHeapObjectsTracking();
}
SnapshotObjectId HeapProfiler::GetHeapStats(OutputStream* stream,
int64_t* timestamp_us) {
i::HeapProfiler* heap_profiler = reinterpret_cast<i::HeapProfiler*>(this);
return heap_profiler->PushHeapObjectsStats(stream, timestamp_us);
}
bool HeapProfiler::StartSamplingHeapProfiler(uint64_t sample_interval,
int stack_depth,
SamplingFlags flags) {
return reinterpret_cast<i::HeapProfiler*>(this)->StartSamplingHeapProfiler(
sample_interval, stack_depth, flags);
}
void HeapProfiler::StopSamplingHeapProfiler() {
reinterpret_cast<i::HeapProfiler*>(this)->StopSamplingHeapProfiler();
}
AllocationProfile* HeapProfiler::GetAllocationProfile() {
return reinterpret_cast<i::HeapProfiler*>(this)->GetAllocationProfile();
}
void HeapProfiler::DeleteAllHeapSnapshots() {
reinterpret_cast<i::HeapProfiler*>(this)->DeleteAllSnapshots();
}
void HeapProfiler::AddBuildEmbedderGraphCallback(
BuildEmbedderGraphCallback callback, void* data) {
reinterpret_cast<i::HeapProfiler*>(this)->AddBuildEmbedderGraphCallback(
callback, data);
}
void HeapProfiler::RemoveBuildEmbedderGraphCallback(
BuildEmbedderGraphCallback callback, void* data) {
reinterpret_cast<i::HeapProfiler*>(this)->RemoveBuildEmbedderGraphCallback(
callback, data);
}
void HeapProfiler::SetGetDetachednessCallback(GetDetachednessCallback callback,
void* data) {
reinterpret_cast<i::HeapProfiler*>(this)->SetGetDetachednessCallback(callback,
data);
}
void EmbedderHeapTracer::SetStackStart(void* stack_start) {
CHECK(isolate_);
reinterpret_cast<i::Isolate*>(isolate_)->global_handles()->SetStackStart(
stack_start);
}
void EmbedderHeapTracer::NotifyEmptyEmbedderStack() {
CHECK(isolate_);
reinterpret_cast<i::Isolate*>(isolate_)
->global_handles()
->NotifyEmptyEmbedderStack();
}
void EmbedderHeapTracer::FinalizeTracing() {
if (isolate_) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(isolate_);
if (isolate->heap()->incremental_marking()->IsMarking()) {
isolate->heap()->FinalizeIncrementalMarkingAtomically(
i::GarbageCollectionReason::kExternalFinalize);
}
}
}
void EmbedderHeapTracer::GarbageCollectionForTesting(
EmbedderStackState stack_state) {
CHECK(isolate_);
CHECK(i::FLAG_expose_gc);
i::Heap* const heap = reinterpret_cast<i::Isolate*>(isolate_)->heap();
heap->SetEmbedderStackStateForNextFinalization(stack_state);
heap->PreciseCollectAllGarbage(i::Heap::kNoGCFlags,
i::GarbageCollectionReason::kTesting,
kGCCallbackFlagForced);
}
void EmbedderHeapTracer::IncreaseAllocatedSize(size_t bytes) {
if (isolate_) {
i::LocalEmbedderHeapTracer* const tracer =
reinterpret_cast<i::Isolate*>(isolate_)
->heap()
->local_embedder_heap_tracer();
DCHECK_NOT_NULL(tracer);
tracer->IncreaseAllocatedSize(bytes);
}
}
void EmbedderHeapTracer::DecreaseAllocatedSize(size_t bytes) {
if (isolate_) {
i::LocalEmbedderHeapTracer* const tracer =
reinterpret_cast<i::Isolate*>(isolate_)
->heap()
->local_embedder_heap_tracer();
DCHECK_NOT_NULL(tracer);
tracer->DecreaseAllocatedSize(bytes);
}
}
void EmbedderHeapTracer::RegisterEmbedderReference(
const BasicTracedReference<v8::Data>& ref) {
if (ref.IsEmpty()) return;
i::Heap* const heap = reinterpret_cast<i::Isolate*>(isolate_)->heap();
heap->RegisterExternallyReferencedObject(
reinterpret_cast<i::Address*>(ref.val_));
}
void EmbedderHeapTracer::IterateTracedGlobalHandles(
TracedGlobalHandleVisitor* visitor) {
i::Isolate* isolate = reinterpret_cast<i::Isolate*>(isolate_);
i::DisallowHeapAllocation no_allocation;
isolate->global_handles()->IterateTracedNodes(visitor);
}
bool EmbedderHeapTracer::IsRootForNonTracingGC(
const v8::TracedReference<v8::Value>& handle) {
return true;
}
bool EmbedderHeapTracer::IsRootForNonTracingGC(
const v8::TracedGlobal<v8::Value>& handle) {
return true;
}
void EmbedderHeapTracer::ResetHandleInNonTracingGC(
const v8::TracedReference<v8::Value>& handle) {
UNREACHABLE();
}
const void* CTypeInfo::GetWrapperInfo() const {
DCHECK(payload_ & kWrapperTypeInfoMask);
return reinterpret_cast<const void*>(payload_ & kWrapperTypeInfoMask);
}
CFunction::CFunction(const void* address, const CFunctionInfo* type_info)
: address_(address), type_info_(type_info) {
CHECK_NOT_NULL(address_);
CHECK_NOT_NULL(type_info_);
for (unsigned int i = 0; i < type_info_->ArgumentCount(); ++i) {
if (type_info_->ArgumentInfo(i).IsArray()) {
// Array args require an integer passed for their length
// as the next argument.
DCHECK_LT(i + 1, type_info_->ArgumentCount());
switch (type_info_->ArgumentInfo(i + 1).GetType()) {
case CTypeInfo::Type::kInt32:
case CTypeInfo::Type::kUint32:
case CTypeInfo::Type::kInt64:
case CTypeInfo::Type::kUint64:
break;
default:
UNREACHABLE();
break;
}
}
}
}
RegisterState::RegisterState()
: pc(nullptr), sp(nullptr), fp(nullptr), lr(nullptr) {}
RegisterState::~RegisterState() = default;
RegisterState::RegisterState(const RegisterState& other) V8_NOEXCEPT {
*this = other;
}
RegisterState& RegisterState::operator=(const RegisterState& other)
V8_NOEXCEPT {
if (&other != this) {
pc = other.pc;
sp = other.sp;
fp = other.fp;
lr = other.lr;
if (other.callee_saved) {
// Make a deep copy if {other.callee_saved} is non-null.
callee_saved =
std::make_unique<CalleeSavedRegisters>(*(other.callee_saved));
} else {
// Otherwise, set {callee_saved} to null to match {other}.
callee_saved.reset();
}
}
return *this;
}
namespace internal {
const size_t HandleScopeImplementer::kEnteredContextsOffset =
offsetof(HandleScopeImplementer, entered_contexts_);
const size_t HandleScopeImplementer::kIsMicrotaskContextOffset =
offsetof(HandleScopeImplementer, is_microtask_context_);
void HandleScopeImplementer::FreeThreadResources() { Free(); }
char* HandleScopeImplementer::ArchiveThread(char* storage) {
HandleScopeData* current = isolate_->handle_scope_data();
handle_scope_data_ = *current;
MemCopy(storage, this, sizeof(*this));
ResetAfterArchive();
current->Initialize();
return storage + ArchiveSpacePerThread();
}
int HandleScopeImplementer::ArchiveSpacePerThread() {
return sizeof(HandleScopeImplementer);
}
char* HandleScopeImplementer::RestoreThread(char* storage) {
MemCopy(this, storage, sizeof(*this));
*isolate_->handle_scope_data() = handle_scope_data_;
return storage + ArchiveSpacePerThread();
}
void HandleScopeImplementer::IterateThis(RootVisitor* v) {
#ifdef DEBUG
bool found_block_before_deferred = false;
#endif
// Iterate over all handles in the blocks except for the last.
for (int i = static_cast<int>(blocks()->size()) - 2; i >= 0; --i) {
Address* block = blocks()->at(i);
// Cast possibly-unrelated pointers to plain Address before comparing them
// to avoid undefined behavior.
if (last_handle_before_deferred_block_ != nullptr &&
(reinterpret_cast<Address>(last_handle_before_deferred_block_) <=
reinterpret_cast<Address>(&block[kHandleBlockSize])) &&
(reinterpret_cast<Address>(last_handle_before_deferred_block_) >=
reinterpret_cast<Address>(block))) {
v->VisitRootPointers(Root::kHandleScope, nullptr, FullObjectSlot(block),
FullObjectSlot(last_handle_before_deferred_block_));
DCHECK(!found_block_before_deferred);
#ifdef DEBUG
found_block_before_deferred = true;
#endif
} else {
v->VisitRootPointers(Root::kHandleScope, nullptr, FullObjectSlot(block),
FullObjectSlot(&block[kHandleBlockSize]));
}
}
DCHECK(last_handle_before_deferred_block_ == nullptr ||
found_block_before_deferred);
// Iterate over live handles in the last block (if any).
if (!blocks()->empty()) {
v->VisitRootPointers(Root::kHandleScope, nullptr,
FullObjectSlot(blocks()->back()),
FullObjectSlot(handle_scope_data_.next));
}
DetachableVector<Context>* context_lists[2] = {&saved_contexts_,
&entered_contexts_};
for (unsigned i = 0; i < arraysize(context_lists); i++) {
context_lists[i]->shrink_to_fit();
if (context_lists[i]->empty()) continue;
FullObjectSlot start(&context_lists[i]->front());
v->VisitRootPointers(Root::kHandleScope, nullptr, start,
start + static_cast<int>(context_lists[i]->size()));
}
}
void HandleScopeImplementer::Iterate(RootVisitor* v) {
HandleScopeData* current = isolate_->handle_scope_data();
handle_scope_data_ = *current;
IterateThis(v);
}
char* HandleScopeImplementer::Iterate(RootVisitor* v, char* storage) {
HandleScopeImplementer* scope_implementer =
reinterpret_cast<HandleScopeImplementer*>(storage);
scope_implementer->IterateThis(v);
return storage + ArchiveSpacePerThread();
}
std::unique_ptr<PersistentHandles> HandleScopeImplementer::DetachPersistent(
Address* prev_limit) {
std::unique_ptr<PersistentHandles> ph(new PersistentHandles(isolate()));
DCHECK_NOT_NULL(prev_limit);
while (!blocks_.empty()) {
Address* block_start = blocks_.back();
Address* block_limit = &block_start[kHandleBlockSize];
// We should not need to check for SealHandleScope here. Assert this.
DCHECK_IMPLIES(block_start <= prev_limit && prev_limit <= block_limit,
prev_limit == block_limit);
if (prev_limit == block_limit) break;
ph->blocks_.push_back(blocks_.back());
#if DEBUG
ph->ordered_blocks_.insert(blocks_.back());
#endif
blocks_.pop_back();
}
// ph->blocks_ now contains the blocks installed on the
// HandleScope stack since BeginDeferredScope was called, but in
// reverse order.
// Switch first and last blocks, such that the last block is the one
// that is potentially half full.
DCHECK(!blocks_.empty() && !ph->blocks_.empty());
std::swap(ph->blocks_.front(), ph->blocks_.back());
ph->block_next_ = isolate()->handle_scope_data()->next;
Address* block_start = ph->blocks_.back();
ph->block_limit_ = block_start + kHandleBlockSize;
DCHECK_NOT_NULL(last_handle_before_deferred_block_);
last_handle_before_deferred_block_ = nullptr;
return ph;
}
void HandleScopeImplementer::BeginDeferredScope() {
DCHECK_NULL(last_handle_before_deferred_block_);
last_handle_before_deferred_block_ = isolate()->handle_scope_data()->next;
}
void InvokeAccessorGetterCallback(
v8::Local<v8::Name> property,
const v8::PropertyCallbackInfo<v8::Value>& info,
v8::AccessorNameGetterCallback getter) {
// Leaving JavaScript.
Isolate* isolate = reinterpret_cast<Isolate*>(info.GetIsolate());
RuntimeCallTimerScope timer(isolate,
RuntimeCallCounterId::kAccessorGetterCallback);
Address getter_address = reinterpret_cast<Address>(getter);
VMState<EXTERNAL> state(isolate);
ExternalCallbackScope call_scope(isolate, getter_address);
getter(property, info);
}
void InvokeFunctionCallback(const v8::FunctionCallbackInfo<v8::Value>& info,
v8::FunctionCallback callback) {
Isolate* isolate = reinterpret_cast<Isolate*>(info.GetIsolate());
RuntimeCallTimerScope timer(isolate, RuntimeCallCounterId::kFunctionCallback);
Address callback_address = reinterpret_cast<Address>(callback);
VMState<EXTERNAL> state(isolate);
ExternalCallbackScope call_scope(isolate, callback_address);
callback(info);
}
void InvokeFinalizationRegistryCleanupFromTask(
Handle<Context> context,
Handle<JSFinalizationRegistry> finalization_registry,
Handle<Object> callback) {
Isolate* isolate = finalization_registry->native_context().GetIsolate();
RuntimeCallTimerScope timer(
isolate, RuntimeCallCounterId::kFinalizationRegistryCleanupFromTask);
// Do not use ENTER_V8 because this is always called from a running
// FinalizationRegistryCleanupTask within V8 and we should not log it as an
// API call. This method is implemented here to avoid duplication of the
// exception handling and microtask running logic in CallDepthScope.
if (IsExecutionTerminatingCheck(isolate)) return;
Local<v8::Context> api_context = Utils::ToLocal(context);
CallDepthScope<true> call_depth_scope(isolate, api_context);
VMState<OTHER> state(isolate);
Handle<Object> argv[] = {callback};
if (Execution::CallBuiltin(isolate,
isolate->finalization_registry_cleanup_some(),
finalization_registry, arraysize(argv), argv)
.is_null()) {
call_depth_scope.Escape();
}
}
// Undefine macros for jumbo build.
#undef LOG_API
#undef ENTER_V8_DO_NOT_USE
#undef ENTER_V8_HELPER_DO_NOT_USE
#undef PREPARE_FOR_DEBUG_INTERFACE_EXECUTION_WITH_ISOLATE
#undef PREPARE_FOR_EXECUTION_WITH_CONTEXT
#undef PREPARE_FOR_EXECUTION
#undef ENTER_V8
#undef ENTER_V8_NO_SCRIPT
#undef ENTER_V8_NO_SCRIPT_NO_EXCEPTION
#undef ENTER_V8_FOR_NEW_CONTEXT
#undef EXCEPTION_BAILOUT_CHECK_SCOPED_DO_NOT_USE
#undef RETURN_ON_FAILED_EXECUTION
#undef RETURN_ON_FAILED_EXECUTION_PRIMITIVE
#undef RETURN_ESCAPED
#undef SET_FIELD_WRAPPED
#undef NEW_STRING
#undef CALLBACK_SETTER
} // namespace internal
} // namespace v8
#undef TRACE_BS