| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_CODEGEN_X64_ASSEMBLER_X64_INL_H_ |
| #define V8_CODEGEN_X64_ASSEMBLER_X64_INL_H_ |
| |
| #include "src/codegen/x64/assembler-x64.h" |
| |
| #include "src/base/cpu.h" |
| #include "src/base/memory.h" |
| #include "src/debug/debug.h" |
| #include "src/objects/objects-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| bool CpuFeatures::SupportsOptimizer() { return true; } |
| |
| bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(SSE4_1); } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Assembler |
| |
| void Assembler::emitl(uint32_t x) { |
| WriteUnalignedValue(reinterpret_cast<Address>(pc_), x); |
| pc_ += sizeof(uint32_t); |
| } |
| |
| void Assembler::emitq(uint64_t x) { |
| WriteUnalignedValue(reinterpret_cast<Address>(pc_), x); |
| pc_ += sizeof(uint64_t); |
| } |
| |
| void Assembler::emitw(uint16_t x) { |
| WriteUnalignedValue(reinterpret_cast<Address>(pc_), x); |
| pc_ += sizeof(uint16_t); |
| } |
| |
| void Assembler::emit_runtime_entry(Address entry, RelocInfo::Mode rmode) { |
| DCHECK(RelocInfo::IsRuntimeEntry(rmode)); |
| RecordRelocInfo(rmode); |
| emitl(static_cast<uint32_t>(entry - options().code_range_start)); |
| } |
| |
| void Assembler::emit(Immediate x) { |
| if (!RelocInfo::IsNone(x.rmode_)) { |
| RecordRelocInfo(x.rmode_); |
| } |
| emitl(x.value_); |
| } |
| |
| void Assembler::emit(Immediate64 x) { |
| if (!RelocInfo::IsNone(x.rmode_)) { |
| RecordRelocInfo(x.rmode_); |
| } |
| emitq(static_cast<uint64_t>(x.value_)); |
| } |
| |
| void Assembler::emit_rex_64(Register reg, Register rm_reg) { |
| emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit()); |
| } |
| |
| void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) { |
| emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3); |
| } |
| |
| void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) { |
| emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3); |
| } |
| |
| void Assembler::emit_rex_64(XMMRegister reg, XMMRegister rm_reg) { |
| emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3); |
| } |
| |
| void Assembler::emit_rex_64(Register reg, Operand op) { |
| emit(0x48 | reg.high_bit() << 2 | op.data().rex); |
| } |
| |
| void Assembler::emit_rex_64(XMMRegister reg, Operand op) { |
| emit(0x48 | (reg.code() & 0x8) >> 1 | op.data().rex); |
| } |
| |
| void Assembler::emit_rex_64(Register rm_reg) { |
| DCHECK_EQ(rm_reg.code() & 0xf, rm_reg.code()); |
| emit(0x48 | rm_reg.high_bit()); |
| } |
| |
| void Assembler::emit_rex_64(Operand op) { emit(0x48 | op.data().rex); } |
| |
| void Assembler::emit_rex_32(Register reg, Register rm_reg) { |
| emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit()); |
| } |
| |
| void Assembler::emit_rex_32(Register reg, Operand op) { |
| emit(0x40 | reg.high_bit() << 2 | op.data().rex); |
| } |
| |
| void Assembler::emit_rex_32(Register rm_reg) { emit(0x40 | rm_reg.high_bit()); } |
| |
| void Assembler::emit_rex_32(Operand op) { emit(0x40 | op.data().rex); } |
| |
| void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) { |
| byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit(); |
| if (rex_bits != 0) emit(0x40 | rex_bits); |
| } |
| |
| void Assembler::emit_optional_rex_32(Register reg, Operand op) { |
| byte rex_bits = reg.high_bit() << 2 | op.data().rex; |
| if (rex_bits != 0) emit(0x40 | rex_bits); |
| } |
| |
| void Assembler::emit_optional_rex_32(XMMRegister reg, Operand op) { |
| byte rex_bits = (reg.code() & 0x8) >> 1 | op.data().rex; |
| if (rex_bits != 0) emit(0x40 | rex_bits); |
| } |
| |
| void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) { |
| byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3; |
| if (rex_bits != 0) emit(0x40 | rex_bits); |
| } |
| |
| void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) { |
| byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3; |
| if (rex_bits != 0) emit(0x40 | rex_bits); |
| } |
| |
| void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) { |
| byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3; |
| if (rex_bits != 0) emit(0x40 | rex_bits); |
| } |
| |
| void Assembler::emit_optional_rex_32(Register rm_reg) { |
| if (rm_reg.high_bit()) emit(0x41); |
| } |
| |
| void Assembler::emit_optional_rex_32(XMMRegister rm_reg) { |
| if (rm_reg.high_bit()) emit(0x41); |
| } |
| |
| void Assembler::emit_optional_rex_32(Operand op) { |
| if (op.data().rex != 0) emit(0x40 | op.data().rex); |
| } |
| |
| void Assembler::emit_optional_rex_8(Register reg) { |
| if (!reg.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(reg); |
| } |
| } |
| |
| void Assembler::emit_optional_rex_8(Register reg, Operand op) { |
| if (!reg.is_byte_register()) { |
| // Register is not one of al, bl, cl, dl. Its encoding needs REX. |
| emit_rex_32(reg, op); |
| } else { |
| emit_optional_rex_32(reg, op); |
| } |
| } |
| |
| // byte 1 of 3-byte VEX |
| void Assembler::emit_vex3_byte1(XMMRegister reg, XMMRegister rm, |
| LeadingOpcode m) { |
| byte rxb = static_cast<byte>(~((reg.high_bit() << 2) | rm.high_bit())) << 5; |
| emit(rxb | m); |
| } |
| |
| // byte 1 of 3-byte VEX |
| void Assembler::emit_vex3_byte1(XMMRegister reg, Operand rm, LeadingOpcode m) { |
| byte rxb = static_cast<byte>(~((reg.high_bit() << 2) | rm.data().rex)) << 5; |
| emit(rxb | m); |
| } |
| |
| // byte 1 of 2-byte VEX |
| void Assembler::emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l, |
| SIMDPrefix pp) { |
| byte rv = static_cast<byte>(~((reg.high_bit() << 4) | v.code())) << 3; |
| emit(rv | l | pp); |
| } |
| |
| // byte 2 of 3-byte VEX |
| void Assembler::emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l, |
| SIMDPrefix pp) { |
| emit(w | ((~v.code() & 0xf) << 3) | l | pp); |
| } |
| |
| void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg, |
| XMMRegister rm, VectorLength l, SIMDPrefix pp, |
| LeadingOpcode mm, VexW w) { |
| if (rm.high_bit() || mm != k0F || w != kW0) { |
| emit_vex3_byte0(); |
| emit_vex3_byte1(reg, rm, mm); |
| emit_vex3_byte2(w, vreg, l, pp); |
| } else { |
| emit_vex2_byte0(); |
| emit_vex2_byte1(reg, vreg, l, pp); |
| } |
| } |
| |
| void Assembler::emit_vex_prefix(Register reg, Register vreg, Register rm, |
| VectorLength l, SIMDPrefix pp, LeadingOpcode mm, |
| VexW w) { |
| XMMRegister ireg = XMMRegister::from_code(reg.code()); |
| XMMRegister ivreg = XMMRegister::from_code(vreg.code()); |
| XMMRegister irm = XMMRegister::from_code(rm.code()); |
| emit_vex_prefix(ireg, ivreg, irm, l, pp, mm, w); |
| } |
| |
| void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg, Operand rm, |
| VectorLength l, SIMDPrefix pp, LeadingOpcode mm, |
| VexW w) { |
| if (rm.data().rex || mm != k0F || w != kW0) { |
| emit_vex3_byte0(); |
| emit_vex3_byte1(reg, rm, mm); |
| emit_vex3_byte2(w, vreg, l, pp); |
| } else { |
| emit_vex2_byte0(); |
| emit_vex2_byte1(reg, vreg, l, pp); |
| } |
| } |
| |
| void Assembler::emit_vex_prefix(Register reg, Register vreg, Operand rm, |
| VectorLength l, SIMDPrefix pp, LeadingOpcode mm, |
| VexW w) { |
| XMMRegister ireg = XMMRegister::from_code(reg.code()); |
| XMMRegister ivreg = XMMRegister::from_code(vreg.code()); |
| emit_vex_prefix(ireg, ivreg, rm, l, pp, mm, w); |
| } |
| |
| Address Assembler::target_address_at(Address pc, Address constant_pool) { |
| return ReadUnalignedValue<int32_t>(pc) + pc + 4; |
| } |
| |
| void Assembler::set_target_address_at(Address pc, Address constant_pool, |
| Address target, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(is_int32(target - pc - 4)); |
| WriteUnalignedValue(pc, static_cast<int32_t>(target - pc - 4)); |
| if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| FlushInstructionCache(pc, sizeof(int32_t)); |
| } |
| } |
| |
| void Assembler::deserialization_set_target_internal_reference_at( |
| Address pc, Address target, RelocInfo::Mode mode) { |
| WriteUnalignedValue(pc, target); |
| } |
| |
| void Assembler::deserialization_set_special_target_at( |
| Address instruction_payload, Code code, Address target) { |
| set_target_address_at(instruction_payload, |
| !code.is_null() ? code.constant_pool() : kNullAddress, |
| target); |
| } |
| |
| int Assembler::deserialization_special_target_size( |
| Address instruction_payload) { |
| return kSpecialTargetSize; |
| } |
| |
| Handle<Code> Assembler::code_target_object_handle_at(Address pc) { |
| return GetCodeTarget(ReadUnalignedValue<int32_t>(pc)); |
| } |
| |
| Handle<HeapObject> Assembler::compressed_embedded_object_handle_at(Address pc) { |
| return GetEmbeddedObject(ReadUnalignedValue<uint32_t>(pc)); |
| } |
| |
| Address Assembler::runtime_entry_at(Address pc) { |
| return ReadUnalignedValue<int32_t>(pc) + options().code_range_start; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo |
| |
| // The modes possibly affected by apply must be in kApplyMask. |
| void RelocInfo::apply(intptr_t delta) { |
| if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) { |
| WriteUnalignedValue( |
| pc_, ReadUnalignedValue<int32_t>(pc_) - static_cast<int32_t>(delta)); |
| } else if (IsInternalReference(rmode_)) { |
| // Absolute code pointer inside code object moves with the code object. |
| WriteUnalignedValue(pc_, ReadUnalignedValue<Address>(pc_) + delta); |
| } |
| } |
| |
| Address RelocInfo::target_address() { |
| DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_)); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| Address RelocInfo::target_address_address() { |
| DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) || |
| IsWasmStubCall(rmode_) || IsFullEmbeddedObject(rmode_) || |
| IsCompressedEmbeddedObject(rmode_) || IsExternalReference(rmode_) || |
| IsOffHeapTarget(rmode_)); |
| return pc_; |
| } |
| |
| Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); } |
| |
| int RelocInfo::target_address_size() { |
| if (IsCodedSpecially()) { |
| return Assembler::kSpecialTargetSize; |
| } else { |
| return IsCompressedEmbeddedObject(rmode_) ? kTaggedSize |
| : kSystemPointerSize; |
| } |
| } |
| |
| HeapObject RelocInfo::target_object() { |
| DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); |
| if (IsCompressedEmbeddedObject(rmode_)) { |
| CHECK(!host_.is_null()); |
| Object o = static_cast<Object>(DecompressTaggedPointer( |
| host_.ptr(), ReadUnalignedValue<Tagged_t>(pc_))); |
| return HeapObject::cast(o); |
| } |
| return HeapObject::cast(Object(ReadUnalignedValue<Address>(pc_))); |
| } |
| |
| HeapObject RelocInfo::target_object_no_host(Isolate* isolate) { |
| DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); |
| if (IsCompressedEmbeddedObject(rmode_)) { |
| Tagged_t compressed = ReadUnalignedValue<Tagged_t>(pc_); |
| DCHECK(!HAS_SMI_TAG(compressed)); |
| Object obj(DecompressTaggedPointer(isolate, compressed)); |
| return HeapObject::cast(obj); |
| } |
| return HeapObject::cast(Object(ReadUnalignedValue<Address>(pc_))); |
| } |
| |
| Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) { |
| DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); |
| if (IsCodeTarget(rmode_)) { |
| return origin->code_target_object_handle_at(pc_); |
| } else { |
| if (IsCompressedEmbeddedObject(rmode_)) { |
| return origin->compressed_embedded_object_handle_at(pc_); |
| } |
| return Handle<HeapObject>::cast(ReadUnalignedValue<Handle<Object>>(pc_)); |
| } |
| } |
| |
| Address RelocInfo::target_external_reference() { |
| DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); |
| return ReadUnalignedValue<Address>(pc_); |
| } |
| |
| void RelocInfo::set_target_external_reference( |
| Address target, ICacheFlushMode icache_flush_mode) { |
| DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); |
| WriteUnalignedValue(pc_, target); |
| if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| FlushInstructionCache(pc_, sizeof(Address)); |
| } |
| } |
| |
| Address RelocInfo::target_internal_reference() { |
| DCHECK(rmode_ == INTERNAL_REFERENCE); |
| return ReadUnalignedValue<Address>(pc_); |
| } |
| |
| Address RelocInfo::target_internal_reference_address() { |
| DCHECK(rmode_ == INTERNAL_REFERENCE); |
| return pc_; |
| } |
| |
| void RelocInfo::set_target_object(Heap* heap, HeapObject target, |
| WriteBarrierMode write_barrier_mode, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); |
| if (IsCompressedEmbeddedObject(rmode_)) { |
| DCHECK(COMPRESS_POINTERS_BOOL); |
| Tagged_t tagged = CompressTagged(target.ptr()); |
| WriteUnalignedValue(pc_, tagged); |
| } else { |
| WriteUnalignedValue(pc_, target.ptr()); |
| } |
| if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| FlushInstructionCache(pc_, sizeof(Address)); |
| } |
| if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() && |
| !FLAG_disable_write_barriers) { |
| WriteBarrierForCode(host(), this, target); |
| } |
| } |
| |
| Address RelocInfo::target_runtime_entry(Assembler* origin) { |
| DCHECK(IsRuntimeEntry(rmode_)); |
| return origin->runtime_entry_at(pc_); |
| } |
| |
| void RelocInfo::set_target_runtime_entry(Address target, |
| WriteBarrierMode write_barrier_mode, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(IsRuntimeEntry(rmode_)); |
| if (target_address() != target) { |
| set_target_address(target, write_barrier_mode, icache_flush_mode); |
| } |
| } |
| |
| Address RelocInfo::target_off_heap_target() { |
| DCHECK(IsOffHeapTarget(rmode_)); |
| return ReadUnalignedValue<Address>(pc_); |
| } |
| |
| void RelocInfo::WipeOut() { |
| if (IsFullEmbeddedObject(rmode_) || IsExternalReference(rmode_) || |
| IsInternalReference(rmode_) || IsOffHeapTarget(rmode_)) { |
| WriteUnalignedValue(pc_, kNullAddress); |
| } else if (IsCompressedEmbeddedObject(rmode_)) { |
| Address smi_address = Smi::FromInt(0).ptr(); |
| WriteUnalignedValue(pc_, CompressTagged(smi_address)); |
| } else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) { |
| // Effectively write zero into the relocation. |
| Assembler::set_target_address_at(pc_, constant_pool_, |
| pc_ + sizeof(int32_t)); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_CODEGEN_X64_ASSEMBLER_X64_INL_H_ |