blob: fedff2b0f1d0d5660377187a616fcd31081507e1 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CODEGEN_X64_ASSEMBLER_X64_INL_H_
#define V8_CODEGEN_X64_ASSEMBLER_X64_INL_H_
#include "src/codegen/x64/assembler-x64.h"
#include "src/base/cpu.h"
#include "src/base/memory.h"
#include "src/debug/debug.h"
#include "src/objects/objects-inl.h"
namespace v8 {
namespace internal {
bool CpuFeatures::SupportsOptimizer() { return true; }
bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(SSE4_1); }
// -----------------------------------------------------------------------------
// Implementation of Assembler
void Assembler::emitl(uint32_t x) {
WriteUnalignedValue(reinterpret_cast<Address>(pc_), x);
pc_ += sizeof(uint32_t);
}
void Assembler::emitq(uint64_t x) {
WriteUnalignedValue(reinterpret_cast<Address>(pc_), x);
pc_ += sizeof(uint64_t);
}
void Assembler::emitw(uint16_t x) {
WriteUnalignedValue(reinterpret_cast<Address>(pc_), x);
pc_ += sizeof(uint16_t);
}
void Assembler::emit_runtime_entry(Address entry, RelocInfo::Mode rmode) {
DCHECK(RelocInfo::IsRuntimeEntry(rmode));
RecordRelocInfo(rmode);
emitl(static_cast<uint32_t>(entry - options().code_range_start));
}
void Assembler::emit(Immediate x) {
if (!RelocInfo::IsNone(x.rmode_)) {
RecordRelocInfo(x.rmode_);
}
emitl(x.value_);
}
void Assembler::emit(Immediate64 x) {
if (!RelocInfo::IsNone(x.rmode_)) {
RecordRelocInfo(x.rmode_);
}
emitq(static_cast<uint64_t>(x.value_));
}
void Assembler::emit_rex_64(Register reg, Register rm_reg) {
emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
}
void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
}
void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) {
emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
}
void Assembler::emit_rex_64(XMMRegister reg, XMMRegister rm_reg) {
emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
}
void Assembler::emit_rex_64(Register reg, Operand op) {
emit(0x48 | reg.high_bit() << 2 | op.data().rex);
}
void Assembler::emit_rex_64(XMMRegister reg, Operand op) {
emit(0x48 | (reg.code() & 0x8) >> 1 | op.data().rex);
}
void Assembler::emit_rex_64(Register rm_reg) {
DCHECK_EQ(rm_reg.code() & 0xf, rm_reg.code());
emit(0x48 | rm_reg.high_bit());
}
void Assembler::emit_rex_64(Operand op) { emit(0x48 | op.data().rex); }
void Assembler::emit_rex_32(Register reg, Register rm_reg) {
emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
}
void Assembler::emit_rex_32(Register reg, Operand op) {
emit(0x40 | reg.high_bit() << 2 | op.data().rex);
}
void Assembler::emit_rex_32(Register rm_reg) { emit(0x40 | rm_reg.high_bit()); }
void Assembler::emit_rex_32(Operand op) { emit(0x40 | op.data().rex); }
void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(Register reg, Operand op) {
byte rex_bits = reg.high_bit() << 2 | op.data().rex;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(XMMRegister reg, Operand op) {
byte rex_bits = (reg.code() & 0x8) >> 1 | op.data().rex;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) {
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(Register rm_reg) {
if (rm_reg.high_bit()) emit(0x41);
}
void Assembler::emit_optional_rex_32(XMMRegister rm_reg) {
if (rm_reg.high_bit()) emit(0x41);
}
void Assembler::emit_optional_rex_32(Operand op) {
if (op.data().rex != 0) emit(0x40 | op.data().rex);
}
void Assembler::emit_optional_rex_8(Register reg) {
if (!reg.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(reg);
}
}
void Assembler::emit_optional_rex_8(Register reg, Operand op) {
if (!reg.is_byte_register()) {
// Register is not one of al, bl, cl, dl. Its encoding needs REX.
emit_rex_32(reg, op);
} else {
emit_optional_rex_32(reg, op);
}
}
// byte 1 of 3-byte VEX
void Assembler::emit_vex3_byte1(XMMRegister reg, XMMRegister rm,
LeadingOpcode m) {
byte rxb = static_cast<byte>(~((reg.high_bit() << 2) | rm.high_bit())) << 5;
emit(rxb | m);
}
// byte 1 of 3-byte VEX
void Assembler::emit_vex3_byte1(XMMRegister reg, Operand rm, LeadingOpcode m) {
byte rxb = static_cast<byte>(~((reg.high_bit() << 2) | rm.data().rex)) << 5;
emit(rxb | m);
}
// byte 1 of 2-byte VEX
void Assembler::emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l,
SIMDPrefix pp) {
byte rv = static_cast<byte>(~((reg.high_bit() << 4) | v.code())) << 3;
emit(rv | l | pp);
}
// byte 2 of 3-byte VEX
void Assembler::emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l,
SIMDPrefix pp) {
emit(w | ((~v.code() & 0xf) << 3) | l | pp);
}
void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg,
XMMRegister rm, VectorLength l, SIMDPrefix pp,
LeadingOpcode mm, VexW w) {
if (rm.high_bit() || mm != k0F || w != kW0) {
emit_vex3_byte0();
emit_vex3_byte1(reg, rm, mm);
emit_vex3_byte2(w, vreg, l, pp);
} else {
emit_vex2_byte0();
emit_vex2_byte1(reg, vreg, l, pp);
}
}
void Assembler::emit_vex_prefix(Register reg, Register vreg, Register rm,
VectorLength l, SIMDPrefix pp, LeadingOpcode mm,
VexW w) {
XMMRegister ireg = XMMRegister::from_code(reg.code());
XMMRegister ivreg = XMMRegister::from_code(vreg.code());
XMMRegister irm = XMMRegister::from_code(rm.code());
emit_vex_prefix(ireg, ivreg, irm, l, pp, mm, w);
}
void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg, Operand rm,
VectorLength l, SIMDPrefix pp, LeadingOpcode mm,
VexW w) {
if (rm.data().rex || mm != k0F || w != kW0) {
emit_vex3_byte0();
emit_vex3_byte1(reg, rm, mm);
emit_vex3_byte2(w, vreg, l, pp);
} else {
emit_vex2_byte0();
emit_vex2_byte1(reg, vreg, l, pp);
}
}
void Assembler::emit_vex_prefix(Register reg, Register vreg, Operand rm,
VectorLength l, SIMDPrefix pp, LeadingOpcode mm,
VexW w) {
XMMRegister ireg = XMMRegister::from_code(reg.code());
XMMRegister ivreg = XMMRegister::from_code(vreg.code());
emit_vex_prefix(ireg, ivreg, rm, l, pp, mm, w);
}
Address Assembler::target_address_at(Address pc, Address constant_pool) {
return ReadUnalignedValue<int32_t>(pc) + pc + 4;
}
void Assembler::set_target_address_at(Address pc, Address constant_pool,
Address target,
ICacheFlushMode icache_flush_mode) {
DCHECK(is_int32(target - pc - 4));
WriteUnalignedValue(pc, static_cast<int32_t>(target - pc - 4));
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
FlushInstructionCache(pc, sizeof(int32_t));
}
}
void Assembler::deserialization_set_target_internal_reference_at(
Address pc, Address target, RelocInfo::Mode mode) {
WriteUnalignedValue(pc, target);
}
void Assembler::deserialization_set_special_target_at(
Address instruction_payload, Code code, Address target) {
set_target_address_at(instruction_payload,
!code.is_null() ? code.constant_pool() : kNullAddress,
target);
}
int Assembler::deserialization_special_target_size(
Address instruction_payload) {
return kSpecialTargetSize;
}
Handle<Code> Assembler::code_target_object_handle_at(Address pc) {
return GetCodeTarget(ReadUnalignedValue<int32_t>(pc));
}
Handle<HeapObject> Assembler::compressed_embedded_object_handle_at(Address pc) {
return GetEmbeddedObject(ReadUnalignedValue<uint32_t>(pc));
}
Address Assembler::runtime_entry_at(Address pc) {
return ReadUnalignedValue<int32_t>(pc) + options().code_range_start;
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo
// The modes possibly affected by apply must be in kApplyMask.
void RelocInfo::apply(intptr_t delta) {
if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
WriteUnalignedValue(
pc_, ReadUnalignedValue<int32_t>(pc_) - static_cast<int32_t>(delta));
} else if (IsInternalReference(rmode_)) {
// Absolute code pointer inside code object moves with the code object.
WriteUnalignedValue(pc_, ReadUnalignedValue<Address>(pc_) + delta);
}
}
Address RelocInfo::target_address() {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
Address RelocInfo::target_address_address() {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) ||
IsWasmStubCall(rmode_) || IsFullEmbeddedObject(rmode_) ||
IsCompressedEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
IsOffHeapTarget(rmode_));
return pc_;
}
Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); }
int RelocInfo::target_address_size() {
if (IsCodedSpecially()) {
return Assembler::kSpecialTargetSize;
} else {
return IsCompressedEmbeddedObject(rmode_) ? kTaggedSize
: kSystemPointerSize;
}
}
HeapObject RelocInfo::target_object() {
DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
if (IsCompressedEmbeddedObject(rmode_)) {
CHECK(!host_.is_null());
Object o = static_cast<Object>(DecompressTaggedPointer(
host_.ptr(), ReadUnalignedValue<Tagged_t>(pc_)));
return HeapObject::cast(o);
}
return HeapObject::cast(Object(ReadUnalignedValue<Address>(pc_)));
}
HeapObject RelocInfo::target_object_no_host(Isolate* isolate) {
DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
if (IsCompressedEmbeddedObject(rmode_)) {
Tagged_t compressed = ReadUnalignedValue<Tagged_t>(pc_);
DCHECK(!HAS_SMI_TAG(compressed));
Object obj(DecompressTaggedPointer(isolate, compressed));
return HeapObject::cast(obj);
}
return HeapObject::cast(Object(ReadUnalignedValue<Address>(pc_)));
}
Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
if (IsCodeTarget(rmode_)) {
return origin->code_target_object_handle_at(pc_);
} else {
if (IsCompressedEmbeddedObject(rmode_)) {
return origin->compressed_embedded_object_handle_at(pc_);
}
return Handle<HeapObject>::cast(ReadUnalignedValue<Handle<Object>>(pc_));
}
}
Address RelocInfo::target_external_reference() {
DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
return ReadUnalignedValue<Address>(pc_);
}
void RelocInfo::set_target_external_reference(
Address target, ICacheFlushMode icache_flush_mode) {
DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
WriteUnalignedValue(pc_, target);
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
FlushInstructionCache(pc_, sizeof(Address));
}
}
Address RelocInfo::target_internal_reference() {
DCHECK(rmode_ == INTERNAL_REFERENCE);
return ReadUnalignedValue<Address>(pc_);
}
Address RelocInfo::target_internal_reference_address() {
DCHECK(rmode_ == INTERNAL_REFERENCE);
return pc_;
}
void RelocInfo::set_target_object(Heap* heap, HeapObject target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
if (IsCompressedEmbeddedObject(rmode_)) {
DCHECK(COMPRESS_POINTERS_BOOL);
Tagged_t tagged = CompressTagged(target.ptr());
WriteUnalignedValue(pc_, tagged);
} else {
WriteUnalignedValue(pc_, target.ptr());
}
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
FlushInstructionCache(pc_, sizeof(Address));
}
if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() &&
!FLAG_disable_write_barriers) {
WriteBarrierForCode(host(), this, target);
}
}
Address RelocInfo::target_runtime_entry(Assembler* origin) {
DCHECK(IsRuntimeEntry(rmode_));
return origin->runtime_entry_at(pc_);
}
void RelocInfo::set_target_runtime_entry(Address target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsRuntimeEntry(rmode_));
if (target_address() != target) {
set_target_address(target, write_barrier_mode, icache_flush_mode);
}
}
Address RelocInfo::target_off_heap_target() {
DCHECK(IsOffHeapTarget(rmode_));
return ReadUnalignedValue<Address>(pc_);
}
void RelocInfo::WipeOut() {
if (IsFullEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
IsInternalReference(rmode_) || IsOffHeapTarget(rmode_)) {
WriteUnalignedValue(pc_, kNullAddress);
} else if (IsCompressedEmbeddedObject(rmode_)) {
Address smi_address = Smi::FromInt(0).ptr();
WriteUnalignedValue(pc_, CompressTagged(smi_address));
} else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
// Effectively write zero into the relocation.
Assembler::set_target_address_at(pc_, constant_pool_,
pc_ + sizeof(int32_t));
} else {
UNREACHABLE();
}
}
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_X64_ASSEMBLER_X64_INL_H_