blob: e05eaa9592a65f0ccb4b03c2f696c816fc9fec9e [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
// A lightweight X64 Assembler.
#ifndef V8_CODEGEN_X64_ASSEMBLER_X64_H_
#define V8_CODEGEN_X64_ASSEMBLER_X64_H_
#include <deque>
#include <map>
#include <memory>
#include <vector>
#include "src/codegen/assembler.h"
#include "src/codegen/label.h"
#include "src/codegen/x64/constants-x64.h"
#include "src/codegen/x64/fma-instr.h"
#include "src/codegen/x64/register-x64.h"
#include "src/codegen/x64/sse-instr.h"
#include "src/objects/smi.h"
#if defined(V8_OS_WIN_X64)
#include "src/diagnostics/unwinding-info-win64.h"
#endif
namespace v8 {
namespace internal {
class SafepointTableBuilder;
// Utility functions
enum Condition {
// any value < 0 is considered no_condition
no_condition = -1,
overflow = 0,
no_overflow = 1,
below = 2,
above_equal = 3,
equal = 4,
not_equal = 5,
below_equal = 6,
above = 7,
negative = 8,
positive = 9,
parity_even = 10,
parity_odd = 11,
less = 12,
greater_equal = 13,
less_equal = 14,
greater = 15,
// Fake conditions that are handled by the
// opcodes using them.
always = 16,
never = 17,
// aliases
carry = below,
not_carry = above_equal,
zero = equal,
not_zero = not_equal,
sign = negative,
not_sign = positive,
last_condition = greater
};
// Returns the equivalent of !cc.
// Negation of the default no_condition (-1) results in a non-default
// no_condition value (-2). As long as tests for no_condition check
// for condition < 0, this will work as expected.
inline Condition NegateCondition(Condition cc) {
return static_cast<Condition>(cc ^ 1);
}
enum RoundingMode {
kRoundToNearest = 0x0,
kRoundDown = 0x1,
kRoundUp = 0x2,
kRoundToZero = 0x3
};
// -----------------------------------------------------------------------------
// Machine instruction Immediates
class Immediate {
public:
explicit constexpr Immediate(int32_t value) : value_(value) {}
explicit constexpr Immediate(int32_t value, RelocInfo::Mode rmode)
: value_(value), rmode_(rmode) {}
explicit Immediate(Smi value)
: value_(static_cast<int32_t>(static_cast<intptr_t>(value.ptr()))) {
DCHECK(SmiValuesAre31Bits()); // Only available for 31-bit SMI.
}
private:
const int32_t value_;
const RelocInfo::Mode rmode_ = RelocInfo::NONE;
friend class Assembler;
};
ASSERT_TRIVIALLY_COPYABLE(Immediate);
static_assert(sizeof(Immediate) <= kSystemPointerSize,
"Immediate must be small enough to pass it by value");
class Immediate64 {
public:
explicit constexpr Immediate64(int64_t value) : value_(value) {}
explicit constexpr Immediate64(int64_t value, RelocInfo::Mode rmode)
: value_(value), rmode_(rmode) {}
explicit constexpr Immediate64(Address value, RelocInfo::Mode rmode)
: value_(static_cast<int64_t>(value)), rmode_(rmode) {}
private:
const int64_t value_;
const RelocInfo::Mode rmode_ = RelocInfo::NONE;
friend class Assembler;
};
// -----------------------------------------------------------------------------
// Machine instruction Operands
enum ScaleFactor : int8_t {
times_1 = 0,
times_2 = 1,
times_4 = 2,
times_8 = 3,
times_int_size = times_4,
times_half_system_pointer_size = times_4,
times_system_pointer_size = times_8,
times_tagged_size = (kTaggedSize == 8) ? times_8 : times_4,
};
class V8_EXPORT_PRIVATE Operand {
public:
struct Data {
byte rex = 0;
byte buf[9];
byte len = 1; // number of bytes of buf_ in use.
int8_t addend; // for rip + offset + addend.
};
// [base + disp/r]
V8_INLINE Operand(Register base, int32_t disp) {
if (base == rsp || base == r12) {
// SIB byte is needed to encode (rsp + offset) or (r12 + offset).
set_sib(times_1, rsp, base);
}
if (disp == 0 && base != rbp && base != r13) {
set_modrm(0, base);
} else if (is_int8(disp)) {
set_modrm(1, base);
set_disp8(disp);
} else {
set_modrm(2, base);
set_disp32(disp);
}
}
// [base + index*scale + disp/r]
V8_INLINE Operand(Register base, Register index, ScaleFactor scale,
int32_t disp) {
DCHECK(index != rsp);
set_sib(scale, index, base);
if (disp == 0 && base != rbp && base != r13) {
// This call to set_modrm doesn't overwrite the REX.B (or REX.X) bits
// possibly set by set_sib.
set_modrm(0, rsp);
} else if (is_int8(disp)) {
set_modrm(1, rsp);
set_disp8(disp);
} else {
set_modrm(2, rsp);
set_disp32(disp);
}
}
// [index*scale + disp/r]
V8_INLINE Operand(Register index, ScaleFactor scale, int32_t disp) {
DCHECK(index != rsp);
set_modrm(0, rsp);
set_sib(scale, index, rbp);
set_disp32(disp);
}
// Offset from existing memory operand.
// Offset is added to existing displacement as 32-bit signed values and
// this must not overflow.
Operand(Operand base, int32_t offset);
// [rip + disp/r]
V8_INLINE explicit Operand(Label* label, int addend = 0) {
data_.addend = addend;
DCHECK_NOT_NULL(label);
DCHECK(addend == 0 || (is_int8(addend) && label->is_bound()));
set_modrm(0, rbp);
set_disp64(reinterpret_cast<intptr_t>(label));
}
Operand(const Operand&) V8_NOEXCEPT = default;
const Data& data() const { return data_; }
// Checks whether either base or index register is the given register.
// Does not check the "reg" part of the Operand.
bool AddressUsesRegister(Register reg) const;
private:
V8_INLINE void set_modrm(int mod, Register rm_reg) {
DCHECK(is_uint2(mod));
data_.buf[0] = mod << 6 | rm_reg.low_bits();
// Set REX.B to the high bit of rm.code().
data_.rex |= rm_reg.high_bit();
}
V8_INLINE void set_sib(ScaleFactor scale, Register index, Register base) {
DCHECK_EQ(data_.len, 1);
DCHECK(is_uint2(scale));
// Use SIB with no index register only for base rsp or r12. Otherwise we
// would skip the SIB byte entirely.
DCHECK(index != rsp || base == rsp || base == r12);
data_.buf[1] = (scale << 6) | (index.low_bits() << 3) | base.low_bits();
data_.rex |= index.high_bit() << 1 | base.high_bit();
data_.len = 2;
}
V8_INLINE void set_disp8(int disp) {
DCHECK(is_int8(disp));
DCHECK(data_.len == 1 || data_.len == 2);
int8_t* p = reinterpret_cast<int8_t*>(&data_.buf[data_.len]);
*p = disp;
data_.len += sizeof(int8_t);
}
V8_INLINE void set_disp32(int disp) {
DCHECK(data_.len == 1 || data_.len == 2);
Address p = reinterpret_cast<Address>(&data_.buf[data_.len]);
WriteUnalignedValue(p, disp);
data_.len += sizeof(int32_t);
}
V8_INLINE void set_disp64(int64_t disp) {
DCHECK_EQ(1, data_.len);
Address p = reinterpret_cast<Address>(&data_.buf[data_.len]);
WriteUnalignedValue(p, disp);
data_.len += sizeof(disp);
}
Data data_;
};
ASSERT_TRIVIALLY_COPYABLE(Operand);
static_assert(sizeof(Operand) <= 2 * kSystemPointerSize,
"Operand must be small enough to pass it by value");
#define ASSEMBLER_INSTRUCTION_LIST(V) \
V(add) \
V(and) \
V(cmp) \
V(cmpxchg) \
V(dec) \
V(idiv) \
V(div) \
V(imul) \
V(inc) \
V(lea) \
V(mov) \
V(movzxb) \
V(movzxw) \
V(not) \
V(or) \
V(repmovs) \
V(sbb) \
V(sub) \
V(test) \
V(xchg) \
V(xor)
// Shift instructions on operands/registers with kInt32Size and kInt64Size.
#define SHIFT_INSTRUCTION_LIST(V) \
V(rol, 0x0) \
V(ror, 0x1) \
V(rcl, 0x2) \
V(rcr, 0x3) \
V(shl, 0x4) \
V(shr, 0x5) \
V(sar, 0x7)
// Partial Constant Pool
// Different from complete constant pool (like arm does), partial constant pool
// only takes effects for shareable constants in order to reduce code size.
// Partial constant pool does not emit constant pool entries at the end of each
// code object. Instead, it keeps the first shareable constant inlined in the
// instructions and uses rip-relative memory loadings for the same constants in
// subsequent instructions. These rip-relative memory loadings will target at
// the position of the first inlined constant. For example:
//
// REX.W movq r10,0x7f9f75a32c20 ; 10 bytes
// …
// REX.W movq r10,0x7f9f75a32c20 ; 10 bytes
// …
//
// turns into
//
// REX.W movq r10,0x7f9f75a32c20 ; 10 bytes
// …
// REX.W movq r10,[rip+0xffffff96] ; 7 bytes
// …
class ConstPool {
public:
explicit ConstPool(Assembler* assm) : assm_(assm) {}
// Returns true when partial constant pool is valid for this entry.
bool TryRecordEntry(intptr_t data, RelocInfo::Mode mode);
bool IsEmpty() const { return entries_.empty(); }
void PatchEntries();
// Discard any pending pool entries.
void Clear();
private:
// Adds a shared entry to entries_. Returns true if this is not the first time
// we add this entry, false otherwise.
bool AddSharedEntry(uint64_t data, int offset);
// Check if the instruction is a rip-relative move.
bool IsMoveRipRelative(Address instr);
Assembler* assm_;
// Values, pc offsets of entries.
using EntryMap = std::multimap<uint64_t, int>;
EntryMap entries_;
// Number of bytes taken up by the displacement of rip-relative addressing.
static constexpr int kRipRelativeDispSize = 4; // 32-bit displacement.
// Distance between the address of the displacement in the rip-relative move
// instruction and the head address of the instruction.
static constexpr int kMoveRipRelativeDispOffset =
3; // REX Opcode ModRM Displacement
// Distance between the address of the imm64 in the 'movq reg, imm64'
// instruction and the head address of the instruction.
static constexpr int kMoveImm64Offset = 2; // REX Opcode imm64
// A mask for rip-relative move instruction.
static constexpr uint32_t kMoveRipRelativeMask = 0x00C7FFFB;
// The bits for a rip-relative move instruction after mask.
static constexpr uint32_t kMoveRipRelativeInstr = 0x00058B48;
};
class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
private:
// We check before assembling an instruction that there is sufficient
// space to write an instruction and its relocation information.
// The relocation writer's position must be kGap bytes above the end of
// the generated instructions. This leaves enough space for the
// longest possible x64 instruction, 15 bytes, and the longest possible
// relocation information encoding, RelocInfoWriter::kMaxLength == 16.
// (There is a 15 byte limit on x64 instruction length that rules out some
// otherwise valid instructions.)
// This allows for a single, fast space check per instruction.
static constexpr int kGap = 32;
STATIC_ASSERT(AssemblerBase::kMinimalBufferSize >= 2 * kGap);
public:
// Create an assembler. Instructions and relocation information are emitted
// into a buffer, with the instructions starting from the beginning and the
// relocation information starting from the end of the buffer. See CodeDesc
// for a detailed comment on the layout (globals.h).
//
// If the provided buffer is nullptr, the assembler allocates and grows its
// own buffer. Otherwise it takes ownership of the provided buffer.
explicit Assembler(const AssemblerOptions&,
std::unique_ptr<AssemblerBuffer> = {});
~Assembler() override = default;
// GetCode emits any pending (non-emitted) code and fills the descriptor desc.
static constexpr int kNoHandlerTable = 0;
static constexpr SafepointTableBuilder* kNoSafepointTable = nullptr;
void GetCode(Isolate* isolate, CodeDesc* desc,
SafepointTableBuilder* safepoint_table_builder,
int handler_table_offset);
// Convenience wrapper for code without safepoint or handler tables.
void GetCode(Isolate* isolate, CodeDesc* desc) {
GetCode(isolate, desc, kNoSafepointTable, kNoHandlerTable);
}
void FinalizeJumpOptimizationInfo();
// Unused on this architecture.
void MaybeEmitOutOfLineConstantPool() {}
// Read/Modify the code target in the relative branch/call instruction at pc.
// On the x64 architecture, we use relative jumps with a 32-bit displacement
// to jump to other Code objects in the Code space in the heap.
// Jumps to C functions are done indirectly through a 64-bit register holding
// the absolute address of the target.
// These functions convert between absolute Addresses of Code objects and
// the relative displacements stored in the code.
// The isolate argument is unused (and may be nullptr) when skipping flushing.
static inline Address target_address_at(Address pc, Address constant_pool);
static inline void set_target_address_at(
Address pc, Address constant_pool, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
// This sets the branch destination (which is in the instruction on x64).
// This is for calls and branches within generated code.
inline static void deserialization_set_special_target_at(
Address instruction_payload, Code code, Address target);
// Get the size of the special target encoded at 'instruction_payload'.
inline static int deserialization_special_target_size(
Address instruction_payload);
// This sets the internal reference at the pc.
inline static void deserialization_set_target_internal_reference_at(
Address pc, Address target,
RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
inline Handle<Code> code_target_object_handle_at(Address pc);
inline Handle<HeapObject> compressed_embedded_object_handle_at(Address pc);
inline Address runtime_entry_at(Address pc);
// Number of bytes taken up by the branch target in the code.
static constexpr int kSpecialTargetSize = 4; // 32-bit displacement.
// One byte opcode for test eax,0xXXXXXXXX.
static constexpr byte kTestEaxByte = 0xA9;
// One byte opcode for test al, 0xXX.
static constexpr byte kTestAlByte = 0xA8;
// One byte opcode for nop.
static constexpr byte kNopByte = 0x90;
// One byte prefix for a short conditional jump.
static constexpr byte kJccShortPrefix = 0x70;
static constexpr byte kJncShortOpcode = kJccShortPrefix | not_carry;
static constexpr byte kJcShortOpcode = kJccShortPrefix | carry;
static constexpr byte kJnzShortOpcode = kJccShortPrefix | not_zero;
static constexpr byte kJzShortOpcode = kJccShortPrefix | zero;
// VEX prefix encodings.
enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
// ---------------------------------------------------------------------------
// Code generation
//
// Function names correspond one-to-one to x64 instruction mnemonics.
// Unless specified otherwise, instructions operate on 64-bit operands.
//
// If we need versions of an assembly instruction that operate on different
// width arguments, we add a single-letter suffix specifying the width.
// This is done for the following instructions: mov, cmp, inc, dec,
// add, sub, and test.
// There are no versions of these instructions without the suffix.
// - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
// - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
// - Instructions on 32-bit (doubleword) operands/registers use 'l'.
// - Instructions on 64-bit (quadword) operands/registers use 'q'.
// - Instructions on operands/registers with pointer size use 'p'.
#define DECLARE_INSTRUCTION(instruction) \
template <class P1> \
void instruction##_tagged(P1 p1) { \
emit_##instruction(p1, kTaggedSize); \
} \
\
template <class P1> \
void instruction##l(P1 p1) { \
emit_##instruction(p1, kInt32Size); \
} \
\
template <class P1> \
void instruction##q(P1 p1) { \
emit_##instruction(p1, kInt64Size); \
} \
\
template <class P1, class P2> \
void instruction##_tagged(P1 p1, P2 p2) { \
emit_##instruction(p1, p2, kTaggedSize); \
} \
\
template <class P1, class P2> \
void instruction##l(P1 p1, P2 p2) { \
emit_##instruction(p1, p2, kInt32Size); \
} \
\
template <class P1, class P2> \
void instruction##q(P1 p1, P2 p2) { \
emit_##instruction(p1, p2, kInt64Size); \
} \
\
template <class P1, class P2, class P3> \
void instruction##l(P1 p1, P2 p2, P3 p3) { \
emit_##instruction(p1, p2, p3, kInt32Size); \
} \
\
template <class P1, class P2, class P3> \
void instruction##q(P1 p1, P2 p2, P3 p3) { \
emit_##instruction(p1, p2, p3, kInt64Size); \
}
ASSEMBLER_INSTRUCTION_LIST(DECLARE_INSTRUCTION)
#undef DECLARE_INSTRUCTION
// Insert the smallest number of nop instructions
// possible to align the pc offset to a multiple
// of m, where m must be a power of 2.
void Align(int m);
// Insert the smallest number of zero bytes possible to align the pc offset
// to a mulitple of m. m must be a power of 2 (>= 2).
void DataAlign(int m);
void Nop(int bytes = 1);
// Aligns code to something that's optimal for a jump target for the platform.
void CodeTargetAlign();
// Stack
void pushfq();
void popfq();
void pushq(Immediate value);
// Push a 32 bit integer, and guarantee that it is actually pushed as a
// 32 bit value, the normal push will optimize the 8 bit case.
void pushq_imm32(int32_t imm32);
void pushq(Register src);
void pushq(Operand src);
void popq(Register dst);
void popq(Operand dst);
void leave();
// Moves
void movb(Register dst, Operand src);
void movb(Register dst, Immediate imm);
void movb(Operand dst, Register src);
void movb(Operand dst, Immediate imm);
// Move the low 16 bits of a 64-bit register value to a 16-bit
// memory location.
void movw(Register dst, Operand src);
void movw(Operand dst, Register src);
void movw(Operand dst, Immediate imm);
// Move the offset of the label location relative to the current
// position (after the move) to the destination.
void movl(Operand dst, Label* src);
// Load a heap number into a register.
// The heap number will not be allocated and embedded into the code right
// away. Instead, we emit the load of a dummy object. Later, when calling
// Assembler::GetCode, the heap number will be allocated and the code will be
// patched by replacing the dummy with the actual object. The RelocInfo for
// the embedded object gets already recorded correctly when emitting the dummy
// move.
void movq_heap_number(Register dst, double value);
void movq_string(Register dst, const StringConstantBase* str);
// Loads a 64-bit immediate into a register, potentially using the constant
// pool.
void movq(Register dst, int64_t value) { movq(dst, Immediate64(value)); }
void movq(Register dst, uint64_t value) {
movq(dst, Immediate64(static_cast<int64_t>(value)));
}
// Loads a 64-bit immediate into a register without using the constant pool.
void movq_imm64(Register dst, int64_t value);
void movsxbl(Register dst, Register src);
void movsxbl(Register dst, Operand src);
void movsxbq(Register dst, Register src);
void movsxbq(Register dst, Operand src);
void movsxwl(Register dst, Register src);
void movsxwl(Register dst, Operand src);
void movsxwq(Register dst, Register src);
void movsxwq(Register dst, Operand src);
void movsxlq(Register dst, Register src);
void movsxlq(Register dst, Operand src);
// Repeated moves.
void repmovsb();
void repmovsw();
void repmovsl() { emit_repmovs(kInt32Size); }
void repmovsq() { emit_repmovs(kInt64Size); }
// Repeated store of doublewords (fill (E)CX bytes at ES:[(E)DI] with EAX).
void repstosl();
// Repeated store of quadwords (fill RCX quadwords at [RDI] with RAX).
void repstosq();
// Instruction to load from an immediate 64-bit pointer into RAX.
void load_rax(Address value, RelocInfo::Mode rmode);
void load_rax(ExternalReference ext);
// Conditional moves.
void cmovq(Condition cc, Register dst, Register src);
void cmovq(Condition cc, Register dst, Operand src);
void cmovl(Condition cc, Register dst, Register src);
void cmovl(Condition cc, Register dst, Operand src);
void cmpb(Register dst, Immediate src) {
immediate_arithmetic_op_8(0x7, dst, src);
}
void cmpb_al(Immediate src);
void cmpb(Register dst, Register src) { arithmetic_op_8(0x3A, dst, src); }
void cmpb(Register dst, Operand src) { arithmetic_op_8(0x3A, dst, src); }
void cmpb(Operand dst, Register src) { arithmetic_op_8(0x38, src, dst); }
void cmpb(Operand dst, Immediate src) {
immediate_arithmetic_op_8(0x7, dst, src);
}
void cmpw(Operand dst, Immediate src) {
immediate_arithmetic_op_16(0x7, dst, src);
}
void cmpw(Register dst, Immediate src) {
immediate_arithmetic_op_16(0x7, dst, src);
}
void cmpw(Register dst, Operand src) { arithmetic_op_16(0x3B, dst, src); }
void cmpw(Register dst, Register src) { arithmetic_op_16(0x3B, dst, src); }
void cmpw(Operand dst, Register src) { arithmetic_op_16(0x39, src, dst); }
void testb(Register reg, Operand op) { testb(op, reg); }
void testw(Register reg, Operand op) { testw(op, reg); }
void andb(Register dst, Immediate src) {
immediate_arithmetic_op_8(0x4, dst, src);
}
void decb(Register dst);
void decb(Operand dst);
// Lock prefix.
void lock();
void xchgb(Register reg, Operand op);
void xchgw(Register reg, Operand op);
void xaddb(Operand dst, Register src);
void xaddw(Operand dst, Register src);
void xaddl(Operand dst, Register src);
void xaddq(Operand dst, Register src);
void negb(Register reg);
void negw(Register reg);
void negl(Register reg);
void negq(Register reg);
void negb(Operand op);
void negw(Operand op);
void negl(Operand op);
void negq(Operand op);
void cmpxchgb(Operand dst, Register src);
void cmpxchgw(Operand dst, Register src);
// Sign-extends rax into rdx:rax.
void cqo();
// Sign-extends eax into edx:eax.
void cdq();
// Multiply eax by src, put the result in edx:eax.
void mull(Register src);
void mull(Operand src);
// Multiply rax by src, put the result in rdx:rax.
void mulq(Register src);
#define DECLARE_SHIFT_INSTRUCTION(instruction, subcode) \
void instruction##l(Register dst, Immediate imm8) { \
shift(dst, imm8, subcode, kInt32Size); \
} \
\
void instruction##q(Register dst, Immediate imm8) { \
shift(dst, imm8, subcode, kInt64Size); \
} \
\
void instruction##l(Operand dst, Immediate imm8) { \
shift(dst, imm8, subcode, kInt32Size); \
} \
\
void instruction##q(Operand dst, Immediate imm8) { \
shift(dst, imm8, subcode, kInt64Size); \
} \
\
void instruction##l_cl(Register dst) { shift(dst, subcode, kInt32Size); } \
\
void instruction##q_cl(Register dst) { shift(dst, subcode, kInt64Size); } \
\
void instruction##l_cl(Operand dst) { shift(dst, subcode, kInt32Size); } \
\
void instruction##q_cl(Operand dst) { shift(dst, subcode, kInt64Size); }
SHIFT_INSTRUCTION_LIST(DECLARE_SHIFT_INSTRUCTION)
#undef DECLARE_SHIFT_INSTRUCTION
// Shifts dst:src left by cl bits, affecting only dst.
void shld(Register dst, Register src);
// Shifts src:dst right by cl bits, affecting only dst.
void shrd(Register dst, Register src);
void store_rax(Address dst, RelocInfo::Mode mode);
void store_rax(ExternalReference ref);
void subb(Register dst, Immediate src) {
immediate_arithmetic_op_8(0x5, dst, src);
}
void sub_sp_32(uint32_t imm);
void testb(Register dst, Register src);
void testb(Register reg, Immediate mask);
void testb(Operand op, Immediate mask);
void testb(Operand op, Register reg);
void testw(Register dst, Register src);
void testw(Register reg, Immediate mask);
void testw(Operand op, Immediate mask);
void testw(Operand op, Register reg);
// Bit operations.
void bswapl(Register dst);
void bswapq(Register dst);
void btq(Operand dst, Register src);
void btsq(Operand dst, Register src);
void btsq(Register dst, Immediate imm8);
void btrq(Register dst, Immediate imm8);
void bsrq(Register dst, Register src);
void bsrq(Register dst, Operand src);
void bsrl(Register dst, Register src);
void bsrl(Register dst, Operand src);
void bsfq(Register dst, Register src);
void bsfq(Register dst, Operand src);
void bsfl(Register dst, Register src);
void bsfl(Register dst, Operand src);
// Miscellaneous
void clc();
void cld();
void cpuid();
void hlt();
void int3();
void nop();
void ret(int imm16);
void ud2();
void setcc(Condition cc, Register reg);
void pblendw(XMMRegister dst, Operand src, uint8_t mask);
void pblendw(XMMRegister dst, XMMRegister src, uint8_t mask);
void palignr(XMMRegister dst, Operand src, uint8_t mask);
void palignr(XMMRegister dst, XMMRegister src, uint8_t mask);
// Label operations & relative jumps (PPUM Appendix D)
//
// Takes a branch opcode (cc) and a label (L) and generates
// either a backward branch or a forward branch and links it
// to the label fixup chain. Usage:
//
// Label L; // unbound label
// j(cc, &L); // forward branch to unbound label
// bind(&L); // bind label to the current pc
// j(cc, &L); // backward branch to bound label
// bind(&L); // illegal: a label may be bound only once
//
// Note: The same Label can be used for forward and backward branches
// but it may be bound only once.
void bind(Label* L); // binds an unbound label L to the current code position
// Calls
// Call near relative 32-bit displacement, relative to next instruction.
void call(Label* L);
void call(Address entry, RelocInfo::Mode rmode);
// Explicitly emit a near call / near jump. The displacement is relative to
// the next instructions (which starts at {pc_offset() + kNearJmpInstrSize}).
static constexpr int kNearJmpInstrSize = 5;
void near_call(intptr_t disp, RelocInfo::Mode rmode);
void near_jmp(intptr_t disp, RelocInfo::Mode rmode);
void call(Handle<Code> target,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
// Call near absolute indirect, address in register
void call(Register adr);
// Jumps
// Jump short or near relative.
// Use a 32-bit signed displacement.
// Unconditional jump to L
void jmp(Label* L, Label::Distance distance = Label::kFar);
void jmp(Handle<Code> target, RelocInfo::Mode rmode);
// Jump near absolute indirect (r64)
void jmp(Register adr);
void jmp(Operand src);
// Unconditional jump relative to the current address. Low-level routine,
// use with caution!
void jmp_rel(int offset);
// Conditional jumps
void j(Condition cc, Label* L, Label::Distance distance = Label::kFar);
void j(Condition cc, Address entry, RelocInfo::Mode rmode);
void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
// Floating-point operations
void fld(int i);
void fld1();
void fldz();
void fldpi();
void fldln2();
void fld_s(Operand adr);
void fld_d(Operand adr);
void fstp_s(Operand adr);
void fstp_d(Operand adr);
void fstp(int index);
void fild_s(Operand adr);
void fild_d(Operand adr);
void fist_s(Operand adr);
void fistp_s(Operand adr);
void fistp_d(Operand adr);
void fisttp_s(Operand adr);
void fisttp_d(Operand adr);
void fabs();
void fchs();
void fadd(int i);
void fsub(int i);
void fmul(int i);
void fdiv(int i);
void fisub_s(Operand adr);
void faddp(int i = 1);
void fsubp(int i = 1);
void fsubrp(int i = 1);
void fmulp(int i = 1);
void fdivp(int i = 1);
void fprem();
void fprem1();
void fxch(int i = 1);
void fincstp();
void ffree(int i = 0);
void ftst();
void fucomp(int i);
void fucompp();
void fucomi(int i);
void fucomip();
void fcompp();
void fnstsw_ax();
void fwait();
void fnclex();
void fsin();
void fcos();
void fptan();
void fyl2x();
void f2xm1();
void fscale();
void fninit();
void frndint();
void sahf();
void ucomiss(XMMRegister dst, XMMRegister src);
void ucomiss(XMMRegister dst, Operand src);
void movaps(XMMRegister dst, XMMRegister src);
// Don't use this unless it's important to keep the
// top half of the destination register unchanged.
// Use movaps when moving float values and movd for integer
// values in xmm registers.
void movss(XMMRegister dst, XMMRegister src);
void movss(XMMRegister dst, Operand src);
void movss(Operand dst, XMMRegister src);
void movlps(XMMRegister dst, Operand src);
void movlps(Operand dst, XMMRegister src);
void movhps(XMMRegister dst, Operand src);
void movhps(Operand dst, XMMRegister src);
void shufps(XMMRegister dst, XMMRegister src, byte imm8);
void cvttss2si(Register dst, Operand src);
void cvttss2si(Register dst, XMMRegister src);
void cvtlsi2ss(XMMRegister dst, Operand src);
void cvtlsi2ss(XMMRegister dst, Register src);
void movmskps(Register dst, XMMRegister src);
void vinstr(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2,
SIMDPrefix pp, LeadingOpcode m, VexW w);
void vinstr(byte op, XMMRegister dst, XMMRegister src1, Operand src2,
SIMDPrefix pp, LeadingOpcode m, VexW w);
// SSE instructions
void sse_instr(XMMRegister dst, XMMRegister src, byte escape, byte opcode);
void sse_instr(XMMRegister dst, Operand src, byte escape, byte opcode);
#define DECLARE_SSE_INSTRUCTION(instruction, escape, opcode) \
void instruction(XMMRegister dst, XMMRegister src) { \
sse_instr(dst, src, 0x##escape, 0x##opcode); \
} \
void instruction(XMMRegister dst, Operand src) { \
sse_instr(dst, src, 0x##escape, 0x##opcode); \
}
SSE_UNOP_INSTRUCTION_LIST(DECLARE_SSE_INSTRUCTION)
SSE_BINOP_INSTRUCTION_LIST(DECLARE_SSE_INSTRUCTION)
#undef DECLARE_SSE_INSTRUCTION
// SSE instructions with prefix and SSE2 instructions
void sse2_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape,
byte opcode);
void sse2_instr(XMMRegister dst, Operand src, byte prefix, byte escape,
byte opcode);
#define DECLARE_SSE2_INSTRUCTION(instruction, prefix, escape, opcode) \
void instruction(XMMRegister dst, XMMRegister src) { \
sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode); \
} \
void instruction(XMMRegister dst, Operand src) { \
sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode); \
}
// These SSE instructions have the same encoding as the SSE2 instructions.
SSE_INSTRUCTION_LIST_SS(DECLARE_SSE2_INSTRUCTION)
SSE2_INSTRUCTION_LIST(DECLARE_SSE2_INSTRUCTION)
SSE2_INSTRUCTION_LIST_SD(DECLARE_SSE2_INSTRUCTION)
SSE2_UNOP_INSTRUCTION_LIST(DECLARE_SSE2_INSTRUCTION)
#undef DECLARE_SSE2_INSTRUCTION
void sse2_instr(XMMRegister reg, byte imm8, byte prefix, byte escape,
byte opcode, int extension) {
XMMRegister ext_reg = XMMRegister::from_code(extension);
sse2_instr(ext_reg, reg, prefix, escape, opcode);
emit(imm8);
}
#define DECLARE_SSE2_SHIFT_IMM(instruction, prefix, escape, opcode, extension) \
void instruction(XMMRegister reg, byte imm8) { \
sse2_instr(reg, imm8, 0x##prefix, 0x##escape, 0x##opcode, 0x##extension); \
}
SSE2_INSTRUCTION_LIST_SHIFT_IMM(DECLARE_SSE2_SHIFT_IMM)
#undef DECLARE_SSE2_SHIFT_IMM
#define DECLARE_SSE2_AVX_INSTRUCTION(instruction, prefix, escape, opcode) \
void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0); \
} \
void v##instruction(XMMRegister dst, XMMRegister src1, Operand src2) { \
vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0); \
}
SSE2_INSTRUCTION_LIST(DECLARE_SSE2_AVX_INSTRUCTION)
#undef DECLARE_SSE2_AVX_INSTRUCTION
#define DECLARE_SSE2_UNOP_AVX_INSTRUCTION(instruction, prefix, escape, opcode) \
void v##instruction(XMMRegister dst, XMMRegister src) { \
vpd(0x##opcode, dst, xmm0, src); \
} \
void v##instruction(XMMRegister dst, Operand src) { \
vpd(0x##opcode, dst, xmm0, src); \
}
SSE2_UNOP_INSTRUCTION_LIST(DECLARE_SSE2_UNOP_AVX_INSTRUCTION)
#undef DECLARE_SSE2_UNOP_AVX_INSTRUCTION
// SSE3
void lddqu(XMMRegister dst, Operand src);
void movddup(XMMRegister dst, Operand src);
void movddup(XMMRegister dst, XMMRegister src);
// SSSE3
void ssse3_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
byte escape2, byte opcode);
void ssse3_instr(XMMRegister dst, Operand src, byte prefix, byte escape1,
byte escape2, byte opcode);
#define DECLARE_SSSE3_INSTRUCTION(instruction, prefix, escape1, escape2, \
opcode) \
void instruction(XMMRegister dst, XMMRegister src) { \
ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
} \
void instruction(XMMRegister dst, Operand src) { \
ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
}
SSSE3_INSTRUCTION_LIST(DECLARE_SSSE3_INSTRUCTION)
SSSE3_UNOP_INSTRUCTION_LIST(DECLARE_SSSE3_INSTRUCTION)
#undef DECLARE_SSSE3_INSTRUCTION
// SSE4
void sse4_instr(Register dst, XMMRegister src, byte prefix, byte escape1,
byte escape2, byte opcode, int8_t imm8);
void sse4_instr(Operand dst, XMMRegister src, byte prefix, byte escape1,
byte escape2, byte opcode, int8_t imm8);
void sse4_instr(XMMRegister dst, Register src, byte prefix, byte escape1,
byte escape2, byte opcode, int8_t imm8);
void sse4_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
byte escape2, byte opcode);
void sse4_instr(XMMRegister dst, Operand src, byte prefix, byte escape1,
byte escape2, byte opcode);
#define DECLARE_SSE4_INSTRUCTION(instruction, prefix, escape1, escape2, \
opcode) \
void instruction(XMMRegister dst, XMMRegister src) { \
sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
} \
void instruction(XMMRegister dst, Operand src) { \
sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
}
SSE4_INSTRUCTION_LIST(DECLARE_SSE4_INSTRUCTION)
SSE4_UNOP_INSTRUCTION_LIST(DECLARE_SSE4_INSTRUCTION)
DECLARE_SSE4_INSTRUCTION(pblendvb, 66, 0F, 38, 10)
DECLARE_SSE4_INSTRUCTION(blendvps, 66, 0F, 38, 14)
DECLARE_SSE4_INSTRUCTION(blendvpd, 66, 0F, 38, 15)
#undef DECLARE_SSE4_INSTRUCTION
#define DECLARE_SSE4_EXTRACT_INSTRUCTION(instruction, prefix, escape1, \
escape2, opcode) \
void instruction(Register dst, XMMRegister src, uint8_t imm8) { \
sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode, \
imm8); \
} \
void instruction(Operand dst, XMMRegister src, uint8_t imm8) { \
sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode, \
imm8); \
}
SSE4_EXTRACT_INSTRUCTION_LIST(DECLARE_SSE4_EXTRACT_INSTRUCTION)
#undef DECLARE_SSE4_EXTRACT_INSTRUCTION
// SSE4.2
void sse4_2_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
byte escape2, byte opcode);
void sse4_2_instr(XMMRegister dst, Operand src, byte prefix, byte escape1,
byte escape2, byte opcode);
#define DECLARE_SSE4_2_INSTRUCTION(instruction, prefix, escape1, escape2, \
opcode) \
void instruction(XMMRegister dst, XMMRegister src) { \
sse4_2_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
} \
void instruction(XMMRegister dst, Operand src) { \
sse4_2_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
}
SSE4_2_INSTRUCTION_LIST(DECLARE_SSE4_2_INSTRUCTION)
#undef DECLARE_SSE4_2_INSTRUCTION
#define DECLARE_SSE34_AVX_INSTRUCTION(instruction, prefix, escape1, escape2, \
opcode) \
void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
} \
void v##instruction(XMMRegister dst, XMMRegister src1, Operand src2) { \
vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
}
SSSE3_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
SSE4_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
SSE4_2_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
#undef DECLARE_SSE34_AVX_INSTRUCTION
#define DECLARE_SSSE3_UNOP_AVX_INSTRUCTION(instruction, prefix, escape1, \
escape2, opcode) \
void v##instruction(XMMRegister dst, XMMRegister src) { \
vinstr(0x##opcode, dst, xmm0, src, k##prefix, k##escape1##escape2, kW0); \
} \
void v##instruction(XMMRegister dst, Operand src) { \
vinstr(0x##opcode, dst, xmm0, src, k##prefix, k##escape1##escape2, kW0); \
}
SSSE3_UNOP_INSTRUCTION_LIST(DECLARE_SSSE3_UNOP_AVX_INSTRUCTION)
#undef DECLARE_SSSE3_UNOP_AVX_INSTRUCTION
void vpblendvb(XMMRegister dst, XMMRegister src1, XMMRegister src2,
XMMRegister mask) {
vinstr(0x4C, dst, src1, src2, k66, k0F3A, kW0);
// The mask operand is encoded in bits[7:4] of the immediate byte.
emit(mask.code() << 4);
}
void vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2,
XMMRegister mask) {
vinstr(0x4A, dst, src1, src2, k66, k0F3A, kW0);
// The mask operand is encoded in bits[7:4] of the immediate byte.
emit(mask.code() << 4);
}
void vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2,
XMMRegister mask) {
vinstr(0x4B, dst, src1, src2, k66, k0F3A, kW0);
// The mask operand is encoded in bits[7:4] of the immediate byte.
emit(mask.code() << 4);
}
#define DECLARE_SSE4_PMOV_AVX_INSTRUCTION(instruction, prefix, escape1, \
escape2, opcode) \
void v##instruction(XMMRegister dst, XMMRegister src) { \
vinstr(0x##opcode, dst, xmm0, src, k##prefix, k##escape1##escape2, kW0); \
} \
void v##instruction(XMMRegister dst, Operand src) { \
vinstr(0x##opcode, dst, xmm0, src, k##prefix, k##escape1##escape2, kW0); \
}
SSE4_UNOP_INSTRUCTION_LIST(DECLARE_SSE4_PMOV_AVX_INSTRUCTION)
#undef DECLARE_SSE4_PMOV_AVX_INSTRUCTION
#define DECLARE_AVX_INSTRUCTION(instruction, prefix, escape1, escape2, opcode) \
void v##instruction(Register dst, XMMRegister src, uint8_t imm8) { \
XMMRegister idst = XMMRegister::from_code(dst.code()); \
vinstr(0x##opcode, src, xmm0, idst, k##prefix, k##escape1##escape2, kW0); \
emit(imm8); \
} \
void v##instruction(Operand dst, XMMRegister src, uint8_t imm8) { \
vinstr(0x##opcode, src, xmm0, dst, k##prefix, k##escape1##escape2, kW0); \
emit(imm8); \
}
SSE4_EXTRACT_INSTRUCTION_LIST(DECLARE_AVX_INSTRUCTION)
#undef DECLARE_AVX_INSTRUCTION
void movd(XMMRegister dst, Register src);
void movd(XMMRegister dst, Operand src);
void movd(Register dst, XMMRegister src);
void movq(XMMRegister dst, Register src);
void movq(XMMRegister dst, Operand src);
void movq(Register dst, XMMRegister src);
void movq(XMMRegister dst, XMMRegister src);
// Don't use this unless it's important to keep the
// top half of the destination register unchanged.
// Use movapd when moving double values and movq for integer
// values in xmm registers.
void movsd(XMMRegister dst, XMMRegister src);
void movsd(Operand dst, XMMRegister src);
void movsd(XMMRegister dst, Operand src);
void movdqa(Operand dst, XMMRegister src);
void movdqa(XMMRegister dst, Operand src);
void movdqu(Operand dst, XMMRegister src);
void movdqu(XMMRegister dst, Operand src);
void movdqu(XMMRegister dst, XMMRegister src);
void movapd(XMMRegister dst, XMMRegister src);
void movupd(XMMRegister dst, Operand src);
void movupd(Operand dst, XMMRegister src);
void cvttsd2si(Register dst, Operand src);
void cvttsd2si(Register dst, XMMRegister src);
void cvttss2siq(Register dst, XMMRegister src);
void cvttss2siq(Register dst, Operand src);
void cvttsd2siq(Register dst, XMMRegister src);
void cvttsd2siq(Register dst, Operand src);
void cvttps2dq(XMMRegister dst, Operand src);
void cvttps2dq(XMMRegister dst, XMMRegister src);
void cvtlsi2sd(XMMRegister dst, Operand src);
void cvtlsi2sd(XMMRegister dst, Register src);
void cvtqsi2ss(XMMRegister dst, Operand src);
void cvtqsi2ss(XMMRegister dst, Register src);
void cvtqsi2sd(XMMRegister dst, Operand src);
void cvtqsi2sd(XMMRegister dst, Register src);
void cvtss2sd(XMMRegister dst, XMMRegister src);
void cvtss2sd(XMMRegister dst, Operand src);
void cvtsd2si(Register dst, XMMRegister src);
void cvtsd2siq(Register dst, XMMRegister src);
void haddps(XMMRegister dst, XMMRegister src);
void haddps(XMMRegister dst, Operand src);
void ucomisd(XMMRegister dst, XMMRegister src);
void ucomisd(XMMRegister dst, Operand src);
void cmpltsd(XMMRegister dst, XMMRegister src);
void movmskpd(Register dst, XMMRegister src);
void pmovmskb(Register dst, XMMRegister src);
// SSE 4.1 instruction
void insertps(XMMRegister dst, XMMRegister src, byte imm8);
void insertps(XMMRegister dst, Operand src, byte imm8);
void pextrq(Register dst, XMMRegister src, int8_t imm8);
void pinsrb(XMMRegister dst, Register src, uint8_t imm8);
void pinsrb(XMMRegister dst, Operand src, uint8_t imm8);
void pinsrw(XMMRegister dst, Register src, uint8_t imm8);
void pinsrw(XMMRegister dst, Operand src, uint8_t imm8);
void pinsrd(XMMRegister dst, Register src, uint8_t imm8);
void pinsrd(XMMRegister dst, Operand src, uint8_t imm8);
void pinsrq(XMMRegister dst, Register src, uint8_t imm8);
void pinsrq(XMMRegister dst, Operand src, uint8_t imm8);
void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
void roundps(XMMRegister dst, XMMRegister src, RoundingMode mode);
void roundpd(XMMRegister dst, XMMRegister src, RoundingMode mode);
void cmpps(XMMRegister dst, XMMRegister src, int8_t cmp);
void cmpps(XMMRegister dst, Operand src, int8_t cmp);
void cmppd(XMMRegister dst, XMMRegister src, int8_t cmp);
void cmppd(XMMRegister dst, Operand src, int8_t cmp);
#define SSE_CMP_P(instr, imm8) \
void instr##ps(XMMRegister dst, XMMRegister src) { cmpps(dst, src, imm8); } \
void instr##ps(XMMRegister dst, Operand src) { cmpps(dst, src, imm8); } \
void instr##pd(XMMRegister dst, XMMRegister src) { cmppd(dst, src, imm8); } \
void instr##pd(XMMRegister dst, Operand src) { cmppd(dst, src, imm8); }
SSE_CMP_P(cmpeq, 0x0)
SSE_CMP_P(cmplt, 0x1)
SSE_CMP_P(cmple, 0x2)
SSE_CMP_P(cmpneq, 0x4)
SSE_CMP_P(cmpnlt, 0x5)
SSE_CMP_P(cmpnle, 0x6)
#undef SSE_CMP_P
void movups(XMMRegister dst, XMMRegister src);
void movups(XMMRegister dst, Operand src);
void movups(Operand dst, XMMRegister src);
void psrldq(XMMRegister dst, uint8_t shift);
void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
void pshufd(XMMRegister dst, Operand src, uint8_t shuffle);
void pshufhw(XMMRegister dst, XMMRegister src, uint8_t shuffle);
void pshufhw(XMMRegister dst, Operand src, uint8_t shuffle);
void pshuflw(XMMRegister dst, XMMRegister src, uint8_t shuffle);
void pshuflw(XMMRegister dst, Operand src, uint8_t shuffle);
void movlhps(XMMRegister dst, XMMRegister src) {
sse_instr(dst, src, 0x0F, 0x16);
}
// AVX instruction
void vmovddup(XMMRegister dst, XMMRegister src);
void vmovddup(XMMRegister dst, Operand src);
void vbroadcastss(XMMRegister dst, Operand src);
void fma_instr(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2,
VectorLength l, SIMDPrefix pp, LeadingOpcode m, VexW w);
void fma_instr(byte op, XMMRegister dst, XMMRegister src1, Operand src2,
VectorLength l, SIMDPrefix pp, LeadingOpcode m, VexW w);
#define FMA(instr, length, prefix, escape1, escape2, extension, opcode) \
void instr(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
fma_instr(0x##opcode, dst, src1, src2, k##length, k##prefix, \
k##escape1##escape2, k##extension); \
} \
void instr(XMMRegister dst, XMMRegister src1, Operand src2) { \
fma_instr(0x##opcode, dst, src1, src2, k##length, k##prefix, \
k##escape1##escape2, k##extension); \
}
FMA_INSTRUCTION_LIST(FMA)
#undef FMA
void vmovd(XMMRegister dst, Register src);
void vmovd(XMMRegister dst, Operand src);
void vmovd(Register dst, XMMRegister src);
void vmovq(XMMRegister dst, Register src);
void vmovq(XMMRegister dst, Operand src);
void vmovq(Register dst, XMMRegister src);
void vmovsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vsd(0x10, dst, src1, src2);
}
void vmovsd(XMMRegister dst, Operand src) { vsd(0x10, dst, xmm0, src); }
void vmovsd(Operand dst, XMMRegister src) { vsd(0x11, src, xmm0, dst); }
void vmovdqu(XMMRegister dst, Operand src);
void vmovdqu(Operand dst, XMMRegister src);
void vmovlps(XMMRegister dst, XMMRegister src1, Operand src2);
void vmovlps(Operand dst, XMMRegister src);
void vmovhps(XMMRegister dst, XMMRegister src1, Operand src2);
void vmovhps(Operand dst, XMMRegister src);
#define AVX_SSE_UNOP(instr, escape, opcode) \
void v##instr(XMMRegister dst, XMMRegister src2) { \
vps(0x##opcode, dst, xmm0, src2); \
} \
void v##instr(XMMRegister dst, Operand src2) { \
vps(0x##opcode, dst, xmm0, src2); \
}
SSE_UNOP_INSTRUCTION_LIST(AVX_SSE_UNOP)
#undef AVX_SSE_UNOP
#define AVX_SSE_BINOP(instr, escape, opcode) \
void v##instr(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
vps(0x##opcode, dst, src1, src2); \
} \
void v##instr(XMMRegister dst, XMMRegister src1, Operand src2) { \
vps(0x##opcode, dst, src1, src2); \
}
SSE_BINOP_INSTRUCTION_LIST(AVX_SSE_BINOP)
#undef AVX_SSE_BINOP
#define AVX_3(instr, opcode, impl) \
void instr(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
impl(opcode, dst, src1, src2); \
} \
void instr(XMMRegister dst, XMMRegister src1, Operand src2) { \
impl(opcode, dst, src1, src2); \
}
AVX_3(vhaddps, 0x7c, vsd)
#define AVX_SCALAR(instr, prefix, escape, opcode) \
void v##instr(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kWIG); \
} \
void v##instr(XMMRegister dst, XMMRegister src1, Operand src2) { \
vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kWIG); \
}
SSE_INSTRUCTION_LIST_SS(AVX_SCALAR)
SSE2_INSTRUCTION_LIST_SD(AVX_SCALAR)
#undef AVX_SCALAR
#undef AVX_3
#define AVX_SSE2_SHIFT_IMM(instr, prefix, escape, opcode, extension) \
void v##instr(XMMRegister dst, XMMRegister src, byte imm8) { \
XMMRegister ext_reg = XMMRegister::from_code(extension); \
vinstr(0x##opcode, ext_reg, dst, src, k##prefix, k##escape, kWIG); \
emit(imm8); \
}
SSE2_INSTRUCTION_LIST_SHIFT_IMM(AVX_SSE2_SHIFT_IMM)
#undef AVX_SSE2_SHIFT_IMM
void vmovlhps(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vinstr(0x16, dst, src1, src2, kNone, k0F, kWIG);
}
void vcvtss2sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vinstr(0x5a, dst, src1, src2, kF3, k0F, kWIG);
}
void vcvtss2sd(XMMRegister dst, XMMRegister src1, Operand src2) {
vinstr(0x5a, dst, src1, src2, kF3, k0F, kWIG);
}
void vcvttps2dq(XMMRegister dst, XMMRegister src) {
vinstr(0x5b, dst, xmm0, src, kF3, k0F, kWIG);
}
void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
XMMRegister isrc2 = XMMRegister::from_code(src2.code());
vinstr(0x2a, dst, src1, isrc2, kF2, k0F, kW0);
}
void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, Operand src2) {
vinstr(0x2a, dst, src1, src2, kF2, k0F, kW0);
}
void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
XMMRegister isrc2 = XMMRegister::from_code(src2.code());
vinstr(0x2a, dst, src1, isrc2, kF3, k0F, kW0);
}
void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, Operand src2) {
vinstr(0x2a, dst, src1, src2, kF3, k0F, kW0);
}
void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
XMMRegister isrc2 = XMMRegister::from_code(src2.code());
vinstr(0x2a, dst, src1, isrc2, kF3, k0F, kW1);
}
void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, Operand src2) {
vinstr(0x2a, dst, src1, src2, kF3, k0F, kW1);
}
void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
XMMRegister isrc2 = XMMRegister::from_code(src2.code());
vinstr(0x2a, dst, src1, isrc2, kF2, k0F, kW1);
}
void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, Operand src2) {
vinstr(0x2a, dst, src1, src2, kF2, k0F, kW1);
}
void vcvttss2si(Register dst, XMMRegister src) {
XMMRegister idst = XMMRegister::from_code(dst.code());
vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW0);
}
void vcvttss2si(Register dst, Operand src) {
XMMRegister idst = XMMRegister::from_code(dst.code());
vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW0);
}
void vcvttsd2si(Register dst, XMMRegister src) {
XMMRegister idst = XMMRegister::from_code(dst.code());
vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW0);
}
void vcvttsd2si(Register dst, Operand src) {
XMMRegister idst = XMMRegister::from_code(dst.code());
vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW0);
}
void vcvttss2siq(Register dst, XMMRegister src) {
XMMRegister idst = XMMRegister::from_code(dst.code());
vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW1);
}
void vcvttss2siq(Register dst, Operand src) {
XMMRegister idst = XMMRegister::from_code(dst.code());
vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW1);
}
void vcvttsd2siq(Register dst, XMMRegister src) {
XMMRegister idst = XMMRegister::from_code(dst.code());
vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW1);
}
void vcvttsd2siq(Register dst, Operand src) {
XMMRegister idst = XMMRegister::from_code(dst.code());
vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW1);
}
void vcvtsd2si(Register dst, XMMRegister src) {
XMMRegister idst = XMMRegister::from_code(dst.code());
vinstr(0x2d, idst, xmm0, src, kF2, k0F, kW0);
}
void vucomisd(XMMRegister dst, XMMRegister src) {
vinstr(0x2e, dst, xmm0, src, k66, k0F, kWIG);
}
void vucomisd(XMMRegister dst, Operand src) {
vinstr(0x2e, dst, xmm0, src, k66, k0F, kWIG);
}
void vroundss(XMMRegister dst, XMMRegister src1, XMMRegister src2,
RoundingMode mode) {
vinstr(0x0a, dst, src1, src2, k66, k0F3A, kWIG);
emit(static_cast<byte>(mode) | 0x8); // Mask precision exception.
}
void vroundsd(XMMRegister dst, XMMRegister src1, XMMRegister src2,
RoundingMode mode) {
vinstr(0x0b, dst, src1, src2, k66, k0F3A, kWIG);
emit(static_cast<byte>(mode) | 0x8); // Mask precision exception.
}
void vroundps(XMMRegister dst, XMMRegister src, RoundingMode mode) {
vinstr(0x08, dst, xmm0, src, k66, k0F3A, kWIG);
emit(static_cast<byte>(mode) | 0x8); // Mask precision exception.
}
void vroundpd(XMMRegister dst, XMMRegister src, RoundingMode mode) {
vinstr(0x09, dst, xmm0, src, k66, k0F3A, kWIG);
emit(static_cast<byte>(mode) | 0x8); // Mask precision exception.
}
void vsd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
}
void vsd(byte op, XMMRegister dst, XMMRegister src1, Operand src2) {
vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
}
void vmovss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
vss(0x10, dst, src1, src2);
}
void vmovss(XMMRegister dst, Operand src) { vss(0x10, dst, xmm0, src); }
void vmovss(Operand dst, XMMRegister src) { vss(0x11, src, xmm0, dst); }
void vucomiss(XMMRegister dst, XMMRegister src);
void vucomiss(XMMRegister dst, Operand src);
void vss(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
void vss(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
void vshufps(XMMRegister dst, XMMRegister src1, XMMRegister src2, byte imm8) {
vps(0xC6, dst, src1, src2, imm8);
}
void vmovaps(XMMRegister dst, XMMRegister src) { vps(0x28, dst, xmm0, src); }
void vmovups(XMMRegister dst, XMMRegister src) { vps(0x10, dst, xmm0, src); }
void vmovups(XMMRegister dst, Operand src) { vps(0x10, dst, xmm0, src); }
void vmovups(Operand dst, XMMRegister src) { vps(0x11, src, xmm0, dst); }
void vmovapd(XMMRegister dst, XMMRegister src) { vpd(0x28, dst, xmm0, src); }
void vmovupd(XMMRegister dst, Operand src) { vpd(0x10, dst, xmm0, src); }
void vmovupd(Operand dst, XMMRegister src) { vpd(0x11, src, xmm0, dst); }
void vmovmskps(Register dst, XMMRegister src) {
XMMRegister idst = XMMRegister::from_code(dst.code());
vps(0x50, idst, xmm0, src);
}
void vmovmskpd(Register dst, XMMRegister src) {
XMMRegister idst = XMMRegister::from_code(dst.code());
vpd(0x50, idst, xmm0, src);
}
void vpmovmskb(Register dst, XMMRegister src);
void vcmpps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int8_t cmp) {
vps(0xC2, dst, src1, src2);
emit(cmp);
}
void vcmpps(XMMRegister dst, XMMRegister src1, Operand src2, int8_t cmp) {
vps(0xC2, dst, src1, src2);
emit(cmp);
}
void vcmppd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int8_t cmp) {
vpd(0xC2, dst, src1, src2);
emit(cmp);
}
void vcmppd(XMMRegister dst, XMMRegister src1, Operand src2, int8_t cmp) {
vpd(0xC2, dst, src1, src2);
emit(cmp);
}
#define AVX_CMP_P(instr, imm8) \
void instr##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
vcmpps(dst, src1, src2, imm8); \
} \
void instr##ps(XMMRegister dst, XMMRegister src1, Operand src2) { \
vcmpps(dst, src1, src2, imm8); \
} \
void instr##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
vcmppd(dst, src1, src2, imm8); \
} \
void instr##pd(XMMRegister dst, XMMRegister src1, Operand src2) { \
vcmppd(dst, src1, src2, imm8); \
}
AVX_CMP_P(vcmpeq, 0x0)
AVX_CMP_P(vcmplt, 0x1)
AVX_CMP_P(vcmple, 0x2)
AVX_CMP_P(vcmpneq, 0x4)
AVX_CMP_P(vcmpnlt, 0x5)
AVX_CMP_P(vcmpnle, 0x6)
#undef AVX_CMP_P
void vlddqu(XMMRegister dst, Operand src) {
vinstr(0xF0, dst, xmm0, src, kF2, k0F, kWIG);
}
void vinsertps(XMMRegister dst, XMMRegister src1, XMMRegister src2,
byte imm8) {
vinstr(0x21, dst, src1, src2, k66, k0F3A, kWIG);
emit(imm8);
}
void vinsertps(XMMRegister dst, XMMRegister src1, Operand src2, byte imm8) {
vinstr(0x21, dst, src1, src2, k66, k0F3A, kWIG);
emit(imm8);
}
void vpextrq(Register dst, XMMRegister src, int8_t imm8) {
XMMRegister idst = XMMRegister::from_code(dst.code());
vinstr(0x16, src, xmm0, idst, k66, k0F3A, kW1);
emit(imm8);
}
void vpinsrb(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8) {
XMMRegister isrc = XMMRegister::from_code(src2.code());
vinstr(0x20, dst, src1, isrc, k66, k0F3A, kW0);
emit(imm8);
}
void vpinsrb(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8) {
vinstr(0x20, dst, src1, src2, k66, k0F3A, kW0);
emit(imm8);
}
void vpinsrw(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8) {
XMMRegister isrc = XMMRegister::from_code(src2.code());
vinstr(0xc4, dst, src1, isrc, k66, k0F, kW0);
emit(imm8);
}
void vpinsrw(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8) {
vinstr(0xc4, dst, src1, src2, k66, k0F, kW0);
emit(imm8);
}
void vpinsrd(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8) {
XMMRegister isrc = XMMRegister::from_code(src2.code());
vinstr(0x22, dst, src1, isrc, k66, k0F3A, kW0);
emit(imm8);
}
void vpinsrd(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8) {
vinstr(0x22, dst, src1, src2, k66, k0F3A, kW0);
emit(imm8);
}
void vpinsrq(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8) {
XMMRegister isrc = XMMRegister::from_code(src2.code());
vinstr(0x22, dst, src1, isrc, k66, k0F3A, kW1);
emit(imm8);
}
void vpinsrq(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8) {
vinstr(0x22, dst, src1, src2, k66, k0F3A, kW1);
emit(imm8);
}
void vpshufd(XMMRegister dst, XMMRegister src, uint8_t imm8) {
vinstr(0x70, dst, xmm0, src, k66, k0F, kWIG);
emit(imm8);
}
void vpshufd(XMMRegister dst, Operand src, uint8_t imm8) {
vinstr(0x70, dst, xmm0, src, k66, k0F, kWIG);
emit(imm8);
}
void vpshuflw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
vinstr(0x70, dst, xmm0, src, kF2, k0F, kWIG);
emit(imm8);
}
void vpshuflw(XMMRegister dst, Operand src, uint8_t imm8) {
vinstr(0x70, dst, xmm0, src, kF2, k0F, kWIG);
emit(imm8);
}
void vpshufhw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
vinstr(0x70, dst, xmm0, src, kF3, k0F, kWIG);
emit(imm8);
}
void vpshufhw(XMMRegister dst, Operand src, uint8_t imm8) {
vinstr(0x70, dst, xmm0, src, kF2, k0F, kWIG);
emit(imm8);
}
void vpblendw(XMMRegister dst, XMMRegister src1, XMMRegister src2,
uint8_t mask) {
vinstr(0x0E, dst, src1, src2, k66, k0F3A, kWIG);
emit(mask);
}
void vpblendw(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t mask) {
vinstr(0x0E, dst, src1, src2, k66, k0F3A, kWIG);
emit(mask);
}
void vpalignr(XMMRegister dst, XMMRegister src1, XMMRegister src2,
uint8_t imm8) {
vinstr(0x0F, dst, src1, src2, k66, k0F3A, kWIG);
emit(imm8);
}
void vpalignr(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8) {
vinstr(0x0F, dst, src1, src2, k66, k0F3A, kWIG);
emit(imm8);
}
void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
void vps(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2,
byte imm8);
void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
void vpd(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
// BMI instruction
void andnq(Register dst, Register src1, Register src2) {
bmi1q(0xf2, dst, src1, src2);
}
void andnq(Register dst, Register src1, Operand src2) {
bmi1q(0xf2, dst, src1, src2);
}
void andnl(Register dst, Register src1, Register src2) {
bmi1l(0xf2, dst, src1, src2);
}
void andnl(Register dst, Register src1, Operand src2) {
bmi1l(0xf2, dst, src1, src2);
}
void bextrq(Register dst, Register src1, Register src2) {
bmi1q(0xf7, dst, src2, src1);
}
void bextrq(Register dst, Operand src1, Register src2) {
bmi1q(0xf7, dst, src2, src1);
}
void bextrl(Register dst, Register src1, Register src2) {
bmi1l(0xf7, dst, src2, src1);
}
void bextrl(Register dst, Operand src1, Register src2) {
bmi1l(0xf7, dst, src2, src1);
}
void blsiq(Register dst, Register src) { bmi1q(0xf3, rbx, dst, src); }
void blsiq(Register dst, Operand src) { bmi1q(0xf3, rbx, dst, src); }
void blsil(Register dst, Register src) { bmi1l(0xf3, rbx, dst, src); }
void blsil(Register dst, Operand src) { bmi1l(0xf3, rbx, dst, src); }
void blsmskq(Register dst, Register src) { bmi1q(0xf3, rdx, dst, src); }
void blsmskq(Register dst, Operand src) { bmi1q(0xf3, rdx, dst, src); }
void blsmskl(Register dst, Register src) { bmi1l(0xf3, rdx, dst, src); }
void blsmskl(Register dst, Operand src) { bmi1l(0xf3, rdx, dst, src); }
void blsrq(Register dst, Register src) { bmi1q(0xf3, rcx, dst, src); }
void blsrq(Register dst, Operand src) { bmi1q(0xf3, rcx, dst, src); }
void blsrl(Register dst, Register src) { bmi1l(0xf3, rcx, dst, src); }
void blsrl(Register dst, Operand src) { bmi1l(0xf3, rcx, dst, src); }
void tzcntq(Register dst, Register src);
void tzcntq(Register dst, Operand src);
void tzcntl(Register dst, Register src);
void tzcntl(Register dst, Operand src);
void lzcntq(Register dst, Register src);
void lzcntq(Register dst, Operand src);
void lzcntl(Register dst, Register src);
void lzcntl(Register dst, Operand src);
void popcntq(Register dst, Register src);
void popcntq(Register dst, Operand src);
void popcntl(Register dst, Register src);
void popcntl(Register dst, Operand src);
void bzhiq(Register dst, Register src1, Register src2) {
bmi2q(kNone, 0xf5, dst, src2, src1);
}
void bzhiq(Register dst, Operand src1, Register src2) {
bmi2q(kNone, 0xf5, dst, src2, src1);
}
void bzhil(Register dst, Register src1, Register src2) {
bmi2l(kNone, 0xf5, dst, src2, src1);
}
void bzhil(Register dst, Operand src1, Register src2) {
bmi2l(kNone, 0xf5, dst, src2, src1);
}
void mulxq(Register dst1, Register dst2, Register src) {
bmi2q(kF2, 0xf6, dst1, dst2, src);
}
void mulxq(Register dst1, Register dst2, Operand src) {
bmi2q(kF2, 0xf6, dst1, dst2, src);
}
void mulxl(Register dst1, Register dst2, Register src) {
bmi2l(kF2, 0xf6, dst1, dst2, src);
}
void mulxl(Register dst1, Register dst2, Operand src) {
bmi2l(kF2, 0xf6, dst1, dst2, src);
}
void pdepq(Register dst, Register src1, Register src2) {
bmi2q(kF2, 0xf5, dst, src1, src2);
}
void pdepq(Register dst, Register src1, Operand src2) {
bmi2q(kF2, 0xf5, dst, src1, src2);
}
void pdepl(Register dst, Register src1, Register src2) {
bmi2l(kF2, 0xf5, dst, src1, src2);
}
void pdepl(Register dst, Register src1, Operand src2) {
bmi2l(kF2, 0xf5, dst, src1, src2);
}
void pextq(Register dst, Register src1, Register src2) {
bmi2q(kF3, 0xf5, dst, src1, src2);
}
void pextq(Register dst, Register src1, Operand src2) {
bmi2q(kF3, 0xf5, dst, src1, src2);
}
void pextl(Register dst, Register src1, Register src2) {
bmi2l(kF3, 0xf5, dst, src1, src2);
}
void pextl(Register dst, Register src1, Operand src2) {
bmi2l(kF3, 0xf5, dst, src1, src2);
}
void sarxq(Register dst, Register src1, Register src2) {
bmi2q(kF3, 0xf7, dst, src2, src1);
}
void sarxq(Register dst, Operand src1, Register src2) {
bmi2q(kF3, 0xf7, dst, src2, src1);
}
void sarxl(Register dst, Register src1, Register src2) {
bmi2l(kF3, 0xf7, dst, src2, src1);
}
void sarxl(Register dst, Operand src1, Register src2) {
bmi2l(kF3, 0xf7, dst, src2, src1);
}
void shlxq(Register dst, Register src1, Register src2) {
bmi2q(k66, 0xf7, dst, src2, src1);
}
void shlxq(Register dst, Operand src1, Register src2) {
bmi2q(k66, 0xf7, dst, src2, src1);
}
void shlxl(Register dst, Register src1, Register src2) {
bmi2l(k66, 0xf7, dst, src2, src1);
}
void shlxl(Register dst, Operand src1, Register src2) {
bmi2l(k66, 0xf7, dst, src2, src1);
}
void shrxq(Register dst, Register src1, Register src2) {
bmi2q(kF2, 0xf7, dst, src2, src1);
}
void shrxq(Register dst, Operand src1, Register src2) {
bmi2q(kF2, 0xf7, dst, src2, src1);
}
void shrxl(Register dst, Register src1, Register src2) {
bmi2l(kF2, 0xf7, dst, src2, src1);
}
void shrxl(Register dst, Operand src1, Register src2) {
bmi2l(kF2, 0xf7, dst, src2, src1);
}
void rorxq(Register dst, Register src, byte imm8);
void rorxq(Register dst, Operand src, byte imm8);
void rorxl(Register dst, Register src, byte imm8);
void rorxl(Register dst, Operand src, byte imm8);
void mfence();
void lfence();
void pause();
// Check the code size generated from label to here.
int SizeOfCodeGeneratedSince(Label* label) {
return pc_offset() - label->pos();
}
// Record a deoptimization reason that can be used by a log or cpu profiler.
// Use --trace-deopt to enable.
void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
int id);
// Writes a single word of data in the code stream.
// Used for inline tables, e.g., jump-tables.
void db(uint8_t data);
void dd(uint32_t data);
void dq(uint64_t data);
void dp(uintptr_t data) { dq(data); }
void dq(Label* label);
// Patch entries for partial constant pool.
void PatchConstPool();
// Check if use partial constant pool for this rmode.
static bool UseConstPoolFor(RelocInfo::Mode rmode);
// Check if there is less than kGap bytes available in the buffer.
// If this is the case, we need to grow the buffer before emitting
// an instruction or relocation information.
inline bool buffer_overflow() const {
return pc_ >= reloc_info_writer.pos() - kGap;
}
// Get the number of bytes available in the buffer.
inline int available_space() const {
return static_cast<int>(reloc_info_writer.pos() - pc_);
}
static bool IsNop(Address addr);
// Avoid overflows for displacements etc.
static constexpr int kMaximalBufferSize = 512 * MB;
byte byte_at(int pos) { return buffer_start_[pos]; }
void set_byte_at(int pos, byte value) { buffer_start_[pos] = value; }
#if defined(V8_OS_WIN_X64)
win64_unwindinfo::BuiltinUnwindInfo GetUnwindInfo() const;
#endif
protected:
// Call near indirect
void call(Operand operand);
private:
Address addr_at(int pos) {
return reinterpret_cast<Address>(buffer_start_ + pos);
}
uint32_t long_at(int pos) {
return ReadUnalignedValue<uint32_t>(addr_at(pos));
}
void long_at_put(int pos, uint32_t x) {
WriteUnalignedValue(addr_at(pos), x);
}
// code emission
void GrowBuffer();
void emit(byte x) { *pc_++ = x; }
inline void emitl(uint32_t x);
inline void emitq(uint64_t x);
inline void emitw(uint16_t x);
inline void emit_runtime_entry(Address entry, RelocInfo::Mode rmode);
inline void emit(Immediate x);
inline void emit(Immediate64 x);
// Emits a REX prefix that encodes a 64-bit operand size and
// the top bit of both register codes.
// High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
// REX.W is set.
inline void emit_rex_64(XMMRegister reg, Register rm_reg);
inline void emit_rex_64(Register reg, XMMRegister rm_reg);
inline void emit_rex_64(Register reg, Register rm_reg);
inline void emit_rex_64(XMMRegister reg, XMMRegister rm_reg);
// Emits a REX prefix that encodes a 64-bit operand size and
// the top bit of the destination, index, and base register codes.
// The high bit of reg is used for REX.R, the high bit of op's base
// register is used for REX.B, and the high bit of op's index register
// is used for REX.X. REX.W is set.
inline void emit_rex_64(Register reg, Operand op);
inline void emit_rex_64(XMMRegister reg, Operand op);
// Emits a REX prefix that encodes a 64-bit operand size and
// the top bit of the register code.
// The high bit of register is used for REX.B.
// REX.W is set and REX.R and REX.X are clear.
inline void emit_rex_64(Register rm_reg);
// Emits a REX prefix that encodes a 64-bit operand size and
// the top bit of the index and base register codes.
// The high bit of op's base register is used for REX.B, and the high
// bit of op's index register is used for REX.X.
// REX.W is set and REX.R clear.
inline void emit_rex_64(Operand op);
// Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
void emit_rex_64() { emit(0x48); }
// High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
// REX.W is clear.
inline void emit_rex_32(Register reg, Register rm_reg);
// The high bit of reg is used for REX.R, the high bit of op's base
// register is used for REX.B, and the high bit of op's index register
// is used for REX.X. REX.W is cleared.
inline void emit_rex_32(Register reg, Operand op);
// High bit of rm_reg goes to REX.B.
// REX.W, REX.R and REX.X are clear.
inline void emit_rex_32(Register rm_reg);
// High bit of base goes to REX.B and high bit of index to REX.X.
// REX.W and REX.R are clear.
inline void emit_rex_32(Operand op);
// High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
// REX.W is cleared. If no REX bits are set, no byte is emitted.
inline void emit_optional_rex_32(Register reg, Register rm_reg);
// The high bit of reg is used for REX.R, the high bit of op's base
// register is used for REX.B, and the high bit of op's index register
// is used for REX.X. REX.W is cleared. If no REX bits are set, nothing
// is emitted.
inline void emit_optional_rex_32(Register reg, Operand op);
// As for emit_optional_rex_32(Register, Register), except that
// the registers are XMM registers.
inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
// As for emit_optional_rex_32(Register, Register), except that
// one of the registers is an XMM registers.
inline void emit_optional_rex_32(XMMRegister reg, Register base);
// As for emit_optional_rex_32(Register, Register), except that
// one of the registers is an XMM registers.
inline void emit_optional_rex_32(Register reg, XMMRegister base);
// As for emit_optional_rex_32(Register, Operand), except that
// the register is an XMM register.
inline void emit_optional_rex_32(XMMRegister reg, Operand op);
// Optionally do as emit_rex_32(Register) if the register number has
// the high bit set.
inline void emit_optional_rex_32(Register rm_reg);
inline void emit_optional_rex_32(XMMRegister rm_reg);
// Optionally do as emit_rex_32(Operand) if the operand register
// numbers have a high bit set.
inline void emit_optional_rex_32(Operand op);
// Calls emit_rex_32(Register) for all non-byte registers.
inline void emit_optional_rex_8(Register reg);
// Calls emit_rex_32(Register, Operand) for all non-byte registers, and
// emit_optional_rex_32(Register, Operand) for byte registers.
inline void emit_optional_rex_8(Register reg, Operand op);
void emit_rex(int size) {
if (size == kInt64Size) {
emit_rex_64();
} else {
DCHECK_EQ(size, kInt32Size);
}
}
template <class P1>
void emit_rex(P1 p1, int size) {
if (size == kInt64Size) {
emit_rex_64(p1);
} else {
DCHECK_EQ(size, kInt32Size);
emit_optional_rex_32(p1);
}
}
template <class P1, class P2>
void emit_rex(P1 p1, P2 p2, int size) {
if (size == kInt64Size) {
emit_rex_64(p1, p2);
} else {
DCHECK_EQ(size, kInt32Size);
emit_optional_rex_32(p1, p2);
}
}
// Emit vex prefix
void emit_vex2_byte0() { emit(0xc5); }
inline void emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l,
SIMDPrefix pp);
void emit_vex3_byte0() { emit(0xc4); }
inline void emit_vex3_byte1(XMMRegister reg, XMMRegister rm, LeadingOpcode m);
inline void emit_vex3_byte1(XMMRegister reg, Operand rm, LeadingOpcode m);
inline void emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l,
SIMDPrefix pp);
inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, XMMRegister rm,
VectorLength l, SIMDPrefix pp, LeadingOpcode m,
VexW w);
inline void emit_vex_prefix(Register reg, Register v, Register rm,
VectorLength l, SIMDPrefix pp, LeadingOpcode m,
VexW w);
inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, Operand rm,
VectorLength l, SIMDPrefix pp, LeadingOpcode m,
VexW w);
inline void emit_vex_prefix(Register reg, Register v, Operand rm,
VectorLength l, SIMDPrefix pp, LeadingOpcode m,
VexW w);
// Emit the ModR/M byte, and optionally the SIB byte and
// 1- or 4-byte offset for a memory operand. Also encodes
// the second operand of the operation, a register or operation
// subcode, into the reg field of the ModR/M byte.
void emit_operand(Register reg, Operand adr) {
emit_operand(reg.low_bits(), adr);
}
// Emit the ModR/M byte, and optionally the SIB byte and
// 1- or 4-byte offset for a memory operand. Also used to encode
// a three-bit opcode extension into the ModR/M byte.
void emit_operand(int rm, Operand adr);
// Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
void emit_modrm(Register reg, Register rm_reg) {
emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
}
// Emit a ModR/M byte with an operation subcode in the reg field and
// a register in the rm_reg field.
void emit_modrm(int code, Register rm_reg) {
DCHECK(is_uint3(code));
emit(0xC0 | code << 3 | rm_reg.low_bits());
}
// Emit the code-object-relative offset of the label's position
inline void emit_code_relative_offset(Label* label);
// The first argument is the reg field, the second argument is the r/m field.
void emit_sse_operand(XMMRegister dst, XMMRegister src);
void emit_sse_operand(XMMRegister reg, Operand adr);
void emit_sse_operand(Register reg, Operand adr);
void emit_sse_operand(XMMRegister dst, Register src);
void emit_sse_operand(Register dst, XMMRegister src);
void emit_sse_operand(XMMRegister dst);
// Emit machine code for one of the operations ADD, ADC, SUB, SBC,
// AND, OR, XOR, or CMP. The encodings of these operations are all
// similar, differing just in the opcode or in the reg field of the
// ModR/M byte.
void arithmetic_op_8(byte opcode, Register reg, Register rm_reg);
void arithmetic_op_8(byte opcode, Register reg, Operand rm_reg);
void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
void arithmetic_op_16(byte opcode, Register reg, Operand rm_reg);
// Operate on operands/registers with pointer size, 32-bit or 64-bit size.
void arithmetic_op(byte opcode, Register reg, Register rm_reg, int size);
void arithmetic_op(byte opcode, Register reg, Operand rm_reg, int size);
// Operate on a byte in memory or register.
void immediate_arithmetic_op_8(byte subcode, Register dst, Immediate src);
void immediate_arithmetic_op_8(byte subcode, Operand dst, Immediate src);
// Operate on a word in memory or register.
void immediate_arithmetic_op_16(byte subcode, Register dst, Immediate src);
void immediate_arithmetic_op_16(byte subcode, Operand dst, Immediate src);
// Operate on operands/registers with pointer size, 32-bit or 64-bit size.
void immediate_arithmetic_op(byte subcode, Register dst, Immediate src,
int size);
void immediate_arithmetic_op(byte subcode, Operand dst, Immediate src,
int size);
// Emit machine code for a shift operation.
void shift(Operand dst, Immediate shift_amount, int subcode, int size);
void shift(Register dst, Immediate shift_amount, int subcode, int size);
// Shift dst by cl % 64 bits.
void shift(Register dst, int subcode, int size);
void shift(Operand dst, int subcode, int size);
void emit_farith(int b1, int b2, int i);
// labels
// void print(Label* L);
void bind_to(Label* L, int pos);
// record reloc info for current pc_
void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
// Arithmetics
void emit_add(Register dst, Register src, int size) {
arithmetic_op(0x03, dst, src, size);
}
void emit_add(Register dst, Immediate src, int size) {
immediate_arithmetic_op(0x0, dst, src, size);
}
void emit_add(Register dst, Operand src, int size) {
arithmetic_op(0x03, dst, src, size);
}
void emit_add(Operand dst, Register src, int size) {
arithmetic_op(0x1, src, dst, size);
}
void emit_add(Operand dst, Immediate src, int size) {
immediate_arithmetic_op(0x0, dst, src, size);
}
void emit_and(Register dst, Register src, int size) {
arithmetic_op(0x23, dst, src, size);
}
void emit_and(Register dst, Operand src, int size) {
arithmetic_op(0x23, dst, src, size);
}
void emit_and(Operand dst, Register src, int size) {
arithmetic_op(0x21, src, dst, size);
}
void emit_and(Register dst, Immediate src, int size) {
immediate_arithmetic_op(0x4, dst, src, size);
}
void emit_and(Operand dst, Immediate src, int size) {
immediate_arithmetic_op(0x4, dst, src, size);
}
void emit_cmp(Register dst, Register src, int size) {
arithmetic_op(0x3B, dst, src, size);
}
void emit_cmp(Register dst, Operand src, int size) {
arithmetic_op(0x3B, dst, src, size);
}
void emit_cmp(Operand dst, Register src, int size) {
arithmetic_op(0x39, src, dst, size);
}
void emit_cmp(Register dst, Immediate src, int size) {
immediate_arithmetic_op(0x7, dst, src, size);
}
void emit_cmp(Operand dst, Immediate src, int size) {
immediate_arithmetic_op(0x7, dst, src, size);
}
// Compare {al,ax,eax,rax} with src. If equal, set ZF and write dst into
// src. Otherwise clear ZF and write src into {al,ax,eax,rax}. This
// operation is only atomic if prefixed by the lock instruction.
void emit_cmpxchg(Operand dst, Register src, int size);
void emit_dec(Register dst, int size);
void emit_dec(Operand dst, int size);
// Divide rdx:rax by src. Quotient in rax, remainder in rdx when size is 64.
// Divide edx:eax by lower 32 bits of src. Quotient in eax, remainder in edx
// when size is 32.
void emit_idiv(Register src, int size);
void emit_div(Register src, int size);
// Signed multiply instructions.
// rdx:rax = rax * src when size is 64 or edx:eax = eax * src when size is 32.
void emit_imul(Register src, int size);
void emit_imul(Operand src, int size);
void emit_imul(Register dst, Register src, int size);
void emit_imul(Register dst, Operand src, int size);
void emit_imul(Register dst, Register src, Immediate imm, int size);
void emit_imul(Register dst, Operand src, Immediate imm, int size);
void emit_inc(Register dst, int size);
void emit_inc(Operand dst, int size);
void emit_lea(Register dst, Operand src, int size);
void emit_mov(Register dst, Operand src, int size);
void emit_mov(Register dst, Register src, int size);
void emit_mov(Operand dst, Register src, int size);
void emit_mov(Register dst, Immediate value, int size);
void emit_mov(Operand dst, Immediate value, int size);
void emit_mov(Register dst, Immediate64 value, int size);
void emit_movzxb(Register dst, Operand src, int size);
void emit_movzxb(Register dst, Register src, int size);
void emit_movzxw(Register dst, Operand src, int size);
void emit_movzxw(Register dst, Register src, int size);
void emit_neg(Register dst, int size);
void emit_neg(Operand dst, int size);
void emit_not(Register dst, int size);
void emit_not(Operand dst, int size);
void emit_or(Register dst, Register src, int size) {
arithmetic_op(0x0B, dst, src, size);
}
void emit_or(Register dst, Operand src, int size) {
arithmetic_op(0x0B, dst, src, size);
}
void emit_or(Operand dst, Register src, int size) {
arithmetic_op(0x9, src, dst, size);
}
void emit_or(Register dst, Immediate src, int size) {
immediate_arithmetic_op(0x1, dst, src, size);
}
void emit_or(Operand dst, Immediate src, int size) {
immediate_arithmetic_op(0x1, dst, src, size);
}
void emit_repmovs(int size);
void emit_sbb(Register dst, Register src, int size) {
arithmetic_op(0x1b, dst, src, size);
}
void emit_sub(Register dst, Register src, int size) {
arithmetic_op(0x2B, dst, src, size);
}
void emit_sub(Register dst, Immediate src, int size) {
immediate_arithmetic_op(0x5, dst, src, size);
}
void emit_sub(Register dst, Operand src, int size) {
arithmetic_op(0x2B, dst, src, size);
}
void emit_sub(Operand dst, Register src, int size) {
arithmetic_op(0x29, src, dst, size);
}
void emit_sub(Operand dst, Immediate src, int size) {
immediate_arithmetic_op(0x5, dst, src, size);
}
void emit_test(Register dst, Register src, int size);
void emit_test(Register reg, Immediate mask, int size);
void emit_test(Operand op, Register reg, int size);
void emit_test(Operand op, Immediate mask, int size);
void emit_test(Register reg, Operand op, int size) {
return emit_test(op, reg, size);
}
void emit_xchg(Register dst, Register src, int size);
void emit_xchg(Register dst, Operand src, int size);
void emit_xor(Register dst, Register src, int size) {
if (size == kInt64Size && dst.code() == src.code()) {
// 32 bit operations zero the top 32 bits of 64 bit registers. Therefore
// there is no need to make this a 64 bit operation.
arithmetic_op(0x33, dst, src, kInt32Size);
} else {
arithmetic_op(0x33, dst, src, size);
}
}
void emit_xor(Register dst, Operand src, int size) {
arithmetic_op(0x33, dst, src, size);
}
void emit_xor(Register dst, Immediate src, int size) {
immediate_arithmetic_op(0x6, dst, src, size);
}
void emit_xor(Operand dst, Immediate src, int size) {
immediate_arithmetic_op(0x6, dst, src, size);
}
void emit_xor(Operand dst, Register src, int size) {
arithmetic_op(0x31, src, dst, size);
}
// Most BMI instructions are similar.
void bmi1q(byte op, Register reg, Register vreg, Register rm);
void bmi1q(byte op, Register reg, Register vreg, Operand rm);
void bmi1l(byte op, Register reg, Register vreg, Register rm);
void bmi1l(byte op, Register reg, Register vreg, Operand rm);
void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg, Operand rm);
void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg, Operand rm);
// record the position of jmp/jcc instruction
void record_farjmp_position(Label* L, int pos);
bool is_optimizable_farjmp(int idx);
void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);
int WriteCodeComments();
friend class EnsureSpace;
friend class RegExpMacroAssemblerX64;
// code generation
RelocInfoWriter reloc_info_writer;
// Internal reference positions, required for (potential) patching in
// GrowBuffer(); contains only those internal references whose labels
// are already bound.
std::deque<int> internal_reference_positions_;
// Variables for this instance of assembler
int farjmp_num_ = 0;
std::deque<int> farjmp_positions_;
std::map<Label*, std::vector<int>> label_farjmp_maps_;
ConstPool constpool_;
friend class ConstPool;
#if defined(V8_OS_WIN_X64)
std::unique_ptr<win64_unwindinfo::XdataEncoder> xdata_encoder_;
#endif
};
// Helper class that ensures that there is enough space for generating
// instructions and relocation information. The constructor makes
// sure that there is enough space and (in debug mode) the destructor
// checks that we did not generate too much.
class EnsureSpace {
public:
explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
#ifdef DEBUG
space_before_ = assembler_->available_space();
#endif
}
#ifdef DEBUG
~EnsureSpace() {
int bytes_generated = space_before_ - assembler_->available_space();
DCHECK(bytes_generated < assembler_->kGap);
}
#endif
private:
Assembler* assembler_;
#ifdef DEBUG
int space_before_;
#endif
};
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_X64_ASSEMBLER_X64_H_