blob: 9fc4d94768a7caa9562d77172030fe8697cb34f4 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
#error This header must be included via macro-assembler.h
#endif
#ifndef V8_CODEGEN_X64_MACRO_ASSEMBLER_X64_H_
#define V8_CODEGEN_X64_MACRO_ASSEMBLER_X64_H_
#include "src/base/flags.h"
#include "src/codegen/bailout-reason.h"
#include "src/codegen/x64/assembler-x64.h"
#include "src/common/globals.h"
#include "src/objects/contexts.h"
namespace v8 {
namespace internal {
// Convenience for platform-independent signatures.
using MemOperand = Operand;
class StringConstantBase;
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
struct SmiIndex {
SmiIndex(Register index_register, ScaleFactor scale)
: reg(index_register), scale(scale) {}
Register reg;
ScaleFactor scale;
};
// TODO(victorgomes): Move definition to macro-assembler.h, once all other
// platforms are updated.
enum class StackLimitKind { kInterruptStackLimit, kRealStackLimit };
// Convenient class to access arguments below the stack pointer.
class StackArgumentsAccessor {
public:
// argc = the number of arguments not including the receiver.
explicit StackArgumentsAccessor(Register argc) : argc_(argc) {
DCHECK_NE(argc_, no_reg);
}
// Argument 0 is the receiver (despite argc not including the receiver).
Operand operator[](int index) const { return GetArgumentOperand(index); }
Operand GetArgumentOperand(int index) const;
Operand GetReceiverOperand() const { return GetArgumentOperand(0); }
private:
const Register argc_;
DISALLOW_IMPLICIT_CONSTRUCTORS(StackArgumentsAccessor);
};
class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
public:
using TurboAssemblerBase::TurboAssemblerBase;
template <typename Dst, typename... Args>
struct AvxHelper {
Assembler* assm;
base::Optional<CpuFeature> feature = base::nullopt;
// Call a method where the AVX version expects the dst argument to be
// duplicated.
template <void (Assembler::*avx)(Dst, Dst, Args...),
void (Assembler::*no_avx)(Dst, Args...)>
void emit(Dst dst, Args... args) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(assm, AVX);
(assm->*avx)(dst, dst, args...);
} else if (feature.has_value()) {
DCHECK(CpuFeatures::IsSupported(*feature));
CpuFeatureScope scope(assm, *feature);
(assm->*no_avx)(dst, args...);
} else {
(assm->*no_avx)(dst, args...);
}
}
// Call a method where the AVX version expects no duplicated dst argument.
template <void (Assembler::*avx)(Dst, Args...),
void (Assembler::*no_avx)(Dst, Args...)>
void emit(Dst dst, Args... args) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(assm, AVX);
(assm->*avx)(dst, args...);
} else if (feature.has_value()) {
DCHECK(CpuFeatures::IsSupported(*feature));
CpuFeatureScope scope(assm, *feature);
(assm->*no_avx)(dst, args...);
} else {
(assm->*no_avx)(dst, args...);
}
}
};
#define AVX_OP(macro_name, name) \
template <typename Dst, typename... Args> \
void macro_name(Dst dst, Args... args) { \
AvxHelper<Dst, Args...>{this} \
.template emit<&Assembler::v##name, &Assembler::name>(dst, args...); \
}
#define AVX_OP_SSE3(macro_name, name) \
template <typename Dst, typename... Args> \
void macro_name(Dst dst, Args... args) { \
AvxHelper<Dst, Args...>{this, base::Optional<CpuFeature>(SSE3)} \
.template emit<&Assembler::v##name, &Assembler::name>(dst, args...); \
}
#define AVX_OP_SSSE3(macro_name, name) \
template <typename Dst, typename... Args> \
void macro_name(Dst dst, Args... args) { \
AvxHelper<Dst, Args...>{this, base::Optional<CpuFeature>(SSSE3)} \
.template emit<&Assembler::v##name, &Assembler::name>(dst, args...); \
}
#define AVX_OP_SSE4_1(macro_name, name) \
template <typename Dst, typename... Args> \
void macro_name(Dst dst, Args... args) { \
AvxHelper<Dst, Args...>{this, base::Optional<CpuFeature>(SSE4_1)} \
.template emit<&Assembler::v##name, &Assembler::name>(dst, args...); \
}
#define AVX_OP_SSE4_2(macro_name, name) \
template <typename Dst, typename... Args> \
void macro_name(Dst dst, Args... args) { \
AvxHelper<Dst, Args...>{this, base::Optional<CpuFeature>(SSE4_2)} \
.template emit<&Assembler::v##name, &Assembler::name>(dst, args...); \
}
AVX_OP(Subsd, subsd)
AVX_OP(Divss, divss)
AVX_OP(Divsd, divsd)
AVX_OP(Orps, orps)
AVX_OP(Xorps, xorps)
AVX_OP(Xorpd, xorpd)
AVX_OP(Movd, movd)
AVX_OP(Movq, movq)
AVX_OP(Movaps, movaps)
AVX_OP(Movapd, movapd)
AVX_OP(Movups, movups)
AVX_OP(Movmskps, movmskps)
AVX_OP(Movmskpd, movmskpd)
AVX_OP(Pmovmskb, pmovmskb)
AVX_OP(Movss, movss)
AVX_OP(Movsd, movsd)
AVX_OP(Movdqu, movdqu)
AVX_OP(Movlps, movlps)
AVX_OP(Movhps, movhps)
AVX_OP(Pcmpeqb, pcmpeqb)
AVX_OP(Pcmpeqw, pcmpeqw)
AVX_OP(Pcmpeqd, pcmpeqd)
AVX_OP(Pcmpgtb, pcmpgtb)
AVX_OP(Pcmpgtw, pcmpgtw)
AVX_OP(Pmaxsw, pmaxsw)
AVX_OP(Pmaxub, pmaxub)
AVX_OP(Pminsw, pminsw)
AVX_OP(Pminub, pminub)
AVX_OP(Addss, addss)
AVX_OP(Addsd, addsd)
AVX_OP(Mulsd, mulsd)
AVX_OP(Andps, andps)
AVX_OP(Andnps, andnps)
AVX_OP(Andpd, andpd)
AVX_OP(Andnpd, andnpd)
AVX_OP(Orpd, orpd)
AVX_OP(Cmpeqps, cmpeqps)
AVX_OP(Cmpltps, cmpltps)
AVX_OP(Cmpleps, cmpleps)
AVX_OP(Cmpneqps, cmpneqps)
AVX_OP(Cmpnltps, cmpnltps)
AVX_OP(Cmpnleps, cmpnleps)
AVX_OP(Cmpeqpd, cmpeqpd)
AVX_OP(Cmpltpd, cmpltpd)
AVX_OP(Cmplepd, cmplepd)
AVX_OP(Cmpneqpd, cmpneqpd)
AVX_OP(Cmpnltpd, cmpnltpd)
AVX_OP(Cmpnlepd, cmpnlepd)
AVX_OP(Sqrtss, sqrtss)
AVX_OP(Sqrtsd, sqrtsd)
AVX_OP(Sqrtps, sqrtps)
AVX_OP(Sqrtpd, sqrtpd)
AVX_OP(Cvttps2dq, cvttps2dq)
AVX_OP(Ucomiss, ucomiss)
AVX_OP(Ucomisd, ucomisd)
AVX_OP(Pand, pand)
AVX_OP(Por, por)
AVX_OP(Pxor, pxor)
AVX_OP(Psubb, psubb)
AVX_OP(Psubw, psubw)
AVX_OP(Psubd, psubd)
AVX_OP(Psubq, psubq)
AVX_OP(Psubsb, psubsb)
AVX_OP(Psubsw, psubsw)
AVX_OP(Psubusb, psubusb)
AVX_OP(Psubusw, psubusw)
AVX_OP(Pslld, pslld)
AVX_OP(Pavgb, pavgb)
AVX_OP(Pavgw, pavgw)
AVX_OP(Psraw, psraw)
AVX_OP(Psrad, psrad)
AVX_OP(Psllw, psllw)
AVX_OP(Psllq, psllq)
AVX_OP(Psrlw, psrlw)
AVX_OP(Psrld, psrld)
AVX_OP(Psrlq, psrlq)
AVX_OP(Pmaddwd, pmaddwd)
AVX_OP(Paddb, paddb)
AVX_OP(Paddw, paddw)
AVX_OP(Paddd, paddd)
AVX_OP(Paddq, paddq)
AVX_OP(Paddsb, paddsb)
AVX_OP(Paddsw, paddsw)
AVX_OP(Paddusb, paddusb)
AVX_OP(Paddusw, paddusw)
AVX_OP(Pcmpgtd, pcmpgtd)
AVX_OP(Pmullw, pmullw)
AVX_OP(Pmuludq, pmuludq)
AVX_OP(Addpd, addpd)
AVX_OP(Subpd, subpd)
AVX_OP(Mulpd, mulpd)
AVX_OP(Minps, minps)
AVX_OP(Minpd, minpd)
AVX_OP(Divpd, divpd)
AVX_OP(Maxps, maxps)
AVX_OP(Maxpd, maxpd)
AVX_OP(Cvtdq2ps, cvtdq2ps)
AVX_OP(Rcpps, rcpps)
AVX_OP(Rsqrtps, rsqrtps)
AVX_OP(Addps, addps)
AVX_OP(Subps, subps)
AVX_OP(Mulps, mulps)
AVX_OP(Divps, divps)
AVX_OP(Pshuflw, pshuflw)
AVX_OP(Pshufhw, pshufhw)
AVX_OP(Packsswb, packsswb)
AVX_OP(Packuswb, packuswb)
AVX_OP(Packssdw, packssdw)
AVX_OP(Punpcklbw, punpcklbw)
AVX_OP(Punpcklwd, punpcklwd)
AVX_OP(Punpckldq, punpckldq)
AVX_OP(Punpckhbw, punpckhbw)
AVX_OP(Punpckhwd, punpckhwd)
AVX_OP(Punpckhdq, punpckhdq)
AVX_OP(Punpcklqdq, punpcklqdq)
AVX_OP(Punpckhqdq, punpckhqdq)
AVX_OP(Pshufd, pshufd)
AVX_OP(Cmpps, cmpps)
AVX_OP(Cmppd, cmppd)
AVX_OP(Movlhps, movlhps)
AVX_OP_SSE3(Haddps, haddps)
AVX_OP_SSE3(Movddup, movddup)
AVX_OP_SSSE3(Phaddd, phaddd)
AVX_OP_SSSE3(Phaddw, phaddw)
AVX_OP_SSSE3(Pshufb, pshufb)
AVX_OP_SSSE3(Psignb, psignb)
AVX_OP_SSSE3(Psignw, psignw)
AVX_OP_SSSE3(Psignd, psignd)
AVX_OP_SSSE3(Palignr, palignr)
AVX_OP_SSSE3(Pabsb, pabsb)
AVX_OP_SSSE3(Pabsw, pabsw)
AVX_OP_SSSE3(Pabsd, pabsd)
AVX_OP_SSE4_1(Pcmpeqq, pcmpeqq)
AVX_OP_SSE4_1(Packusdw, packusdw)
AVX_OP_SSE4_1(Pminsb, pminsb)
AVX_OP_SSE4_1(Pminsd, pminsd)
AVX_OP_SSE4_1(Pminuw, pminuw)
AVX_OP_SSE4_1(Pminud, pminud)
AVX_OP_SSE4_1(Pmaxsb, pmaxsb)
AVX_OP_SSE4_1(Pmaxsd, pmaxsd)
AVX_OP_SSE4_1(Pmaxuw, pmaxuw)
AVX_OP_SSE4_1(Pmaxud, pmaxud)
AVX_OP_SSE4_1(Pmulld, pmulld)
AVX_OP_SSE4_1(Extractps, extractps)
AVX_OP_SSE4_1(Insertps, insertps)
AVX_OP_SSE4_1(Pinsrq, pinsrq)
AVX_OP_SSE4_1(Pblendw, pblendw)
AVX_OP_SSE4_1(Ptest, ptest)
AVX_OP_SSE4_1(Pmovsxbw, pmovsxbw)
AVX_OP_SSE4_1(Pmovsxwd, pmovsxwd)
AVX_OP_SSE4_1(Pmovsxdq, pmovsxdq)
AVX_OP_SSE4_1(Pmovzxbw, pmovzxbw)
AVX_OP_SSE4_1(Pmovzxwd, pmovzxwd)
AVX_OP_SSE4_1(Pmovzxdq, pmovzxdq)
AVX_OP_SSE4_1(Pextrb, pextrb)
AVX_OP_SSE4_1(Pextrw, pextrw)
AVX_OP_SSE4_1(Pextrq, pextrq)
AVX_OP_SSE4_1(Roundps, roundps)
AVX_OP_SSE4_1(Roundpd, roundpd)
AVX_OP_SSE4_1(Roundss, roundss)
AVX_OP_SSE4_1(Roundsd, roundsd)
AVX_OP_SSE4_2(Pcmpgtq, pcmpgtq)
#undef AVX_OP
void PushReturnAddressFrom(Register src) { pushq(src); }
void PopReturnAddressTo(Register dst) { popq(dst); }
void Ret();
// Return and drop arguments from stack, where the number of arguments
// may be bigger than 2^16 - 1. Requires a scratch register.
void Ret(int bytes_dropped, Register scratch);
// Load a register with a long value as efficiently as possible.
void Set(Register dst, int64_t x);
void Set(Operand dst, intptr_t x);
// Operations on roots in the root-array.
void LoadRoot(Register destination, RootIndex index) override;
void LoadRoot(Operand destination, RootIndex index) {
LoadRoot(kScratchRegister, index);
movq(destination, kScratchRegister);
}
void Push(Register src);
void Push(Operand src);
void Push(Immediate value);
void Push(Smi smi);
void Push(Handle<HeapObject> source);
enum class PushArrayOrder { kNormal, kReverse };
// `array` points to the first element (the lowest address).
// `array` and `size` are not modified.
void PushArray(Register array, Register size, Register scratch,
PushArrayOrder order = PushArrayOrder::kNormal);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, arguments must be stored in rsp[0], rsp[8],
// etc., not pushed. The argument count assumes all arguments are word sized.
// The number of slots reserved for arguments depends on platform. On Windows
// stack slots are reserved for the arguments passed in registers. On other
// platforms stack slots are only reserved for the arguments actually passed
// on the stack.
void PrepareCallCFunction(int num_arguments);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
// Calculate the number of stack slots to reserve for arguments when calling a
// C function.
int ArgumentStackSlotsForCFunctionCall(int num_arguments);
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
Label* condition_met,
Label::Distance condition_met_distance = Label::kFar);
void Cvtss2sd(XMMRegister dst, XMMRegister src);
void Cvtss2sd(XMMRegister dst, Operand src);
void Cvtsd2ss(XMMRegister dst, XMMRegister src);
void Cvtsd2ss(XMMRegister dst, Operand src);
void Cvttsd2si(Register dst, XMMRegister src);
void Cvttsd2si(Register dst, Operand src);
void Cvttsd2siq(Register dst, XMMRegister src);
void Cvttsd2siq(Register dst, Operand src);
void Cvttss2si(Register dst, XMMRegister src);
void Cvttss2si(Register dst, Operand src);
void Cvttss2siq(Register dst, XMMRegister src);
void Cvttss2siq(Register dst, Operand src);
void Cvtlui2ss(XMMRegister dst, Register src);
void Cvtlui2ss(XMMRegister dst, Operand src);
void Cvtlui2sd(XMMRegister dst, Register src);
void Cvtlui2sd(XMMRegister dst, Operand src);
void Cvtqui2ss(XMMRegister dst, Register src);
void Cvtqui2ss(XMMRegister dst, Operand src);
void Cvtqui2sd(XMMRegister dst, Register src);
void Cvtqui2sd(XMMRegister dst, Operand src);
void Cvttsd2uiq(Register dst, Operand src, Label* fail = nullptr);
void Cvttsd2uiq(Register dst, XMMRegister src, Label* fail = nullptr);
void Cvttss2uiq(Register dst, Operand src, Label* fail = nullptr);
void Cvttss2uiq(Register dst, XMMRegister src, Label* fail = nullptr);
// cvtsi2sd and cvtsi2ss instructions only write to the low 64/32-bit of dst
// register, which hinders register renaming and makes dependence chains
// longer. So we use xorpd to clear the dst register before cvtsi2sd for
// non-AVX and a scratch XMM register as first src for AVX to solve this
// issue.
void Cvtqsi2ss(XMMRegister dst, Register src);
void Cvtqsi2ss(XMMRegister dst, Operand src);
void Cvtqsi2sd(XMMRegister dst, Register src);
void Cvtqsi2sd(XMMRegister dst, Operand src);
void Cvtlsi2ss(XMMRegister dst, Register src);
void Cvtlsi2ss(XMMRegister dst, Operand src);
void Cvtlsi2sd(XMMRegister dst, Register src);
void Cvtlsi2sd(XMMRegister dst, Operand src);
void Lzcntq(Register dst, Register src);
void Lzcntq(Register dst, Operand src);
void Lzcntl(Register dst, Register src);
void Lzcntl(Register dst, Operand src);
void Tzcntq(Register dst, Register src);
void Tzcntq(Register dst, Operand src);
void Tzcntl(Register dst, Register src);
void Tzcntl(Register dst, Operand src);
void Popcntl(Register dst, Register src);
void Popcntl(Register dst, Operand src);
void Popcntq(Register dst, Register src);
void Popcntq(Register dst, Operand src);
// Is the value a tagged smi.
Condition CheckSmi(Register src);
Condition CheckSmi(Operand src);
// Jump to label if the value is a tagged smi.
void JumpIfSmi(Register src, Label* on_smi,
Label::Distance near_jump = Label::kFar);
void JumpIfEqual(Register a, int32_t b, Label* dest) {
cmpl(a, Immediate(b));
j(equal, dest);
}
void JumpIfLessThan(Register a, int32_t b, Label* dest) {
cmpl(a, Immediate(b));
j(less, dest);
}
void LoadMap(Register destination, Register object);
void Move(Register dst, Smi source);
void Move(Operand dst, Smi source) {
Register constant = GetSmiConstant(source);
movq(dst, constant);
}
void Move(Register dst, ExternalReference ext);
void Move(XMMRegister dst, uint32_t src);
void Move(XMMRegister dst, uint64_t src);
void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
void Move(XMMRegister dst, uint64_t high, uint64_t low);
// Move if the registers are not identical.
void Move(Register target, Register source);
void Move(Register dst, Handle<HeapObject> source,
RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);
void Move(Operand dst, Handle<HeapObject> source,
RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);
// Loads a pointer into a register with a relocation mode.
void Move(Register dst, Address ptr, RelocInfo::Mode rmode) {
// This method must not be used with heap object references. The stored
// address is not GC safe. Use the handle version instead.
DCHECK(rmode == RelocInfo::NONE || rmode > RelocInfo::LAST_GCED_ENUM);
movq(dst, Immediate64(ptr, rmode));
}
// Move src0 to dst0 and src1 to dst1, handling possible overlaps.
void MovePair(Register dst0, Register src0, Register dst1, Register src1);
void MoveStringConstant(
Register result, const StringConstantBase* string,
RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);
// Convert smi to word-size sign-extended value.
void SmiUntag(Register reg);
// Requires dst != src
void SmiUntag(Register dst, Register src);
void SmiUntag(Register dst, Operand src);
// Loads the address of the external reference into the destination
// register.
void LoadAddress(Register destination, ExternalReference source);
void LoadFromConstantsTable(Register destination,
int constant_index) override;
void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
void LoadRootRelative(Register destination, int32_t offset) override;
// Operand pointing to an external reference.
// May emit code to set up the scratch register. The operand is
// only guaranteed to be correct as long as the scratch register
// isn't changed.
// If the operand is used more than once, use a scratch register
// that is guaranteed not to be clobbered.
Operand ExternalReferenceAsOperand(ExternalReference reference,
Register scratch = kScratchRegister);
void Call(Register reg) { call(reg); }
void Call(Operand op);
void Call(Handle<Code> code_object, RelocInfo::Mode rmode);
void Call(Address destination, RelocInfo::Mode rmode);
void Call(ExternalReference ext);
void Call(Label* target) { call(target); }
Operand EntryFromBuiltinIndexAsOperand(Builtins::Name builtin_index);
Operand EntryFromBuiltinIndexAsOperand(Register builtin_index);
void CallBuiltinByIndex(Register builtin_index) override;
void CallBuiltin(int builtin_index);
void LoadCodeObjectEntry(Register destination, Register code_object) override;
void CallCodeObject(Register code_object) override;
void JumpCodeObject(Register code_object) override;
void RetpolineCall(Register reg);
void RetpolineCall(Address destination, RelocInfo::Mode rmode);
void Jump(Address destination, RelocInfo::Mode rmode);
void Jump(const ExternalReference& reference) override;
void Jump(Operand op);
void Jump(Handle<Code> code_object, RelocInfo::Mode rmode,
Condition cc = always);
void RetpolineJump(Register reg);
void CallForDeoptimization(Builtins::Name target, int deopt_id, Label* exit,
DeoptimizeKind kind,
Label* jump_deoptimization_entry_label);
void Trap() override;
void DebugBreak() override;
// Shufps that will mov src into dst if AVX is not supported.
void Shufps(XMMRegister dst, XMMRegister src, byte imm8);
// Non-SSE2 instructions.
void Pextrd(Register dst, XMMRegister src, uint8_t imm8);
void Pinsrb(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8);
void Pinsrb(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8);
void Pinsrw(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8);
void Pinsrw(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8);
void Pinsrd(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8);
void Pinsrd(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8);
void Pinsrd(XMMRegister dst, Register src2, uint8_t imm8);
void Pinsrd(XMMRegister dst, Operand src2, uint8_t imm8);
void Pinsrq(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8);
void Pinsrq(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8);
void Psllq(XMMRegister dst, int imm8) { Psllq(dst, static_cast<byte>(imm8)); }
void Psllq(XMMRegister dst, byte imm8);
void Psrlq(XMMRegister dst, int imm8) { Psrlq(dst, static_cast<byte>(imm8)); }
void Psrlq(XMMRegister dst, byte imm8);
void Pslld(XMMRegister dst, byte imm8);
void Psrld(XMMRegister dst, byte imm8);
void Pblendvb(XMMRegister dst, XMMRegister src1, XMMRegister src2,
XMMRegister mask);
void Blendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2,
XMMRegister mask);
void Blendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2,
XMMRegister mask);
// Supports both SSE and AVX. Move src1 to dst if they are not equal on SSE.
void Pshufb(XMMRegister dst, XMMRegister src1, XMMRegister src2);
void CompareRoot(Register with, RootIndex index);
void CompareRoot(Operand with, RootIndex index);
// Generates function and stub prologue code.
void StubPrologue(StackFrame::Type type);
void Prologue();
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, AbortReason reason);
// Like Assert(), but without condition.
// Use --debug_code to enable.
void AssertUnreachable(AbortReason reason);
// Abort execution if a 64 bit register containing a 32 bit payload does not
// have zeros in the top 32 bits, enabled via --debug-code.
void AssertZeroExtended(Register reg);
// Like Assert(), but always enabled.
void Check(Condition cc, AbortReason reason);
// Print a message to stdout and abort execution.
void Abort(AbortReason msg);
// Check that the stack is aligned.
void CheckStackAlignment();
// Activation support.
void EnterFrame(StackFrame::Type type);
void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
// Out-of-line constant pool not implemented on x64.
UNREACHABLE();
}
void LeaveFrame(StackFrame::Type type);
// Allocate stack space of given size (i.e. decrement {rsp} by the value
// stored in the given register, or by a constant). If you need to perform a
// stack check, do it before calling this function because this function may
// write into the newly allocated space. It may also overwrite the given
// register's value, in the version that takes a register.
#ifdef V8_TARGET_OS_WIN
void AllocateStackSpace(Register bytes_scratch);
void AllocateStackSpace(int bytes);
#else
void AllocateStackSpace(Register bytes) { subq(rsp, bytes); }
void AllocateStackSpace(int bytes) { subq(rsp, Immediate(bytes)); }
#endif
// Removes current frame and its arguments from the stack preserving the
// arguments and a return address pushed to the stack for the next call. Both
// |callee_args_count| and |caller_args_count| do not include receiver.
// |callee_args_count| is not modified. |caller_args_count| is trashed.
void PrepareForTailCall(Register callee_args_count,
Register caller_args_count, Register scratch0,
Register scratch1);
void InitializeRootRegister() {
ExternalReference isolate_root = ExternalReference::isolate_root(isolate());
Move(kRootRegister, isolate_root);
}
void SaveRegisters(RegList registers);
void RestoreRegisters(RegList registers);
void CallRecordWriteStub(Register object, Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode);
void CallRecordWriteStub(Register object, Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode, Address wasm_target);
void CallEphemeronKeyBarrier(Register object, Register address,
SaveFPRegsMode fp_mode);
void MoveNumber(Register dst, double value);
void MoveNonSmi(Register dst, double value);
// Calculate how much stack space (in bytes) are required to store caller
// registers excluding those specified in the arguments.
int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg) const;
// PushCallerSaved and PopCallerSaved do not arrange the registers in any
// particular order so they are not useful for calls that can cause a GC.
// The caller can exclude up to 3 registers that do not need to be saved and
// restored.
// Push caller saved registers on the stack, and return the number of bytes
// stack pointer is adjusted.
int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Restore caller saved registers from the stack, and return the number of
// bytes stack pointer is adjusted.
int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Compute the start of the generated instruction stream from the current PC.
// This is an alternative to embedding the {CodeObject} handle as a reference.
void ComputeCodeStartAddress(Register dst);
void ResetSpeculationPoisonRegister();
// Control-flow integrity:
// Define a function entrypoint. This doesn't emit any code for this
// architecture, as control-flow integrity is not supported for it.
void CodeEntry() {}
// Define an exception handler.
void ExceptionHandler() {}
// Define an exception handler and bind a label.
void BindExceptionHandler(Label* label) { bind(label); }
// ---------------------------------------------------------------------------
// Pointer compression support
// Loads a field containing a HeapObject and decompresses it if pointer
// compression is enabled.
void LoadTaggedPointerField(Register destination, Operand field_operand);
// Loads a field containing any tagged value and decompresses it if necessary.
void LoadAnyTaggedField(Register destination, Operand field_operand);
// Loads a field containing a HeapObject, decompresses it if necessary and
// pushes full pointer to the stack. When pointer compression is enabled,
// uses |scratch| to decompress the value.
void PushTaggedPointerField(Operand field_operand, Register scratch);
// Loads a field containing any tagged value, decompresses it if necessary and
// pushes the full pointer to the stack. When pointer compression is enabled,
// uses |scratch| to decompress the value.
void PushTaggedAnyField(Operand field_operand, Register scratch);
// Loads a field containing smi value and untags it.
void SmiUntagField(Register dst, Operand src);
// Compresses tagged value if necessary and stores it to given on-heap
// location.
void StoreTaggedField(Operand dst_field_operand, Immediate immediate);
void StoreTaggedField(Operand dst_field_operand, Register value);
// The following macros work even when pointer compression is not enabled.
void DecompressTaggedSigned(Register destination, Operand field_operand);
void DecompressTaggedPointer(Register destination, Operand field_operand);
void DecompressTaggedPointer(Register destination, Register source);
void DecompressAnyTagged(Register destination, Operand field_operand);
// ---------------------------------------------------------------------------
// V8 Heap sandbox support
// Loads a field containing off-heap pointer and does necessary decoding
// if V8 heap sandbox is enabled.
void LoadExternalPointerField(Register destination, Operand field_operand,
ExternalPointerTag tag);
protected:
static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
// Returns a register holding the smi value. The register MUST NOT be
// modified. It may be the "smi 1 constant" register.
Register GetSmiConstant(Smi value);
void CallRecordWriteStub(Register object, Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode, Handle<Code> code_target,
Address wasm_target);
};
// MacroAssembler implements a collection of frequently used macros.
class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
public:
using TurboAssembler::TurboAssembler;
// Loads and stores the value of an external reference.
// Special case code for load and store to take advantage of
// load_rax/store_rax if possible/necessary.
// For other operations, just use:
// Operand operand = ExternalReferenceAsOperand(extref);
// operation(operand, ..);
void Load(Register destination, ExternalReference source);
void Store(ExternalReference destination, Register source);
// Pushes the address of the external reference onto the stack.
void PushAddress(ExternalReference source);
// Operations on roots in the root-array.
// Load a root value where the index (or part of it) is variable.
// The variable_offset register is added to the fixed_offset value
// to get the index into the root-array.
void PushRoot(RootIndex index);
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(Register with, RootIndex index, Label* if_equal,
Label::Distance if_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(equal, if_equal, if_equal_distance);
}
void JumpIfRoot(Operand with, RootIndex index, Label* if_equal,
Label::Distance if_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(equal, if_equal, if_equal_distance);
}
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal,
Label::Distance if_not_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(not_equal, if_not_equal, if_not_equal_distance);
}
void JumpIfNotRoot(Operand with, RootIndex index, Label* if_not_equal,
Label::Distance if_not_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(not_equal, if_not_equal, if_not_equal_distance);
}
// ---------------------------------------------------------------------------
// GC Support
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
void RecordWriteField(
Register object, int offset, Register value, Register scratch,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK);
// For page containing |object| mark region covering |address|
// dirty. |object| is the object being stored into, |value| is the
// object being stored. The address and value registers are clobbered by the
// operation. RecordWrite filters out smis so it does not update
// the write barrier if the value is a smi.
void RecordWrite(
Register object, Register address, Register value, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK);
// Frame restart support.
void MaybeDropFrames();
// Enter specific kind of exit frame; either in normal or
// debug mode. Expects the number of arguments in register rax and
// sets up the number of arguments in register rdi and the pointer
// to the first argument in register rsi.
//
// Allocates arg_stack_space * kSystemPointerSize memory (not GCed) on the
// stack accessible via StackSpaceOperand.
void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false,
StackFrame::Type frame_type = StackFrame::EXIT);
// Enter specific kind of exit frame. Allocates
// (arg_stack_space * kSystemPointerSize) memory (not GCed) on the stack
// accessible via StackSpaceOperand.
void EnterApiExitFrame(int arg_stack_space);
// Leave the current exit frame. Expects/provides the return value in
// register rax:rdx (untouched) and the pointer to the first
// argument in register rsi (if pop_arguments == true).
void LeaveExitFrame(bool save_doubles = false, bool pop_arguments = true);
// Leave the current exit frame. Expects/provides the return value in
// register rax (untouched).
void LeaveApiExitFrame();
// ---------------------------------------------------------------------------
// JavaScript invokes
// Invoke the JavaScript function code by either calling or jumping.
void InvokeFunctionCode(Register function, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count, InvokeFlag flag);
// On function call, call into the debugger.
void CallDebugOnFunctionCall(Register fun, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function, Register new_target,
Register actual_parameter_count, InvokeFlag flag);
void InvokeFunction(Register function, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count, InvokeFlag flag);
// ---------------------------------------------------------------------------
// Conversions between tagged smi values and non-tagged integer values.
// Tag an word-size value. The result must be known to be a valid smi value.
void SmiTag(Register reg);
// Requires dst != src
void SmiTag(Register dst, Register src);
// Simple comparison of smis. Both sides must be known smis to use these,
// otherwise use Cmp.
void SmiCompare(Register smi1, Register smi2);
void SmiCompare(Register dst, Smi src);
void SmiCompare(Register dst, Operand src);
void SmiCompare(Operand dst, Register src);
void SmiCompare(Operand dst, Smi src);
// Functions performing a check on a known or potential smi. Returns
// a condition that is satisfied if the check is successful.
// Test-and-jump functions. Typically combines a check function
// above with a conditional jump.
// Jump to label if the value is not a tagged smi.
void JumpIfNotSmi(Register src, Label* on_not_smi,
Label::Distance near_jump = Label::kFar);
// Jump to label if the value is not a tagged smi.
void JumpIfNotSmi(Operand src, Label* on_not_smi,
Label::Distance near_jump = Label::kFar);
// Operations on tagged smi values.
// Smis represent a subset of integers. The subset is always equivalent to
// a two's complement interpretation of a fixed number of bits.
// Add an integer constant to a tagged smi, giving a tagged smi as result.
// No overflow testing on the result is done.
void SmiAddConstant(Operand dst, Smi constant);
// Specialized operations
// Converts, if necessary, a smi to a combination of number and
// multiplier to be used as a scaled index.
// The src register contains a *positive* smi value. The shift is the
// power of two to multiply the index value by (e.g. to index by
// smi-value * kSystemPointerSize, pass the smi and kSystemPointerSizeLog2).
// The returned index register may be either src or dst, depending
// on what is most efficient. If src and dst are different registers,
// src is always unchanged.
SmiIndex SmiToIndex(Register dst, Register src, int shift);
// ---------------------------------------------------------------------------
// Macro instructions.
void Cmp(Register dst, Handle<Object> source);
void Cmp(Operand dst, Handle<Object> source);
void Cmp(Register dst, Smi src);
void Cmp(Operand dst, Smi src);
void Cmp(Register dst, int32_t src);
// Checks if value is in range [lower_limit, higher_limit] using a single
// comparison.
void JumpIfIsInRange(Register value, unsigned lower_limit,
unsigned higher_limit, Label* on_in_range,
Label::Distance near_jump = Label::kFar);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the rsp register.
void Drop(int stack_elements);
// Emit code to discard a positive number of pointer-sized elements
// from the stack under the return address which remains on the top,
// clobbering the rsp register.
void DropUnderReturnAddress(int stack_elements,
Register scratch = kScratchRegister);
void PushQuad(Operand src);
void PushImm32(int32_t imm32);
void Pop(Register dst);
void Pop(Operand dst);
void PopQuad(Operand dst);
// ---------------------------------------------------------------------------
// SIMD macros.
void Absps(XMMRegister dst);
void Negps(XMMRegister dst);
void Abspd(XMMRegister dst);
void Negpd(XMMRegister dst);
// Generates a trampoline to jump to the off-heap instruction stream.
void JumpToInstructionStream(Address entry);
// Compare object type for heap object.
// Always use unsigned comparisons: above and below, not less and greater.
// Incoming register is heap_object and outgoing register is map.
// They may be the same register, and may be kScratchRegister.
void CmpObjectType(Register heap_object, InstanceType type, Register map);
// Compare instance type for map.
// Always use unsigned comparisons: above and below, not less and greater.
void CmpInstanceType(Register map, InstanceType type);
template <typename Field>
void DecodeField(Register reg) {
static const int shift = Field::kShift;
static const int mask = Field::kMask >> Field::kShift;
if (shift != 0) {
shrq(reg, Immediate(shift));
}
andq(reg, Immediate(mask));
}
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object);
// Abort execution if argument is not a smi, enabled via --debug-code.
void AssertSmi(Register object);
void AssertSmi(Operand object);
// Abort execution if argument is not a Constructor, enabled via --debug-code.
void AssertConstructor(Register object);
// Abort execution if argument is not a JSFunction, enabled via --debug-code.
void AssertFunction(Register object);
// Abort execution if argument is not a JSBoundFunction,
// enabled via --debug-code.
void AssertBoundFunction(Register object);
// Abort execution if argument is not a JSGeneratorObject (or subclass),
// enabled via --debug-code.
void AssertGeneratorObject(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object);
// ---------------------------------------------------------------------------
// Exception handling
// Push a new stack handler and link it into stack handler chain.
void PushStackHandler();
// Unlink the stack handler on top of the stack from the stack handler chain.
void PopStackHandler();
// ---------------------------------------------------------------------------
// Support functions.
// Load the global proxy from the current context.
void LoadGlobalProxy(Register dst) {
LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
}
// Load the native context slot with the current index.
void LoadNativeContextSlot(int index, Register dst);
// ---------------------------------------------------------------------------
// Runtime calls
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f, int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, save_doubles);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
}
// Convenience function: tail call a runtime routine (jump)
void TailCallRuntime(Runtime::FunctionId fid);
// Jump to a runtime routines
void JumpToExternalReference(const ExternalReference& ext,
bool builtin_exit_frame = false);
// ---------------------------------------------------------------------------
// StatsCounter support
void IncrementCounter(StatsCounter* counter, int value);
void DecrementCounter(StatsCounter* counter, int value);
// ---------------------------------------------------------------------------
// Stack limit utilities
Operand StackLimitAsOperand(StackLimitKind kind);
void StackOverflowCheck(
Register num_args, Register scratch, Label* stack_overflow,
Label::Distance stack_overflow_distance = Label::kFar);
// ---------------------------------------------------------------------------
// In-place weak references.
void LoadWeakValue(Register in_out, Label* target_if_cleared);
// ---------------------------------------------------------------------------
// Debugging
static int SafepointRegisterStackIndex(Register reg) {
return SafepointRegisterStackIndex(reg.code());
}
private:
// Order general registers are pushed by Pushad.
// rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r12, r14, r15.
static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
static const int kNumSafepointSavedRegisters = 12;
// Helper functions for generating invokes.
void InvokePrologue(Register expected_parameter_count,
Register actual_parameter_count, Label* done,
InvokeFlag flag);
void EnterExitFramePrologue(bool save_rax, StackFrame::Type frame_type);
// Allocates arg_stack_space * kSystemPointerSize memory (not GCed) on the
// stack accessible via StackSpaceOperand.
void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
void LeaveExitFrameEpilogue();
// Compute memory operands for safepoint stack slots.
static int SafepointRegisterStackIndex(int reg_code) {
return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
}
// Needs access to SafepointRegisterStackIndex for compiled frame
// traversal.
friend class CommonFrame;
DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
};
// -----------------------------------------------------------------------------
// Static helper functions.
// Generate an Operand for loading a field from an object.
inline Operand FieldOperand(Register object, int offset) {
return Operand(object, offset - kHeapObjectTag);
}
// Generate an Operand for loading an indexed field from an object.
inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
int offset) {
return Operand(object, index, scale, offset - kHeapObjectTag);
}
// Provides access to exit frame stack space (not GCed).
inline Operand StackSpaceOperand(int index) {
#ifdef V8_TARGET_OS_WIN
const int kShaddowSpace = 4;
return Operand(rsp, (index + kShaddowSpace) * kSystemPointerSize);
#else
return Operand(rsp, index * kSystemPointerSize);
#endif
}
inline Operand StackOperandForReturnAddress(int32_t disp) {
return Operand(rsp, disp);
}
#define ACCESS_MASM(masm) masm->
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_X64_MACRO_ASSEMBLER_X64_H_