blob: 7ae330c3eac66777aba6c12526e2b3e3175b919c [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cassert>
#include <cinttypes>
#include <cstdarg>
#include <cstdio>
#if V8_TARGET_ARCH_X64
#include "src/base/compiler-specific.h"
#include "src/base/lazy-instance.h"
#include "src/base/memory.h"
#include "src/base/v8-fallthrough.h"
#include "src/codegen/x64/register-x64.h"
#include "src/codegen/x64/sse-instr.h"
#include "src/diagnostics/disasm.h"
#include "src/utils/utils.h"
namespace disasm {
enum OperandType {
UNSET_OP_ORDER = 0,
// Operand size decides between 16, 32 and 64 bit operands.
REG_OPER_OP_ORDER = 1, // Register destination, operand source.
OPER_REG_OP_ORDER = 2, // Operand destination, register source.
// Fixed 8-bit operands.
BYTE_SIZE_OPERAND_FLAG = 4,
BYTE_REG_OPER_OP_ORDER = REG_OPER_OP_ORDER | BYTE_SIZE_OPERAND_FLAG,
BYTE_OPER_REG_OP_ORDER = OPER_REG_OP_ORDER | BYTE_SIZE_OPERAND_FLAG,
// XMM registers/operands can be mixed with normal operands.
OPER_XMMREG_OP_ORDER,
XMMREG_OPER_OP_ORDER,
XMMREG_XMMOPER_OP_ORDER,
XMMOPER_XMMREG_OP_ORDER,
};
//------------------------------------------------------------------
// Tables
//------------------------------------------------------------------
struct ByteMnemonic {
int b; // -1 terminates, otherwise must be in range (0..255)
OperandType op_order_;
const char* mnem;
};
static const ByteMnemonic two_operands_instr[] = {
{0x00, BYTE_OPER_REG_OP_ORDER, "add"},
{0x01, OPER_REG_OP_ORDER, "add"},
{0x02, BYTE_REG_OPER_OP_ORDER, "add"},
{0x03, REG_OPER_OP_ORDER, "add"},
{0x08, BYTE_OPER_REG_OP_ORDER, "or"},
{0x09, OPER_REG_OP_ORDER, "or"},
{0x0A, BYTE_REG_OPER_OP_ORDER, "or"},
{0x0B, REG_OPER_OP_ORDER, "or"},
{0x10, BYTE_OPER_REG_OP_ORDER, "adc"},
{0x11, OPER_REG_OP_ORDER, "adc"},
{0x12, BYTE_REG_OPER_OP_ORDER, "adc"},
{0x13, REG_OPER_OP_ORDER, "adc"},
{0x18, BYTE_OPER_REG_OP_ORDER, "sbb"},
{0x19, OPER_REG_OP_ORDER, "sbb"},
{0x1A, BYTE_REG_OPER_OP_ORDER, "sbb"},
{0x1B, REG_OPER_OP_ORDER, "sbb"},
{0x20, BYTE_OPER_REG_OP_ORDER, "and"},
{0x21, OPER_REG_OP_ORDER, "and"},
{0x22, BYTE_REG_OPER_OP_ORDER, "and"},
{0x23, REG_OPER_OP_ORDER, "and"},
{0x28, BYTE_OPER_REG_OP_ORDER, "sub"},
{0x29, OPER_REG_OP_ORDER, "sub"},
{0x2A, BYTE_REG_OPER_OP_ORDER, "sub"},
{0x2B, REG_OPER_OP_ORDER, "sub"},
{0x30, BYTE_OPER_REG_OP_ORDER, "xor"},
{0x31, OPER_REG_OP_ORDER, "xor"},
{0x32, BYTE_REG_OPER_OP_ORDER, "xor"},
{0x33, REG_OPER_OP_ORDER, "xor"},
{0x38, BYTE_OPER_REG_OP_ORDER, "cmp"},
{0x39, OPER_REG_OP_ORDER, "cmp"},
{0x3A, BYTE_REG_OPER_OP_ORDER, "cmp"},
{0x3B, REG_OPER_OP_ORDER, "cmp"},
{0x63, REG_OPER_OP_ORDER, "movsxl"},
{0x84, BYTE_REG_OPER_OP_ORDER, "test"},
{0x85, REG_OPER_OP_ORDER, "test"},
{0x86, BYTE_REG_OPER_OP_ORDER, "xchg"},
{0x87, REG_OPER_OP_ORDER, "xchg"},
{0x88, BYTE_OPER_REG_OP_ORDER, "mov"},
{0x89, OPER_REG_OP_ORDER, "mov"},
{0x8A, BYTE_REG_OPER_OP_ORDER, "mov"},
{0x8B, REG_OPER_OP_ORDER, "mov"},
{0x8D, REG_OPER_OP_ORDER, "lea"},
{-1, UNSET_OP_ORDER, ""}};
static const ByteMnemonic zero_operands_instr[] = {
{0xC3, UNSET_OP_ORDER, "ret"}, {0xC9, UNSET_OP_ORDER, "leave"},
{0xF4, UNSET_OP_ORDER, "hlt"}, {0xFC, UNSET_OP_ORDER, "cld"},
{0xCC, UNSET_OP_ORDER, "int3"}, {0x60, UNSET_OP_ORDER, "pushad"},
{0x61, UNSET_OP_ORDER, "popad"}, {0x9C, UNSET_OP_ORDER, "pushfd"},
{0x9D, UNSET_OP_ORDER, "popfd"}, {0x9E, UNSET_OP_ORDER, "sahf"},
{0x99, UNSET_OP_ORDER, "cdq"}, {0x9B, UNSET_OP_ORDER, "fwait"},
{0xAB, UNSET_OP_ORDER, "stos"}, {0xA4, UNSET_OP_ORDER, "movs"},
{0xA5, UNSET_OP_ORDER, "movs"}, {0xA6, UNSET_OP_ORDER, "cmps"},
{0xA7, UNSET_OP_ORDER, "cmps"}, {-1, UNSET_OP_ORDER, ""}};
static const ByteMnemonic call_jump_instr[] = {{0xE8, UNSET_OP_ORDER, "call"},
{0xE9, UNSET_OP_ORDER, "jmp"},
{-1, UNSET_OP_ORDER, ""}};
static const ByteMnemonic short_immediate_instr[] = {
{0x05, UNSET_OP_ORDER, "add"}, {0x0D, UNSET_OP_ORDER, "or"},
{0x15, UNSET_OP_ORDER, "adc"}, {0x1D, UNSET_OP_ORDER, "sbb"},
{0x25, UNSET_OP_ORDER, "and"}, {0x2D, UNSET_OP_ORDER, "sub"},
{0x35, UNSET_OP_ORDER, "xor"}, {0x3D, UNSET_OP_ORDER, "cmp"},
{-1, UNSET_OP_ORDER, ""}};
static const char* const conditional_code_suffix[] = {
"o", "no", "c", "nc", "z", "nz", "na", "a",
"s", "ns", "pe", "po", "l", "ge", "le", "g"};
enum InstructionType {
NO_INSTR,
ZERO_OPERANDS_INSTR,
TWO_OPERANDS_INSTR,
JUMP_CONDITIONAL_SHORT_INSTR,
REGISTER_INSTR,
PUSHPOP_INSTR, // Has implicit 64-bit operand size.
MOVE_REG_INSTR,
CALL_JUMP_INSTR,
SHORT_IMMEDIATE_INSTR
};
enum Prefixes {
ESCAPE_PREFIX = 0x0F,
OPERAND_SIZE_OVERRIDE_PREFIX = 0x66,
ADDRESS_SIZE_OVERRIDE_PREFIX = 0x67,
VEX3_PREFIX = 0xC4,
VEX2_PREFIX = 0xC5,
LOCK_PREFIX = 0xF0,
REPNE_PREFIX = 0xF2,
REP_PREFIX = 0xF3,
REPEQ_PREFIX = REP_PREFIX
};
struct InstructionDesc {
const char* mnem;
InstructionType type;
OperandType op_order_;
bool byte_size_operation; // Fixed 8-bit operation.
};
class InstructionTable {
public:
InstructionTable();
const InstructionDesc& Get(byte x) const { return instructions_[x]; }
private:
InstructionDesc instructions_[256];
void Clear();
void Init();
void CopyTable(const ByteMnemonic bm[], InstructionType type);
void SetTableRange(InstructionType type, byte start, byte end, bool byte_size,
const char* mnem);
void AddJumpConditionalShort();
};
InstructionTable::InstructionTable() {
Clear();
Init();
}
void InstructionTable::Clear() {
for (int i = 0; i < 256; i++) {
instructions_[i].mnem = "(bad)";
instructions_[i].type = NO_INSTR;
instructions_[i].op_order_ = UNSET_OP_ORDER;
instructions_[i].byte_size_operation = false;
}
}
void InstructionTable::Init() {
CopyTable(two_operands_instr, TWO_OPERANDS_INSTR);
CopyTable(zero_operands_instr, ZERO_OPERANDS_INSTR);
CopyTable(call_jump_instr, CALL_JUMP_INSTR);
CopyTable(short_immediate_instr, SHORT_IMMEDIATE_INSTR);
AddJumpConditionalShort();
SetTableRange(PUSHPOP_INSTR, 0x50, 0x57, false, "push");
SetTableRange(PUSHPOP_INSTR, 0x58, 0x5F, false, "pop");
SetTableRange(MOVE_REG_INSTR, 0xB8, 0xBF, false, "mov");
}
void InstructionTable::CopyTable(const ByteMnemonic bm[],
InstructionType type) {
for (int i = 0; bm[i].b >= 0; i++) {
InstructionDesc* id = &instructions_[bm[i].b];
id->mnem = bm[i].mnem;
OperandType op_order = bm[i].op_order_;
id->op_order_ =
static_cast<OperandType>(op_order & ~BYTE_SIZE_OPERAND_FLAG);
DCHECK_EQ(NO_INSTR, id->type); // Information not already entered
id->type = type;
id->byte_size_operation = ((op_order & BYTE_SIZE_OPERAND_FLAG) != 0);
}
}
void InstructionTable::SetTableRange(InstructionType type, byte start, byte end,
bool byte_size, const char* mnem) {
for (byte b = start; b <= end; b++) {
InstructionDesc* id = &instructions_[b];
DCHECK_EQ(NO_INSTR, id->type); // Information not already entered
id->mnem = mnem;
id->type = type;
id->byte_size_operation = byte_size;
}
}
void InstructionTable::AddJumpConditionalShort() {
for (byte b = 0x70; b <= 0x7F; b++) {
InstructionDesc* id = &instructions_[b];
DCHECK_EQ(NO_INSTR, id->type); // Information not already entered
id->mnem = nullptr; // Computed depending on condition code.
id->type = JUMP_CONDITIONAL_SHORT_INSTR;
}
}
namespace {
DEFINE_LAZY_LEAKY_OBJECT_GETTER(InstructionTable, GetInstructionTable)
} // namespace
static const InstructionDesc cmov_instructions[16] = {
{"cmovo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovno", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovnc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovnz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovna", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmova", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovs", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovns", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovpe", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovpo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovl", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovge", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovle", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovg", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}};
namespace {
int8_t Imm8(const uint8_t* data) {
return *reinterpret_cast<const int8_t*>(data);
}
uint8_t Imm8_U(const uint8_t* data) {
return *reinterpret_cast<const uint8_t*>(data);
}
int16_t Imm16(const uint8_t* data) {
return v8::base::ReadUnalignedValue<int16_t>(
reinterpret_cast<v8::internal::Address>(data));
}
uint16_t Imm16_U(const uint8_t* data) {
return v8::base::ReadUnalignedValue<uint16_t>(
reinterpret_cast<v8::internal::Address>(data));
}
int32_t Imm32(const uint8_t* data) {
return v8::base::ReadUnalignedValue<int32_t>(
reinterpret_cast<v8::internal::Address>(data));
}
uint32_t Imm32_U(const uint8_t* data) {
return v8::base::ReadUnalignedValue<uint32_t>(
reinterpret_cast<v8::internal::Address>(data));
}
int64_t Imm64(const uint8_t* data) {
return v8::base::ReadUnalignedValue<int64_t>(
reinterpret_cast<v8::internal::Address>(data));
}
} // namespace
//------------------------------------------------------------------------------
// DisassemblerX64 implementation.
// A new DisassemblerX64 object is created to disassemble each instruction.
// The object can only disassemble a single instruction.
class DisassemblerX64 {
public:
DisassemblerX64(const NameConverter& converter,
Disassembler::UnimplementedOpcodeAction unimplemented_action)
: converter_(converter),
tmp_buffer_pos_(0),
abort_on_unimplemented_(unimplemented_action ==
Disassembler::kAbortOnUnimplementedOpcode),
rex_(0),
operand_size_(0),
group_1_prefix_(0),
vex_byte0_(0),
vex_byte1_(0),
vex_byte2_(0),
byte_size_operand_(false),
instruction_table_(GetInstructionTable()) {
tmp_buffer_[0] = '\0';
}
// Writes one disassembled instruction into 'buffer' (0-terminated).
// Returns the length of the disassembled machine instruction in bytes.
int InstructionDecode(v8::internal::Vector<char> buffer, byte* instruction);
private:
enum OperandSize {
OPERAND_BYTE_SIZE = 0,
OPERAND_WORD_SIZE = 1,
OPERAND_DOUBLEWORD_SIZE = 2,
OPERAND_QUADWORD_SIZE = 3
};
const NameConverter& converter_;
v8::internal::EmbeddedVector<char, 128> tmp_buffer_;
unsigned int tmp_buffer_pos_;
bool abort_on_unimplemented_;
// Prefixes parsed
byte rex_;
byte operand_size_; // 0x66 or (if no group 3 prefix is present) 0x0.
byte group_1_prefix_; // 0xF2, 0xF3, or (if no group 1 prefix is present) 0.
byte vex_byte0_; // 0xC4 or 0xC5
byte vex_byte1_;
byte vex_byte2_; // only for 3 bytes vex prefix
// Byte size operand override.
bool byte_size_operand_;
const InstructionTable* const instruction_table_;
void setRex(byte rex) {
DCHECK_EQ(0x40, rex & 0xF0);
rex_ = rex;
}
bool rex() { return rex_ != 0; }
bool rex_b() { return (rex_ & 0x01) != 0; }
// Actual number of base register given the low bits and the rex.b state.
int base_reg(int low_bits) { return low_bits | ((rex_ & 0x01) << 3); }
bool rex_x() { return (rex_ & 0x02) != 0; }
bool rex_r() { return (rex_ & 0x04) != 0; }
bool rex_w() { return (rex_ & 0x08) != 0; }
bool vex_w() {
DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
return vex_byte0_ == VEX3_PREFIX ? (vex_byte2_ & 0x80) != 0 : false;
}
bool vex_128() {
DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
return (checked & 4) == 0;
}
bool vex_none() {
DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
return (checked & 3) == 0;
}
bool vex_66() {
DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
return (checked & 3) == 1;
}
bool vex_f3() {
DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
return (checked & 3) == 2;
}
bool vex_f2() {
DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
return (checked & 3) == 3;
}
bool vex_0f() {
if (vex_byte0_ == VEX2_PREFIX) return true;
return (vex_byte1_ & 3) == 1;
}
bool vex_0f38() {
if (vex_byte0_ == VEX2_PREFIX) return false;
return (vex_byte1_ & 3) == 2;
}
bool vex_0f3a() {
if (vex_byte0_ == VEX2_PREFIX) return false;
return (vex_byte1_ & 3) == 3;
}
int vex_vreg() {
DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
return ~(checked >> 3) & 0xF;
}
OperandSize operand_size() {
if (byte_size_operand_) return OPERAND_BYTE_SIZE;
if (rex_w()) return OPERAND_QUADWORD_SIZE;
if (operand_size_ != 0) return OPERAND_WORD_SIZE;
return OPERAND_DOUBLEWORD_SIZE;
}
char operand_size_code() { return "bwlq"[operand_size()]; }
char float_size_code() { return "sd"[rex_w()]; }
const char* NameOfCPURegister(int reg) const {
return converter_.NameOfCPURegister(reg);
}
const char* NameOfByteCPURegister(int reg) const {
return converter_.NameOfByteCPURegister(reg);
}
const char* NameOfXMMRegister(int reg) const {
return converter_.NameOfXMMRegister(reg);
}
const char* NameOfAddress(byte* addr) const {
return converter_.NameOfAddress(addr);
}
// Disassembler helper functions.
void get_modrm(byte data, int* mod, int* regop, int* rm) {
*mod = (data >> 6) & 3;
*regop = ((data & 0x38) >> 3) | (rex_r() ? 8 : 0);
*rm = (data & 7) | (rex_b() ? 8 : 0);
}
void get_sib(byte data, int* scale, int* index, int* base) {
*scale = (data >> 6) & 3;
*index = ((data >> 3) & 7) | (rex_x() ? 8 : 0);
*base = (data & 7) | (rex_b() ? 8 : 0);
}
using RegisterNameMapping = const char* (DisassemblerX64::*)(int reg) const;
void TryAppendRootRelativeName(int offset);
int PrintRightOperandHelper(byte* modrmp, RegisterNameMapping register_name);
int PrintRightOperand(byte* modrmp);
int PrintRightByteOperand(byte* modrmp);
int PrintRightXMMOperand(byte* modrmp);
int PrintOperands(const char* mnem, OperandType op_order, byte* data);
int PrintImmediate(byte* data, OperandSize size);
int PrintImmediateOp(byte* data);
const char* TwoByteMnemonic(byte opcode);
int TwoByteOpcodeInstruction(byte* data);
int ThreeByteOpcodeInstruction(byte* data);
int F6F7Instruction(byte* data);
int ShiftInstruction(byte* data);
int JumpShort(byte* data);
int JumpConditional(byte* data);
int JumpConditionalShort(byte* data);
int SetCC(byte* data);
int FPUInstruction(byte* data);
int MemoryFPUInstruction(int escape_opcode, int regop, byte* modrm_start);
int RegisterFPUInstruction(int escape_opcode, byte modrm_byte);
int AVXInstruction(byte* data);
PRINTF_FORMAT(2, 3) void AppendToBuffer(const char* format, ...);
void UnimplementedInstruction() {
if (abort_on_unimplemented_) {
FATAL("'Unimplemented Instruction'");
} else {
AppendToBuffer("'Unimplemented Instruction'");
}
}
};
void DisassemblerX64::AppendToBuffer(const char* format, ...) {
v8::internal::Vector<char> buf = tmp_buffer_ + tmp_buffer_pos_;
va_list args;
va_start(args, format);
int result = v8::internal::VSNPrintF(buf, format, args);
va_end(args);
tmp_buffer_pos_ += result;
}
void DisassemblerX64::TryAppendRootRelativeName(int offset) {
const char* maybe_name = converter_.RootRelativeName(offset);
if (maybe_name != nullptr) AppendToBuffer(" (%s)", maybe_name);
}
int DisassemblerX64::PrintRightOperandHelper(
byte* modrmp, RegisterNameMapping direct_register_name) {
int mod, regop, rm;
get_modrm(*modrmp, &mod, &regop, &rm);
RegisterNameMapping register_name =
(mod == 3) ? direct_register_name : &DisassemblerX64::NameOfCPURegister;
switch (mod) {
case 0:
if ((rm & 7) == 5) {
AppendToBuffer("[rip+0x%x]", Imm32(modrmp + 1));
return 5;
} else if ((rm & 7) == 4) {
// Codes for SIB byte.
byte sib = *(modrmp + 1);
int scale, index, base;
get_sib(sib, &scale, &index, &base);
if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
// index == rsp means no index. Only use sib byte with no index for
// rsp and r12 base.
AppendToBuffer("[%s]", NameOfCPURegister(base));
return 2;
} else if (base == 5) {
// base == rbp means no base register (when mod == 0).
int32_t disp = Imm32(modrmp + 2);
AppendToBuffer("[%s*%d%s0x%x]", NameOfCPURegister(index), 1 << scale,
disp < 0 ? "-" : "+", disp < 0 ? -disp : disp);
return 6;
} else if (index != 4 && base != 5) {
// [base+index*scale]
AppendToBuffer("[%s+%s*%d]", NameOfCPURegister(base),
NameOfCPURegister(index), 1 << scale);
return 2;
} else {
UnimplementedInstruction();
return 1;
}
} else {
AppendToBuffer("[%s]", NameOfCPURegister(rm));
return 1;
}
break;
case 1: // fall through
case 2:
if ((rm & 7) == 4) {
byte sib = *(modrmp + 1);
int scale, index, base;
get_sib(sib, &scale, &index, &base);
int disp = (mod == 2) ? Imm32(modrmp + 2) : Imm8(modrmp + 2);
if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
AppendToBuffer("[%s%s0x%x]", NameOfCPURegister(base),
disp < 0 ? "-" : "+", disp < 0 ? -disp : disp);
} else {
AppendToBuffer("[%s+%s*%d%s0x%x]", NameOfCPURegister(base),
NameOfCPURegister(index), 1 << scale,
disp < 0 ? "-" : "+", disp < 0 ? -disp : disp);
}
return mod == 2 ? 6 : 3;
} else {
// No sib.
int disp = (mod == 2) ? Imm32(modrmp + 1) : Imm8(modrmp + 1);
AppendToBuffer("[%s%s0x%x]", NameOfCPURegister(rm),
disp < 0 ? "-" : "+", disp < 0 ? -disp : disp);
if (rm == i::kRootRegister.code()) {
// For root-relative accesses, try to append a description.
TryAppendRootRelativeName(disp);
}
return (mod == 2) ? 5 : 2;
}
break;
case 3:
AppendToBuffer("%s", (this->*register_name)(rm));
return 1;
default:
UnimplementedInstruction();
return 1;
}
UNREACHABLE();
}
int DisassemblerX64::PrintImmediate(byte* data, OperandSize size) {
int64_t value;
int count;
switch (size) {
case OPERAND_BYTE_SIZE:
value = *data;
count = 1;
break;
case OPERAND_WORD_SIZE:
value = Imm16(data);
count = 2;
break;
case OPERAND_DOUBLEWORD_SIZE:
value = Imm32_U(data);
count = 4;
break;
case OPERAND_QUADWORD_SIZE:
value = Imm32(data);
count = 4;
break;
default:
UNREACHABLE();
}
AppendToBuffer("%" PRIx64, value);
return count;
}
int DisassemblerX64::PrintRightOperand(byte* modrmp) {
return PrintRightOperandHelper(modrmp, &DisassemblerX64::NameOfCPURegister);
}
int DisassemblerX64::PrintRightByteOperand(byte* modrmp) {
return PrintRightOperandHelper(modrmp,
&DisassemblerX64::NameOfByteCPURegister);
}
int DisassemblerX64::PrintRightXMMOperand(byte* modrmp) {
return PrintRightOperandHelper(modrmp, &DisassemblerX64::NameOfXMMRegister);
}
// Returns number of bytes used including the current *data.
// Writes instruction's mnemonic, left and right operands to 'tmp_buffer_'.
int DisassemblerX64::PrintOperands(const char* mnem, OperandType op_order,
byte* data) {
byte modrm = *data;
int mod, regop, rm;
get_modrm(modrm, &mod, &regop, &rm);
int advance = 0;
const char* register_name = byte_size_operand_ ? NameOfByteCPURegister(regop)
: NameOfCPURegister(regop);
switch (op_order) {
case REG_OPER_OP_ORDER: {
AppendToBuffer("%s%c %s,", mnem, operand_size_code(), register_name);
advance = byte_size_operand_ ? PrintRightByteOperand(data)
: PrintRightOperand(data);
break;
}
case OPER_REG_OP_ORDER: {
AppendToBuffer("%s%c ", mnem, operand_size_code());
advance = byte_size_operand_ ? PrintRightByteOperand(data)
: PrintRightOperand(data);
AppendToBuffer(",%s", register_name);
break;
}
case XMMREG_XMMOPER_OP_ORDER: {
AppendToBuffer("%s %s,", mnem, NameOfXMMRegister(regop));
advance = PrintRightXMMOperand(data);
break;
}
case XMMOPER_XMMREG_OP_ORDER: {
AppendToBuffer("%s ", mnem);
advance = PrintRightXMMOperand(data);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
break;
}
case OPER_XMMREG_OP_ORDER: {
AppendToBuffer("%s ", mnem);
advance = PrintRightOperand(data);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
break;
}
case XMMREG_OPER_OP_ORDER: {
AppendToBuffer("%s %s,", mnem, NameOfXMMRegister(regop));
advance = PrintRightOperand(data);
break;
}
default:
UNREACHABLE();
}
return advance;
}
// Returns number of bytes used by machine instruction, including *data byte.
// Writes immediate instructions to 'tmp_buffer_'.
int DisassemblerX64::PrintImmediateOp(byte* data) {
bool byte_size_immediate = (*data & 0x02) != 0;
byte modrm = *(data + 1);
int mod, regop, rm;
get_modrm(modrm, &mod, &regop, &rm);
const char* mnem = "Imm???";
switch (regop) {
case 0:
mnem = "add";
break;
case 1:
mnem = "or";
break;
case 2:
mnem = "adc";
break;
case 3:
mnem = "sbb";
break;
case 4:
mnem = "and";
break;
case 5:
mnem = "sub";
break;
case 6:
mnem = "xor";
break;
case 7:
mnem = "cmp";
break;
default:
UnimplementedInstruction();
}
AppendToBuffer("%s%c ", mnem, operand_size_code());
int count = PrintRightOperand(data + 1);
AppendToBuffer(",0x");
OperandSize immediate_size =
byte_size_immediate ? OPERAND_BYTE_SIZE : operand_size();
count += PrintImmediate(data + 1 + count, immediate_size);
return 1 + count;
}
// Returns number of bytes used, including *data.
int DisassemblerX64::F6F7Instruction(byte* data) {
DCHECK(*data == 0xF7 || *data == 0xF6);
byte modrm = *(data + 1);
int mod, regop, rm;
get_modrm(modrm, &mod, &regop, &rm);
if (regop != 0) {
const char* mnem = nullptr;
switch (regop) {
case 2:
mnem = "not";
break;
case 3:
mnem = "neg";
break;
case 4:
mnem = "mul";
break;
case 5:
mnem = "imul";
break;
case 6:
mnem = "div";
break;
case 7:
mnem = "idiv";
break;
default:
UnimplementedInstruction();
}
if (mod == 3) {
AppendToBuffer("%s%c %s", mnem, operand_size_code(),
NameOfCPURegister(rm));
return 2;
} else if (mod == 1) {
AppendToBuffer("%s%c ", mnem, operand_size_code());
int count = PrintRightOperand(data + 1); // Use name of 64-bit register.
return 1 + count;
} else {
UnimplementedInstruction();
return 2;
}
} else if (regop == 0) {
AppendToBuffer("test%c ", operand_size_code());
int count = PrintRightOperand(data + 1); // Use name of 64-bit register.
AppendToBuffer(",0x");
count += PrintImmediate(data + 1 + count, operand_size());
return 1 + count;
} else {
UnimplementedInstruction();
return 2;
}
}
int DisassemblerX64::ShiftInstruction(byte* data) {
byte op = *data & (~1);
int count = 1;
if (op != 0xD0 && op != 0xD2 && op != 0xC0) {
UnimplementedInstruction();
return count;
}
// Print mneumonic.
{
byte modrm = *(data + count);
int mod, regop, rm;
get_modrm(modrm, &mod, &regop, &rm);
regop &= 0x7; // The REX.R bit does not affect the operation.
const char* mnem = nullptr;
switch (regop) {
case 0:
mnem = "rol";
break;
case 1:
mnem = "ror";
break;
case 2:
mnem = "rcl";
break;
case 3:
mnem = "rcr";
break;
case 4:
mnem = "shl";
break;
case 5:
mnem = "shr";
break;
case 7:
mnem = "sar";
break;
default:
UnimplementedInstruction();
return count + 1;
}
DCHECK_NOT_NULL(mnem);
AppendToBuffer("%s%c ", mnem, operand_size_code());
}
count += PrintRightOperand(data + count);
if (op == 0xD2) {
AppendToBuffer(", cl");
} else {
int imm8 = -1;
if (op == 0xD0) {
imm8 = 1;
} else {
DCHECK_EQ(0xC0, op);
imm8 = *(data + count);
count++;
}
AppendToBuffer(", %d", imm8);
}
return count;
}
// Returns number of bytes used, including *data.
int DisassemblerX64::JumpShort(byte* data) {
DCHECK_EQ(0xEB, *data);
byte b = *(data + 1);
byte* dest = data + static_cast<int8_t>(b) + 2;
AppendToBuffer("jmp %s", NameOfAddress(dest));
return 2;
}
// Returns number of bytes used, including *data.
int DisassemblerX64::JumpConditional(byte* data) {
DCHECK_EQ(0x0F, *data);
byte cond = *(data + 1) & 0x0F;
byte* dest = data + Imm32(data + 2) + 6;
const char* mnem = conditional_code_suffix[cond];
AppendToBuffer("j%s %s", mnem, NameOfAddress(dest));
return 6; // includes 0x0F
}
// Returns number of bytes used, including *data.
int DisassemblerX64::JumpConditionalShort(byte* data) {
byte cond = *data & 0x0F;
byte b = *(data + 1);
byte* dest = data + static_cast<int8_t>(b) + 2;
const char* mnem = conditional_code_suffix[cond];
AppendToBuffer("j%s %s", mnem, NameOfAddress(dest));
return 2;
}
// Returns number of bytes used, including *data.
int DisassemblerX64::SetCC(byte* data) {
DCHECK_EQ(0x0F, *data);
byte cond = *(data + 1) & 0x0F;
const char* mnem = conditional_code_suffix[cond];
AppendToBuffer("set%s%c ", mnem, operand_size_code());
PrintRightByteOperand(data + 2);
return 3; // includes 0x0F
}
const char* sf_str[4] = {"", "rl", "ra", "ll"};
int DisassemblerX64::AVXInstruction(byte* data) {
byte opcode = *data;
byte* current = data + 1;
if (vex_66() && vex_0f38()) {
int mod, regop, rm, vvvv = vex_vreg();
get_modrm(*current, &mod, &regop, &rm);
switch (opcode) {
case 0x18:
AppendToBuffer("vbroadcastss %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x99:
AppendToBuffer("vfmadd132s%c %s,%s,", float_size_code(),
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0xA9:
AppendToBuffer("vfmadd213s%c %s,%s,", float_size_code(),
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0xB8:
AppendToBuffer("vfmadd231p%c %s,%s,", float_size_code(),
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0xB9:
AppendToBuffer("vfmadd231s%c %s,%s,", float_size_code(),
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x9B:
AppendToBuffer("vfmsub132s%c %s,%s,", float_size_code(),
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0xAB:
AppendToBuffer("vfmsub213s%c %s,%s,", float_size_code(),
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0xBB:
AppendToBuffer("vfmsub231s%c %s,%s,", float_size_code(),
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0xBC:
AppendToBuffer("vfnmadd231p%c %s,%s,", float_size_code(),
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x9D:
AppendToBuffer("vfnmadd132s%c %s,%s,", float_size_code(),
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0xAD:
AppendToBuffer("vfnmadd213s%c %s,%s,", float_size_code(),
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0xBD:
AppendToBuffer("vfnmadd231s%c %s,%s,", float_size_code(),
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x9F:
AppendToBuffer("vfnmsub132s%c %s,%s,", float_size_code(),
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0xAF:
AppendToBuffer("vfnmsub213s%c %s,%s,", float_size_code(),
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0xBF:
AppendToBuffer("vfnmsub231s%c %s,%s,", float_size_code(),
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0xF7:
AppendToBuffer("shlx%c %s,", operand_size_code(),
NameOfCPURegister(regop));
current += PrintRightOperand(current);
AppendToBuffer(",%s", NameOfCPURegister(vvvv));
break;
#define DECLARE_SSE_AVX_DIS_CASE(instruction, notUsed1, notUsed2, notUsed3, \
opcode) \
case 0x##opcode: { \
AppendToBuffer("v" #instruction " %s,%s,", NameOfXMMRegister(regop), \
NameOfXMMRegister(vvvv)); \
current += PrintRightXMMOperand(current); \
break; \
}
SSSE3_INSTRUCTION_LIST(DECLARE_SSE_AVX_DIS_CASE)
SSE4_INSTRUCTION_LIST(DECLARE_SSE_AVX_DIS_CASE)
SSE4_2_INSTRUCTION_LIST(DECLARE_SSE_AVX_DIS_CASE)
#undef DECLARE_SSE_AVX_DIS_CASE
#define DECLARE_SSE_UNOP_AVX_DIS_CASE(instruction, notUsed1, notUsed2, \
notUsed3, opcode) \
case 0x##opcode: { \
AppendToBuffer("v" #instruction " %s,", NameOfXMMRegister(regop)); \
current += PrintRightXMMOperand(current); \
break; \
}
SSSE3_UNOP_INSTRUCTION_LIST(DECLARE_SSE_UNOP_AVX_DIS_CASE)
SSE4_UNOP_INSTRUCTION_LIST(DECLARE_SSE_UNOP_AVX_DIS_CASE)
#undef DECLARE_SSE_UNOP_AVX_DIS_CASE
default:
UnimplementedInstruction();
}
} else if (vex_66() && vex_0f3a()) {
int mod, regop, rm, vvvv = vex_vreg();
get_modrm(*current, &mod, &regop, &rm);
switch (opcode) {
case 0x08:
AppendToBuffer("vroundps %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
case 0x09:
AppendToBuffer("vroundpd %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
case 0x0A:
AppendToBuffer("vroundss %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
case 0x0B:
AppendToBuffer("vroundsd %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
case 0x0E:
AppendToBuffer("vpblendw %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
case 0x0F:
AppendToBuffer("vpalignr %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
case 0x14:
AppendToBuffer("vpextrb ");
current += PrintRightByteOperand(current);
AppendToBuffer(",%s,0x%x,", NameOfXMMRegister(regop), *current++);
break;
case 0x15:
AppendToBuffer("vpextrw ");
current += PrintRightOperand(current);
AppendToBuffer(",%s,0x%x,", NameOfXMMRegister(regop), *current++);
break;
case 0x16:
AppendToBuffer("vpextr%c ", rex_w() ? 'q' : 'd');
current += PrintRightOperand(current);
AppendToBuffer(",%s,0x%x,", NameOfXMMRegister(regop), *current++);
break;
case 0x17:
AppendToBuffer("vextractps ");
current += PrintRightOperand(current);
AppendToBuffer(",%s,0x%x,", NameOfXMMRegister(regop), *current++);
break;
case 0x20:
AppendToBuffer("vpinsrb %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightByteOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
case 0x21:
AppendToBuffer("vinsertps %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
case 0x22:
AppendToBuffer("vpinsr%c %s,%s,", rex_w() ? 'q' : 'd',
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
case 0x4A: {
AppendToBuffer("vblendvps %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
AppendToBuffer(",%s", NameOfXMMRegister((*current++) >> 4));
break;
}
case 0x4B: {
AppendToBuffer("vblendvpd %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
AppendToBuffer(",%s", NameOfXMMRegister((*current++) >> 4));
break;
}
case 0x4C: {
AppendToBuffer("vpblendvb %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
AppendToBuffer(",%s", NameOfXMMRegister((*current++) >> 4));
break;
}
default:
UnimplementedInstruction();
}
} else if (vex_f3() && vex_0f()) {
int mod, regop, rm, vvvv = vex_vreg();
get_modrm(*current, &mod, &regop, &rm);
switch (opcode) {
case 0x10:
AppendToBuffer("vmovss %s,", NameOfXMMRegister(regop));
if (mod == 3) {
AppendToBuffer("%s,", NameOfXMMRegister(vvvv));
}
current += PrintRightXMMOperand(current);
break;
case 0x11:
AppendToBuffer("vmovss ");
current += PrintRightXMMOperand(current);
if (mod == 3) {
AppendToBuffer(",%s", NameOfXMMRegister(vvvv));
}
AppendToBuffer(",%s", NameOfXMMRegister(regop));
break;
case 0x2A:
AppendToBuffer("%s %s,%s,", vex_w() ? "vcvtqsi2ss" : "vcvtlsi2ss",
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightOperand(current);
break;
case 0x2C:
AppendToBuffer("vcvttss2si%s %s,", vex_w() ? "q" : "",
NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x51:
AppendToBuffer("vsqrtss %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x58:
AppendToBuffer("vaddss %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x59:
AppendToBuffer("vmulss %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x5A:
AppendToBuffer("vcvtss2sd %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x5B:
AppendToBuffer("vcvttps2dq %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x5C:
AppendToBuffer("vsubss %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x5D:
AppendToBuffer("vminss %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x5E:
AppendToBuffer("vdivss %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x5F:
AppendToBuffer("vmaxss %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x6F:
AppendToBuffer("vmovdqu %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x70:
AppendToBuffer("vpshufhw %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
case 0x7F:
AppendToBuffer("vmovdqu ");
current += PrintRightXMMOperand(current);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
break;
default:
UnimplementedInstruction();
}
} else if (vex_f2() && vex_0f()) {
int mod, regop, rm, vvvv = vex_vreg();
get_modrm(*current, &mod, &regop, &rm);
switch (opcode) {
case 0x10:
AppendToBuffer("vmovsd %s,", NameOfXMMRegister(regop));
if (mod == 3) {
AppendToBuffer("%s,", NameOfXMMRegister(vvvv));
}
current += PrintRightXMMOperand(current);
break;
case 0x11:
AppendToBuffer("vmovsd ");
current += PrintRightXMMOperand(current);
if (mod == 3) {
AppendToBuffer(",%s", NameOfXMMRegister(vvvv));
}
AppendToBuffer(",%s", NameOfXMMRegister(regop));
break;
case 0x12:
AppendToBuffer("vmovddup %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x2A:
AppendToBuffer("%s %s,%s,", vex_w() ? "vcvtqsi2sd" : "vcvtlsi2sd",
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightOperand(current);
break;
case 0x2C:
AppendToBuffer("vcvttsd2si%s %s,", vex_w() ? "q" : "",
NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x2D:
AppendToBuffer("vcvtsd2si%s %s,", vex_w() ? "q" : "",
NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x51:
AppendToBuffer("vsqrtsd %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x58:
AppendToBuffer("vaddsd %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x59:
AppendToBuffer("vmulsd %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x5A:
AppendToBuffer("vcvtsd2ss %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x5C:
AppendToBuffer("vsubsd %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x5D:
AppendToBuffer("vminsd %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x5E:
AppendToBuffer("vdivsd %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x5F:
AppendToBuffer("vmaxsd %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0xF0:
AppendToBuffer("vlddqu %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x70:
AppendToBuffer("vpshuflw %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
case 0x7C:
AppendToBuffer("vhaddps %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
default:
UnimplementedInstruction();
}
} else if (vex_none() && vex_0f38()) {
int mod, regop, rm, vvvv = vex_vreg();
get_modrm(*current, &mod, &regop, &rm);
const char* mnem = "?";
switch (opcode) {
case 0xF2:
AppendToBuffer("andn%c %s,%s,", operand_size_code(),
NameOfCPURegister(regop), NameOfCPURegister(vvvv));
current += PrintRightOperand(current);
break;
case 0xF5:
AppendToBuffer("bzhi%c %s,", operand_size_code(),
NameOfCPURegister(regop));
current += PrintRightOperand(current);
AppendToBuffer(",%s", NameOfCPURegister(vvvv));
break;
case 0xF7:
AppendToBuffer("bextr%c %s,", operand_size_code(),
NameOfCPURegister(regop));
current += PrintRightOperand(current);
AppendToBuffer(",%s", NameOfCPURegister(vvvv));
break;
case 0xF3:
switch (regop) {
case 1:
mnem = "blsr";
break;
case 2:
mnem = "blsmsk";
break;
case 3:
mnem = "blsi";
break;
default:
UnimplementedInstruction();
}
AppendToBuffer("%s%c %s,", mnem, operand_size_code(),
NameOfCPURegister(vvvv));
current += PrintRightOperand(current);
mnem = "?";
break;
default:
UnimplementedInstruction();
}
} else if (vex_f2() && vex_0f38()) {
int mod, regop, rm, vvvv = vex_vreg();
get_modrm(*current, &mod, &regop, &rm);
switch (opcode) {
case 0xF5:
AppendToBuffer("pdep%c %s,%s,", operand_size_code(),
NameOfCPURegister(regop), NameOfCPURegister(vvvv));
current += PrintRightOperand(current);
break;
case 0xF6:
AppendToBuffer("mulx%c %s,%s,", operand_size_code(),
NameOfCPURegister(regop), NameOfCPURegister(vvvv));
current += PrintRightOperand(current);
break;
case 0xF7:
AppendToBuffer("shrx%c %s,", operand_size_code(),
NameOfCPURegister(regop));
current += PrintRightOperand(current);
AppendToBuffer(",%s", NameOfCPURegister(vvvv));
break;
default:
UnimplementedInstruction();
}
} else if (vex_f3() && vex_0f38()) {
int mod, regop, rm, vvvv = vex_vreg();
get_modrm(*current, &mod, &regop, &rm);
switch (opcode) {
case 0xF5:
AppendToBuffer("pext%c %s,%s,", operand_size_code(),
NameOfCPURegister(regop), NameOfCPURegister(vvvv));
current += PrintRightOperand(current);
break;
case 0xF7:
AppendToBuffer("sarx%c %s,", operand_size_code(),
NameOfCPURegister(regop));
current += PrintRightOperand(current);
AppendToBuffer(",%s", NameOfCPURegister(vvvv));
break;
default:
UnimplementedInstruction();
}
} else if (vex_f2() && vex_0f3a()) {
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
switch (opcode) {
case 0xF0:
AppendToBuffer("rorx%c %s,", operand_size_code(),
NameOfCPURegister(regop));
current += PrintRightOperand(current);
switch (operand_size()) {
case OPERAND_DOUBLEWORD_SIZE:
AppendToBuffer(",%d", *current & 0x1F);
break;
case OPERAND_QUADWORD_SIZE:
AppendToBuffer(",%d", *current & 0x3F);
break;
default:
UnimplementedInstruction();
}
current += 1;
break;
default:
UnimplementedInstruction();
}
} else if (vex_none() && vex_0f()) {
int mod, regop, rm, vvvv = vex_vreg();
get_modrm(*current, &mod, &regop, &rm);
switch (opcode) {
case 0x10:
AppendToBuffer("vmovups %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x11:
AppendToBuffer("vmovups ");
current += PrintRightXMMOperand(current);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
break;
case 0x12:
AppendToBuffer("vmovlps %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
case 0x13:
AppendToBuffer("vmovlps ");
current += PrintRightXMMOperand(current);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
break;
case 0x16:
if (mod == 0b11) {
AppendToBuffer("vmovlhps %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
} else {
AppendToBuffer("vmovhps %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
}
break;
case 0x17:
AppendToBuffer("vmovhps ");
current += PrintRightXMMOperand(current);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
break;
case 0x28:
AppendToBuffer("vmovaps %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x29:
AppendToBuffer("vmovaps ");
current += PrintRightXMMOperand(current);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
break;
case 0x2E:
AppendToBuffer("vucomiss %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x50:
AppendToBuffer("vmovmskps %s,", NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x51:
case 0x52:
case 0x53: {
const char* const pseudo_op[] = {"vsqrtps", "vrsqrtps", "vrcpps"};
AppendToBuffer("%s %s,", pseudo_op[opcode - 0x51],
NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
break;
}
case 0x5A:
case 0x5B: {
const char* const pseudo_op[] = {"vcvtps2pd", "vcvtdq2ps"};
AppendToBuffer("%s %s,", pseudo_op[opcode - 0x5A],
NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
break;
}
case 0x54:
case 0x55:
case 0x56:
case 0x57:
case 0x58:
case 0x59:
case 0x5C:
case 0x5D:
case 0x5E:
case 0x5F: {
const char* const pseudo_op[] = {
"vandps", "vandnps", "vorps", "vxorps", "vaddps", "vmulps",
"", "", "vsubps", "vminps", "vdivps", "vmaxps",
};
AppendToBuffer("%s %s,%s,", pseudo_op[opcode - 0x54],
NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
break;
}
case 0xC2: {
AppendToBuffer("vcmpps %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
const char* const pseudo_op[] = {"eq", "lt", "le", "unord",
"neq", "nlt", "nle", "ord"};
AppendToBuffer(", (%s)", pseudo_op[*current]);
current += 1;
break;
}
case 0xC6: {
AppendToBuffer("vshufps %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
}
default:
UnimplementedInstruction();
}
} else if (vex_66() && vex_0f()) {
int mod, regop, rm, vvvv = vex_vreg();
get_modrm(*current, &mod, &regop, &rm);
switch (opcode) {
case 0x10:
AppendToBuffer("vmovupd %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x11:
AppendToBuffer("vmovupd ");
current += PrintRightXMMOperand(current);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
break;
case 0x28:
AppendToBuffer("vmovapd %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x29:
AppendToBuffer("vmovapd ");
current += PrintRightXMMOperand(current);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
break;
case 0x2E:
AppendToBuffer("vucomisd %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x50:
AppendToBuffer("vmovmskpd %s,", NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
break;
case 0x6E:
AppendToBuffer("vmov%c %s,", vex_w() ? 'q' : 'd',
NameOfXMMRegister(regop));
current += PrintRightOperand(current);
break;
case 0x70:
AppendToBuffer("vpshufd %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
case 0x71:
AppendToBuffer("vps%sw %s,", sf_str[regop / 2],
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
AppendToBuffer(",%u", *current++);
break;
case 0x72:
AppendToBuffer("vps%sd %s,", sf_str[regop / 2],
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
AppendToBuffer(",%u", *current++);
break;
case 0x73:
AppendToBuffer("vps%sq %s,", sf_str[regop / 2],
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
AppendToBuffer(",%u", *current++);
break;
case 0x7E:
AppendToBuffer("vmov%c ", vex_w() ? 'q' : 'd');
current += PrintRightOperand(current);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
break;
case 0xC2: {
AppendToBuffer("vcmppd %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightXMMOperand(current);
const char* const pseudo_op[] = {"eq", "lt", "le", "unord",
"neq", "nlt", "nle", "ord"};
AppendToBuffer(", (%s)", pseudo_op[*current]);
current += 1;
break;
}
case 0xC4:
AppendToBuffer("vpinsrw %s,%s,", NameOfXMMRegister(regop),
NameOfXMMRegister(vvvv));
current += PrintRightOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
case 0xC5:
AppendToBuffer("vpextrw %s,", NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
AppendToBuffer(",0x%x", *current++);
break;
case 0xD7:
AppendToBuffer("vpmovmskb %s,", NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
break;
#define DECLARE_SSE_AVX_DIS_CASE(instruction, notUsed1, notUsed2, opcode) \
case 0x##opcode: { \
AppendToBuffer("v" #instruction " %s,%s,", NameOfXMMRegister(regop), \
NameOfXMMRegister(vvvv)); \
current += PrintRightXMMOperand(current); \
break; \
}
SSE2_INSTRUCTION_LIST(DECLARE_SSE_AVX_DIS_CASE)
#undef DECLARE_SSE_AVX_DIS_CASE
#define DECLARE_SSE_UNOP_AVX_DIS_CASE(instruction, notUsed1, notUsed2, opcode) \
case 0x##opcode: { \
AppendToBuffer("v" #instruction " %s,", NameOfXMMRegister(regop)); \
current += PrintRightXMMOperand(current); \
break; \
}
SSE2_UNOP_INSTRUCTION_LIST(DECLARE_SSE_UNOP_AVX_DIS_CASE)
#undef DECLARE_SSE_UNOP_AVX_DIS_CASE
default:
UnimplementedInstruction();
}
} else {
UnimplementedInstruction();
}
return static_cast<int>(current - data);
}
// Returns number of bytes used, including *data.
int DisassemblerX64::FPUInstruction(byte* data) {
byte escape_opcode = *data;
DCHECK_EQ(0xD8, escape_opcode & 0xF8);
byte modrm_byte = *(data + 1);
if (modrm_byte >= 0xC0) {
return RegisterFPUInstruction(escape_opcode, modrm_byte);
} else {
return MemoryFPUInstruction(escape_opcode, modrm_byte, data + 1);
}
}
int DisassemblerX64::MemoryFPUInstruction(int escape_opcode, int modrm_byte,
byte* modrm_start) {
const char* mnem = "?";
int regop = (modrm_byte >> 3) & 0x7; // reg/op field of modrm byte.
switch (escape_opcode) {
case 0xD9:
switch (regop) {
case 0:
mnem = "fld_s";
break;
case 3:
mnem = "fstp_s";
break;
case 7:
mnem = "fstcw";
break;
default:
UnimplementedInstruction();
}
break;
case 0xDB:
switch (regop) {
case 0:
mnem = "fild_s";
break;
case 1:
mnem = "fisttp_s";
break;
case 2:
mnem = "fist_s";
break;
case 3:
mnem = "fistp_s";
break;
default:
UnimplementedInstruction();
}
break;
case 0xDD:
switch (regop) {
case 0:
mnem = "fld_d";
break;
case 3:
mnem = "fstp_d";
break;
default:
UnimplementedInstruction();
}
break;
case 0xDF:
switch (regop) {
case 5:
mnem = "fild_d";
break;
case 7:
mnem = "fistp_d";
break;
default:
UnimplementedInstruction();
}
break;
default:
UnimplementedInstruction();
}
AppendToBuffer("%s ", mnem);
int count = PrintRightOperand(modrm_start);
return count + 1;
}
int DisassemblerX64::RegisterFPUInstruction(int escape_opcode,
byte modrm_byte) {
bool has_register = false; // Is the FPU register encoded in modrm_byte?
const char* mnem = "?";
switch (escape_opcode) {
case 0xD8:
UnimplementedInstruction();
break;
case 0xD9:
switch (modrm_byte & 0xF8) {
case 0xC0:
mnem = "fld";
has_register = true;
break;
case 0xC8:
mnem = "fxch";
has_register = true;
break;
default:
switch (modrm_byte) {
case 0xE0:
mnem = "fchs";
break;
case 0xE1:
mnem = "fabs";
break;
case 0xE3:
mnem = "fninit";
break;
case 0xE4:
mnem = "ftst";
break;
case 0xE8:
mnem = "fld1";
break;
case 0xEB:
mnem = "fldpi";
break;
case 0xED:
mnem = "fldln2";
break;
case 0xEE:
mnem = "fldz";
break;
case 0xF0:
mnem = "f2xm1";
break;
case 0xF1:
mnem = "fyl2x";
break;
case 0xF2:
mnem = "fptan";
break;
case 0xF5:
mnem = "fprem1";
break;
case 0xF7:
mnem = "fincstp";
break;
case 0xF8:
mnem = "fprem";
break;
case 0xFC:
mnem = "frndint";
break;
case 0xFD:
mnem = "fscale";
break;
case 0xFE:
mnem = "fsin";
break;
case 0xFF:
mnem = "fcos";
break;
default:
UnimplementedInstruction();
}
}
break;
case 0xDA:
if (modrm_byte == 0xE9) {
mnem = "fucompp";
} else {
UnimplementedInstruction();
}
break;
case 0xDB:
if ((modrm_byte & 0xF8) == 0xE8) {
mnem = "fucomi";
has_register = true;
} else if (modrm_byte == 0xE2) {
mnem = "fclex";
} else if (modrm_byte == 0xE3) {
mnem = "fninit";
} else {
UnimplementedInstruction();
}
break;
case 0xDC:
has_register = true;
switch (modrm_byte & 0xF8) {
case 0xC0:
mnem = "fadd";
break;
case 0xE8:
mnem = "fsub";
break;
case 0xC8:
mnem = "fmul";
break;
case 0xF8:
mnem = "fdiv";
break;
default:
UnimplementedInstruction();
}
break;
case 0xDD:
has_register = true;
switch (modrm_byte & 0xF8) {
case 0xC0:
mnem = "ffree";
break;
case 0xD8:
mnem = "fstp";
break;
default:
UnimplementedInstruction();
}
break;
case 0xDE:
if (modrm_byte == 0xD9) {
mnem = "fcompp";
} else {
has_register = true;
switch (modrm_byte & 0xF8) {
case 0xC0:
mnem = "faddp";
break;
case 0xE8:
mnem = "fsubp";
break;
case 0xC8:
mnem = "fmulp";
break;
case 0xF8:
mnem = "fdivp";
break;
default:
UnimplementedInstruction();
}
}
break;
case 0xDF:
if (modrm_byte == 0xE0) {
mnem = "fnstsw_ax";
} else if ((modrm_byte & 0xF8) == 0xE8) {
mnem = "fucomip";
has_register = true;
}
break;
default:
UnimplementedInstruction();
}
if (has_register) {
AppendToBuffer("%s st%d", mnem, modrm_byte & 0x7);
} else {
AppendToBuffer("%s", mnem);
}
return 2;
}
// Handle all two-byte opcodes, which start with 0x0F.
// These instructions may be affected by an 0x66, 0xF2, or 0xF3 prefix.
int DisassemblerX64::TwoByteOpcodeInstruction(byte* data) {
byte opcode = *(data + 1);
byte* current = data + 2;
// At return, "current" points to the start of the next instruction.
const char* mnemonic = TwoByteMnemonic(opcode);
// Not every instruction will use this, but it doesn't hurt to figure it out
// here, since it doesn't update any pointers.
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
if (operand_size_ == 0x66) {
// These are three-byte opcodes, see ThreeByteOpcodeInstruction.
DCHECK_NE(0x38, opcode);
DCHECK_NE(0x3A, opcode);
// 0x66 0x0F prefix.
if (opcode == 0xC1) {
current += PrintOperands("xadd", OPER_REG_OP_ORDER, current);
} else if (opcode == 0x1F) {
current++;
if (rm == 4) { // SIB byte present.
current++;
}
if (mod == 1) { // Byte displacement.
current += 1;
} else if (mod == 2) { // 32-bit displacement.
current += 4;
} // else no immediate displacement.
AppendToBuffer("nop");
} else if (opcode == 0x10) {
current += PrintOperands("movupd", XMMREG_XMMOPER_OP_ORDER, current);
} else if (opcode == 0x11) {
current += PrintOperands("movupd", XMMOPER_XMMREG_OP_ORDER, current);
} else if (opcode == 0x28) {
current += PrintOperands("movapd", XMMREG_XMMOPER_OP_ORDER, current);
} else if (opcode == 0x29) {
current += PrintOperands("movapd", XMMOPER_XMMREG_OP_ORDER, current);
} else if (opcode == 0x6E) {
current += PrintOperands(rex_w() ? "movq" : "movd",
XMMREG_XMMOPER_OP_ORDER, current);
} else if (opcode == 0x6F) {
current += PrintOperands("movdqa", XMMREG_XMMOPER_OP_ORDER, current);
} else if (opcode == 0x7E) {
current += PrintOperands(rex_w() ? "movq" : "movd",
XMMOPER_XMMREG_OP_ORDER, current);
} else if (opcode == 0x7F) {
current += PrintOperands("movdqa", XMMOPER_XMMREG_OP_ORDER, current);
} else if (opcode == 0xD6) {
current += PrintOperands("movq", XMMOPER_XMMREG_OP_ORDER, current);
} else if (opcode == 0x50) {
AppendToBuffer("movmskpd %s,", NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0x70) {
current += PrintOperands("pshufd", XMMREG_XMMOPER_OP_ORDER, current);
AppendToBuffer(",0x%x", *current++);
} else if (opcode == 0x71) {
current += 1;
AppendToBuffer("ps%sw %s,%d", sf_str[regop / 2], NameOfXMMRegister(rm),
*current & 0x7F);
current += 1;
} else if (opcode == 0x72) {
current += 1;
AppendToBuffer("ps%sd %s,%d", sf_str[regop / 2], NameOfXMMRegister(rm),
*current & 0x7F);
current += 1;
} else if (opcode == 0x73) {
current += 1;
AppendToBuffer("ps%sq %s,%d", sf_str[regop / 2], NameOfXMMRegister(rm),
*current & 0x7F);
current += 1;
} else if (opcode == 0xB1) {
current += PrintOperands("cmpxchg", OPER_REG_OP_ORDER, current);
} else if (opcode == 0xC4) {
current += PrintOperands("pinsrw", XMMREG_OPER_OP_ORDER, current);
AppendToBuffer(",0x%x", (*current++) & 7);
} else {
const char* mnemonic;
if (opcode == 0x51) {
mnemonic = "sqrtpd";
} else if (opcode == 0x54) {
mnemonic = "andpd";
} else if (opcode == 0x55) {
mnemonic = "andnpd";
} else if (opcode == 0x56) {
mnemonic = "orpd";
} else if (opcode == 0x57) {
mnemonic = "xorpd";
} else if (opcode == 0x58) {
mnemonic = "addpd";
} else if (opcode == 0x59) {
mnemonic = "mulpd";
} else if (opcode == 0x5B) {
mnemonic = "cvtps2dq";
} else if (opcode == 0x5C) {
mnemonic = "subpd";
} else if (opcode == 0x5D) {
mnemonic = "minpd";
} else if (opcode == 0x5E) {
mnemonic = "divpd";
} else if (opcode == 0x5F) {
mnemonic = "maxpd";
} else if (opcode == 0x60) {
mnemonic = "punpcklbw";
} else if (opcode == 0x61) {
mnemonic = "punpcklwd";
} else if (opcode == 0x62) {
mnemonic = "punpckldq";
} else if (opcode == 0x63) {
mnemonic = "packsswb";
} else if (opcode == 0x64) {
mnemonic = "pcmpgtb";
} else if (opcode == 0x65) {
mnemonic = "pcmpgtw";
} else if (opcode == 0x66) {
mnemonic = "pcmpgtd";
} else if (opcode == 0x67) {
mnemonic = "packuswb";
} else if (opcode == 0x68) {
mnemonic = "punpckhbw";
} else if (opcode == 0x69) {
mnemonic = "punpckhwd";
} else if (opcode == 0x6A) {
mnemonic = "punpckhdq";
} else if (opcode == 0x6B) {
mnemonic = "packssdw";
} else if (opcode == 0x6C) {
mnemonic = "punpcklqdq";
} else if (opcode == 0x6D) {
mnemonic = "punpckhqdq";
} else if (opcode == 0x2E) {
mnemonic = "ucomisd";
} else if (opcode == 0x2F) {
mnemonic = "comisd";
} else if (opcode == 0x74) {
mnemonic = "pcmpeqb";
} else if (opcode == 0x75) {
mnemonic = "pcmpeqw";
} else if (opcode == 0x76) {
mnemonic = "pcmpeqd";
} else if (opcode == 0xC2) {
mnemonic = "cmppd";
} else if (opcode == 0xD1) {
mnemonic = "psrlw";
} else if (opcode == 0xD2) {
mnemonic = "psrld";
} else if (opcode == 0xD3) {
mnemonic = "psrlq";
} else if (opcode == 0xD4) {
mnemonic = "paddq";
} else if (opcode == 0xD5) {
mnemonic = "pmullw";
} else if (opcode == 0xD7) {
mnemonic = "pmovmskb";
} else if (opcode == 0xD8) {
mnemonic = "psubusb";
} else if (opcode == 0xD9) {
mnemonic = "psubusw";
} else if (opcode == 0xDA) {
mnemonic = "pminub";
} else if (opcode == 0xDB) {
mnemonic = "pand";
} else if (opcode == 0xDC) {
mnemonic = "paddusb";
} else if (opcode == 0xDD) {
mnemonic = "paddusw";
} else if (opcode == 0xDE) {
mnemonic = "pmaxub";
} else if (opcode == 0xE0) {
mnemonic = "pavgb";
} else if (opcode == 0xE1) {
mnemonic = "psraw";
} else if (opcode == 0xE2) {
mnemonic = "psrad";
} else if (opcode == 0xE3) {
mnemonic = "pavgw";
} else if (opcode == 0xE8) {
mnemonic = "psubsb";
} else if (opcode == 0xE9) {
mnemonic = "psubsw";
} else if (opcode == 0xEA) {
mnemonic = "pminsw";
} else if (opcode == 0xEB) {
mnemonic = "por";
} else if (opcode == 0xEC) {
mnemonic = "paddsb";
} else if (opcode == 0xED) {
mnemonic = "paddsw";
} else if (opcode == 0xEE) {
mnemonic = "pmaxsw";
} else if (opcode == 0xEF) {
mnemonic = "pxor";
} else if (opcode == 0xF1) {
mnemonic = "psllw";
} else if (opcode == 0xF2) {
mnemonic = "pslld";
} else if (opcode == 0xF3) {
mnemonic = "psllq";
} else if (opcode == 0xF4) {
mnemonic = "pmuludq";
} else if (opcode == 0xF5) {
mnemonic = "pmaddwd";
} else if (opcode == 0xF8) {
mnemonic = "psubb";
} else if (opcode == 0xF9) {
mnemonic = "psubw";
} else if (opcode == 0xFA) {
mnemonic = "psubd";
} else if (opcode == 0xFB) {
mnemonic = "psubq";
} else if (opcode == 0xFC) {
mnemonic = "paddb";
} else if (opcode == 0xFD) {
mnemonic = "paddw";
} else if (opcode == 0xFE) {
mnemonic = "paddd";
} else {
UnimplementedInstruction();
}
// Not every opcode here has an XMM register as the dst operand.
const char* regop_reg =
opcode == 0xD7 ? NameOfCPURegister(regop) : NameOfXMMRegister(regop);
AppendToBuffer("%s %s,", mnemonic, regop_reg);
current += PrintRightXMMOperand(current);
if (opcode == 0xC2) {
const char* const pseudo_op[] = {"eq", "lt", "le", "unord",
"neq", "nlt", "nle", "ord"};
AppendToBuffer(", (%s)", pseudo_op[*current]);
current += 1;
}
}
} else if (group_1_prefix_ == 0xF2) {
// Beginning of instructions with prefix 0xF2.
if (opcode == 0x10) {
// MOVSD: Move scalar double-precision fp to/from/between XMM registers.
current += PrintOperands("movsd", XMMREG_XMMOPER_OP_ORDER, current);
} else if (opcode == 0x11) {
current += PrintOperands("movsd", XMMOPER_XMMREG_OP_ORDER, current);
} else if (opcode == 0x12) {
current += PrintOperands("movddup", XMMREG_XMMOPER_OP_ORDER, current);
} else if (opcode == 0x2A) {
// CVTSI2SD: integer to XMM double conversion.
current += PrintOperands(mnemonic, XMMREG_OPER_OP_ORDER, current);
} else if (opcode == 0x2C) {
// CVTTSD2SI:
// Convert with truncation scalar double-precision FP to integer.
AppendToBuffer("cvttsd2si%c %s,", operand_size_code(),
NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0x2D) {
// CVTSD2SI: Convert scalar double-precision FP to integer.
AppendToBuffer("cvtsd2si%c %s,", operand_size_code(),
NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0x5B) {
// CVTTPS2DQ: Convert packed single-precision FP values to packed signed
// doubleword integer values
AppendToBuffer("cvttps2dq%c %s,", operand_size_code(),
NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
} else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) {
// XMM arithmetic. Mnemonic was retrieved at the start of this function.
current += PrintOperands(mnemonic, XMMREG_XMMOPER_OP_ORDER, current);
} else if (opcode == 0x70) {
current += PrintOperands("pshuflw", XMMREG_XMMOPER_OP_ORDER, current);
AppendToBuffer(",%d", (*current++) & 7);
} else if (opcode == 0xC2) {
// Intel manual 2A, Table 3-18.
const char* const pseudo_op[] = {"cmpeqsd", "cmpltsd", "cmplesd",
"cmpunordsd", "cmpneqsd", "cmpnltsd",
"cmpnlesd", "cmpordsd"};
AppendToBuffer("%s %s,%s", pseudo_op[current[1]],
NameOfXMMRegister(regop), NameOfXMMRegister(rm));
current += 2;
} else if (opcode == 0xF0) {
current += PrintOperands("lddqu", XMMREG_OPER_OP_ORDER, current);
} else if (opcode == 0x7C) {
current += PrintOperands("haddps", XMMREG_XMMOPER_OP_ORDER, current);
} else {
UnimplementedInstruction();
}
} else if (group_1_prefix_ == 0xF3) {
// Instructions with prefix 0xF3.
if (opcode == 0x10) {
// MOVSS: Move scalar double-precision fp to/from/between XMM registers.
current += PrintOperands("movss", XMMREG_OPER_OP_ORDER, current);
} else if (opcode == 0x11) {
current += PrintOperands("movss", OPER_XMMREG_OP_ORDER, current);
} else if (opcode == 0x2A) {
// CVTSI2SS: integer to XMM single conversion.
current += PrintOperands(mnemonic, XMMREG_OPER_OP_ORDER, current);
} else if (opcode == 0x2C) {
// CVTTSS2SI:
// Convert with truncation scalar single-precision FP to dword integer.
AppendToBuffer("cvttss2si%c %s,", operand_size_code(),
NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0x70) {
current += PrintOperands("pshufhw", XMMREG_XMMOPER_OP_ORDER, current);
AppendToBuffer(", %d", (*current++) & 7);
} else if (opcode == 0x6F) {
current += PrintOperands("movdqu", XMMREG_XMMOPER_OP_ORDER, current);
} else if (opcode == 0x7E) {
current += PrintOperands("movq", XMMREG_XMMOPER_OP_ORDER, current);
} else if (opcode == 0x7F) {
current += PrintOperands("movdqu", XMMOPER_XMMREG_OP_ORDER, current);
} else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) {
// XMM arithmetic. Mnemonic was retrieved at the start of this function.
current += PrintOperands(mnemonic, XMMREG_XMMOPER_OP_ORDER, current);
} else if (opcode == 0xB8) {
AppendToBuffer("popcnt%c %s,", operand_size_code(),
NameOfCPURegister(regop));
current += PrintRightOperand(current);
} else if (opcode == 0xBC) {
AppendToBuffer("tzcnt%c %s,", operand_size_code(),
NameOfCPURegister(regop));
current += PrintRightOperand(current);
} else if (opcode == 0xBD) {
AppendToBuffer("lzcnt%c %s,", operand_size_code(),
NameOfCPURegister(regop));
current += PrintRightOperand(current);
} else if (opcode == 0xC2) {
// Intel manual 2A, Table 3-18.
const char* const pseudo_op[] = {"cmpeqss", "cmpltss", "cmpless",
"cmpunordss", "cmpneqss", "cmpnltss",
"cmpnless", "cmpordss"};
AppendToBuffer("%s %s,%s", pseudo_op[current[1]],
NameOfXMMRegister(regop), NameOfXMMRegister(rm));
current += 2;
} else {
UnimplementedInstruction();
}
} else if (opcode == 0x10) {
// movups xmm, xmm/m128
current += PrintOperands("movups", XMMREG_XMMOPER_OP_ORDER, current);
} else if (opcode == 0x11) {
// movups xmm/m128, xmm
current += PrintOperands("movups", XMMOPER_XMMREG_OP_ORDER, current);
} else if (opcode == 0x12) {
// movlps xmm1, m64
current += PrintOperands("movlps", XMMREG_OPER_OP_ORDER, current);
} else if (opcode == 0x13) {
// movlps m64, xmm1
AppendToBuffer("movlps ");
current += PrintRightXMMOperand(current);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
} else if (opcode == 0x16) {
// movlhps xmm1, xmm2
// movhps xmm1, m64
if (mod == 0b11) {
AppendToBuffer("movlhps ");
} else {
AppendToBuffer("movhps ");
}
AppendToBuffer("%s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0x17) {
// movhps m64, xmm1
AppendToBuffer("movhps ");
current += PrintRightXMMOperand(current);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
} else if (opcode == 0x1F) {
// NOP
current++;
if (rm == 4) { // SIB byte present.
current++;
}
if (mod == 1) { // Byte displacement.
current += 1;
} else if (mod == 2) { // 32-bit displacement.
current += 4;
} // else no immediate displacement.
AppendToBuffer("nop");
} else if (opcode == 0x28) {
// movaps xmm, xmm/m128
AppendToBuffer("movaps %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0x29) {
// movaps xmm/m128, xmm
AppendToBuffer("movaps ");
current += PrintRightXMMOperand(current);
AppendToBuffer(",%s", NameOfXMMRegister(regop));
} else if (opcode == 0x2E) {
AppendToBuffer("ucomiss %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0xA2) {
// CPUID
AppendToBuffer("%s", mnemonic);
} else if ((opcode & 0xF0) == 0x40) {
// CMOVcc: conditional move.
int condition = opcode & 0x0F;
const InstructionDesc& idesc = cmov_instructions[condition];
byte_size_operand_ = idesc.byte_size_operation;
current += PrintOperands(idesc.mnem, idesc.op_order_, current);
} else if (opcode >= 0x51 && opcode <= 0x5F) {
const char* const pseudo_op[] = {
"sqrtps", "rsqrtps", "rcpps", "andps", "andnps",
"orps", "xorps", "addps", "mulps", "cvtps2pd",
"cvtdq2ps", "subps", "minps", "divps", "maxps",
};
AppendToBuffer("%s %s,", pseudo_op[opcode - 0x51],
NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0xC0) {
byte_size_operand_ = true;
current += PrintOperands("xadd", OPER_REG_OP_ORDER, current);
} else if (opcode == 0xC1) {
current += PrintOperands("xadd", OPER_REG_OP_ORDER, current);
} else if (opcode == 0xC2) {
// cmpps xmm, xmm/m128, imm8
const char* const pseudo_op[] = {"eq", "lt", "le", "unord",
"neq", "nlt", "nle", "ord"};
AppendToBuffer("cmpps %s, ", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
AppendToBuffer(", %s", pseudo_op[*current]);
current += 1;
} else if (opcode == 0xC6) {
// shufps xmm, xmm/m128, imm8
AppendToBuffer("shufps %s, ", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
AppendToBuffer(", %d", (*current) & 3);
current += 1;
} else if (opcode >= 0xC8 && opcode <= 0xCF) {
// bswap
int reg = (opcode - 0xC8) | (rex_r() ? 8 : 0);
AppendToBuffer("bswap%c %s", operand_size_code(), NameOfCPURegister(reg));
} else if (opcode == 0x50) {
// movmskps reg, xmm
AppendToBuffer("movmskps %s,", NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
} else if ((opcode & 0xF0) == 0x80) {
// Jcc: Conditional jump (branch).
current = data + JumpConditional(data);
} else if (opcode == 0xBE || opcode == 0xBF || opcode == 0xB6 ||
opcode == 0xB7 || opcode == 0xAF) {
// Size-extending moves, IMUL.
current += PrintOperands(mnemonic, REG_OPER_OP_ORDER, current);
} else if ((opcode & 0xF0) == 0x90) {
// SETcc: Set byte on condition. Needs pointer to beginning of instruction.
current = data + SetCC(data);
} else if (opcode == 0xA3 || opcode == 0xA5 || opcode == 0xAB ||
opcode == 0xAD) {
// BT (bit test), SHLD, BTS (bit test and set),
// SHRD (double-precision shift)
AppendToBuffer("%s ", mnemonic);
current += PrintRightOperand(current);
if (opcode == 0xAB) {
AppendToBuffer(",%s", NameOfCPURegister(regop));
} else {
AppendToBuffer(",%s,cl", NameOfCPURegister(regop));
}
} else if (opcode == 0xBA) {
// BTS / BTR (bit test and set/reset) with immediate
mnemonic = regop == 5 ? "bts" : regop == 6 ? "btr" : "?";
AppendToBuffer("%s ", mnemonic);
current += PrintRightOperand(current);
AppendToBuffer(",%d", *current++);
} else if (opcode == 0xB8 || opcode == 0xBC || opcode == 0xBD) {
// POPCNT, CTZ, CLZ.
AppendToBuffer("%s%c ", mnemonic, operand_size_code());
AppendToBuffer("%s,", NameOfCPURegister(regop));
current += PrintRightOperand(current);
} else if (opcode == 0x0B) {
AppendToBuffer("ud2");
} else if (opcode == 0xB0 || opcode == 0xB1) {
// CMPXCHG.
if (opcode == 0xB0) {
byte_size_operand_ = true;
}
current += PrintOperands(mnemonic, OPER_REG_OP_ORDER, current);
} else if (opcode == 0xAE && (data[2] & 0xF8) == 0xF0) {
AppendToBuffer("mfence");
current = data + 3;
} else if (opcode == 0xAE && (data[2] & 0xF8) == 0xE8) {
AppendToBuffer("lfence");
current = data + 3;
} else {
UnimplementedInstruction();
}
return static_cast<int>(current - data);
}
// Handle all three-byte opcodes, which start with 0x0F38 or 0x0F3A.
// These instructions may be affected by an 0x66, 0xF2, or 0xF3 prefix, but we
// only have instructions prefixed with 0x66 for now.
int DisassemblerX64::ThreeByteOpcodeInstruction(byte* data) {
DCHECK_EQ(0x0F, *data);
// Only support 3-byte opcodes prefixed with 0x66 for now.
DCHECK_EQ(0x66, operand_size_);
byte second_byte = *(data + 1);
byte third_byte = *(data + 2);
byte* current = data + 3;
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
if (second_byte == 0x38) {
switch (third_byte) {
case 0x10: {
AppendToBuffer("pblendvb %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
AppendToBuffer(",<xmm0>");
break;
}
case 0x14: {
AppendToBuffer("blendvps %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
AppendToBuffer(",<xmm0>");
break;
}
case 0x15: {
current += PrintOperands("blendvpd", XMMREG_XMMOPER_OP_ORDER, current);
AppendToBuffer(",<xmm0>");
break;
}
#define SSE34_DIS_CASE(instruction, notUsed1, notUsed2, notUsed3, opcode) \
case 0x##opcode: { \
current += PrintOperands(#instruction, XMMREG_XMMOPER_OP_ORDER, current); \
break; \
}
SSSE3_INSTRUCTION_LIST(SSE34_DIS_CASE)
SSSE3_UNOP_INSTRUCTION_LIST(SSE34_DIS_CASE)
SSE4_INSTRUCTION_LIST(SSE34_DIS_CASE)
SSE4_UNOP_INSTRUCTION_LIST(SSE34_DIS_CASE)
SSE4_2_INSTRUCTION_LIST(SSE34_DIS_CASE)
#undef SSE34_DIS_CASE
default:
UnimplementedInstruction();
}
} else {
DCHECK_EQ(0x3A, second_byte);
if (third_byte == 0x17) {
current += PrintOperands("extractps", OPER_XMMREG_OP_ORDER, current);
AppendToBuffer(",%d", (*current++) & 3);
} else if (third_byte == 0x08) {
current += PrintOperands("roundps", XMMREG_XMMOPER_OP_ORDER, current);
AppendToBuffer(",0x%x", (*current++) & 3);
} else if (third_byte == 0x09) {
current += PrintOperands("roundpd", XMMREG_XMMOPER_OP_ORDER, current);
AppendToBuffer(",0x%x", (*current++) & 3);
} else if (third_byte == 0x0A) {
current += PrintOperands("roundss", XMMREG_XMMOPER_OP_ORDER, current);
AppendToBuffer(",0x%x", (*current++) & 3);
} else if (third_byte == 0x0B) {
current += PrintOperands("roundsd", XMMREG_XMMOPER_OP_ORDER, current);
AppendToBuffer(",0x%x", (*current++) & 3);
} else if (third_byte == 0x0E) {
current += PrintOperands("pblendw", XMMREG_XMMOPER_OP_ORDER, current);
AppendToBuffer(",0x%x", *current++);
} else if (third_byte == 0x0F) {
current += PrintOperands("palignr", XMMREG_XMMOPER_OP_ORDER, current);
AppendToBuffer(",0x%x", *current++);
} else if (third_byte == 0x14) {
current += PrintOperands("pextrb", OPER_XMMREG_OP_ORDER, current);
AppendToBuffer(",%d", (*current++) & 0xf);
} else if (third_byte == 0x15) {
current += PrintOperands("pextrw", OPER_XMMREG_OP_ORDER, current);
AppendToBuffer(",%d", (*current++) & 7);
} else if (third_byte == 0x16) {
const char* mnem = rex_w() ? "pextrq" : "pextrd";
current += PrintOperands(mnem, OPER_XMMREG_OP_ORDER, current);
AppendToBuffer(",%d", (*current++) & 3);
} else if (third_byte == 0x20) {
current += PrintOperands("pinsrb", XMMREG_OPER_OP_ORDER, current);
AppendToBuffer(",%d", (*current++) & 3);
} else if (third_byte == 0x21) {
current += PrintOperands("insertps", XMMREG_XMMOPER_OP_ORDER, current);
AppendToBuffer(",0x%x", *current++);
} else if (third_byte == 0x22) {
const char* mnem = rex_w() ? "pinsrq" : "pinsrd";
current += PrintOperands(mnem, XMMREG_OPER_OP_ORDER, current);
AppendToBuffer(",%d", (*current++) & 3);
} else {
UnimplementedInstruction();
}
}
return static_cast<int>(current - data);
}
// Mnemonics for two-byte opcode instructions starting with 0x0F.
// The argument is the second byte of the two-byte opcode.
// Returns nullptr if the instruction is not handled here.
const char* DisassemblerX64::TwoByteMnemonic(byte opcode) {
if (opcode >= 0xC8 && opcode <= 0xCF) return "bswap";
switch (opcode) {
case 0x1F:
return "nop";
case 0x2A: // F2/F3 prefix.
return (group_1_prefix_ == 0xF2) ? "cvtsi2sd" : "cvtsi2ss";
case 0x51: // F2/F3 prefix.
return (group_1_prefix_ == 0xF2) ? "sqrtsd" : "sqrtss";
case 0x58: // F2/F3 prefix.
return (group_1_prefix_ == 0xF2) ? "addsd" : "addss";
case 0x59: // F2/F3 prefix.
return (group_1_prefix_ == 0xF2) ? "mulsd" : "mulss";
case 0x5A: // F2/F3 prefix.
return (group_1_prefix_ == 0xF2) ? "cvtsd2ss" : "cvtss2sd";
case 0x5B: // F2/F3 prefix.
return "cvttps2dq";
case 0x5D: // F2/F3 prefix.
return (group_1_prefix_ == 0xF2) ? "minsd" : "minss";
case 0x5C: // F2/F3 prefix.
return (group_1_prefix_ == 0xF2) ? "subsd" : "subss";
case 0x5E: // F2/F3 prefix.
return (group_1_prefix_ == 0xF2) ? "divsd" : "divss";
case 0x5F: // F2/F3 prefix.
return (group_1_prefix_ == 0xF2) ? "maxsd" : "maxss";
case 0xA2:
return "cpuid";
case 0xA3:
return "bt";
case 0xA5:
return "shld";
case 0xAB:
return "bts";
case 0xAD:
return "shrd";
case 0xAF:
return "imul";
case 0xB0:
case 0xB1:
return "cmpxchg";
case 0xB6:
return "movzxb";
case 0xB7:
return "movzxw";
case 0xBC:
return "bsf";
case 0xBD:
return "bsr";
case 0xBE:
return "movsxb";
case 0xBF:
return "movsxw";
default:
return nullptr;
}
}
// Disassembles the instruction at instr, and writes it into out_buffer.
int DisassemblerX64::InstructionDecode(v8::internal::Vector<char> out_buffer,
byte* instr) {
tmp_buffer_pos_ = 0; // starting to write as position 0
byte* data = instr;
bool processed = true; // Will be set to false if the current instruction
// is not in 'instructions' table.
byte current;
// Scan for prefixes.
while (true) {
current = *data;
if (current == OPERAND_SIZE_OVERRIDE_PREFIX) { // Group 3 prefix.
operand_size_ = current;
} else if ((current & 0xF0) == 0x40) { // REX prefix.
setRex(current);
if (rex_w()) AppendToBuffer("REX.W ");
} else if ((current & 0xFE) == 0xF2) { // Group 1 prefix (0xF2 or 0xF3).
group_1_prefix_ = current;
} else if (current == LOCK_PREFIX) {
AppendToBuffer("lock ");
} else if (current == VEX3_PREFIX) {
vex_byte0_ = current;
vex_byte1_ = *(data + 1);
vex_byte2_ = *(data + 2);
setRex(0x40 | (~(vex_byte1_ >> 5) & 7) | ((vex_byte2_ >> 4) & 8));
data += 3;
break; // Vex is the last prefix.
} else if (current == VEX2_PREFIX) {
vex_byte0_ = current;
vex_byte1_ = *(data + 1);
setRex(0x40 | (~(vex_byte1_ >> 5) & 4));
data += 2;
break; // Vex is the last prefix.
} else { // Not a prefix - an opcode.
break;
}
data++;
}
// Decode AVX instructions.
if (vex_byte0_ != 0) {
processed = true;
data += AVXInstruction(data);
} else {
const InstructionDesc& idesc = instruction_table_->Get(current);
byte_size_operand_ = idesc.byte_size_operation;
switch (idesc.type) {
case ZERO_OPERANDS_INSTR:
if ((current >= 0xA4 && current <= 0xA7) ||
(current >= 0xAA && current <= 0xAD)) {
// String move or compare operations.
if (group_1_prefix_ == REP_PREFIX) {
// REP.
AppendToBuffer("rep ");
}
AppendToBuffer("%s%c", idesc.mnem, operand_size_code());
} else {
AppendToBuffer("%s%c", idesc.mnem, operand_size_code());
}
data++;
break;
case TWO_OPERANDS_INSTR:
data++;
data += PrintOperands(idesc.mnem, idesc.op_order_, data);
break;
case JUMP_CONDITIONAL_SHORT_INSTR:
data += JumpConditionalShort(data);
break;
case REGISTER_INSTR:
AppendToBuffer("%s%c %s", idesc.mnem, operand_size_code(),
NameOfCPURegister(base_reg(current & 0x07)));
data++;
break;
case PUSHPOP_INSTR:
AppendToBuffer("%s %s", idesc.mnem,
NameOfCPURegister(base_reg(current & 0x07)));
data++;
break;
case MOVE_REG_INSTR: {
byte* addr = nullptr;
switch (operand_size()) {
case OPERAND_WORD_SIZE:
addr = reinterpret_cast<byte*>(Imm16(data + 1));
data += 3;
break;
case OPERAND_DOUBLEWORD_SIZE:
addr = reinterpret_cast<byte*>(Imm32_U(data + 1));
data += 5;
break;
case OPERAND_QUADWORD_SIZE:
addr = reinterpret_cast<byte*>(Imm64(data + 1));
data += 9;
break;
default:
UNREACHABLE();
}
AppendToBuffer("mov%c %s,%s", operand_size_code(),
NameOfCPURegister(base_reg(current & 0x07)),
NameOfAddress(addr));
break;
}
case CALL_JUMP_INSTR: {
byte* addr = data + Imm32(data + 1) + 5;
AppendToBuffer("%s %s", idesc.mnem, NameOfAddress(addr));
data += 5;
break;
}
case SHORT_IMMEDIATE_INSTR: {
int32_t imm;
if (operand_size() == OPERAND_WORD_SIZE) {
imm = Imm16(data + 1);
data += 3;
} else {
imm = Imm32(data + 1);
data += 5;
}
AppendToBuffer("%s rax,0x%x", idesc.mnem, imm);
break;
}
case NO_INSTR:
processed = false;
break;
default:
UNIMPLEMENTED(); // This type is not implemented.
}
}
// The first byte didn't match any of the simple opcodes, so we
// need to do special processing on it.
if (!processed) {
switch (*data) {
case 0xC2:
AppendToBuffer("ret 0x%x", Imm16_U(data + 1));
data += 3;
break;
case 0x69: // fall through
case 0x6B: {
int count = 1;
count += PrintOperands("imul", REG_OPER_OP_ORDER, data + count);
AppendToBuffer(",0x");
if (*data == 0x69) {
count += PrintImmediate(data + count, operand_size());
} else {
count += PrintImmediate(data + count, OPERAND_BYTE_SIZE);
}
data += count;
break;
}
case 0x81: // fall through
case 0x83: // 0x81 with sign extension bit set
data += PrintImmediateOp(data);
break;
case 0x0F:
// Check for three-byte opcodes, 0x0F38 or 0x0F3A.
if (*(data + 1) == 0x38 || *(data + 1) == 0x3A) {
data += ThreeByteOpcodeInstruction(data);
} else {
data += TwoByteOpcodeInstruction(data);
}
break;
case 0x8F: {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
if (regop == 0) {
AppendToBuffer("pop ");
data += PrintRightOperand(data);
}
} break;
case 0xFF: {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
const char* mnem = nullptr;
switch (regop) {
case 0:
mnem = "inc";
break;
case 1:
mnem = "dec";
break;
case 2:
mnem = "call";
break;
case 4:
mnem = "jmp";
break;
case 6:
mnem = "push";
break;
default:
mnem = "???";
}
if (regop <= 1) {
AppendToBuffer("%s%c ", mnem, operand_size_code());
} else {
AppendToBuffer("%s ", mnem);
}
data += PrintRightOperand(data);
} break;
case 0xC7: // imm32, fall through
case 0xC6: // imm8
{
bool is_byte = *data == 0xC6;
data++;
if (is_byte) {
AppendToBuffer("movb ");
data += PrintRightByteOperand(data);
int32_t imm = *data;
AppendToBuffer(",0x%x", imm);
data++;
} else {
AppendToBuffer("mov%c ", operand_size_code());
data += PrintRightOperand(data);
if (operand_size() == OPERAND_WORD_SIZE) {
AppendToBuffer(",0x%x", Imm16(data));
data += 2;
} else {
AppendToBuffer(",0x%x", Imm32(data));
data += 4;
}
}
} break;
case 0x80: {
data++;
AppendToBuffer("cmpb ");
data += PrintRightByteOperand(data);
int32_t imm = *data;
AppendToBuffer(",0x%x", imm);
data++;
} break;
case 0x88: // 8bit, fall through
case 0x89: // 32bit
{
bool is_byte = *data == 0x88;
int mod, regop, rm;
data++;
get_modrm(*data, &mod, &regop, &rm);
if (is_byte) {
AppendToBuffer("movb ");
data += PrintRightByteOperand(data);
AppendToBuffer(",%s", NameOfByteCPURegister(regop));
} else {
AppendToBuffer("mov%c ", operand_size_code());
data += PrintRightOperand(data);
AppendToBuffer(",%s", NameOfCPURegister(regop));
}
} break;
case 0x90:
case 0x91:
case 0x92:
case 0x93:
case 0x94:
case 0x95:
case 0x96:
case 0x97: {
int reg = (*data & 0x7) | (rex_b() ? 8 : 0);
if (group_1_prefix_ == 0xF3 && *data == 0x90) {
AppendToBuffer("pause");
} else if (reg == 0) {
AppendToBuffer("nop"); // Common name for xchg rax,rax.
} else {
AppendToBuffer("xchg%c rax,%s", operand_size_code(),
NameOfCPURegister(reg));
}
data++;
} break;
case 0xB0:
case 0xB1:
case 0xB2:
case 0xB3:
case 0xB4:
case 0xB5:
case 0xB6:
case 0xB7:
case 0xB8:
case 0xB9:
case 0xBA:
case 0xBB:
case 0xBC:
case 0xBD:
case 0xBE:
case 0xBF: {
// mov reg8,imm8 or mov reg32,imm32
byte opcode = *data;
data++;
bool is_32bit = (opcode >= 0xB8);
int reg = (opcode & 0x7) | (rex_b() ? 8 : 0);
if (is_32bit) {
AppendToBuffer("mov%c %s,", operand_size_code(),
NameOfCPURegister(reg));
data += PrintImmediate(data, OPERAND_DOUBLEWORD_SIZE);
} else {
AppendToBuffer("movb %s,", NameOfByteCPURegister(reg));
data += PrintImmediate(data, OPERAND_BYTE_SIZE);
}
break;
}
case 0xFE: {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
if (regop == 1) {
AppendToBuffer("decb ");
data += PrintRightByteOperand(data);
} else {
UnimplementedInstruction();
}
break;
}
case 0x68:
AppendToBuffer("push 0x%x", Imm32(data + 1));
data += 5;
break;
case 0x6A:
AppendToBuffer("push 0x%x", Imm8(data + 1));
data += 2;
break;
case 0xA1: // Fall through.
case 0xA3:
switch (operand_size()) {
case OPERAND_DOUBLEWORD_SIZE: {
const char* memory_location =
NameOfAddress(reinterpret_cast<byte*>(Imm32(data + 1)));
if (*data == 0xA1) { // Opcode 0xA1
AppendToBuffer("movzxlq rax,(%s)", memory_location);
} else { // Opcode 0xA3
AppendToBuffer("movzxlq (%s),rax", memory_location);
}
data += 5;
break;
}
case OPERAND_QUADWORD_SIZE: {
// New x64 instruction mov rax,(imm_64).
const char* memory_location =
NameOfAddress(reinterpret_cast<byte*>(Imm64(data + 1)));
if (*data == 0xA1) { // Opcode 0xA1
AppendToBuffer("movq rax,(%s)", memory_location);
} else { // Opcode 0xA3
AppendToBuffer("movq (%s),rax", memory_location);
}
data += 9;
break;
}
default:
UnimplementedInstruction();
data += 2;
}
break;
case 0xA8:
AppendToBuffer("test al,0x%x", Imm8_U(data + 1));
data += 2;
break;
case 0xA9: {
int64_t value = 0;
switch (operand_size()) {
case OPERAND_WORD_SIZE:
value = Imm16_U(data + 1);
data += 3;
break;
case OPERAND_DOUBLEWORD_SIZE:
value = Imm32_U(data + 1);
data += 5;
break;
case OPERAND_QUADWORD_SIZE:
value = Imm32(data + 1);
data += 5;
break;
default:
UNREACHABLE();
}
AppendToBuffer("test%c rax,0x%" PRIx64, operand_size_code(), value);
break;
}
case 0xD1: // fall through
case 0xD3: // fall through
case 0xC1:
data += ShiftInstruction(data);
break;
case 0xD0: // fall through
case 0xD2: // fall through
case 0xC0:
byte_size_operand_ = true;
data += ShiftInstruction(data);
break;
case 0xD9: // fall through
case 0xDA: // fall through
case 0xDB: // fall through
case 0xDC: // fall through
case 0xDD: // fall through
case 0xDE: // fall through
case 0xDF:
data += FPUInstruction(data);
break;
case 0xEB:
data += JumpShort(data);
break;
case 0xF6:
byte_size_operand_ = true;
V8_FALLTHROUGH;
case 0xF7:
data += F6F7Instruction(data);
break;
case 0x3C:
AppendToBuffer("cmp al,0x%x", Imm8(data + 1));
data += 2;
break;
default:
UnimplementedInstruction();
data += 1;
}
} // !processed
if (tmp_buffer_pos_ < sizeof tmp_buffer_) {
tmp_buffer_[tmp_buffer_pos_] = '\0';
}
int instr_len = static_cast<int>(data - instr);
DCHECK_GT(instr_len, 0); // Ensure progress.
int outp = 0;
// Instruction bytes.
for (byte* bp = instr; bp < data; bp++) {
outp += v8::internal::SNPrintF(out_buffer + outp, "%02x", *bp);
}
for (int i = 6 - instr_len; i >= 0; i--) {
outp += v8::internal::SNPrintF(out_buffer + outp, " ");
}
outp += v8::internal::SNPrintF(out_buffer + outp, " %s", tmp_buffer_.begin());
return instr_len;
}
//------------------------------------------------------------------------------
static const char* const cpu_regs[16] = {
"rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"};
static const char* const byte_cpu_regs[16] = {
"al", "cl", "dl", "bl", "spl", "bpl", "sil", "dil",
"r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"};
static const char* const xmm_regs[16] = {
"xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
"xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"};
const char* NameConverter::NameOfAddress(byte* addr) const {
v8::internal::SNPrintF(tmp_buffer_, "%p", static_cast<void*>(addr));
return tmp_buffer_.begin();
}
const char* NameConverter::NameOfConstant(byte* addr) const {
return NameOfAddress(addr);
}
const char* NameConverter::NameOfCPURegister(int reg) const {
if (0 <= reg && reg < 16) return cpu_regs[reg];
return "noreg";
}
const char* NameConverter::NameOfByteCPURegister(int reg) const {
if (0 <= reg && reg < 16) return byte_cpu_regs[reg];
return "noreg";
}
const char* NameConverter::NameOfXMMRegister(int reg) const {
if (0 <= reg && reg < 16) return xmm_regs[reg];
return "noxmmreg";
}
const char* NameConverter::NameInCode(byte* addr) const {
// X64 does not embed debug strings at the moment.
UNREACHABLE();
}
//------------------------------------------------------------------------------
int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
byte* instruction) {
DisassemblerX64 d(converter_, unimplemented_opcode_action());
return d.InstructionDecode(buffer, instruction);
}
// The X64 assembler does not use constant pools.
int Disassembler::ConstantPoolSizeAt(byte* instruction) { return -1; }
void Disassembler::Disassemble(FILE* f, byte* begin, byte* end,
UnimplementedOpcodeAction unimplemented_action) {
NameConverter converter;
Disassembler d(converter, unimplemented_action);
for (byte* pc = begin; pc < end;) {
v8::internal::EmbeddedVector<char, 128> buffer;
buffer[0] = '\0';
byte* prev_pc = pc;
pc += d.InstructionDecode(buffer, pc);
fprintf(f, "%p", static_cast<void*>(prev_pc));
fprintf(f, " ");
for (byte* bp = prev_pc; bp < pc; bp++) {
fprintf(f, "%02x", *bp);
}
for (int i = 6 - static_cast<int>(pc - prev_pc); i >= 0; i--) {
fprintf(f, " ");
}
fprintf(f, " %s\n", buffer.begin());
}
}
} // namespace disasm
#endif // V8_TARGET_ARCH_X64