blob: 6d60271a43cc0017b104275125fb6d76f28e1d1e [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
#define V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
#include "src/codegen/arm64/assembler-arm64.h"
#include "src/codegen/macro-assembler.h"
#include "src/regexp/regexp-macro-assembler.h"
namespace v8 {
namespace internal {
class V8_EXPORT_PRIVATE RegExpMacroAssemblerARM64
: public NativeRegExpMacroAssembler {
public:
RegExpMacroAssemblerARM64(Isolate* isolate, Zone* zone, Mode mode,
int registers_to_save);
virtual ~RegExpMacroAssemblerARM64();
virtual void AbortedCodeGeneration() { masm_->AbortedCodeGeneration(); }
virtual int stack_limit_slack();
virtual void AdvanceCurrentPosition(int by);
virtual void AdvanceRegister(int reg, int by);
virtual void Backtrack();
virtual void Bind(Label* label);
virtual void CheckAtStart(int cp_offset, Label* on_at_start);
virtual void CheckCharacter(unsigned c, Label* on_equal);
virtual void CheckCharacterAfterAnd(unsigned c,
unsigned mask,
Label* on_equal);
virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
virtual void CheckCharacterLT(uc16 limit, Label* on_less);
virtual void CheckCharacters(Vector<const uc16> str,
int cp_offset,
Label* on_failure,
bool check_end_of_string);
// A "greedy loop" is a loop that is both greedy and with a simple
// body. It has a particularly simple implementation.
virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
virtual void CheckNotBackReference(int start_reg, bool read_backward,
Label* on_no_match);
virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
bool read_backward, bool unicode,
Label* on_no_match);
virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
virtual void CheckNotCharacterAfterAnd(unsigned c,
unsigned mask,
Label* on_not_equal);
virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
uc16 minus,
uc16 mask,
Label* on_not_equal);
virtual void CheckCharacterInRange(uc16 from,
uc16 to,
Label* on_in_range);
virtual void CheckCharacterNotInRange(uc16 from,
uc16 to,
Label* on_not_in_range);
virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
// Checks whether the given offset from the current position is before
// the end of the string.
virtual void CheckPosition(int cp_offset, Label* on_outside_input);
virtual bool CheckSpecialCharacterClass(uc16 type,
Label* on_no_match);
virtual void BindJumpTarget(Label* label = nullptr);
virtual void Fail();
virtual Handle<HeapObject> GetCode(Handle<String> source);
virtual void GoTo(Label* label);
virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
virtual void IfRegisterEqPos(int reg, Label* if_eq);
virtual IrregexpImplementation Implementation();
virtual void LoadCurrentCharacterUnchecked(int cp_offset,
int character_count);
virtual void PopCurrentPosition();
virtual void PopRegister(int register_index);
virtual void PushBacktrack(Label* label);
virtual void PushCurrentPosition();
virtual void PushRegister(int register_index,
StackCheckFlag check_stack_limit);
virtual void ReadCurrentPositionFromRegister(int reg);
virtual void ReadStackPointerFromRegister(int reg);
virtual void SetCurrentPositionFromEnd(int by);
virtual void SetRegister(int register_index, int to);
virtual bool Succeed();
virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
virtual void ClearRegisters(int reg_from, int reg_to);
virtual void WriteStackPointerToRegister(int reg);
// Called from RegExp if the stack-guard is triggered.
// If the code object is relocated, the return address is fixed before
// returning.
// {raw_code} is an Address because this is called via ExternalReference.
static int CheckStackGuardState(Address* return_address, Address raw_code,
Address re_frame, int start_offset,
const byte** input_start,
const byte** input_end);
private:
// Above the frame pointer - Stored registers and stack passed parameters.
// Callee-saved registers x19-x29, where x29 is the old frame pointer.
static const int kCalleeSavedRegisters = 0;
// Return address.
// It is placed above the 11 callee-saved registers.
static const int kReturnAddress =
kCalleeSavedRegisters + 11 * kSystemPointerSize;
// Stack parameter placed by caller.
static const int kIsolate = kReturnAddress + kSystemPointerSize;
// Below the frame pointer.
// Register parameters stored by setup code.
static const int kDirectCall = kCalleeSavedRegisters - kSystemPointerSize;
static const int kStackBase = kDirectCall - kSystemPointerSize;
static const int kOutputSize = kStackBase - kSystemPointerSize;
static const int kInput = kOutputSize - kSystemPointerSize;
// When adding local variables remember to push space for them in
// the frame in GetCode.
static const int kSuccessCounter = kInput - kSystemPointerSize;
static const int kBacktrackCount = kSuccessCounter - kSystemPointerSize;
// First position register address on the stack. Following positions are
// below it. A position is a 32 bit value.
static const int kFirstRegisterOnStack = kBacktrackCount - kWRegSize;
// A capture is a 64 bit value holding two position.
static const int kFirstCaptureOnStack = kBacktrackCount - kXRegSize;
// Initial size of code buffer.
static const int kRegExpCodeSize = 1024;
// When initializing registers to a non-position value we can unroll
// the loop. Set the limit of registers to unroll.
static const int kNumRegistersToUnroll = 16;
// We are using x0 to x7 as a register cache. Each hardware register must
// contain one capture, that is two 32 bit registers. We can cache at most
// 16 registers.
static const int kNumCachedRegisters = 16;
// Check whether preemption has been requested.
void CheckPreemption();
// Check whether we are exceeding the stack limit on the backtrack stack.
void CheckStackLimit();
// Generate a call to CheckStackGuardState.
void CallCheckStackGuardState(Register scratch);
// Location of a 32 bit position register.
MemOperand register_location(int register_index);
// Location of a 64 bit capture, combining two position registers.
MemOperand capture_location(int register_index, Register scratch);
// Register holding the current input position as negative offset from
// the end of the string.
Register current_input_offset() { return w21; }
// The register containing the current character after LoadCurrentCharacter.
Register current_character() { return w22; }
// Register holding address of the end of the input string.
Register input_end() { return x25; }
// Register holding address of the start of the input string.
Register input_start() { return x26; }
// Register holding the offset from the start of the string where we should
// start matching.
Register start_offset() { return w27; }
// Pointer to the output array's first element.
Register output_array() { return x28; }
// Register holding the frame address. Local variables, parameters and
// regexp registers are addressed relative to this.
Register frame_pointer() { return fp; }
// The register containing the backtrack stack top. Provides a meaningful
// name to the register.
Register backtrack_stackpointer() { return x23; }
// Register holding pointer to the current code object.
Register code_pointer() { return x20; }
// Register holding the value used for clearing capture registers.
Register string_start_minus_one() { return w24; }
// The top 32 bit of this register is used to store this value
// twice. This is used for clearing more than one register at a time.
Register twice_non_position_value() { return x24; }
// Byte size of chars in the string to match (decided by the Mode argument)
int char_size() { return static_cast<int>(mode_); }
// Equivalent to a conditional branch to the label, unless the label
// is nullptr, in which case it is a conditional Backtrack.
void BranchOrBacktrack(Condition condition, Label* to);
// Compares reg against immmediate before calling BranchOrBacktrack.
// It makes use of the Cbz and Cbnz instructions.
void CompareAndBranchOrBacktrack(Register reg,
int immediate,
Condition condition,
Label* to);
inline void CallIf(Label* to, Condition condition);
// Save and restore the link register on the stack in a way that
// is GC-safe.
inline void SaveLinkRegister();
inline void RestoreLinkRegister();
// Pushes the value of a register on the backtrack stack. Decrements the
// stack pointer by a word size and stores the register's value there.
inline void Push(Register source);
// Pops a value from the backtrack stack. Reads the word at the stack pointer
// and increments it by a word size.
inline void Pop(Register target);
// This state indicates where the register actually is.
enum RegisterState {
STACKED, // Resides in memory.
CACHED_LSW, // Least Significant Word of a 64 bit hardware register.
CACHED_MSW // Most Significant Word of a 64 bit hardware register.
};
RegisterState GetRegisterState(int register_index) {
DCHECK_LE(0, register_index);
if (register_index >= kNumCachedRegisters) {
return STACKED;
} else {
if ((register_index % 2) == 0) {
return CACHED_LSW;
} else {
return CACHED_MSW;
}
}
}
// Store helper that takes the state of the register into account.
inline void StoreRegister(int register_index, Register source);
// Returns a hardware W register that holds the value of the capture
// register.
//
// This function will try to use an existing cache register (w0-w7) for the
// result. Otherwise, it will load the value into maybe_result.
//
// If the returned register is anything other than maybe_result, calling code
// must not write to it.
inline Register GetRegister(int register_index, Register maybe_result);
// Returns the harware register (x0-x7) holding the value of the capture
// register.
// This assumes that the state of the register is not STACKED.
inline Register GetCachedRegister(int register_index);
Isolate* isolate() const { return masm_->isolate(); }
MacroAssembler* masm_;
// Which mode to generate code for (LATIN1 or UC16).
Mode mode_;
// One greater than maximal register index actually used.
int num_registers_;
// Number of registers to output at the end (the saved registers
// are always 0..num_saved_registers_-1)
int num_saved_registers_;
// Labels used internally.
Label entry_label_;
Label start_label_;
Label success_label_;
Label backtrack_label_;
Label exit_label_;
Label check_preempt_label_;
Label stack_overflow_label_;
Label fallback_label_;
};
} // namespace internal
} // namespace v8
#endif // V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_