blob: 7e56ea6eae24029190bd06fb1bef8ebbf1d1279b [file] [log] [blame]
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_WASM_WASM_LINKAGE_H_
#define V8_WASM_WASM_LINKAGE_H_
#include "src/codegen/assembler-arch.h"
#include "src/codegen/machine-type.h"
#include "src/codegen/signature.h"
#include "src/wasm/value-type.h"
namespace v8 {
namespace internal {
namespace wasm {
// TODO(wasm): optimize calling conventions to be both closer to C++ (to
// reduce adapter costs for fast Wasm <-> C++ calls) and to be more efficient
// in general.
#if V8_TARGET_ARCH_IA32
// ===========================================================================
// == ia32 ===================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {esi, eax, edx, ecx};
constexpr Register kGpReturnRegisters[] = {eax, edx};
constexpr DoubleRegister kFpParamRegisters[] = {xmm1, xmm2, xmm3,
xmm4, xmm5, xmm6};
constexpr DoubleRegister kFpReturnRegisters[] = {xmm1, xmm2};
#elif V8_TARGET_ARCH_X64
// ===========================================================================
// == x64 ====================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {rsi, rax, rdx, rcx, rbx, r9};
constexpr Register kGpReturnRegisters[] = {rax, rdx};
constexpr DoubleRegister kFpParamRegisters[] = {xmm1, xmm2, xmm3,
xmm4, xmm5, xmm6};
constexpr DoubleRegister kFpReturnRegisters[] = {xmm1, xmm2};
#elif V8_TARGET_ARCH_ARM
// ===========================================================================
// == arm ====================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {r3, r0, r2, r6};
constexpr Register kGpReturnRegisters[] = {r0, r1};
// ARM d-registers must be in ascending order for correct allocation.
constexpr DoubleRegister kFpParamRegisters[] = {d0, d1, d2, d3, d4, d5, d6, d7};
constexpr DoubleRegister kFpReturnRegisters[] = {d0, d1};
#elif V8_TARGET_ARCH_ARM64
// ===========================================================================
// == arm64 ====================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {x7, x0, x2, x3, x4, x5, x6};
constexpr Register kGpReturnRegisters[] = {x0, x1};
constexpr DoubleRegister kFpParamRegisters[] = {d0, d1, d2, d3, d4, d5, d6, d7};
constexpr DoubleRegister kFpReturnRegisters[] = {d0, d1};
#elif V8_TARGET_ARCH_MIPS
// ===========================================================================
// == mips ===================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {a0, a2, a3};
constexpr Register kGpReturnRegisters[] = {v0, v1};
constexpr DoubleRegister kFpParamRegisters[] = {f2, f4, f6, f8, f10, f12, f14};
constexpr DoubleRegister kFpReturnRegisters[] = {f2, f4};
#elif V8_TARGET_ARCH_MIPS64
// ===========================================================================
// == mips64 =================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {a0, a2, a3, a4, a5, a6, a7};
constexpr Register kGpReturnRegisters[] = {v0, v1};
constexpr DoubleRegister kFpParamRegisters[] = {f2, f4, f6, f8, f10, f12, f14};
constexpr DoubleRegister kFpReturnRegisters[] = {f2, f4};
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
// ===========================================================================
// == ppc & ppc64 ============================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {r10, r3, r5, r6, r7, r8, r9};
constexpr Register kGpReturnRegisters[] = {r3, r4};
constexpr DoubleRegister kFpParamRegisters[] = {d1, d2, d3, d4, d5, d6, d7, d8};
constexpr DoubleRegister kFpReturnRegisters[] = {d1, d2};
#elif V8_TARGET_ARCH_S390X
// ===========================================================================
// == s390x ==================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {r6, r2, r4, r5};
constexpr Register kGpReturnRegisters[] = {r2, r3};
constexpr DoubleRegister kFpParamRegisters[] = {d0, d2, d4, d6};
constexpr DoubleRegister kFpReturnRegisters[] = {d0, d2, d4, d6};
#elif V8_TARGET_ARCH_S390
// ===========================================================================
// == s390 ===================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {r6, r2, r4, r5};
constexpr Register kGpReturnRegisters[] = {r2, r3};
constexpr DoubleRegister kFpParamRegisters[] = {d0, d2};
constexpr DoubleRegister kFpReturnRegisters[] = {d0, d2};
#else
// ===========================================================================
// == unknown ================================================================
// ===========================================================================
// Do not use any registers, we will just always use the stack.
constexpr Register kGpParamRegisters[] = {};
constexpr Register kGpReturnRegisters[] = {};
constexpr DoubleRegister kFpParamRegisters[] = {};
constexpr DoubleRegister kFpReturnRegisters[] = {};
#endif
// The parameter index where the instance parameter should be placed in wasm
// call descriptors. This is used by the Int64Lowering::LowerNode method.
constexpr int kWasmInstanceParameterIndex = 0;
class LinkageAllocator {
public:
template <size_t kNumGpRegs, size_t kNumFpRegs>
constexpr LinkageAllocator(const Register (&gp)[kNumGpRegs],
const DoubleRegister (&fp)[kNumFpRegs])
: LinkageAllocator(gp, kNumGpRegs, fp, kNumFpRegs) {}
constexpr LinkageAllocator(const Register* gp, int gpc,
const DoubleRegister* fp, int fpc)
: gp_count_(gpc), gp_regs_(gp), fp_count_(fpc), fp_regs_(fp) {}
bool CanAllocateGP() const { return gp_offset_ < gp_count_; }
bool CanAllocateFP(MachineRepresentation rep) const {
#if V8_TARGET_ARCH_ARM
switch (rep) {
case MachineRepresentation::kFloat32:
return fp_offset_ < fp_count_ && fp_regs_[fp_offset_].code() < 16;
case MachineRepresentation::kFloat64:
return extra_double_reg_ >= 0 || fp_offset_ < fp_count_;
case MachineRepresentation::kSimd128:
return ((fp_offset_ + 1) & ~1) + 1 < fp_count_;
default:
UNREACHABLE();
return false;
}
#endif
return fp_offset_ < fp_count_;
}
int NextGpReg() {
DCHECK_LT(gp_offset_, gp_count_);
return gp_regs_[gp_offset_++].code();
}
int NextFpReg(MachineRepresentation rep) {
#if V8_TARGET_ARCH_ARM
switch (rep) {
case MachineRepresentation::kFloat32: {
// Liftoff uses only even-numbered f32 registers, and encodes them using
// the code of the corresponding f64 register. This limits the calling
// interface to only using the even-numbered f32 registers.
int d_reg_code = NextFpReg(MachineRepresentation::kFloat64);
DCHECK_GT(16, d_reg_code); // D-registers 16 - 31 can't split.
return d_reg_code * 2;
}
case MachineRepresentation::kFloat64: {
// Use the extra D-register if there is one.
if (extra_double_reg_ >= 0) {
int reg_code = extra_double_reg_;
extra_double_reg_ = -1;
return reg_code;
}
DCHECK_LT(fp_offset_, fp_count_);
return fp_regs_[fp_offset_++].code();
}
case MachineRepresentation::kSimd128: {
// Q-register must be an even-odd pair, so we must try to allocate at
// the end, not using extra_double_reg_. If we are at an odd D-register,
// skip past it (saving it to extra_double_reg_).
DCHECK_LT(((fp_offset_ + 1) & ~1) + 1, fp_count_);
int d_reg1_code = fp_regs_[fp_offset_++].code();
if (d_reg1_code % 2 != 0) {
// If we're misaligned then extra_double_reg_ must have been consumed.
DCHECK_EQ(-1, extra_double_reg_);
int odd_double_reg = d_reg1_code;
d_reg1_code = fp_regs_[fp_offset_++].code();
extra_double_reg_ = odd_double_reg;
}
// Combine the current D-register with the next to form a Q-register.
int d_reg2_code = fp_regs_[fp_offset_++].code();
DCHECK_EQ(0, d_reg1_code % 2);
DCHECK_EQ(d_reg1_code + 1, d_reg2_code);
USE(d_reg2_code);
return d_reg1_code / 2;
}
default:
UNREACHABLE();
}
#else
DCHECK_LT(fp_offset_, fp_count_);
return fp_regs_[fp_offset_++].code();
#endif
}
// Stackslots are counted upwards starting from 0 (or the offset set by
// {SetStackOffset}.
int NumStackSlots(MachineRepresentation type) {
return std::max(1, ElementSizeInBytes(type) / kSystemPointerSize);
}
// Stackslots are counted upwards starting from 0 (or the offset set by
// {SetStackOffset}. If {type} needs more than
// one stack slot, the lowest used stack slot is returned.
int NextStackSlot(MachineRepresentation type) {
int num_stack_slots = NumStackSlots(type);
int offset = stack_offset_;
stack_offset_ += num_stack_slots;
return offset;
}
// Set an offset for the stack slots returned by {NextStackSlot} and
// {NumStackSlots}. Can only be called before any call to {NextStackSlot}.
void SetStackOffset(int num) {
DCHECK_LE(0, num);
DCHECK_EQ(0, stack_offset_);
stack_offset_ = num;
}
int NumStackSlots() const { return stack_offset_; }
private:
const int gp_count_;
int gp_offset_ = 0;
const Register* const gp_regs_;
const int fp_count_;
int fp_offset_ = 0;
const DoubleRegister* const fp_regs_;
#if V8_TARGET_ARCH_ARM
// Track fragments of registers below fp_offset_ here. There can only be one
// extra double register.
int extra_double_reg_ = -1;
#endif
int stack_offset_ = 0;
};
} // namespace wasm
} // namespace internal
} // namespace v8
#endif // V8_WASM_WASM_LINKAGE_H_