| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <float.h> |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "./vp9_rtcd.h" |
| #include "./vpx_dsp_rtcd.h" |
| #include "./vpx_config.h" |
| |
| #include "vpx_dsp/vpx_dsp_common.h" |
| #include "vpx_ports/mem.h" |
| #include "vpx_ports/vpx_timer.h" |
| #include "vpx_ports/system_state.h" |
| |
| #if CONFIG_MISMATCH_DEBUG |
| #include "vpx_util/vpx_debug_util.h" |
| #endif // CONFIG_MISMATCH_DEBUG |
| |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/common/vp9_entropy.h" |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_idct.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_quant_common.h" |
| #include "vp9/common/vp9_reconintra.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/common/vp9_seg_common.h" |
| #include "vp9/common/vp9_tile_common.h" |
| #if !CONFIG_REALTIME_ONLY |
| #include "vp9/encoder/vp9_aq_360.h" |
| #include "vp9/encoder/vp9_aq_complexity.h" |
| #endif |
| #include "vp9/encoder/vp9_aq_cyclicrefresh.h" |
| #if !CONFIG_REALTIME_ONLY |
| #include "vp9/encoder/vp9_aq_variance.h" |
| #endif |
| #include "vp9/encoder/vp9_encodeframe.h" |
| #include "vp9/encoder/vp9_encodemb.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/encoder/vp9_ethread.h" |
| #include "vp9/encoder/vp9_extend.h" |
| #include "vp9/encoder/vp9_multi_thread.h" |
| #include "vp9/encoder/vp9_partition_models.h" |
| #include "vp9/encoder/vp9_pickmode.h" |
| #include "vp9/encoder/vp9_rd.h" |
| #include "vp9/encoder/vp9_rdopt.h" |
| #include "vp9/encoder/vp9_segmentation.h" |
| #include "vp9/encoder/vp9_tokenize.h" |
| |
| static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t, |
| int output_enabled, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx); |
| |
| // This is used as a reference when computing the source variance for the |
| // purpose of activity masking. |
| // Eventually this should be replaced by custom no-reference routines, |
| // which will be faster. |
| static const uint8_t VP9_VAR_OFFS[64] = { |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 |
| }; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = { |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 |
| }; |
| |
| static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = { |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4 |
| }; |
| |
| static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = { |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16 |
| }; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| unsigned int vp9_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref, |
| BLOCK_SIZE bs) { |
| unsigned int sse; |
| const unsigned int var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, VP9_VAR_OFFS, 0, &sse); |
| return var; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| unsigned int vp9_high_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref, |
| BLOCK_SIZE bs, int bd) { |
| unsigned int var, sse; |
| switch (bd) { |
| case 10: |
| var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, |
| CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10), 0, &sse); |
| break; |
| case 12: |
| var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, |
| CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12), 0, &sse); |
| break; |
| case 8: |
| default: |
| var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, |
| CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8), 0, &sse); |
| break; |
| } |
| return var; |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| unsigned int vp9_get_sby_perpixel_variance(VP9_COMP *cpi, |
| const struct buf_2d *ref, |
| BLOCK_SIZE bs) { |
| return ROUND_POWER_OF_TWO(vp9_get_sby_variance(cpi, ref, bs), |
| num_pels_log2_lookup[bs]); |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| unsigned int vp9_high_get_sby_perpixel_variance(VP9_COMP *cpi, |
| const struct buf_2d *ref, |
| BLOCK_SIZE bs, int bd) { |
| return (unsigned int)ROUND64_POWER_OF_TWO( |
| (int64_t)vp9_high_get_sby_variance(cpi, ref, bs, bd), |
| num_pels_log2_lookup[bs]); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| #if !CONFIG_REALTIME_ONLY |
| static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi, |
| const struct buf_2d *ref, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bs) { |
| unsigned int sse, var; |
| uint8_t *last_y; |
| const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME); |
| |
| assert(last != NULL); |
| last_y = |
| &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE]; |
| var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse); |
| return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); |
| } |
| |
| static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi, MACROBLOCK *x, |
| int mi_row, int mi_col) { |
| unsigned int var = get_sby_perpixel_diff_variance( |
| cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64); |
| if (var < 8) |
| return BLOCK_64X64; |
| else if (var < 128) |
| return BLOCK_32X32; |
| else if (var < 2048) |
| return BLOCK_16X16; |
| else |
| return BLOCK_8X8; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static void set_segment_index(VP9_COMP *cpi, MACROBLOCK *const x, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, int segment_index) { |
| VP9_COMMON *const cm = &cpi->common; |
| const struct segmentation *const seg = &cm->seg; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *mi = xd->mi[0]; |
| |
| const AQ_MODE aq_mode = cpi->oxcf.aq_mode; |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| |
| // Initialize the segmentation index as 0. |
| mi->segment_id = 0; |
| |
| // Skip the rest if AQ mode is disabled. |
| if (!seg->enabled) return; |
| |
| switch (aq_mode) { |
| case CYCLIC_REFRESH_AQ: |
| mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); |
| break; |
| #if !CONFIG_REALTIME_ONLY |
| case VARIANCE_AQ: |
| if (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame || |
| cpi->force_update_segmentation || |
| (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) { |
| int min_energy; |
| int max_energy; |
| // Get sub block energy range |
| if (bsize >= BLOCK_32X32) { |
| vp9_get_sub_block_energy(cpi, x, mi_row, mi_col, bsize, &min_energy, |
| &max_energy); |
| } else { |
| min_energy = bsize <= BLOCK_16X16 ? x->mb_energy |
| : vp9_block_energy(cpi, x, bsize); |
| } |
| mi->segment_id = vp9_vaq_segment_id(min_energy); |
| } else { |
| mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); |
| } |
| break; |
| case EQUATOR360_AQ: |
| if (cm->frame_type == KEY_FRAME || cpi->force_update_segmentation) |
| mi->segment_id = vp9_360aq_segment_id(mi_row, cm->mi_rows); |
| else |
| mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); |
| break; |
| #endif |
| case LOOKAHEAD_AQ: |
| mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); |
| break; |
| case PSNR_AQ: mi->segment_id = segment_index; break; |
| case PERCEPTUAL_AQ: mi->segment_id = x->segment_id; break; |
| default: |
| // NO_AQ or PSNR_AQ |
| break; |
| } |
| |
| // Set segment index from ROI map if it's enabled. |
| if (cpi->roi.enabled) |
| mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); |
| |
| vp9_init_plane_quantizers(cpi, x); |
| } |
| |
| // Lighter version of set_offsets that only sets the mode info |
| // pointers. |
| static INLINE void set_mode_info_offsets(VP9_COMMON *const cm, |
| MACROBLOCK *const x, |
| MACROBLOCKD *const xd, int mi_row, |
| int mi_col) { |
| const int idx_str = xd->mi_stride * mi_row + mi_col; |
| xd->mi = cm->mi_grid_visible + idx_str; |
| xd->mi[0] = cm->mi + idx_str; |
| x->mbmi_ext = x->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); |
| } |
| |
| static void set_ssim_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, const int mi_row, |
| const int mi_col, int *const rdmult) { |
| const VP9_COMMON *const cm = &cpi->common; |
| |
| const int bsize_base = BLOCK_16X16; |
| const int num_8x8_w = num_8x8_blocks_wide_lookup[bsize_base]; |
| const int num_8x8_h = num_8x8_blocks_high_lookup[bsize_base]; |
| const int num_cols = (cm->mi_cols + num_8x8_w - 1) / num_8x8_w; |
| const int num_rows = (cm->mi_rows + num_8x8_h - 1) / num_8x8_h; |
| const int num_bcols = |
| (num_8x8_blocks_wide_lookup[bsize] + num_8x8_w - 1) / num_8x8_w; |
| const int num_brows = |
| (num_8x8_blocks_high_lookup[bsize] + num_8x8_h - 1) / num_8x8_h; |
| int row, col; |
| double num_of_mi = 0.0; |
| double geom_mean_of_scale = 0.0; |
| |
| assert(cpi->oxcf.tuning == VP8_TUNE_SSIM); |
| |
| for (row = mi_row / num_8x8_w; |
| row < num_rows && row < mi_row / num_8x8_w + num_brows; ++row) { |
| for (col = mi_col / num_8x8_h; |
| col < num_cols && col < mi_col / num_8x8_h + num_bcols; ++col) { |
| const int index = row * num_cols + col; |
| geom_mean_of_scale += log(cpi->mi_ssim_rdmult_scaling_factors[index]); |
| num_of_mi += 1.0; |
| } |
| } |
| geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi); |
| |
| *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale); |
| *rdmult = VPXMAX(*rdmult, 0); |
| set_error_per_bit(x, *rdmult); |
| vpx_clear_system_state(); |
| } |
| |
| static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| VP9_COMMON *const cm = &cpi->common; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| MvLimits *const mv_limits = &x->mv_limits; |
| |
| set_skip_context(xd, mi_row, mi_col); |
| |
| set_mode_info_offsets(cm, x, xd, mi_row, mi_col); |
| |
| // Set up destination pointers. |
| vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); |
| |
| // Set up limit values for MV components. |
| // Mv beyond the range do not produce new/different prediction block. |
| mv_limits->row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND); |
| mv_limits->col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND); |
| mv_limits->row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND; |
| mv_limits->col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND; |
| |
| // Set up distance of MB to edge of frame in 1/8th pel units. |
| assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); |
| set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows, |
| cm->mi_cols); |
| |
| // Set up source buffers. |
| vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); |
| |
| // R/D setup. |
| x->rddiv = cpi->rd.RDDIV; |
| x->rdmult = cpi->rd.RDMULT; |
| if (oxcf->tuning == VP8_TUNE_SSIM) { |
| set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult); |
| } |
| |
| // required by vp9_append_sub8x8_mvs_for_idx() and vp9_find_best_ref_mvs() |
| xd->tile = *tile; |
| } |
| |
| static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| const int block_width = |
| VPXMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col); |
| const int block_height = |
| VPXMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row); |
| const int mi_stride = xd->mi_stride; |
| MODE_INFO *const src_mi = xd->mi[0]; |
| int i, j; |
| |
| for (j = 0; j < block_height; ++j) |
| for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi; |
| } |
| |
| static void set_block_size(VP9_COMP *const cpi, MACROBLOCK *const x, |
| MACROBLOCKD *const xd, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) { |
| set_mode_info_offsets(&cpi->common, x, xd, mi_row, mi_col); |
| xd->mi[0]->sb_type = bsize; |
| } |
| } |
| |
| typedef struct { |
| // This struct is used for computing variance in choose_partitioning(), where |
| // the max number of samples within a superblock is 16x16 (with 4x4 avg). Even |
| // in high bitdepth, uint32_t is enough for sum_square_error (2^12 * 2^12 * 16 |
| // * 16 = 2^32). |
| uint32_t sum_square_error; |
| int32_t sum_error; |
| int log2_count; |
| int variance; |
| } var; |
| |
| typedef struct { |
| var none; |
| var horz[2]; |
| var vert[2]; |
| } partition_variance; |
| |
| typedef struct { |
| partition_variance part_variances; |
| var split[4]; |
| } v4x4; |
| |
| typedef struct { |
| partition_variance part_variances; |
| v4x4 split[4]; |
| } v8x8; |
| |
| typedef struct { |
| partition_variance part_variances; |
| v8x8 split[4]; |
| } v16x16; |
| |
| typedef struct { |
| partition_variance part_variances; |
| v16x16 split[4]; |
| } v32x32; |
| |
| typedef struct { |
| partition_variance part_variances; |
| v32x32 split[4]; |
| } v64x64; |
| |
| typedef struct { |
| partition_variance *part_variances; |
| var *split[4]; |
| } variance_node; |
| |
| typedef enum { |
| V16X16, |
| V32X32, |
| V64X64, |
| } TREE_LEVEL; |
| |
| static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) { |
| int i; |
| node->part_variances = NULL; |
| switch (bsize) { |
| case BLOCK_64X64: { |
| v64x64 *vt = (v64x64 *)data; |
| node->part_variances = &vt->part_variances; |
| for (i = 0; i < 4; i++) |
| node->split[i] = &vt->split[i].part_variances.none; |
| break; |
| } |
| case BLOCK_32X32: { |
| v32x32 *vt = (v32x32 *)data; |
| node->part_variances = &vt->part_variances; |
| for (i = 0; i < 4; i++) |
| node->split[i] = &vt->split[i].part_variances.none; |
| break; |
| } |
| case BLOCK_16X16: { |
| v16x16 *vt = (v16x16 *)data; |
| node->part_variances = &vt->part_variances; |
| for (i = 0; i < 4; i++) |
| node->split[i] = &vt->split[i].part_variances.none; |
| break; |
| } |
| case BLOCK_8X8: { |
| v8x8 *vt = (v8x8 *)data; |
| node->part_variances = &vt->part_variances; |
| for (i = 0; i < 4; i++) |
| node->split[i] = &vt->split[i].part_variances.none; |
| break; |
| } |
| default: { |
| v4x4 *vt = (v4x4 *)data; |
| assert(bsize == BLOCK_4X4); |
| node->part_variances = &vt->part_variances; |
| for (i = 0; i < 4; i++) node->split[i] = &vt->split[i]; |
| break; |
| } |
| } |
| } |
| |
| // Set variance values given sum square error, sum error, count. |
| static void fill_variance(uint32_t s2, int32_t s, int c, var *v) { |
| v->sum_square_error = s2; |
| v->sum_error = s; |
| v->log2_count = c; |
| } |
| |
| static void get_variance(var *v) { |
| v->variance = |
| (int)(256 * (v->sum_square_error - |
| (uint32_t)(((int64_t)v->sum_error * v->sum_error) >> |
| v->log2_count)) >> |
| v->log2_count); |
| } |
| |
| static void sum_2_variances(const var *a, const var *b, var *r) { |
| assert(a->log2_count == b->log2_count); |
| fill_variance(a->sum_square_error + b->sum_square_error, |
| a->sum_error + b->sum_error, a->log2_count + 1, r); |
| } |
| |
| static void fill_variance_tree(void *data, BLOCK_SIZE bsize) { |
| variance_node node; |
| memset(&node, 0, sizeof(node)); |
| tree_to_node(data, bsize, &node); |
| sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]); |
| sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]); |
| sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]); |
| sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]); |
| sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1], |
| &node.part_variances->none); |
| } |
| |
| static int set_vt_partitioning(VP9_COMP *cpi, MACROBLOCK *const x, |
| MACROBLOCKD *const xd, void *data, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int64_t threshold, BLOCK_SIZE bsize_min, |
| int force_split) { |
| VP9_COMMON *const cm = &cpi->common; |
| variance_node vt; |
| const int block_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int block_height = num_8x8_blocks_high_lookup[bsize]; |
| |
| assert(block_height == block_width); |
| tree_to_node(data, bsize, &vt); |
| |
| if (force_split == 1) return 0; |
| |
| // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if |
| // variance is below threshold, otherwise split will be selected. |
| // No check for vert/horiz split as too few samples for variance. |
| if (bsize == bsize_min) { |
| // Variance already computed to set the force_split. |
| if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none); |
| if (mi_col + block_width / 2 < cm->mi_cols && |
| mi_row + block_height / 2 < cm->mi_rows && |
| vt.part_variances->none.variance < threshold) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, bsize); |
| return 1; |
| } |
| return 0; |
| } else if (bsize > bsize_min) { |
| // Variance already computed to set the force_split. |
| if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none); |
| // For key frame: take split for bsize above 32X32 or very high variance. |
| if (frame_is_intra_only(cm) && |
| (bsize > BLOCK_32X32 || |
| vt.part_variances->none.variance > (threshold << 4))) { |
| return 0; |
| } |
| // If variance is low, take the bsize (no split). |
| if (mi_col + block_width / 2 < cm->mi_cols && |
| mi_row + block_height / 2 < cm->mi_rows && |
| vt.part_variances->none.variance < threshold) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, bsize); |
| return 1; |
| } |
| |
| // Check vertical split. |
| if (mi_row + block_height / 2 < cm->mi_rows) { |
| BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT); |
| get_variance(&vt.part_variances->vert[0]); |
| get_variance(&vt.part_variances->vert[1]); |
| if (vt.part_variances->vert[0].variance < threshold && |
| vt.part_variances->vert[1].variance < threshold && |
| get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, subsize); |
| set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize); |
| return 1; |
| } |
| } |
| // Check horizontal split. |
| if (mi_col + block_width / 2 < cm->mi_cols) { |
| BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ); |
| get_variance(&vt.part_variances->horz[0]); |
| get_variance(&vt.part_variances->horz[1]); |
| if (vt.part_variances->horz[0].variance < threshold && |
| vt.part_variances->horz[1].variance < threshold && |
| get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, subsize); |
| set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| return 0; |
| } |
| |
| static int64_t scale_part_thresh_sumdiff(int64_t threshold_base, int speed, |
| int width, int height, |
| int content_state) { |
| if (speed >= 8) { |
| if (width <= 640 && height <= 480) |
| return (5 * threshold_base) >> 2; |
| else if ((content_state == kLowSadLowSumdiff) || |
| (content_state == kHighSadLowSumdiff) || |
| (content_state == kLowVarHighSumdiff)) |
| return (5 * threshold_base) >> 2; |
| } else if (speed == 7) { |
| if ((content_state == kLowSadLowSumdiff) || |
| (content_state == kHighSadLowSumdiff) || |
| (content_state == kLowVarHighSumdiff)) { |
| return (5 * threshold_base) >> 2; |
| } |
| } |
| return threshold_base; |
| } |
| |
| // Set the variance split thresholds for following the block sizes: |
| // 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16, |
| // 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is |
| // currently only used on key frame. |
| static void set_vbp_thresholds(VP9_COMP *cpi, int64_t thresholds[], int q, |
| int content_state) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int is_key_frame = frame_is_intra_only(cm); |
| const int threshold_multiplier = |
| is_key_frame ? 20 : cpi->sf.variance_part_thresh_mult; |
| int64_t threshold_base = |
| (int64_t)(threshold_multiplier * cpi->y_dequant[q][1]); |
| |
| if (is_key_frame) { |
| thresholds[0] = threshold_base; |
| thresholds[1] = threshold_base >> 2; |
| thresholds[2] = threshold_base >> 2; |
| thresholds[3] = threshold_base << 2; |
| } else { |
| // Increase base variance threshold based on estimated noise level. |
| if (cpi->noise_estimate.enabled && cm->width >= 640 && cm->height >= 480) { |
| NOISE_LEVEL noise_level = |
| vp9_noise_estimate_extract_level(&cpi->noise_estimate); |
| if (noise_level == kHigh) |
| threshold_base = 3 * threshold_base; |
| else if (noise_level == kMedium) |
| threshold_base = threshold_base << 1; |
| else if (noise_level < kLow) |
| threshold_base = (7 * threshold_base) >> 3; |
| } |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) && |
| cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow) |
| threshold_base = |
| vp9_scale_part_thresh(threshold_base, cpi->denoiser.denoising_level, |
| content_state, cpi->svc.temporal_layer_id); |
| else |
| threshold_base = |
| scale_part_thresh_sumdiff(threshold_base, cpi->oxcf.speed, cm->width, |
| cm->height, content_state); |
| #else |
| // Increase base variance threshold based on content_state/sum_diff level. |
| threshold_base = scale_part_thresh_sumdiff( |
| threshold_base, cpi->oxcf.speed, cm->width, cm->height, content_state); |
| #endif |
| thresholds[0] = threshold_base; |
| thresholds[2] = threshold_base << cpi->oxcf.speed; |
| if (cm->width >= 1280 && cm->height >= 720 && cpi->oxcf.speed < 7) |
| thresholds[2] = thresholds[2] << 1; |
| if (cm->width <= 352 && cm->height <= 288) { |
| thresholds[0] = threshold_base >> 3; |
| thresholds[1] = threshold_base >> 1; |
| thresholds[2] = threshold_base << 3; |
| if (cpi->rc.avg_frame_qindex[INTER_FRAME] > 220) |
| thresholds[2] = thresholds[2] << 2; |
| else if (cpi->rc.avg_frame_qindex[INTER_FRAME] > 200) |
| thresholds[2] = thresholds[2] << 1; |
| } else if (cm->width < 1280 && cm->height < 720) { |
| thresholds[1] = (5 * threshold_base) >> 2; |
| } else if (cm->width < 1920 && cm->height < 1080) { |
| thresholds[1] = threshold_base << 1; |
| } else { |
| thresholds[1] = (5 * threshold_base) >> 1; |
| } |
| if (cpi->sf.disable_16x16part_nonkey) thresholds[2] = INT64_MAX; |
| } |
| } |
| |
| void vp9_set_variance_partition_thresholds(VP9_COMP *cpi, int q, |
| int content_state) { |
| VP9_COMMON *const cm = &cpi->common; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| const int is_key_frame = frame_is_intra_only(cm); |
| if (sf->partition_search_type != VAR_BASED_PARTITION && |
| sf->partition_search_type != REFERENCE_PARTITION) { |
| return; |
| } else { |
| set_vbp_thresholds(cpi, cpi->vbp_thresholds, q, content_state); |
| // The thresholds below are not changed locally. |
| if (is_key_frame) { |
| cpi->vbp_threshold_sad = 0; |
| cpi->vbp_threshold_copy = 0; |
| cpi->vbp_bsize_min = BLOCK_8X8; |
| } else { |
| if (cm->width <= 352 && cm->height <= 288) |
| cpi->vbp_threshold_sad = 10; |
| else |
| cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000 |
| ? (cpi->y_dequant[q][1] << 1) |
| : 1000; |
| cpi->vbp_bsize_min = BLOCK_16X16; |
| if (cm->width <= 352 && cm->height <= 288) |
| cpi->vbp_threshold_copy = 4000; |
| else if (cm->width <= 640 && cm->height <= 360) |
| cpi->vbp_threshold_copy = 8000; |
| else |
| cpi->vbp_threshold_copy = (cpi->y_dequant[q][1] << 3) > 8000 |
| ? (cpi->y_dequant[q][1] << 3) |
| : 8000; |
| if (cpi->rc.high_source_sad || |
| (cpi->use_svc && cpi->svc.high_source_sad_superframe)) { |
| cpi->vbp_threshold_sad = 0; |
| cpi->vbp_threshold_copy = 0; |
| } |
| } |
| cpi->vbp_threshold_minmax = 15 + (q >> 3); |
| } |
| } |
| |
| // Compute the minmax over the 8x8 subblocks. |
| static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d, |
| int dp, int x16_idx, int y16_idx, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| int highbd_flag, |
| #endif |
| int pixels_wide, int pixels_high) { |
| int k; |
| int minmax_max = 0; |
| int minmax_min = 255; |
| // Loop over the 4 8x8 subblocks. |
| for (k = 0; k < 4; k++) { |
| int x8_idx = x16_idx + ((k & 1) << 3); |
| int y8_idx = y16_idx + ((k >> 1) << 3); |
| int min = 0; |
| int max = 0; |
| if (x8_idx < pixels_wide && y8_idx < pixels_high) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { |
| vpx_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp, |
| d + y8_idx * dp + x8_idx, dp, &min, &max); |
| } else { |
| vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, |
| dp, &min, &max); |
| } |
| #else |
| vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp, |
| &min, &max); |
| #endif |
| if ((max - min) > minmax_max) minmax_max = (max - min); |
| if ((max - min) < minmax_min) minmax_min = (max - min); |
| } |
| } |
| return (minmax_max - minmax_min); |
| } |
| |
| static void fill_variance_4x4avg(const uint8_t *s, int sp, const uint8_t *d, |
| int dp, int x8_idx, int y8_idx, v8x8 *vst, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| int highbd_flag, |
| #endif |
| int pixels_wide, int pixels_high, |
| int is_key_frame) { |
| int k; |
| for (k = 0; k < 4; k++) { |
| int x4_idx = x8_idx + ((k & 1) << 2); |
| int y4_idx = y8_idx + ((k >> 1) << 2); |
| unsigned int sse = 0; |
| int sum = 0; |
| if (x4_idx < pixels_wide && y4_idx < pixels_high) { |
| int s_avg; |
| int d_avg = 128; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { |
| s_avg = vpx_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp); |
| if (!is_key_frame) |
| d_avg = vpx_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp); |
| } else { |
| s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp); |
| if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp); |
| } |
| #else |
| s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp); |
| if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp); |
| #endif |
| sum = s_avg - d_avg; |
| sse = sum * sum; |
| } |
| fill_variance(sse, sum, 0, &vst->split[k].part_variances.none); |
| } |
| } |
| |
| static void fill_variance_8x8avg(const uint8_t *s, int sp, const uint8_t *d, |
| int dp, int x16_idx, int y16_idx, v16x16 *vst, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| int highbd_flag, |
| #endif |
| int pixels_wide, int pixels_high, |
| int is_key_frame) { |
| int k; |
| for (k = 0; k < 4; k++) { |
| int x8_idx = x16_idx + ((k & 1) << 3); |
| int y8_idx = y16_idx + ((k >> 1) << 3); |
| unsigned int sse = 0; |
| int sum = 0; |
| if (x8_idx < pixels_wide && y8_idx < pixels_high) { |
| int s_avg; |
| int d_avg = 128; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { |
| s_avg = vpx_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp); |
| if (!is_key_frame) |
| d_avg = vpx_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp); |
| } else { |
| s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp); |
| if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp); |
| } |
| #else |
| s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp); |
| if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp); |
| #endif |
| sum = s_avg - d_avg; |
| sse = sum * sum; |
| } |
| fill_variance(sse, sum, 0, &vst->split[k].part_variances.none); |
| } |
| } |
| |
| // Check if most of the superblock is skin content, and if so, force split to |
| // 32x32, and set x->sb_is_skin for use in mode selection. |
| static int skin_sb_split(VP9_COMP *cpi, MACROBLOCK *x, const int low_res, |
| int mi_row, int mi_col, int *force_split) { |
| VP9_COMMON *const cm = &cpi->common; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) return 0; |
| #endif |
| // Avoid checking superblocks on/near boundary and avoid low resolutions. |
| // Note superblock may still pick 64X64 if y_sad is very small |
| // (i.e., y_sad < cpi->vbp_threshold_sad) below. For now leave this as is. |
| if (!low_res && (mi_col >= 8 && mi_col + 8 < cm->mi_cols && mi_row >= 8 && |
| mi_row + 8 < cm->mi_rows)) { |
| int num_16x16_skin = 0; |
| int num_16x16_nonskin = 0; |
| uint8_t *ysignal = x->plane[0].src.buf; |
| uint8_t *usignal = x->plane[1].src.buf; |
| uint8_t *vsignal = x->plane[2].src.buf; |
| int sp = x->plane[0].src.stride; |
| int spuv = x->plane[1].src.stride; |
| const int block_index = mi_row * cm->mi_cols + mi_col; |
| const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64]; |
| const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64]; |
| const int xmis = VPXMIN(cm->mi_cols - mi_col, bw); |
| const int ymis = VPXMIN(cm->mi_rows - mi_row, bh); |
| // Loop through the 16x16 sub-blocks. |
| int i, j; |
| for (i = 0; i < ymis; i += 2) { |
| for (j = 0; j < xmis; j += 2) { |
| int bl_index = block_index + i * cm->mi_cols + j; |
| int is_skin = cpi->skin_map[bl_index]; |
| num_16x16_skin += is_skin; |
| num_16x16_nonskin += (1 - is_skin); |
| if (num_16x16_nonskin > 3) { |
| // Exit loop if at least 4 of the 16x16 blocks are not skin. |
| i = ymis; |
| break; |
| } |
| ysignal += 16; |
| usignal += 8; |
| vsignal += 8; |
| } |
| ysignal += (sp << 4) - 64; |
| usignal += (spuv << 3) - 32; |
| vsignal += (spuv << 3) - 32; |
| } |
| if (num_16x16_skin > 12) { |
| *force_split = 1; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static void set_low_temp_var_flag(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, |
| v64x64 *vt, int64_t thresholds[], |
| MV_REFERENCE_FRAME ref_frame_partition, |
| int mi_col, int mi_row) { |
| int i, j; |
| VP9_COMMON *const cm = &cpi->common; |
| const int mv_thr = cm->width > 640 ? 8 : 4; |
| // Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected and |
| // int_pro mv is small. If the temporal variance is small set the flag |
| // variance_low for the block. The variance threshold can be adjusted, the |
| // higher the more aggressive. |
| if (ref_frame_partition == LAST_FRAME && |
| (cpi->sf.short_circuit_low_temp_var == 1 || |
| (xd->mi[0]->mv[0].as_mv.col < mv_thr && |
| xd->mi[0]->mv[0].as_mv.col > -mv_thr && |
| xd->mi[0]->mv[0].as_mv.row < mv_thr && |
| xd->mi[0]->mv[0].as_mv.row > -mv_thr))) { |
| if (xd->mi[0]->sb_type == BLOCK_64X64) { |
| if ((vt->part_variances).none.variance < (thresholds[0] >> 1)) |
| x->variance_low[0] = 1; |
| } else if (xd->mi[0]->sb_type == BLOCK_64X32) { |
| for (i = 0; i < 2; i++) { |
| if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2)) |
| x->variance_low[i + 1] = 1; |
| } |
| } else if (xd->mi[0]->sb_type == BLOCK_32X64) { |
| for (i = 0; i < 2; i++) { |
| if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2)) |
| x->variance_low[i + 3] = 1; |
| } |
| } else { |
| for (i = 0; i < 4; i++) { |
| const int idx[4][2] = { { 0, 0 }, { 0, 4 }, { 4, 0 }, { 4, 4 } }; |
| const int idx_str = |
| cm->mi_stride * (mi_row + idx[i][0]) + mi_col + idx[i][1]; |
| MODE_INFO **this_mi = cm->mi_grid_visible + idx_str; |
| |
| if (cm->mi_cols <= mi_col + idx[i][1] || |
| cm->mi_rows <= mi_row + idx[i][0]) |
| continue; |
| |
| if ((*this_mi)->sb_type == BLOCK_32X32) { |
| int64_t threshold_32x32 = (cpi->sf.short_circuit_low_temp_var == 1 || |
| cpi->sf.short_circuit_low_temp_var == 3) |
| ? ((5 * thresholds[1]) >> 3) |
| : (thresholds[1] >> 1); |
| if (vt->split[i].part_variances.none.variance < threshold_32x32) |
| x->variance_low[i + 5] = 1; |
| } else if (cpi->sf.short_circuit_low_temp_var >= 2) { |
| // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block |
| // inside. |
| if ((*this_mi)->sb_type == BLOCK_16X16 || |
| (*this_mi)->sb_type == BLOCK_32X16 || |
| (*this_mi)->sb_type == BLOCK_16X32) { |
| for (j = 0; j < 4; j++) { |
| if (vt->split[i].split[j].part_variances.none.variance < |
| (thresholds[2] >> 8)) |
| x->variance_low[(i << 2) + j + 9] = 1; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static void copy_partitioning_helper(VP9_COMP *cpi, MACROBLOCK *x, |
| MACROBLOCKD *xd, BLOCK_SIZE bsize, |
| int mi_row, int mi_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| BLOCK_SIZE *prev_part = cpi->prev_partition; |
| int start_pos = mi_row * cm->mi_stride + mi_col; |
| |
| const int bsl = b_width_log2_lookup[bsize]; |
| const int bs = (1 << bsl) >> 2; |
| BLOCK_SIZE subsize; |
| PARTITION_TYPE partition; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| partition = partition_lookup[bsl][prev_part[start_pos]]; |
| subsize = get_subsize(bsize, partition); |
| |
| if (subsize < BLOCK_8X8) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, bsize); |
| } else { |
| switch (partition) { |
| case PARTITION_NONE: |
| set_block_size(cpi, x, xd, mi_row, mi_col, bsize); |
| break; |
| case PARTITION_HORZ: |
| set_block_size(cpi, x, xd, mi_row, mi_col, subsize); |
| set_block_size(cpi, x, xd, mi_row + bs, mi_col, subsize); |
| break; |
| case PARTITION_VERT: |
| set_block_size(cpi, x, xd, mi_row, mi_col, subsize); |
| set_block_size(cpi, x, xd, mi_row, mi_col + bs, subsize); |
| break; |
| default: |
| assert(partition == PARTITION_SPLIT); |
| copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col); |
| copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col); |
| copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col + bs); |
| copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col + bs); |
| break; |
| } |
| } |
| } |
| |
| static int copy_partitioning(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, |
| int mi_row, int mi_col, int segment_id, |
| int sb_offset) { |
| int svc_copy_allowed = 1; |
| int frames_since_key_thresh = 1; |
| if (cpi->use_svc) { |
| // For SVC, don't allow copy if base spatial layer is key frame, or if |
| // frame is not a temporal enhancement layer frame. |
| int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id, |
| cpi->svc.number_temporal_layers); |
| const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; |
| if (lc->is_key_frame || !cpi->svc.non_reference_frame) svc_copy_allowed = 0; |
| frames_since_key_thresh = cpi->svc.number_spatial_layers << 1; |
| } |
| if (cpi->rc.frames_since_key > frames_since_key_thresh && svc_copy_allowed && |
| !cpi->resize_pending && segment_id == CR_SEGMENT_ID_BASE && |
| cpi->prev_segment_id[sb_offset] == CR_SEGMENT_ID_BASE && |
| cpi->copied_frame_cnt[sb_offset] < cpi->max_copied_frame) { |
| if (cpi->prev_partition != NULL) { |
| copy_partitioning_helper(cpi, x, xd, BLOCK_64X64, mi_row, mi_col); |
| cpi->copied_frame_cnt[sb_offset] += 1; |
| memcpy(x->variance_low, &(cpi->prev_variance_low[sb_offset * 25]), |
| sizeof(x->variance_low)); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int scale_partitioning_svc(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int mi_row_high, int mi_col_high) { |
| VP9_COMMON *const cm = &cpi->common; |
| SVC *const svc = &cpi->svc; |
| BLOCK_SIZE *prev_part = svc->prev_partition_svc; |
| // Variables with _high are for higher resolution. |
| int bsize_high = 0; |
| int subsize_high = 0; |
| const int bsl_high = b_width_log2_lookup[bsize]; |
| const int bs_high = (1 << bsl_high) >> 2; |
| const int has_rows = (mi_row_high + bs_high) < cm->mi_rows; |
| const int has_cols = (mi_col_high + bs_high) < cm->mi_cols; |
| |
| const int row_boundary_block_scale_factor[BLOCK_SIZES] = { 13, 13, 13, 1, 0, |
| 1, 1, 0, 1, 1, |
| 0, 1, 0 }; |
| const int col_boundary_block_scale_factor[BLOCK_SIZES] = { 13, 13, 13, 2, 2, |
| 0, 2, 2, 0, 2, |
| 2, 0, 0 }; |
| int start_pos; |
| BLOCK_SIZE bsize_low; |
| PARTITION_TYPE partition_high; |
| |
| if (mi_row_high >= cm->mi_rows || mi_col_high >= cm->mi_cols) return 0; |
| if (mi_row >= svc->mi_rows[svc->spatial_layer_id - 1] || |
| mi_col >= svc->mi_cols[svc->spatial_layer_id - 1]) |
| return 0; |
| |
| // Find corresponding (mi_col/mi_row) block down-scaled by 2x2. |
| start_pos = mi_row * (svc->mi_stride[svc->spatial_layer_id - 1]) + mi_col; |
| bsize_low = prev_part[start_pos]; |
| // The block size is too big for boundaries. Do variance based partitioning. |
| if ((!has_rows || !has_cols) && bsize_low > BLOCK_16X16) return 1; |
| |
| // For reference frames: return 1 (do variance-based partitioning) if the |
| // superblock is not low source sad and lower-resoln bsize is below 32x32. |
| if (!cpi->svc.non_reference_frame && !x->skip_low_source_sad && |
| bsize_low < BLOCK_32X32) |
| return 1; |
| |
| // Scale up block size by 2x2. Force 64x64 for size larger than 32x32. |
| if (bsize_low < BLOCK_32X32) { |
| bsize_high = bsize_low + 3; |
| } else if (bsize_low >= BLOCK_32X32) { |
| bsize_high = BLOCK_64X64; |
| } |
| // Scale up blocks on boundary. |
| if (!has_cols && has_rows) { |
| bsize_high = bsize_low + row_boundary_block_scale_factor[bsize_low]; |
| } else if (has_cols && !has_rows) { |
| bsize_high = bsize_low + col_boundary_block_scale_factor[bsize_low]; |
| } else if (!has_cols && !has_rows) { |
| bsize_high = bsize_low; |
| } |
| |
| partition_high = partition_lookup[bsl_high][bsize_high]; |
| subsize_high = get_subsize(bsize, partition_high); |
| |
| if (subsize_high < BLOCK_8X8) { |
| set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high); |
| } else { |
| const int bsl = b_width_log2_lookup[bsize]; |
| const int bs = (1 << bsl) >> 2; |
| switch (partition_high) { |
| case PARTITION_NONE: |
| set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high); |
| break; |
| case PARTITION_HORZ: |
| set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high); |
| if (subsize_high < BLOCK_64X64) |
| set_block_size(cpi, x, xd, mi_row_high + bs_high, mi_col_high, |
| subsize_high); |
| break; |
| case PARTITION_VERT: |
| set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high); |
| if (subsize_high < BLOCK_64X64) |
| set_block_size(cpi, x, xd, mi_row_high, mi_col_high + bs_high, |
| subsize_high); |
| break; |
| default: |
| assert(partition_high == PARTITION_SPLIT); |
| if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row, mi_col, |
| mi_row_high, mi_col_high)) |
| return 1; |
| if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1), |
| mi_col, mi_row_high + bs_high, mi_col_high)) |
| return 1; |
| if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row, |
| mi_col + (bs >> 1), mi_row_high, |
| mi_col_high + bs_high)) |
| return 1; |
| if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1), |
| mi_col + (bs >> 1), mi_row_high + bs_high, |
| mi_col_high + bs_high)) |
| return 1; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void update_partition_svc(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row, |
| int mi_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| BLOCK_SIZE *prev_part = cpi->svc.prev_partition_svc; |
| int start_pos = mi_row * cm->mi_stride + mi_col; |
| const int bsl = b_width_log2_lookup[bsize]; |
| const int bs = (1 << bsl) >> 2; |
| BLOCK_SIZE subsize; |
| PARTITION_TYPE partition; |
| const MODE_INFO *mi = NULL; |
| int xx, yy; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| mi = cm->mi_grid_visible[start_pos]; |
| partition = partition_lookup[bsl][mi->sb_type]; |
| subsize = get_subsize(bsize, partition); |
| if (subsize < BLOCK_8X8) { |
| prev_part[start_pos] = bsize; |
| } else { |
| switch (partition) { |
| case PARTITION_NONE: |
| prev_part[start_pos] = bsize; |
| if (bsize == BLOCK_64X64) { |
| for (xx = 0; xx < 8; xx += 4) |
| for (yy = 0; yy < 8; yy += 4) { |
| if ((mi_row + xx < cm->mi_rows) && (mi_col + yy < cm->mi_cols)) |
| prev_part[start_pos + xx * cm->mi_stride + yy] = bsize; |
| } |
| } |
| break; |
| case PARTITION_HORZ: |
| prev_part[start_pos] = subsize; |
| if (mi_row + bs < cm->mi_rows) |
| prev_part[start_pos + bs * cm->mi_stride] = subsize; |
| break; |
| case PARTITION_VERT: |
| prev_part[start_pos] = subsize; |
| if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize; |
| break; |
| default: |
| assert(partition == PARTITION_SPLIT); |
| update_partition_svc(cpi, subsize, mi_row, mi_col); |
| update_partition_svc(cpi, subsize, mi_row + bs, mi_col); |
| update_partition_svc(cpi, subsize, mi_row, mi_col + bs); |
| update_partition_svc(cpi, subsize, mi_row + bs, mi_col + bs); |
| break; |
| } |
| } |
| } |
| |
| static void update_prev_partition_helper(VP9_COMP *cpi, BLOCK_SIZE bsize, |
| int mi_row, int mi_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| BLOCK_SIZE *prev_part = cpi->prev_partition; |
| int start_pos = mi_row * cm->mi_stride + mi_col; |
| const int bsl = b_width_log2_lookup[bsize]; |
| const int bs = (1 << bsl) >> 2; |
| BLOCK_SIZE subsize; |
| PARTITION_TYPE partition; |
| const MODE_INFO *mi = NULL; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| mi = cm->mi_grid_visible[start_pos]; |
| partition = partition_lookup[bsl][mi->sb_type]; |
| subsize = get_subsize(bsize, partition); |
| if (subsize < BLOCK_8X8) { |
| prev_part[start_pos] = bsize; |
| } else { |
| switch (partition) { |
| case PARTITION_NONE: prev_part[start_pos] = bsize; break; |
| case PARTITION_HORZ: |
| prev_part[start_pos] = subsize; |
| if (mi_row + bs < cm->mi_rows) |
| prev_part[start_pos + bs * cm->mi_stride] = subsize; |
| break; |
| case PARTITION_VERT: |
| prev_part[start_pos] = subsize; |
| if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize; |
| break; |
| default: |
| assert(partition == PARTITION_SPLIT); |
| update_prev_partition_helper(cpi, subsize, mi_row, mi_col); |
| update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col); |
| update_prev_partition_helper(cpi, subsize, mi_row, mi_col + bs); |
| update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col + bs); |
| break; |
| } |
| } |
| } |
| |
| static void update_prev_partition(VP9_COMP *cpi, MACROBLOCK *x, int segment_id, |
| int mi_row, int mi_col, int sb_offset) { |
| update_prev_partition_helper(cpi, BLOCK_64X64, mi_row, mi_col); |
| cpi->prev_segment_id[sb_offset] = segment_id; |
| memcpy(&(cpi->prev_variance_low[sb_offset * 25]), x->variance_low, |
| sizeof(x->variance_low)); |
| // Reset the counter for copy partitioning |
| cpi->copied_frame_cnt[sb_offset] = 0; |
| } |
| |
| static void chroma_check(VP9_COMP *cpi, MACROBLOCK *x, int bsize, |
| unsigned int y_sad, int is_key_frame, |
| int scene_change_detected) { |
| int i; |
| MACROBLOCKD *xd = &x->e_mbd; |
| int shift = 2; |
| |
| if (is_key_frame) return; |
| |
| // For speed > 8, avoid the chroma check if y_sad is above threshold. |
| if (cpi->oxcf.speed > 8) { |
| if (y_sad > cpi->vbp_thresholds[1] && |
| (!cpi->noise_estimate.enabled || |
| vp9_noise_estimate_extract_level(&cpi->noise_estimate) < kMedium)) |
| return; |
| } |
| |
| if (cpi->oxcf.content == VP9E_CONTENT_SCREEN && scene_change_detected) |
| shift = 5; |
| |
| for (i = 1; i <= 2; ++i) { |
| unsigned int uv_sad = UINT_MAX; |
| struct macroblock_plane *p = &x->plane[i]; |
| struct macroblockd_plane *pd = &xd->plane[i]; |
| const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); |
| |
| if (bs != BLOCK_INVALID) |
| uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride); |
| |
| // TODO(marpan): Investigate if we should lower this threshold if |
| // superblock is detected as skin. |
| x->color_sensitivity[i - 1] = uv_sad > (y_sad >> shift); |
| } |
| } |
| |
| static uint64_t avg_source_sad(VP9_COMP *cpi, MACROBLOCK *x, int shift, |
| int sb_offset) { |
| unsigned int tmp_sse; |
| uint64_t tmp_sad; |
| unsigned int tmp_variance; |
| const BLOCK_SIZE bsize = BLOCK_64X64; |
| uint8_t *src_y = cpi->Source->y_buffer; |
| int src_ystride = cpi->Source->y_stride; |
| uint8_t *last_src_y = cpi->Last_Source->y_buffer; |
| int last_src_ystride = cpi->Last_Source->y_stride; |
| uint64_t avg_source_sad_threshold = 10000; |
| uint64_t avg_source_sad_threshold2 = 12000; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cpi->common.use_highbitdepth) return 0; |
| #endif |
| src_y += shift; |
| last_src_y += shift; |
| tmp_sad = |
| cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, last_src_ystride); |
| tmp_variance = vpx_variance64x64(src_y, src_ystride, last_src_y, |
| last_src_ystride, &tmp_sse); |
| // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12) |
| if (tmp_sad < avg_source_sad_threshold) |
| x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kLowSadLowSumdiff |
| : kLowSadHighSumdiff; |
| else |
| x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kHighSadLowSumdiff |
| : kHighSadHighSumdiff; |
| |
| // Detect large lighting change. |
| if (cpi->oxcf.content != VP9E_CONTENT_SCREEN && |
| cpi->oxcf.rc_mode == VPX_CBR && tmp_variance < (tmp_sse >> 3) && |
| (tmp_sse - tmp_variance) > 10000) |
| x->content_state_sb = kLowVarHighSumdiff; |
| else if (tmp_sad > (avg_source_sad_threshold << 1)) |
| x->content_state_sb = kVeryHighSad; |
| |
| if (cpi->content_state_sb_fd != NULL) { |
| if (tmp_sad < avg_source_sad_threshold2) { |
| // Cap the increment to 255. |
| if (cpi->content_state_sb_fd[sb_offset] < 255) |
| cpi->content_state_sb_fd[sb_offset]++; |
| } else { |
| cpi->content_state_sb_fd[sb_offset] = 0; |
| } |
| } |
| if (tmp_sad == 0) x->zero_temp_sad_source = 1; |
| return tmp_sad; |
| } |
| |
| // This function chooses partitioning based on the variance between source and |
| // reconstructed last, where variance is computed for down-sampled inputs. |
| static int choose_partitioning(VP9_COMP *cpi, const TileInfo *const tile, |
| MACROBLOCK *x, int mi_row, int mi_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| int i, j, k, m; |
| v64x64 vt; |
| v16x16 *vt2 = NULL; |
| int force_split[21]; |
| int avg_32x32; |
| int max_var_32x32 = 0; |
| int min_var_32x32 = INT_MAX; |
| int var_32x32; |
| int avg_16x16[4]; |
| int maxvar_16x16[4]; |
| int minvar_16x16[4]; |
| int64_t threshold_4x4avg; |
| NOISE_LEVEL noise_level = kLow; |
| int content_state = 0; |
| uint8_t *s; |
| const uint8_t *d; |
| int sp; |
| int dp; |
| int compute_minmax_variance = 1; |
| unsigned int y_sad = UINT_MAX; |
| BLOCK_SIZE bsize = BLOCK_64X64; |
| // Ref frame used in partitioning. |
| MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME; |
| int pixels_wide = 64, pixels_high = 64; |
| int64_t thresholds[4] = { cpi->vbp_thresholds[0], cpi->vbp_thresholds[1], |
| cpi->vbp_thresholds[2], cpi->vbp_thresholds[3] }; |
| int scene_change_detected = |
| cpi->rc.high_source_sad || |
| (cpi->use_svc && cpi->svc.high_source_sad_superframe); |
| int force_64_split = scene_change_detected || |
| (cpi->oxcf.content == VP9E_CONTENT_SCREEN && |
| cpi->compute_source_sad_onepass && |
| cpi->sf.use_source_sad && !x->zero_temp_sad_source); |
| |
| // For the variance computation under SVC mode, we treat the frame as key if |
| // the reference (base layer frame) is key frame (i.e., is_key_frame == 1). |
| int is_key_frame = |
| (frame_is_intra_only(cm) || |
| (is_one_pass_cbr_svc(cpi) && |
| cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)); |
| // Always use 4x4 partition for key frame. |
| const int use_4x4_partition = frame_is_intra_only(cm); |
| const int low_res = (cm->width <= 352 && cm->height <= 288); |
| int variance4x4downsample[16]; |
| int segment_id; |
| int sb_offset = (cm->mi_stride >> 3) * (mi_row >> 3) + (mi_col >> 3); |
| |
| // For SVC: check if LAST frame is NULL or if the resolution of LAST is |
| // different than the current frame resolution, and if so, treat this frame |
| // as a key frame, for the purpose of the superblock partitioning. |
| // LAST == NULL can happen in some cases where enhancement spatial layers are |
| // enabled dyanmically in the stream and the only reference is the spatial |
| // reference (GOLDEN). |
| if (cpi->use_svc) { |
| const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, LAST_FRAME); |
| if (ref == NULL || ref->y_crop_height != cm->height || |
| ref->y_crop_width != cm->width) |
| is_key_frame = 1; |
| } |
| |
| set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64); |
| set_segment_index(cpi, x, mi_row, mi_col, BLOCK_64X64, 0); |
| segment_id = xd->mi[0]->segment_id; |
| |
| if (cpi->oxcf.speed >= 8 || (cpi->use_svc && cpi->svc.non_reference_frame)) |
| compute_minmax_variance = 0; |
| |
| memset(x->variance_low, 0, sizeof(x->variance_low)); |
| |
| if (cpi->sf.use_source_sad && !is_key_frame) { |
| int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3); |
| content_state = x->content_state_sb; |
| x->skip_low_source_sad = (content_state == kLowSadLowSumdiff || |
| content_state == kLowSadHighSumdiff) |
| ? 1 |
| : 0; |
| x->lowvar_highsumdiff = (content_state == kLowVarHighSumdiff) ? 1 : 0; |
| if (cpi->content_state_sb_fd != NULL) |
| x->last_sb_high_content = cpi->content_state_sb_fd[sb_offset2]; |
| |
| // For SVC on top spatial layer: use/scale the partition from |
| // the lower spatial resolution if svc_use_lowres_part is enabled. |
| if (cpi->sf.svc_use_lowres_part && |
| cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1 && |
| cpi->svc.prev_partition_svc != NULL && content_state != kVeryHighSad) { |
| if (!scale_partitioning_svc(cpi, x, xd, BLOCK_64X64, mi_row >> 1, |
| mi_col >> 1, mi_row, mi_col)) { |
| if (cpi->sf.copy_partition_flag) { |
| update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset); |
| } |
| return 0; |
| } |
| } |
| // If source_sad is low copy the partition without computing the y_sad. |
| if (x->skip_low_source_sad && cpi->sf.copy_partition_flag && |
| !force_64_split && |
| copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) { |
| x->sb_use_mv_part = 1; |
| if (cpi->sf.svc_use_lowres_part && |
| cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2) |
| update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col); |
| return 0; |
| } |
| } |
| |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled && |
| cyclic_refresh_segment_id_boosted(segment_id)) { |
| int q = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex); |
| set_vbp_thresholds(cpi, thresholds, q, content_state); |
| } else { |
| set_vbp_thresholds(cpi, thresholds, cm->base_qindex, content_state); |
| } |
| // Decrease 32x32 split threshold for screen on base layer, for scene |
| // change/high motion frames. |
| if (cpi->oxcf.content == VP9E_CONTENT_SCREEN && |
| cpi->svc.spatial_layer_id == 0 && force_64_split) |
| thresholds[1] = 3 * thresholds[1] >> 2; |
| |
| // For non keyframes, disable 4x4 average for low resolution when speed = 8 |
| threshold_4x4avg = (cpi->oxcf.speed < 8) ? thresholds[1] << 1 : INT64_MAX; |
| |
| if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3); |
| if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3); |
| |
| s = x->plane[0].src.buf; |
| sp = x->plane[0].src.stride; |
| |
| // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks, |
| // 5-20 for the 16x16 blocks. |
| force_split[0] = force_64_split; |
| |
| if (!is_key_frame) { |
| // In the case of spatial/temporal scalable coding, the assumption here is |
| // that the temporal reference frame will always be of type LAST_FRAME. |
| // TODO(marpan): If that assumption is broken, we need to revisit this code. |
| MODE_INFO *mi = xd->mi[0]; |
| YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); |
| |
| const YV12_BUFFER_CONFIG *yv12_g = NULL; |
| unsigned int y_sad_g, y_sad_thr, y_sad_last; |
| bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 + |
| (mi_row + 4 < cm->mi_rows); |
| |
| assert(yv12 != NULL); |
| |
| if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id) || |
| cpi->svc.use_gf_temporal_ref_current_layer) { |
| // For now, GOLDEN will not be used for non-zero spatial layers, since |
| // it may not be a temporal reference. |
| yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME); |
| } |
| |
| // Only compute y_sad_g (sad for golden reference) for speed < 8. |
| if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 && |
| (cpi->ref_frame_flags & VP9_GOLD_FLAG)) { |
| vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, |
| &cm->frame_refs[GOLDEN_FRAME - 1].sf); |
| y_sad_g = cpi->fn_ptr[bsize].sdf( |
| x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, |
| xd->plane[0].pre[0].stride); |
| } else { |
| y_sad_g = UINT_MAX; |
| } |
| |
| if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR && |
| cpi->rc.is_src_frame_alt_ref) { |
| yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME); |
| vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, |
| &cm->frame_refs[ALTREF_FRAME - 1].sf); |
| mi->ref_frame[0] = ALTREF_FRAME; |
| y_sad_g = UINT_MAX; |
| } else { |
| vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, |
| &cm->frame_refs[LAST_FRAME - 1].sf); |
| mi->ref_frame[0] = LAST_FRAME; |
| } |
| mi->ref_frame[1] = NONE; |
| mi->sb_type = BLOCK_64X64; |
| mi->mv[0].as_int = 0; |
| mi->interp_filter = BILINEAR; |
| |
| if (cpi->oxcf.speed >= 8 && !low_res && |
| x->content_state_sb != kVeryHighSad) { |
| y_sad = cpi->fn_ptr[bsize].sdf( |
| x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, |
| xd->plane[0].pre[0].stride); |
| } else { |
| const MV dummy_mv = { 0, 0 }; |
| y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col, |
| &dummy_mv); |
| x->sb_use_mv_part = 1; |
| x->sb_mvcol_part = mi->mv[0].as_mv.col; |
| x->sb_mvrow_part = mi->mv[0].as_mv.row; |
| if (cpi->oxcf.content == VP9E_CONTENT_SCREEN && |
| cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode && |
| cpi->svc.high_num_blocks_with_motion && !x->zero_temp_sad_source && |
| cm->width > 640 && cm->height > 480) { |
| // Disable split below 16x16 block size when scroll motion (horz or |
| // vert) is detected. |
| // TODO(marpan/jianj): Improve this condition: issue is that search |
| // range is hard-coded/limited in vp9_int_pro_motion_estimation() so |
| // scroll motion may not be detected here. |
| if (((abs(x->sb_mvrow_part) >= 48 && abs(x->sb_mvcol_part) <= 8) || |
| (abs(x->sb_mvcol_part) >= 48 && abs(x->sb_mvrow_part) <= 8)) && |
| y_sad < 100000) { |
| compute_minmax_variance = 0; |
| thresholds[2] = INT64_MAX; |
| } |
| } |
| } |
| |
| y_sad_last = y_sad; |
| // Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad |
| // are close if short_circuit_low_temp_var is on. |
| y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad; |
| if (y_sad_g < y_sad_thr) { |
| vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, |
| &cm->frame_refs[GOLDEN_FRAME - 1].sf); |
| mi->ref_frame[0] = GOLDEN_FRAME; |
| mi->mv[0].as_int = 0; |
| y_sad = y_sad_g; |
| ref_frame_partition = GOLDEN_FRAME; |
| } else { |
| x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv; |
| ref_frame_partition = LAST_FRAME; |
| } |
| |
| set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); |
| vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64); |
| |
| if (cpi->use_skin_detection) |
| x->sb_is_skin = |
| skin_sb_split(cpi, x, low_res, mi_row, mi_col, force_split); |
| |
| d = xd->plane[0].dst.buf; |
| dp = xd->plane[0].dst.stride; |
| |
| // If the y_sad is very small, take 64x64 as partition and exit. |
| // Don't check on boosted segment for now, as 64x64 is suppressed there. |
| if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) { |
| const int block_width = num_8x8_blocks_wide_lookup[BLOCK_64X64]; |
| const int block_height = num_8x8_blocks_high_lookup[BLOCK_64X64]; |
| if (mi_col + block_width / 2 < cm->mi_cols && |
| mi_row + block_height / 2 < cm->mi_rows) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_64X64); |
| x->variance_low[0] = 1; |
| chroma_check(cpi, x, bsize, y_sad, is_key_frame, scene_change_detected); |
| if (cpi->sf.svc_use_lowres_part && |
| cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2) |
| update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col); |
| if (cpi->sf.copy_partition_flag) { |
| update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset); |
| } |
| return 0; |
| } |
| } |
| |
| // If the y_sad is small enough, copy the partition of the superblock in the |
| // last frame to current frame only if the last frame is not a keyframe. |
| // Stop the copy every cpi->max_copied_frame to refresh the partition. |
| // TODO(jianj) : tune the threshold. |
| if (cpi->sf.copy_partition_flag && y_sad_last < cpi->vbp_threshold_copy && |
| copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) { |
| chroma_check(cpi, x, bsize, y_sad, is_key_frame, scene_change_detected); |
| if (cpi->sf.svc_use_lowres_part && |
| cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2) |
| update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col); |
| return 0; |
| } |
| } else { |
| d = VP9_VAR_OFFS; |
| dp = 0; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| switch (xd->bd) { |
| case 10: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10); break; |
| case 12: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12); break; |
| case 8: |
| default: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8); break; |
| } |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| |
| if (low_res && threshold_4x4avg < INT64_MAX) |
| CHECK_MEM_ERROR(cm, vt2, vpx_calloc(16, sizeof(*vt2))); |
| // Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances |
| // for splits. |
| for (i = 0; i < 4; i++) { |
| const int x32_idx = ((i & 1) << 5); |
| const int y32_idx = ((i >> 1) << 5); |
| const int i2 = i << 2; |
| force_split[i + 1] = 0; |
| avg_16x16[i] = 0; |
| maxvar_16x16[i] = 0; |
| minvar_16x16[i] = INT_MAX; |
| for (j = 0; j < 4; j++) { |
| const int x16_idx = x32_idx + ((j & 1) << 4); |
| const int y16_idx = y32_idx + ((j >> 1) << 4); |
| const int split_index = 5 + i2 + j; |
| v16x16 *vst = &vt.split[i].split[j]; |
| force_split[split_index] = 0; |
| variance4x4downsample[i2 + j] = 0; |
| if (!is_key_frame) { |
| fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| xd->cur_buf->flags, |
| #endif |
| pixels_wide, pixels_high, is_key_frame); |
| fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16); |
| get_variance(&vt.split[i].split[j].part_variances.none); |
| avg_16x16[i] += vt.split[i].split[j].part_variances.none.variance; |
| if (vt.split[i].split[j].part_variances.none.variance < minvar_16x16[i]) |
| minvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance; |
| if (vt.split[i].split[j].part_variances.none.variance > maxvar_16x16[i]) |
| maxvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance; |
| if (vt.split[i].split[j].part_variances.none.variance > thresholds[2]) { |
| // 16X16 variance is above threshold for split, so force split to 8x8 |
| // for this 16x16 block (this also forces splits for upper levels). |
| force_split[split_index] = 1; |
| force_split[i + 1] = 1; |
| force_split[0] = 1; |
| } else if (compute_minmax_variance && |
| vt.split[i].split[j].part_variances.none.variance > |
| thresholds[1] && |
| !cyclic_refresh_segment_id_boosted(segment_id)) { |
| // We have some nominal amount of 16x16 variance (based on average), |
| // compute the minmax over the 8x8 sub-blocks, and if above threshold, |
| // force split to 8x8 block for this 16x16 block. |
| int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| xd->cur_buf->flags, |
| #endif |
| pixels_wide, pixels_high); |
| int thresh_minmax = (int)cpi->vbp_threshold_minmax; |
| if (x->content_state_sb == kVeryHighSad) |
| thresh_minmax = thresh_minmax << 1; |
| if (minmax > thresh_minmax) { |
| force_split[split_index] = 1; |
| force_split[i + 1] = 1; |
| force_split[0] = 1; |
| } |
| } |
| } |
| if (is_key_frame || |
| (low_res && vt.split[i].split[j].part_variances.none.variance > |
| threshold_4x4avg)) { |
| force_split[split_index] = 0; |
| // Go down to 4x4 down-sampling for variance. |
| variance4x4downsample[i2 + j] = 1; |
| for (k = 0; k < 4; k++) { |
| int x8_idx = x16_idx + ((k & 1) << 3); |
| int y8_idx = y16_idx + ((k >> 1) << 3); |
| v8x8 *vst2 = is_key_frame ? &vst->split[k] : &vt2[i2 + j].split[k]; |
| fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| xd->cur_buf->flags, |
| #endif |
| pixels_wide, pixels_high, is_key_frame); |
| } |
| } |
| } |
| } |
| if (cpi->noise_estimate.enabled) |
| noise_level = vp9_noise_estimate_extract_level(&cpi->noise_estimate); |
| // Fill the rest of the variance tree by summing split partition values. |
| avg_32x32 = 0; |
| for (i = 0; i < 4; i++) { |
| const int i2 = i << 2; |
| for (j = 0; j < 4; j++) { |
| if (variance4x4downsample[i2 + j] == 1) { |
| v16x16 *vtemp = (!is_key_frame) ? &vt2[i2 + j] : &vt.split[i].split[j]; |
| for (m = 0; m < 4; m++) fill_variance_tree(&vtemp->split[m], BLOCK_8X8); |
| fill_variance_tree(vtemp, BLOCK_16X16); |
| // If variance of this 16x16 block is above the threshold, force block |
| // to split. This also forces a split on the upper levels. |
| get_variance(&vtemp->part_variances.none); |
| if (vtemp->part_variances.none.variance > thresholds[2]) { |
| force_split[5 + i2 + j] = 1; |
| force_split[i + 1] = 1; |
| force_split[0] = 1; |
| } |
| } |
| } |
| fill_variance_tree(&vt.split[i], BLOCK_32X32); |
| // If variance of this 32x32 block is above the threshold, or if its above |
| // (some threshold of) the average variance over the sub-16x16 blocks, then |
| // force this block to split. This also forces a split on the upper |
| // (64x64) level. |
| if (!force_split[i + 1]) { |
| get_variance(&vt.split[i].part_variances.none); |
| var_32x32 = vt.split[i].part_variances.none.variance; |
| max_var_32x32 = VPXMAX(var_32x32, max_var_32x32); |
| min_var_32x32 = VPXMIN(var_32x32, min_var_32x32); |
| if (vt.split[i].part_variances.none.variance > thresholds[1] || |
| (!is_key_frame && |
| vt.split[i].part_variances.none.variance > (thresholds[1] >> 1) && |
| vt.split[i].part_variances.none.variance > (avg_16x16[i] >> 1))) { |
| force_split[i + 1] = 1; |
| force_split[0] = 1; |
| } else if (!is_key_frame && noise_level < kLow && cm->height <= 360 && |
| (maxvar_16x16[i] - minvar_16x16[i]) > (thresholds[1] >> 1) && |
| maxvar_16x16[i] > thresholds[1]) { |
| force_split[i + 1] = 1; |
| force_split[0] = 1; |
| } |
| avg_32x32 += var_32x32; |
| } |
| } |
| if (!force_split[0]) { |
| fill_variance_tree(&vt, BLOCK_64X64); |
| get_variance(&vt.part_variances.none); |
| // If variance of this 64x64 block is above (some threshold of) the average |
| // variance over the sub-32x32 blocks, then force this block to split. |
| // Only checking this for noise level >= medium for now. |
| if (!is_key_frame && noise_level >= kMedium && |
| vt.part_variances.none.variance > (9 * avg_32x32) >> 5) |
| force_split[0] = 1; |
| // Else if the maximum 32x32 variance minus the miniumum 32x32 variance in |
| // a 64x64 block is greater than threshold and the maximum 32x32 variance is |
| // above a miniumum threshold, then force the split of a 64x64 block |
| // Only check this for low noise. |
| else if (!is_key_frame && noise_level < kMedium && |
| (max_var_32x32 - min_var_32x32) > 3 * (thresholds[0] >> 3) && |
| max_var_32x32 > thresholds[0] >> 1) |
| force_split[0] = 1; |
| } |
| |
| // Now go through the entire structure, splitting every block size until |
| // we get to one that's got a variance lower than our threshold. |
| if (mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows || |
| !set_vt_partitioning(cpi, x, xd, &vt, BLOCK_64X64, mi_row, mi_col, |
| thresholds[0], BLOCK_16X16, force_split[0])) { |
| for (i = 0; i < 4; ++i) { |
| const int x32_idx = ((i & 1) << 2); |
| const int y32_idx = ((i >> 1) << 2); |
| const int i2 = i << 2; |
| if (!set_vt_partitioning(cpi, x, xd, &vt.split[i], BLOCK_32X32, |
| (mi_row + y32_idx), (mi_col + x32_idx), |
| thresholds[1], BLOCK_16X16, |
| force_split[i + 1])) { |
| for (j = 0; j < 4; ++j) { |
| const int x16_idx = ((j & 1) << 1); |
| const int y16_idx = ((j >> 1) << 1); |
| // For inter frames: if variance4x4downsample[] == 1 for this 16x16 |
| // block, then the variance is based on 4x4 down-sampling, so use vt2 |
| // in set_vt_partioning(), otherwise use vt. |
| v16x16 *vtemp = (!is_key_frame && variance4x4downsample[i2 + j] == 1) |
| ? &vt2[i2 + j] |
| : &vt.split[i].split[j]; |
| if (!set_vt_partitioning( |
| cpi, x, xd, vtemp, BLOCK_16X16, mi_row + y32_idx + y16_idx, |
| mi_col + x32_idx + x16_idx, thresholds[2], cpi->vbp_bsize_min, |
| force_split[5 + i2 + j])) { |
| for (k = 0; k < 4; ++k) { |
| const int x8_idx = (k & 1); |
| const int y8_idx = (k >> 1); |
| if (use_4x4_partition) { |
| if (!set_vt_partitioning(cpi, x, xd, &vtemp->split[k], |
| BLOCK_8X8, |
| mi_row + y32_idx + y16_idx + y8_idx, |
| mi_col + x32_idx + x16_idx + x8_idx, |
| thresholds[3], BLOCK_8X8, 0)) { |
| set_block_size( |
| cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx), |
| (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_4X4); |
| } |
| } else { |
| set_block_size( |
| cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx), |
| (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| if (!frame_is_intra_only(cm) && cpi->sf.copy_partition_flag) { |
| update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset); |
| } |
| |
| if (!frame_is_intra_only(cm) && cpi->sf.svc_use_lowres_part && |
| cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2) |
| update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col); |
| |
| if (cpi->sf.short_circuit_low_temp_var) { |
| set_low_temp_var_flag(cpi, x, xd, &vt, thresholds, ref_frame_partition, |
| mi_col, mi_row); |
| } |
| |
| chroma_check(cpi, x, bsize, y_sad, is_key_frame, scene_change_detected); |
| if (vt2) vpx_free(vt2); |
| return 0; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void update_state(VP9_COMP *cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| int output_enabled) { |
| int i, x_idx, y; |
| VP9_COMMON *const cm = &cpi->common; |
| RD_COUNTS *const rdc = &td->rd_counts; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| MODE_INFO *mi = &ctx->mic; |
| MODE_INFO *const xdmi = xd->mi[0]; |
| MODE_INFO *mi_addr = xd->mi[0]; |
| const struct segmentation *const seg = &cm->seg; |
| const int bw = num_8x8_blocks_wide_lookup[mi->sb_type]; |
| const int bh = num_8x8_blocks_high_lookup[mi->sb_type]; |
| const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col); |
| const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row); |
| MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col; |
| int w, h; |
| |
| const int mis = cm->mi_stride; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| int max_plane; |
| |
| assert(mi->sb_type == bsize); |
| |
| *mi_addr = *mi; |
| *x->mbmi_ext = ctx->mbmi_ext; |
| |
| // If segmentation in use |
| if (seg->enabled) { |
| // For in frame complexity AQ copy the segment id from the segment map. |
| if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| mi_addr->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); |
| } |
| // Else for cyclic refresh mode update the segment map, set the segment id |
| // and then update the quantizer. |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { |
| vp9_cyclic_refresh_update_segment(cpi, xd->mi[0], mi_row, mi_col, bsize, |
| ctx->rate, ctx->dist, x->skip, p); |
| } |
| } |
| |
| max_plane = is_inter_block(xdmi) ? MAX_MB_PLANE : 1; |
| for (i = 0; i < max_plane; ++i) { |
| p[i].coeff = ctx->coeff_pbuf[i][1]; |
| p[i].qcoeff = ctx->qcoeff_pbuf[i][1]; |
| pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1]; |
| p[i].eobs = ctx->eobs_pbuf[i][1]; |
| } |
| |
| for (i = max_plane; i < MAX_MB_PLANE; ++i) { |
| p[i].coeff = ctx->coeff_pbuf[i][2]; |
| p[i].qcoeff = ctx->qcoeff_pbuf[i][2]; |
| pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2]; |
| p[i].eobs = ctx->eobs_pbuf[i][2]; |
| } |
| |
| // Restore the coding context of the MB to that that was in place |
| // when the mode was picked for it |
| for (y = 0; y < mi_height; y++) |
| for (x_idx = 0; x_idx < mi_width; x_idx++) |
| if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && |
| (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { |
| xd->mi[x_idx + y * mis] = mi_addr; |
| } |
| |
| if (cpi->oxcf.aq_mode != NO_AQ) vp9_init_plane_quantizers(cpi, x); |
| |
| if (is_inter_block(xdmi) && xdmi->sb_type < BLOCK_8X8) { |
| xdmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; |
| xdmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; |
| } |
| |
| x->skip = ctx->skip; |
| memcpy(x->zcoeff_blk[xdmi->tx_size], ctx->zcoeff_blk, |
| sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk); |
| |
| if (!output_enabled) return; |
| |
| #if CONFIG_INTERNAL_STATS |
| if (frame_is_intra_only(cm)) { |
| static const int kf_mode_index[] = { |
| THR_DC /*DC_PRED*/, THR_V_PRED /*V_PRED*/, |
| THR_H_PRED /*H_PRED*/, THR_D45_PRED /*D45_PRED*/, |
| THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/, |
| THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/, |
| THR_D63_PRED /*D63_PRED*/, THR_TM /*TM_PRED*/, |
| }; |
| ++cpi->mode_chosen_counts[kf_mode_index[xdmi->mode]]; |
| } else { |
| // Note how often each mode chosen as best |
| ++cpi->mode_chosen_counts[ctx->best_mode_index]; |
| } |
| #endif |
| if (!frame_is_intra_only(cm)) { |
| if (is_inter_block(xdmi)) { |
| vp9_update_mv_count(td); |
| |
| if (cm->interp_filter == SWITCHABLE) { |
| const int ctx = get_pred_context_switchable_interp(xd); |
| ++td->counts->switchable_interp[ctx][xdmi->interp_filter]; |
| } |
| } |
| |
| rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; |
| rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; |
| rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) |
| rdc->filter_diff[i] += ctx->best_filter_diff[i]; |
| } |
| |
| for (h = 0; h < y_mis; ++h) { |
| MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols; |
| for (w = 0; w < x_mis; ++w) { |
| MV_REF *const mv = frame_mv + w; |
| mv->ref_frame[0] = mi->ref_frame[0]; |
| mv->ref_frame[1] = mi->ref_frame[1]; |
| mv->mv[0].as_int = mi->mv[0].as_int; |
| mv->mv[1].as_int = mi->mv[1].as_int; |
| } |
| } |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, |
| int mi_row, int mi_col) { |
| uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer }; |
| const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride }; |
| int i; |
| |
| // Set current frame pointer. |
| x->e_mbd.cur_buf = src; |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col, |
| NULL, x->e_mbd.plane[i].subsampling_x, |
| x->e_mbd.plane[i].subsampling_y); |
| } |
| |
| static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode, |
| RD_COST *rd_cost, BLOCK_SIZE bsize) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| INTERP_FILTER filter_ref; |
| |
| filter_ref = get_pred_context_switchable_interp(xd); |
| if (filter_ref == SWITCHABLE_FILTERS) filter_ref = EIGHTTAP; |
| |
| mi->sb_type = bsize; |
| mi->mode = ZEROMV; |
| mi->tx_size = |
| VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[tx_mode]); |
| mi->skip = 1; |
| mi->uv_mode = DC_PRED; |
| mi->ref_frame[0] = LAST_FRAME; |
| mi->ref_frame[1] = NONE; |
| mi->mv[0].as_int = 0; |
| mi->interp_filter = filter_ref; |
| |
| xd->mi[0]->bmi[0].as_mv[0].as_int = 0; |
| x->skip = 1; |
| |
| vp9_rd_cost_init(rd_cost); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void set_segment_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| AQ_MODE aq_mode) { |
| VP9_COMMON *const cm = &cpi->common; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| const uint8_t *const map = |
| cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| |
| vp9_init_plane_quantizers(cpi, x); |
| vpx_clear_system_state(); |
| |
| if (aq_mode == NO_AQ || aq_mode == PSNR_AQ) { |
| if (cpi->sf.enable_tpl_model) x->rdmult = x->cb_rdmult; |
| } else if (aq_mode == PERCEPTUAL_AQ) { |
| x->rdmult = x->cb_rdmult; |
| } else if (aq_mode == CYCLIC_REFRESH_AQ) { |
| // If segment is boosted, use rdmult for that segment. |
| if (cyclic_refresh_segment_id_boosted( |
| get_segment_id(cm, map, bsize, mi_row, mi_col))) |
| x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); |
| } else { |
| x->rdmult = vp9_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q); |
| } |
| |
| if (oxcf->tuning == VP8_TUNE_SSIM) { |
| set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult); |
| } |
| } |
| |
| static void rd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| RD_COST *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, int rate_in_best_rd, |
| int64_t dist_in_best_rd) { |
| VP9_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *mi; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const AQ_MODE aq_mode = cpi->oxcf.aq_mode; |
| int i, orig_rdmult; |
| int64_t best_rd = INT64_MAX; |
| |
| vpx_clear_system_state(); |
| |
| // Use the lower precision, but faster, 32x32 fdct for mode selection. |
| x->use_lp32x32fdct = 1; |
| |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| mi = xd->mi[0]; |
| mi->sb_type = bsize; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| p[i].coeff = ctx->coeff_pbuf[i][0]; |
| p[i].qcoeff = ctx->qcoeff_pbuf[i][0]; |
| pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0]; |
| p[i].eobs = ctx->eobs_pbuf[i][0]; |
| } |
| ctx->is_coded = 0; |
| ctx->skippable = 0; |
| ctx->pred_pixel_ready = 0; |
| x->skip_recode = 0; |
| |
| // Set to zero to make sure we do not use the previous encoded frame stats |
| mi->skip = 0; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| x->source_variance = vp9_high_get_sby_perpixel_variance( |
| cpi, &x->plane[0].src, bsize, xd->bd); |
| } else { |
| x->source_variance = |
| vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); |
| } |
| #else |
| x->source_variance = |
| vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| orig_rdmult = x->rdmult; |
| |
| if ((cpi->sf.tx_domain_thresh > 0.0) || (cpi->sf.quant_opt_thresh > 0.0)) { |
| double logvar = vp9_log_block_var(cpi, x, bsize); |
| // Check block complexity as part of descision on using pixel or transform |
| // domain distortion in rd tests. |
| x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion && |
| (logvar >= cpi->sf.tx_domain_thresh); |
| |
| // Check block complexity as part of descision on using quantized |
| // coefficient optimisation inside the rd loop. |
| x->block_qcoeff_opt = |
| cpi->sf.allow_quant_coeff_opt && (logvar <= cpi->sf.quant_opt_thresh); |
| } else { |
| x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion; |
| x->block_qcoeff_opt = cpi->sf.allow_quant_coeff_opt; |
| } |
| |
| set_segment_index(cpi, x, mi_row, mi_col, bsize, 0); |
| set_segment_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode); |
| if (rate_in_best_rd < INT_MAX && dist_in_best_rd < INT64_MAX) { |
| best_rd = vp9_calculate_rd_cost(x->rdmult, x->rddiv, rate_in_best_rd, |
| dist_in_best_rd); |
| } |
| |
| // Find best coding mode & reconstruct the MB so it is available |
| // as a predictor for MBs that follow in the SB |
| if (frame_is_intra_only(cm)) { |
| vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd); |
| } else { |
| if (bsize >= BLOCK_8X8) { |
| if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) |
| vp9_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize, |
| ctx, best_rd); |
| else |
| vp9_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost, |
| bsize, ctx, best_rd); |
| } else { |
| vp9_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col, rd_cost, |
| bsize, ctx, best_rd); |
| } |
| } |
| |
| // Examine the resulting rate and for AQ mode 2 make a segment choice. |
| if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) && |
| (bsize >= BLOCK_16X16) && |
| (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame || |
| (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) { |
| vp9_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); |
| } |
| |
| // TODO(jingning) The rate-distortion optimization flow needs to be |
| // refactored to provide proper exit/return handle. |
| if (rd_cost->rate == INT_MAX || rd_cost->dist == INT64_MAX) |
| rd_cost->rdcost = INT64_MAX; |
| else |
| rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist); |
| |
| x->rdmult = orig_rdmult; |
| |
| ctx->rate = rd_cost->rate; |
| ctx->dist = rd_cost->dist; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static void update_stats(VP9_COMMON *cm, ThreadData *td) { |
| const MACROBLOCK *x = &td->mb; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MODE_INFO *const mi = xd->mi[0]; |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const BLOCK_SIZE bsize = mi->sb_type; |
| |
| if (!frame_is_intra_only(cm)) { |
| FRAME_COUNTS *const counts = td->counts; |
| const int inter_block = is_inter_block(mi); |
| const int seg_ref_active = |
| segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_REF_FRAME); |
| if (!seg_ref_active) { |
| counts->intra_inter[get_intra_inter_context(xd)][inter_block]++; |
| // If the segment reference feature is enabled we have only a single |
| // reference frame allowed for the segment so exclude it from |
| // the reference frame counts used to work out probabilities. |
| if (inter_block) { |
| const MV_REFERENCE_FRAME ref0 = mi->ref_frame[0]; |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) |
| counts->comp_inter[vp9_get_reference_mode_context(cm, xd)] |
| [has_second_ref(mi)]++; |
| |
| if (has_second_ref(mi)) { |
| const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; |
| const int ctx = vp9_get_pred_context_comp_ref_p(cm, xd); |
| const int bit = mi->ref_frame[!idx] == cm->comp_var_ref[1]; |
| counts->comp_ref[ctx][bit]++; |
| } else { |
| counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0] |
| [ref0 != LAST_FRAME]++; |
| if (ref0 != LAST_FRAME) |
| counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1] |
| [ref0 != GOLDEN_FRAME]++; |
| } |
| } |
| } |
| if (inter_block && |
| !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) { |
| const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]]; |
| if (bsize >= BLOCK_8X8) { |
| const PREDICTION_MODE mode = mi->mode; |
| ++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)]; |
| } else { |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| for (idy = 0; idy < 2; idy += num_4x4_h) { |
| for (idx = 0; idx < 2; idx += num_4x4_w) { |
| const int j = idy * 2 + idx; |
| const PREDICTION_MODE b_mode = mi->bmi[j].as_mode; |
| ++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)]; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void restore_context(MACROBLOCK *const x, int mi_row, int mi_col, |
| ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], |
| ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], |
| PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], |
| BLOCK_SIZE bsize) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int p; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x), |
| a + num_4x4_blocks_wide * p, |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> |
| xd->plane[p].subsampling_x); |
| memcpy(xd->left_context[p] + |
| ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), |
| l + num_4x4_blocks_high * p, |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> |
| xd->plane[p].subsampling_y); |
| } |
| memcpy(xd->above_seg_context + mi_col, sa, |
| sizeof(*xd->above_seg_context) * mi_width); |
| memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl, |
| sizeof(xd->left_seg_context[0]) * mi_height); |
| } |
| |
| static void save_context(MACROBLOCK *const x, int mi_row, int mi_col, |
| ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], |
| ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], |
| PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], |
| BLOCK_SIZE bsize) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| int p; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| |
| // buffer the above/left context information of the block in search. |
| for (p = 0; p < MAX_MB_PLANE; ++p) { |
| memcpy(a + num_4x4_blocks_wide * p, |
| xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x), |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> |
| xd->plane[p].subsampling_x); |
| memcpy(l + num_4x4_blocks_high * p, |
| xd->left_context[p] + |
| ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> |
| xd->plane[p].subsampling_y); |
| } |
| memcpy(sa, xd->above_seg_context + mi_col, |
| sizeof(*xd->above_seg_context) * mi_width); |
| memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK), |
| sizeof(xd->left_seg_context[0]) * mi_height); |
| } |
| |
| static void encode_b(VP9_COMP *cpi, const TileInfo *const tile, ThreadData *td, |
| TOKENEXTRA **tp, int mi_row, int mi_col, |
| int output_enabled, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx) { |
| MACROBLOCK *const x = &td->mb; |
| set_offsets(cpi, tile, x, mi_row, mi_col, bsize); |
| |
| if (cpi->sf.enable_tpl_model && |
| (cpi->oxcf.aq_mode == NO_AQ || cpi->oxcf.aq_mode == PERCEPTUAL_AQ)) { |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| x->rdmult = x->cb_rdmult; |
| if (oxcf->tuning == VP8_TUNE_SSIM) { |
| set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult); |
| } |
| } |
| |
| update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled); |
| encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx); |
| |
| if (output_enabled) { |
| update_stats(&cpi->common, td); |
| |
| (*tp)->token = EOSB_TOKEN; |
| (*tp)++; |
| } |
| } |
| |
| static void encode_sb(VP9_COMP *cpi, ThreadData *td, const TileInfo *const tile, |
| TOKENEXTRA **tp, int mi_row, int mi_col, |
| int output_enabled, BLOCK_SIZE bsize, PC_TREE *pc_tree) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; |
| int ctx; |
| PARTITION_TYPE partition; |
| BLOCK_SIZE subsize = bsize; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| if (bsize >= BLOCK_8X8) { |
| ctx = partition_plane_context(xd, mi_row, mi_col, bsize); |
| subsize = get_subsize(bsize, pc_tree->partitioning); |
| } else { |
| ctx = 0; |
| subsize = BLOCK_4X4; |
| } |
| |
| partition = partition_lookup[bsl][subsize]; |
| if (output_enabled && bsize != BLOCK_4X4) |
| td->counts->partition[ctx][partition]++; |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize, |
| &pc_tree->none); |
| break; |
| case PARTITION_VERT: |
| encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize, |
| &pc_tree->vertical[0]); |
| if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { |
| encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled, |
| subsize, &pc_tree->vertical[1]); |
| } |
| break; |
| case PARTITION_HORZ: |
| encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize, |
| &pc_tree->horizontal[0]); |
| if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { |
| encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled, |
| subsize, &pc_tree->horizontal[1]); |
| } |
| break; |
| default: |
| assert(partition == PARTITION_SPLIT); |
| if (bsize == BLOCK_8X8) { |
| encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize, |
| pc_tree->leaf_split[0]); |
| } else { |
| encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, |
| pc_tree->split[0]); |
| encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled, |
| subsize, pc_tree->split[1]); |
| encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled, |
| subsize, pc_tree->split[2]); |
| encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled, |
| subsize, pc_tree->split[3]); |
| } |
| break; |
| } |
| |
| if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| // Check to see if the given partition size is allowed for a specified number |
| // of 8x8 block rows and columns remaining in the image. |
| // If not then return the largest allowed partition size |
| static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left, |
| int cols_left, int *bh, int *bw) { |
| if (rows_left <= 0 || cols_left <= 0) { |
| return VPXMIN(bsize, BLOCK_8X8); |
| } else { |
| for (; bsize > 0; bsize -= 3) { |
| *bh = num_8x8_blocks_high_lookup[bsize]; |
| *bw = num_8x8_blocks_wide_lookup[bsize]; |
| if ((*bh <= rows_left) && (*bw <= cols_left)) { |
| break; |
| } |
| } |
| } |
| return bsize; |
| } |
| |
| static void set_partial_b64x64_partition(MODE_INFO *mi, int mis, int bh_in, |
| int bw_in, int row8x8_remaining, |
| int col8x8_remaining, BLOCK_SIZE bsize, |
| MODE_INFO **mi_8x8) { |
| int bh = bh_in; |
| int r, c; |
| for (r = 0; r < MI_BLOCK_SIZE; r += bh) { |
| int bw = bw_in; |
| for (c = 0; c < MI_BLOCK_SIZE; c += bw) { |
| const int index = r * mis + c; |
| mi_8x8[index] = mi + index; |
| mi_8x8[index]->sb_type = find_partition_size( |
| bsize, row8x8_remaining - r, col8x8_remaining - c, &bh, &bw); |
| } |
| } |
| } |
| |
| // This function attempts to set all mode info entries in a given SB64 |
| // to the same block partition size. |
| // However, at the bottom and right borders of the image the requested size |
| // may not be allowed in which case this code attempts to choose the largest |
| // allowable partition. |
| static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile, |
| MODE_INFO **mi_8x8, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int mis = cm->mi_stride; |
| const int row8x8_remaining = tile->mi_row_end - mi_row; |
| const int col8x8_remaining = tile->mi_col_end - mi_col; |
| int block_row, block_col; |
| MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col; |
| int bh = num_8x8_blocks_high_lookup[bsize]; |
| int bw = num_8x8_blocks_wide_lookup[bsize]; |
| |
| assert((row8x8_remaining > 0) && (col8x8_remaining > 0)); |
| |
| // Apply the requested partition size to the SB64 if it is all "in image" |
| if ((col8x8_remaining >= MI_BLOCK_SIZE) && |
| (row8x8_remaining >= MI_BLOCK_SIZE)) { |
| for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) { |
| for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) { |
| int index = block_row * mis + block_col; |
| mi_8x8[index] = mi_upper_left + index; |
| mi_8x8[index]->sb_type = bsize; |
| } |
| } |
| } else { |
| // Else this is a partial SB64. |
| set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining, |
| col8x8_remaining, bsize, mi_8x8); |
| } |
| } |
| |
| static const struct { |
| int row; |
| int col; |
| } coord_lookup[16] = { |
| // 32x32 index = 0 |
| { 0, 0 }, |
| { 0, 2 }, |
| { 2, 0 }, |
| { 2, 2 }, |
| // 32x32 index = 1 |
| { 0, 4 }, |
| { 0, 6 }, |
| { 2, 4 }, |
| { 2, 6 }, |
| // 32x32 index = 2 |
| { 4, 0 }, |
| { 4, 2 }, |
| { 6, 0 }, |
| { 6, 2 }, |
| // 32x32 index = 3 |
| { 4, 4 }, |
| { 4, 6 }, |
| { 6, 4 }, |
| { 6, 6 }, |
| }; |
| |
| static void set_source_var_based_partition(VP9_COMP *cpi, |
| const TileInfo *const tile, |
| MACROBLOCK *const x, |
| MODE_INFO **mi_8x8, int mi_row, |
| int mi_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int mis = cm->mi_stride; |
| const int row8x8_remaining = tile->mi_row_end - mi_row; |
| const int col8x8_remaining = tile->mi_col_end - mi_col; |
| MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col; |
| |
| vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); |
| |
| assert((row8x8_remaining > 0) && (col8x8_remaining > 0)); |
| |
| // In-image SB64 |
| if ((col8x8_remaining >= MI_BLOCK_SIZE) && |
| (row8x8_remaining >= MI_BLOCK_SIZE)) { |
| int i, j; |
| int index; |
| diff d32[4]; |
| const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1); |
| int is_larger_better = 0; |
| int use32x32 = 0; |
| unsigned int thr = cpi->source_var_thresh; |
| |
| memset(d32, 0, 4 * sizeof(diff)); |
| |
| for (i = 0; i < 4; i++) { |
| diff *d16[4]; |
| |
| for (j = 0; j < 4; j++) { |
| int b_mi_row = coord_lookup[i * 4 + j].row; |
| int b_mi_col = coord_lookup[i * 4 + j].col; |
| int boffset = b_mi_row / 2 * cm->mb_cols + b_mi_col / 2; |
| |
| d16[j] = cpi->source_diff_var + offset + boffset; |
| |
| index = b_mi_row * mis + b_mi_col; |
| mi_8x8[index] = mi_upper_left + index; |
| mi_8x8[index]->sb_type = BLOCK_16X16; |
| |
| // TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition |
| // size to further improve quality. |
| } |
| |
| is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) && |
| (d16[2]->var < thr) && (d16[3]->var < thr); |
| |
| // Use 32x32 partition |
| if (is_larger_better) { |
| use32x32 += 1; |
| |
| for (j = 0; j < 4; j++) { |
| d32[i].sse += d16[j]->sse; |
| d32[i].sum += d16[j]->sum; |
| } |
| |
| d32[i].var = |
| (unsigned int)(d32[i].sse - |
| (unsigned int)(((int64_t)d32[i].sum * d32[i].sum) >> |
| 10)); |
| |
| index = coord_lookup[i * 4].row * mis + coord_lookup[i * 4].col; |
| mi_8x8[index] = mi_upper_left + index; |
| mi_8x8[index]->sb_type = BLOCK_32X32; |
| } |
| } |
| |
| if (use32x32 == 4) { |
| thr <<= 1; |
| is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) && |
| (d32[2].var < thr) && (d32[3].var < thr); |
| |
| // Use 64x64 partition |
| if (is_larger_better) { |
| mi_8x8[0] = mi_upper_left; |
| mi_8x8[0]->sb_type = BLOCK_64X64; |
| } |
| } |
| } else { // partial in-image SB64 |
| int bh = num_8x8_blocks_high_lookup[BLOCK_16X16]; |
| int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16]; |
| set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining, |
| col8x8_remaining, BLOCK_16X16, mi_8x8); |
| } |
| } |
| |
| static void update_state_rt(VP9_COMP *cpi, ThreadData *td, |
| PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, |
| int bsize) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| struct macroblock_plane *const p = x->plane; |
| const struct segmentation *const seg = &cm->seg; |
| const int bw = num_8x8_blocks_wide_lookup[mi->sb_type]; |
| const int bh = num_8x8_blocks_high_lookup[mi->sb_type]; |
| const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col); |
| const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row); |
| |
| *(xd->mi[0]) = ctx->mic; |
| *(x->mbmi_ext) = ctx->mbmi_ext; |
| |
| if (seg->enabled && (cpi->oxcf.aq_mode != NO_AQ || cpi->roi.enabled)) { |
| // Setting segmentation map for cyclic_refresh. |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { |
| vp9_cyclic_refresh_update_segment(cpi, mi, mi_row, mi_col, bsize, |
| ctx->rate, ctx->dist, x->skip, p); |
| } else { |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); |
| } |
| vp9_init_plane_quantizers(cpi, x); |
| } |
| |
| if (is_inter_block(mi)) { |
| vp9_update_mv_count(td); |
| if (cm->interp_filter == SWITCHABLE) { |
| const int pred_ctx = get_pred_context_switchable_interp(xd); |
| ++td->counts->switchable_interp[pred_ctx][mi->interp_filter]; |
| } |
| |
| if (mi->sb_type < BLOCK_8X8) { |
| mi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; |
| mi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; |
| } |
| } |
| |
| if (cm->use_prev_frame_mvs || !cm->error_resilient_mode || |
| (cpi->svc.use_base_mv && cpi->svc.number_spatial_layers > 1 && |
| cpi->svc.spatial_layer_id != cpi->svc.number_spatial_layers - 1)) { |
| MV_REF *const frame_mvs = |
| cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col; |
| int w, h; |
| |
| for (h = 0; h < y_mis; ++h) { |
| MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols; |
| for (w = 0; w < x_mis; ++w) { |
| MV_REF *const mv = frame_mv + w; |
| mv->ref_frame[0] = mi->ref_frame[0]; |
| mv->ref_frame[1] = mi->ref_frame[1]; |
| mv->mv[0].as_int = mi->mv[0].as_int; |
| mv->mv[1].as_int = mi->mv[1].as_int; |
| } |
| } |
| } |
| |
| x->skip = ctx->skip; |
| x->skip_txfm[0] = (mi->segment_id || xd->lossless) ? 0 : ctx->skip_txfm[0]; |
| } |
| |
| static void encode_b_rt(VP9_COMP *cpi, ThreadData *td, |
| const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, |
| int mi_col, int output_enabled, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx) { |
| MACROBLOCK *const x = &td->mb; |
| set_offsets(cpi, tile, x, mi_row, mi_col, bsize); |
| update_state_rt(cpi, td, ctx, mi_row, mi_col, bsize); |
| |
| encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx); |
| update_stats(&cpi->common, td); |
| |
| (*tp)->token = EOSB_TOKEN; |
| (*tp)++; |
| } |
| |
| static void encode_sb_rt(VP9_COMP *cpi, ThreadData *td, |
| const TileInfo *const tile, TOKENEXTRA **tp, |
| int mi_row, int mi_col, int output_enabled, |
| BLOCK_SIZE bsize, PC_TREE *pc_tree) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; |
| int ctx; |
| PARTITION_TYPE partition; |
| BLOCK_SIZE subsize; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| if (bsize >= BLOCK_8X8) { |
| const int idx_str = xd->mi_stride * mi_row + mi_col; |
| MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str; |
| ctx = partition_plane_context(xd, mi_row, mi_col, bsize); |
| subsize = mi_8x8[0]->sb_type; |
| } else { |
| ctx = 0; |
| subsize = BLOCK_4X4; |
| } |
| |
| partition = partition_lookup[bsl][subsize]; |
| if (output_enabled && bsize != BLOCK_4X4) |
| td->counts->partition[ctx][partition]++; |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, |
| &pc_tree->none); |
| break; |
| case PARTITION_VERT: |
| encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, |
| &pc_tree->vertical[0]); |
| if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { |
| encode_b_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled, |
| subsize, &pc_tree->vertical[1]); |
| } |
| break; |
| case PARTITION_HORZ: |
| encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, |
| &pc_tree->horizontal[0]); |
| if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { |
| encode_b_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled, |
| subsize, &pc_tree->horizontal[1]); |
| } |
| break; |
| default: |
| assert(partition == PARTITION_SPLIT); |
| subsize = get_subsize(bsize, PARTITION_SPLIT); |
| encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, |
| pc_tree->split[0]); |
| encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled, |
| subsize, pc_tree->split[1]); |
| encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled, |
| subsize, pc_tree->split[2]); |
| encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, |
| output_enabled, subsize, pc_tree->split[3]); |
| break; |
| } |
| |
| if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void rd_use_partition(VP9_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, MODE_INFO **mi_8x8, |
| TOKENEXTRA **tp, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int *rate, int64_t *dist, |
| int do_recon, PC_TREE *pc_tree) { |
| VP9_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int mis = cm->mi_stride; |
| const int bsl = b_width_log2_lookup[bsize]; |
| const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2; |
| const int bss = (1 << bsl) / 4; |
| int i, pl; |
| PARTITION_TYPE partition = PARTITION_NONE; |
| BLOCK_SIZE subsize; |
| ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; |
| PARTITION_CONTEXT sl[8], sa[8]; |
| RD_COST last_part_rdc, none_rdc, chosen_rdc; |
| BLOCK_SIZE sub_subsize = BLOCK_4X4; |
| int splits_below = 0; |
| BLOCK_SIZE bs_type = mi_8x8[0]->sb_type; |
| int do_partition_search = 1; |
| PICK_MODE_CONTEXT *ctx = &pc_tree->none; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| assert(num_4x4_blocks_wide_lookup[bsize] == |
| num_4x4_blocks_high_lookup[bsize]); |
| |
| vp9_rd_cost_reset(&last_part_rdc); |
| vp9_rd_cost_reset(&none_rdc); |
| vp9_rd_cost_reset(&chosen_rdc); |
| |
| partition = partition_lookup[bsl][bs_type]; |
| subsize = get_subsize(bsize, partition); |
| |
| pc_tree->partitioning = partition; |
| save_context(x, mi_row, mi_col, a, l, sa, sl, bsize); |
| |
| if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| x->mb_energy = vp9_block_energy(cpi, x, bsize); |
| } |
| |
| if (do_partition_search && |
| cpi->sf.partition_search_type == SEARCH_PARTITION && |
| cpi->sf.adjust_partitioning_from_last_frame) { |
| // Check if any of the sub blocks are further split. |
| if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) { |
| sub_subsize = get_subsize(subsize, PARTITION_SPLIT); |
| splits_below = 1; |
| for (i = 0; i < 4; i++) { |
| int jj = i >> 1, ii = i & 0x01; |
| MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss]; |
| if (this_mi && this_mi->sb_type >= sub_subsize) { |
| splits_below = 0; |
| } |
| } |
| } |
| |
| // If partition is not none try none unless each of the 4 splits are split |
| // even further.. |
| if (partition != PARTITION_NONE && !splits_below && |
| mi_row + (mi_step >> 1) < cm->mi_rows && |
| mi_col + (mi_step >> 1) < cm->mi_cols) { |
| pc_tree->partitioning = PARTITION_NONE; |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, ctx, |
| INT_MAX, INT64_MAX); |
| |
| pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| |
| if (none_rdc.rate < INT_MAX) { |
| none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; |
| none_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist); |
| } |
| |
| restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); |
| mi_8x8[0]->sb_type = bs_type; |
| pc_tree->partitioning = partition; |
| } |
| } |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, bsize, |
| ctx, INT_MAX, INT64_MAX); |
| break; |
| case PARTITION_HORZ: |
| pc_tree->horizontal[0].skip_ref_frame_mask = 0; |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| subsize, &pc_tree->horizontal[0], INT_MAX, INT64_MAX); |
| if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && |
| mi_row + (mi_step >> 1) < cm->mi_rows) { |
| RD_COST tmp_rdc; |
| PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0]; |
| vp9_rd_cost_init(&tmp_rdc); |
| update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0); |
| encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx); |
| pc_tree->horizontal[1].skip_ref_frame_mask = 0; |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row + (mi_step >> 1), mi_col, |
| &tmp_rdc, subsize, &pc_tree->horizontal[1], INT_MAX, |
| INT64_MAX); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| vp9_rd_cost_reset(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| last_part_rdc.rdcost += tmp_rdc.rdcost; |
| } |
| break; |
| case PARTITION_VERT: |
| pc_tree->vertical[0].skip_ref_frame_mask = 0; |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| subsize, &pc_tree->vertical[0], INT_MAX, INT64_MAX); |
| if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && |
| mi_col + (mi_step >> 1) < cm->mi_cols) { |
| RD_COST tmp_rdc; |
| PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0]; |
| vp9_rd_cost_init(&tmp_rdc); |
| update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0); |
| encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx); |
| pc_tree->vertical[bsize > BLOCK_8X8].skip_ref_frame_mask = 0; |
| rd_pick_sb_modes( |
| cpi, tile_data, x, mi_row, mi_col + (mi_step >> 1), &tmp_rdc, |
| subsize, &pc_tree->vertical[bsize > BLOCK_8X8], INT_MAX, INT64_MAX); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| vp9_rd_cost_reset(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| last_part_rdc.rdcost += tmp_rdc.rdcost; |
| } |
| break; |
| default: |
| assert(partition == PARTITION_SPLIT); |
| if (bsize == BLOCK_8X8) { |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| subsize, pc_tree->leaf_split[0], INT_MAX, INT64_MAX); |
| break; |
| } |
| last_part_rdc.rate = 0; |
| last_part_rdc.dist = 0; |
| last_part_rdc.rdcost = 0; |
| for (i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * (mi_step >> 1); |
| int y_idx = (i >> 1) * (mi_step >> 1); |
| int jj = i >> 1, ii = i & 0x01; |
| RD_COST tmp_rdc; |
| if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) |
| continue; |
| |
| vp9_rd_cost_init(&tmp_rdc); |
| rd_use_partition(cpi, td, tile_data, mi_8x8 + jj * bss * mis + ii * bss, |
| tp, mi_row + y_idx, mi_col + x_idx, subsize, |
| &tmp_rdc.rate, &tmp_rdc.dist, i != 3, |
| pc_tree->split[i]); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| vp9_rd_cost_reset(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| } |
| break; |
| } |
| |
| pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| if (last_part_rdc.rate < INT_MAX) { |
| last_part_rdc.rate += cpi->partition_cost[pl][partition]; |
| last_part_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist); |
| } |
| |
| if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame && |
| cpi->sf.partition_search_type == SEARCH_PARTITION && |
| partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && |
| (mi_row + mi_step < cm->mi_rows || |
| mi_row + (mi_step >> 1) == cm->mi_rows) && |
| (mi_col + mi_step < cm->mi_cols || |
| mi_col + (mi_step >> 1) == cm->mi_cols)) { |
| BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT); |
| chosen_rdc.rate = 0; |
| chosen_rdc.dist = 0; |
| restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); |
| pc_tree->partitioning = PARTITION_SPLIT; |
| |
| // Split partition. |
| for (i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * (mi_step >> 1); |
| int y_idx = (i >> 1) * (mi_step >> 1); |
| RD_COST tmp_rdc; |
| ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; |
| PARTITION_CONTEXT sl[8], sa[8]; |
| |
| if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) |
| continue; |
| |
| save_context(x, mi_row, mi_col, a, l, sa, sl, bsize); |
| pc_tree->split[i]->partitioning = PARTITION_NONE; |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, |
| &tmp_rdc, split_subsize, &pc_tree->split[i]->none, |
| INT_MAX, INT64_MAX); |
| |
| restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); |
| |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| vp9_rd_cost_reset(&chosen_rdc); |
| break; |
| } |
| |
| chosen_rdc.rate += tmp_rdc.rate; |
| chosen_rdc.dist += tmp_rdc.dist; |
| |
| if (i != 3) |
| encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0, |
| split_subsize, pc_tree->split[i]); |
| |
| pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx, |
| split_subsize); |
| chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; |
| } |
| pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| if (chosen_rdc.rate < INT_MAX) { |
| chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT]; |
| chosen_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist); |
| } |
| } |
| |
| // If last_part is better set the partitioning to that. |
| if (last_part_rdc.rdcost < chosen_rdc.rdcost) { |
| mi_8x8[0]->sb_type = bsize; |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; |
| chosen_rdc = last_part_rdc; |
| } |
| // If none was better set the partitioning to that. |
| if (none_rdc.rdcost < chosen_rdc.rdcost) { |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; |
| chosen_rdc = none_rdc; |
| } |
| |
| restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); |
| |
| // We must have chosen a partitioning and encoding or we'll fail later on. |
| // No other opportunities for success. |
| if (bsize == BLOCK_64X64) |
| assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX); |
| |
| if (do_recon) { |
| int output_enabled = (bsize == BLOCK_64X64); |
| encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize, |
| pc_tree); |
| } |
| |
| *rate = chosen_rdc.rate; |
| *dist = chosen_rdc.dist; |
| } |
| |
| static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = { |
| BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, |
| BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, |
| BLOCK_16X16, BLOCK_16X16, BLOCK_16X16 |
| }; |
| |
| static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = { |
| BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, |
| BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, |
| BLOCK_64X64, BLOCK_64X64, BLOCK_64X64 |
| }; |
| |
| // Look at all the mode_info entries for blocks that are part of this |
| // partition and find the min and max values for sb_type. |
| // At the moment this is designed to work on a 64x64 SB but could be |
| // adjusted to use a size parameter. |
| // |
| // The min and max are assumed to have been initialized prior to calling this |
| // function so repeat calls can accumulate a min and max of more than one sb64. |
| static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8, |
| BLOCK_SIZE *min_block_size, |
| BLOCK_SIZE *max_block_size, |
| int bs_hist[BLOCK_SIZES]) { |
| int sb_width_in_blocks = MI_BLOCK_SIZE; |
| int sb_height_in_blocks = MI_BLOCK_SIZE; |
| int i, j; |
| int index = 0; |
| |
| // Check the sb_type for each block that belongs to this region. |
| for (i = 0; i < sb_height_in_blocks; ++i) { |
| for (j = 0; j < sb_width_in_blocks; ++j) { |
| MODE_INFO *mi = mi_8x8[index + j]; |
| BLOCK_SIZE sb_type = mi ? mi->sb_type : 0; |
| bs_hist[sb_type]++; |
| *min_block_size = VPXMIN(*min_block_size, sb_type); |
| *max_block_size = VPXMAX(*max_block_size, sb_type); |
| } |
| index += xd->mi_stride; |
| } |
| } |
| |
| // Next square block size less or equal than current block size. |
| static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = { |
| BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, |
| BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, |
| BLOCK_32X32, BLOCK_32X32, BLOCK_64X64 |
| }; |
| |
| // Look at neighboring blocks and set a min and max partition size based on |
| // what they chose. |
| static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile, |
| MACROBLOCKD *const xd, int mi_row, |
| int mi_col, BLOCK_SIZE *min_block_size, |
| BLOCK_SIZE *max_block_size) { |
| VP9_COMMON *const cm = &cpi->common; |
| MODE_INFO **mi = xd->mi; |
| const int left_in_image = !!xd->left_mi; |
| const int above_in_image = !!xd->above_mi; |
| const int row8x8_remaining = tile->mi_row_end - mi_row; |
| const int col8x8_remaining = tile->mi_col_end - mi_col; |
| int bh, bw; |
| BLOCK_SIZE min_size = BLOCK_4X4; |
| BLOCK_SIZE max_size = BLOCK_64X64; |
| int bs_hist[BLOCK_SIZES] = { 0 }; |
| |
| // Trap case where we do not have a prediction. |
| if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) { |
| // Default "min to max" and "max to min" |
| min_size = BLOCK_64X64; |
| max_size = BLOCK_4X4; |
| |
| // NOTE: each call to get_sb_partition_size_range() uses the previous |
| // passed in values for min and max as a starting point. |
| // Find the min and max partition used in previous frame at this location |
| if (cm->frame_type != KEY_FRAME) { |
| MODE_INFO **prev_mi = |
| &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col]; |
| get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist); |
| } |
| // Find the min and max partition sizes used in the left SB64 |
| if (left_in_image) { |
| MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE]; |
| get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size, |
| bs_hist); |
| } |
| // Find the min and max partition sizes used in the above SB64. |
| if (above_in_image) { |
| MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE]; |
| get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size, |
| bs_hist); |
| } |
| |
| // Adjust observed min and max for "relaxed" auto partition case. |
| if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) { |
| min_size = min_partition_size[min_size]; |
| max_size = max_partition_size[max_size]; |
| } |
| } |
| |
| // Check border cases where max and min from neighbors may not be legal. |
| max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining, |
| &bh, &bw); |
| // Test for blocks at the edge of the active image. |
| // This may be the actual edge of the image or where there are formatting |
| // bars. |
| if (vp9_active_edge_sb(cpi, mi_row, mi_col)) { |
| min_size = BLOCK_4X4; |
| } else { |
| min_size = |
| VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size)); |
| } |
| |
| // When use_square_partition_only is true, make sure at least one square |
| // partition is allowed by selecting the next smaller square size as |
| // *min_block_size. |
| if (cpi->sf.use_square_partition_only && |
| next_square_size[max_size] < min_size) { |
| min_size = next_square_size[max_size]; |
| } |
| |
| *min_block_size = min_size; |
| *max_block_size = max_size; |
| } |
| |
| // TODO(jingning) refactor functions setting partition search range |
| static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, |
| BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) { |
| int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| int idx, idy; |
| |
| MODE_INFO *mi; |
| const int idx_str = cm->mi_stride * mi_row + mi_col; |
| MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str]; |
| BLOCK_SIZE bs, min_size, max_size; |
| |
| min_size = BLOCK_64X64; |
| max_size = BLOCK_4X4; |
| |
| if (prev_mi) { |
| for (idy = 0; idy < mi_height; ++idy) { |
| for (idx = 0; idx < mi_width; ++idx) { |
| mi = prev_mi[idy * cm->mi_stride + idx]; |
| bs = mi ? mi->sb_type : bsize; |
| min_size = VPXMIN(min_size, bs); |
| max_size = VPXMAX(max_size, bs); |
| } |
| } |
| } |
| |
| if (xd->left_mi) { |
| for (idy = 0; idy < mi_height; ++idy) { |
| mi = xd->mi[idy * cm->mi_stride - 1]; |
| bs = mi ? mi->sb_type : bsize; |
| min_size = VPXMIN(min_size, bs); |
| max_size = VPXMAX(max_size, bs); |
| } |
| } |
| |
| if (xd->above_mi) { |
| for (idx = 0; idx < mi_width; ++idx) { |
| mi = xd->mi[idx - cm->mi_stride]; |
| bs = mi ? mi->sb_type : bsize; |
| min_size = VPXMIN(min_size, bs); |
| max_size = VPXMAX(max_size, bs); |
| } |
| } |
| |
| if (min_size == max_size) { |
| min_size = min_partition_size[min_size]; |
| max_size = max_partition_size[max_size]; |
| } |
| |
| *min_bs = min_size; |
| *max_bs = max_size; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { |
| memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv)); |
| } |
| |
| static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { |
| memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv)); |
| } |
| |
| #if CONFIG_FP_MB_STATS |
| const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1, |
| 1, 2, 2, 2, 4, 4 }; |
| const int num_16x16_blocks_high_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1, |
| 2, 1, 2, 4, 2, 4 }; |
| const int qindex_skip_threshold_lookup[BLOCK_SIZES] = { 0, 10, 10, 30, 40, |
| 40, 60, 80, 80, 90, |
| 100, 100, 120 }; |
| const int qindex_split_threshold_lookup[BLOCK_SIZES] = { 0, 3, 3, 7, 15, |
| 15, 30, 40, 40, 60, |
| 80, 80, 120 }; |
| const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = { 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, |
| 4, 4, 6 }; |
| |
| typedef enum { |
| MV_ZERO = 0, |
| MV_LEFT = 1, |
| MV_UP = 2, |
| MV_RIGHT = 3, |
| MV_DOWN = 4, |
| MV_INVALID |
| } MOTION_DIRECTION; |
| |
| static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) { |
| if (fp_byte & FPMB_MOTION_ZERO_MASK) { |
| return MV_ZERO; |
| } else if (fp_byte & FPMB_MOTION_LEFT_MASK) { |
| return MV_LEFT; |
| } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) { |
| return MV_RIGHT; |
| } else if (fp_byte & FPMB_MOTION_UP_MASK) { |
| return MV_UP; |
| } else { |
| return MV_DOWN; |
| } |
| } |
| |
| static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv, |
| MOTION_DIRECTION that_mv) { |
| if (this_mv == that_mv) { |
| return 0; |
| } else { |
| return abs(this_mv - that_mv) == 2 ? 2 : 1; |
| } |
| } |
| #endif |
| |
| // Calculate prediction based on the given input features and neural net config. |
| // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden |
| // layer. |
| static void nn_predict(const float *features, const NN_CONFIG *nn_config, |
| float *output) { |
| int num_input_nodes = nn_config->num_inputs; |
| int buf_index = 0; |
| float buf[2][NN_MAX_NODES_PER_LAYER]; |
| const float *input_nodes = features; |
| |
| // Propagate hidden layers. |
| const int num_layers = nn_config->num_hidden_layers; |
| int layer, node, i; |
| assert(num_layers <= NN_MAX_HIDDEN_LAYERS); |
| for (layer = 0; layer < num_layers; ++layer) { |
| const float *weights = nn_config->weights[layer]; |
| const float *bias = nn_config->bias[layer]; |
| float *output_nodes = buf[buf_index]; |
| const int num_output_nodes = nn_config->num_hidden_nodes[layer]; |
| assert(num_output_nodes < NN_MAX_NODES_PER_LAYER); |
| for (node = 0; node < num_output_nodes; ++node) { |
| float val = 0.0f; |
| for (i = 0; i < num_input_nodes; ++i) val += weights[i] * input_nodes[i]; |
| val += bias[node]; |
| // ReLU as activation function. |
| val = VPXMAX(val, 0.0f); |
| output_nodes[node] = val; |
| weights += num_input_nodes; |
| } |
| num_input_nodes = num_output_nodes; |
| input_nodes = output_nodes; |
| buf_index = 1 - buf_index; |
| } |
| |
| // Final output layer. |
| { |
| const float *weights = nn_config->weights[num_layers]; |
| for (node = 0; node < nn_config->num_outputs; ++node) { |
| const float *bias = nn_config->bias[num_layers]; |
| float val = 0.0f; |
| for (i = 0; i < num_input_nodes; ++i) val += weights[i] * input_nodes[i]; |
| output[node] = val + bias[node]; |
| weights += num_input_nodes; |
| } |
| } |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| #define FEATURES 7 |
| // Machine-learning based partition search early termination. |
| // Return 1 to skip split and rect partitions. |
| static int ml_pruning_partition(VP9_COMMON *const cm, MACROBLOCKD *const xd, |
| PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| const int mag_mv = |
| abs(ctx->mic.mv[0].as_mv.col) + abs(ctx->mic.mv[0].as_mv.row); |
| const int left_in_image = !!xd->left_mi; |
| const int above_in_image = !!xd->above_mi; |
| MODE_INFO **prev_mi = |
| &cm->prev_mi_grid_visible[mi_col + cm->mi_stride * mi_row]; |
| int above_par = 0; // above_partitioning |
| int left_par = 0; // left_partitioning |
| int last_par = 0; // last_partitioning |
| int offset = 0; |
| int i; |
| BLOCK_SIZE context_size; |
| const NN_CONFIG *nn_config = NULL; |
| const float *mean, *sd, *linear_weights; |
| float nn_score, linear_score; |
| float features[FEATURES]; |
| |
| assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]); |
| vpx_clear_system_state(); |
| |
| switch (bsize) { |
| case BLOCK_64X64: |
| offset = 0; |
| nn_config = &vp9_partition_nnconfig_64x64; |
| break; |
| case BLOCK_32X32: |
| offset = 8; |
| nn_config = &vp9_partition_nnconfig_32x32; |
| break; |
| case BLOCK_16X16: |
| offset = 16; |
| nn_config = &vp9_partition_nnconfig_16x16; |
| break; |
| default: assert(0 && "Unexpected block size."); return 0; |
| } |
| |
| if (above_in_image) { |
| context_size = xd->above_mi->sb_type; |
| if (context_size < bsize) |
| above_par = 2; |
| else if (context_size == bsize) |
| above_par = 1; |
| } |
| |
| if (left_in_image) { |
| context_size = xd->left_mi->sb_type; |
| if (context_size < bsize) |
| left_par = 2; |
| else if (context_size == bsize) |
| left_par = 1; |
| } |
| |
| if (prev_mi) { |
| context_size = prev_mi[0]->sb_type; |
| if (context_size < bsize) |
| last_par = 2; |
| else if (context_size == bsize) |
| last_par = 1; |
| } |
| |
| mean = &vp9_partition_feature_mean[offset]; |
| sd = &vp9_partition_feature_std[offset]; |
| features[0] = ((float)ctx->rate - mean[0]) / sd[0]; |
| features[1] = ((float)ctx->dist - mean[1]) / sd[1]; |
| features[2] = ((float)mag_mv / 2 - mean[2]) * sd[2]; |
| features[3] = ((float)(left_par + above_par) / 2 - mean[3]) * sd[3]; |
| features[4] = ((float)ctx->sum_y_eobs - mean[4]) / sd[4]; |
| features[5] = ((float)cm->base_qindex - mean[5]) * sd[5]; |
| features[6] = ((float)last_par - mean[6]) * sd[6]; |
| |
| // Predict using linear model. |
| linear_weights = &vp9_partition_linear_weights[offset]; |
| linear_score = linear_weights[FEATURES]; |
| for (i = 0; i < FEATURES; ++i) |
| linear_score += linear_weights[i] * features[i]; |
| if (linear_score > 0.1f) return 0; |
| |
| // Predict using neural net model. |
| nn_predict(features, nn_config, &nn_score); |
| |
| if (linear_score < -0.0f && nn_score < 0.1f) return 1; |
| if (nn_score < -0.0f && linear_score < 0.1f) return 1; |
| return 0; |
| } |
| #undef FEATURES |
| |
| #define FEATURES 4 |
| // ML-based partition search breakout. |
| static int ml_predict_breakout(VP9_COMP *const cpi, BLOCK_SIZE bsize, |
| const MACROBLOCK *const x, |
| const RD_COST *const rd_cost) { |
| DECLARE_ALIGNED(16, static const uint8_t, vp9_64_zeros[64]) = { 0 }; |
| const VP9_COMMON *const cm = &cpi->common; |
| float features[FEATURES]; |
| const float *linear_weights = NULL; // Linear model weights. |
| float linear_score = 0.0f; |
| const int qindex = cm->base_qindex; |
| const int q_ctx = qindex >= 200 ? 0 : (qindex >= 150 ? 1 : 2); |
| const int is_720p_or_larger = VPXMIN(cm->width, cm->height) >= 720; |
| const int resolution_ctx = is_720p_or_larger ? 1 : 0; |
| |
| switch (bsize) { |
| case BLOCK_64X64: |
| linear_weights = vp9_partition_breakout_weights_64[resolution_ctx][q_ctx]; |
| break; |
| case BLOCK_32X32: |
| linear_weights = vp9_partition_breakout_weights_32[resolution_ctx][q_ctx]; |
| break; |
| case BLOCK_16X16: |
| linear_weights = vp9_partition_breakout_weights_16[resolution_ctx][q_ctx]; |
| break; |
| case BLOCK_8X8: |
| linear_weights = vp9_partition_breakout_weights_8[resolution_ctx][q_ctx]; |
| break; |
| default: assert(0 && "Unexpected block size."); return 0; |
| } |
| if (!linear_weights) return 0; |
| |
| { // Generate feature values. |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const int ac_q = |
| vp9_ac_quant(cm->base_qindex, 0, cm->bit_depth) >> (x->e_mbd.bd - 8); |
| #else |
| const int ac_q = vp9_ac_quant(qindex, 0, cm->bit_depth); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| const int num_pels_log2 = num_pels_log2_lookup[bsize]; |
| int feature_index = 0; |
| unsigned int var, sse; |
| float rate_f, dist_f; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| var = |
| vp9_high_get_sby_variance(cpi, &x->plane[0].src, bsize, x->e_mbd.bd); |
| } else { |
| var = cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride, |
| vp9_64_zeros, 0, &sse); |
| } |
| #else |
| var = cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride, |
| vp9_64_zeros, 0, &sse); |
| #endif |
| var = var >> num_pels_log2; |
| |
| vpx_clear_system_state(); |
| |
| rate_f = (float)VPXMIN(rd_cost->rate, INT_MAX); |
| dist_f = (float)(VPXMIN(rd_cost->dist, INT_MAX) >> num_pels_log2); |
| rate_f = |
| ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) * |
| rate_f; |
| |
| features[feature_index++] = rate_f; |
| features[feature_index++] = dist_f; |
| features[feature_index++] = (float)var; |
| features[feature_index++] = (float)ac_q; |
| assert(feature_index == FEATURES); |
| } |
| |
| { // Calculate the output score. |
| int i; |
| linear_score = linear_weights[FEATURES]; |
| for (i = 0; i < FEATURES; ++i) |
| linear_score += linear_weights[i] * features[i]; |
| } |
| |
| return linear_score >= cpi->sf.rd_ml_partition.search_breakout_thresh[q_ctx]; |
| } |
| #undef FEATURES |
| |
| #define FEATURES 8 |
| #define LABELS 4 |
| static void ml_prune_rect_partition(VP9_COMP *const cpi, MACROBLOCK *const x, |
| BLOCK_SIZE bsize, |
| const PC_TREE *const pc_tree, |
| int *allow_horz, int *allow_vert, |
| int64_t ref_rd) { |
| const NN_CONFIG *nn_config = NULL; |
| float score[LABELS] = { |
| 0.0f, |
| }; |
| int thresh = -1; |
| int i; |
| (void)x; |
| |
| if (ref_rd <= 0 || ref_rd > 1000000000) return; |
| |
| switch (bsize) { |
| case BLOCK_8X8: break; |
| case BLOCK_16X16: |
| nn_config = &vp9_rect_part_nnconfig_16; |
| thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[1]; |
| break; |
| case BLOCK_32X32: |
| nn_config = &vp9_rect_part_nnconfig_32; |
| thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[2]; |
| break; |
| case BLOCK_64X64: |
| nn_config = &vp9_rect_part_nnconfig_64; |
| thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[3]; |
| break; |
| default: assert(0 && "Unexpected block size."); return; |
| } |
| if (!nn_config || thresh < 0) return; |
| |
| // Feature extraction and model score calculation. |
| { |
| const VP9_COMMON *const cm = &cpi->common; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const int dc_q = |
| vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) >> (x->e_mbd.bd - 8); |
| #else |
| const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| const int bs = 4 * num_4x4_blocks_wide_lookup[bsize]; |
| int feature_index = 0; |
| float features[FEATURES]; |
| |
| features[feature_index++] = logf((float)dc_q + 1.0f); |
| features[feature_index++] = |
| (float)(pc_tree->partitioning == PARTITION_NONE); |
| features[feature_index++] = logf((float)ref_rd / bs / bs + 1.0f); |
| |
| { |
| const float norm_factor = 1.0f / ((float)ref_rd + 1.0f); |
| const int64_t none_rdcost = pc_tree->none.rdcost; |
| float rd_ratio = 2.0f; |
| if (none_rdcost > 0 && none_rdcost < 1000000000) |
| rd_ratio = (float)none_rdcost * norm_factor; |
| features[feature_index++] = VPXMIN(rd_ratio, 2.0f); |
| |
| for (i = 0; i < 4; ++i) { |
| const int64_t this_rd = pc_tree->split[i]->none.rdcost; |
| const int rd_valid = this_rd > 0 && this_rd < 1000000000; |
| // Ratio between sub-block RD and whole block RD. |
| features[feature_index++] = |
| rd_valid ? (float)this_rd * norm_factor : 1.0f; |
| } |
| } |
| |
| assert(feature_index == FEATURES); |
| nn_predict(features, nn_config, score); |
| } |
| |
| // Make decisions based on the model score. |
| { |
| int max_score = -1000; |
| int horz = 0, vert = 0; |
| int int_score[LABELS]; |
| for (i = 0; i < LABELS; ++i) { |
| int_score[i] = (int)(100 * score[i]); |
| max_score = VPXMAX(int_score[i], max_score); |
| } |
| thresh = max_score - thresh; |
| for (i = 0; i < LABELS; ++i) { |
| if (int_score[i] >= thresh) { |
| if ((i >> 0) & 1) horz = 1; |
| if ((i >> 1) & 1) vert = 1; |
| } |
| } |
| *allow_horz = *allow_horz && horz; |
| *allow_vert = *allow_vert && vert; |
| } |
| } |
| #undef FEATURES |
| #undef LABELS |
| |
| // Perform fast and coarse motion search for the given block. This is a |
| // pre-processing step for the ML based partition search speedup. |
| static void simple_motion_search(const VP9_COMP *const cpi, MACROBLOCK *const x, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| MV ref_mv, MV_REFERENCE_FRAME ref, |
| uint8_t *const pred_buf) { |
| const VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| const YV12_BUFFER_CONFIG *const yv12 = get_ref_frame_buffer(cpi, ref); |
| const int step_param = 1; |
| const MvLimits tmp_mv_limits = x->mv_limits; |
| const SEARCH_METHODS search_method = NSTEP; |
| const int sadpb = x->sadperbit16; |
| MV ref_mv_full = { ref_mv.row >> 3, ref_mv.col >> 3 }; |
| MV best_mv = { 0, 0 }; |
| int cost_list[5]; |
| |
| assert(yv12 != NULL); |
| if (!yv12) return; |
| vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, |
| &cm->frame_refs[ref - 1].sf); |
| mi->ref_frame[0] = ref; |
| mi->ref_frame[1] = NONE; |
| mi->sb_type = bsize; |
| vp9_set_mv_search_range(&x->mv_limits, &ref_mv); |
| vp9_full_pixel_search(cpi, x, bsize, &ref_mv_full, step_param, search_method, |
| sadpb, cond_cost_list(cpi, cost_list), &ref_mv, |
| &best_mv, 0, 0); |
| best_mv.row *= 8; |
| best_mv.col *= 8; |
| x->mv_limits = tmp_mv_limits; |
| mi->mv[0].as_mv = best_mv; |
| |
| set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); |
| xd->plane[0].dst.buf = pred_buf; |
| xd->plane[0].dst.stride = 64; |
| vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); |
| } |
| |
| // Use a neural net model to prune partition-none and partition-split search. |
| // Features used: QP; spatial block size contexts; variance of prediction |
| // residue after simple_motion_search. |
| #define FEATURES 12 |
| static void ml_predict_var_rd_paritioning(const VP9_COMP *const cpi, |
| MACROBLOCK *const x, |
| PC_TREE *const pc_tree, |
| BLOCK_SIZE bsize, int mi_row, |
| int mi_col, int *none, int *split) { |
| const VP9_COMMON *const cm = &cpi->common; |
| const NN_CONFIG *nn_config = NULL; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| MACROBLOCKD *xd = &x->e_mbd; |
| DECLARE_ALIGNED(16, uint8_t, pred_buffer[64 * 64 * 2]); |
| uint8_t *const pred_buf = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| ? (CONVERT_TO_BYTEPTR(pred_buffer)) |
| : pred_buffer; |
| #else |
| DECLARE_ALIGNED(16, uint8_t, pred_buffer[64 * 64]); |
| uint8_t *const pred_buf = pred_buffer; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| const int speed = cpi->oxcf.speed; |
| float thresh = 0.0f; |
| |
| switch (bsize) { |
| case BLOCK_64X64: |
| nn_config = &vp9_part_split_nnconfig_64; |
| thresh = speed > 0 ? 2.8f : 3.0f; |
| break; |
| case BLOCK_32X32: |
| nn_config = &vp9_part_split_nnconfig_32; |
| thresh = speed > 0 ? 3.5f : 3.0f; |
| break; |
| case BLOCK_16X16: |
| nn_config = &vp9_part_split_nnconfig_16; |
| thresh = speed > 0 ? 3.8f : 4.0f; |
| break; |
| case BLOCK_8X8: |
| nn_config = &vp9_part_split_nnconfig_8; |
| if (cm->width >= 720 && cm->height >= 720) |
| thresh = speed > 0 ? 2.5f : 2.0f; |
| else |
| thresh = speed > 0 ? 3.8f : 2.0f; |
| break; |
| default: assert(0 && "Unexpected block size."); return; |
| } |
| |
| if (!nn_config) return; |
| |
| // Do a simple single motion search to find a prediction for current block. |
| // The variance of the residue will be used as input features. |
| { |
| MV ref_mv; |
| const MV_REFERENCE_FRAME ref = |
| cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME; |
| // If bsize is 64x64, use zero MV as reference; otherwise, use MV result |
| // of previous(larger) block as reference. |
| if (bsize == BLOCK_64X64) |
| ref_mv.row = ref_mv.col = 0; |
| else |
| ref_mv = pc_tree->mv; |
| vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); |
| simple_motion_search(cpi, x, bsize, mi_row, mi_col, ref_mv, ref, pred_buf); |
| pc_tree->mv = x->e_mbd.mi[0]->mv[0].as_mv; |
| } |
| |
| vpx_clear_system_state(); |
| |
| { |
| float features[FEATURES] = { 0.0f }; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const int dc_q = |
| vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) >> (xd->bd - 8); |
| #else |
| const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| int feature_idx = 0; |
| float score; |
| |
| // Generate model input features. |
| features[feature_idx++] = logf((float)dc_q + 1.0f); |
| |
| // Get the variance of the residue as input features. |
| { |
| const int bs = 4 * num_4x4_blocks_wide_lookup[bsize]; |
| const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT); |
| const uint8_t *pred = pred_buf; |
| const uint8_t *src = x->plane[0].src.buf; |
| const int src_stride = x->plane[0].src.stride; |
| const int pred_stride = 64; |
| unsigned int sse; |
| // Variance of whole block. |
| const unsigned int var = |
| cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse); |
| const float factor = (var == 0) ? 1.0f : (1.0f / (float)var); |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const int has_above = !!xd->above_mi; |
| const int has_left = !!xd->left_mi; |
| const BLOCK_SIZE above_bsize = has_above ? xd->above_mi->sb_type : bsize; |
| const BLOCK_SIZE left_bsize = has_left ? xd->left_mi->sb_type : bsize; |
| int i; |
| |
| features[feature_idx++] = (float)has_above; |
| features[feature_idx++] = (float)b_width_log2_lookup[above_bsize]; |
| features[feature_idx++] = (float)b_height_log2_lookup[above_bsize]; |
| features[feature_idx++] = (float)has_left; |
| features[feature_idx++] = (float)b_width_log2_lookup[left_bsize]; |
| features[feature_idx++] = (float)b_height_log2_lookup[left_bsize]; |
| features[feature_idx++] = logf((float)var + 1.0f); |
| for (i = 0; i < 4; ++i) { |
| const int x_idx = (i & 1) * bs / 2; |
| const int y_idx = (i >> 1) * bs / 2; |
| const int src_offset = y_idx * src_stride + x_idx; |
| const int pred_offset = y_idx * pred_stride + x_idx; |
| // Variance of quarter block. |
| const unsigned int sub_var = |
| cpi->fn_ptr[subsize].vf(src + src_offset, src_stride, |
| pred + pred_offset, pred_stride, &sse); |
| const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var; |
| features[feature_idx++] = var_ratio; |
| } |
| } |
| assert(feature_idx == FEATURES); |
| |
| // Feed the features into the model to get the confidence score. |
| nn_predict(features, nn_config, &score); |
| |
| // Higher score means that the model has higher confidence that the split |
| // partition is better than the non-split partition. So if the score is |
| // high enough, we skip the none-split partition search; if the score is |
| // low enough, we skip the split partition search. |
| if (score > thresh) *none = 0; |
| if (score < -thresh) *split = 0; |
| } |
| } |
| #undef FEATURES |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static double log_wiener_var(int64_t wiener_variance) { |
| return log(1.0 + wiener_variance) / log(2.0); |
| } |
| |
| static void build_kmeans_segmentation(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| BLOCK_SIZE bsize = BLOCK_64X64; |
| KMEANS_DATA *kmeans_data; |
| |
| vp9_disable_segmentation(&cm->seg); |
| if (cm->show_frame) { |
| int mi_row, mi_col; |
| cpi->kmeans_data_size = 0; |
| cpi->kmeans_ctr_num = 8; |
| |
| for (mi_row = 0; mi_row < cm->mi_rows; mi_row += MI_BLOCK_SIZE) { |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) { |
| int mb_row_start = mi_row >> 1; |
| int mb_col_start = mi_col >> 1; |
| int mb_row_end = VPXMIN( |
| (mi_row + num_8x8_blocks_high_lookup[bsize]) >> 1, cm->mb_rows); |
| int mb_col_end = VPXMIN( |
| (mi_col + num_8x8_blocks_wide_lookup[bsize]) >> 1, cm->mb_cols); |
| int row, col; |
| int64_t wiener_variance = 0; |
| |
| for (row = mb_row_start; row < mb_row_end; ++row) |
| for (col = mb_col_start; col < mb_col_end; ++col) |
| wiener_variance += cpi->mb_wiener_variance[row * cm->mb_cols + col]; |
| |
| wiener_variance /= |
| (mb_row_end - mb_row_start) * (mb_col_end - mb_col_start); |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(&cpi->kmeans_mutex); |
| #endif // CONFIG_MULTITHREAD |
| |
| kmeans_data = &cpi->kmeans_data_arr[cpi->kmeans_data_size++]; |
| kmeans_data->value = log_wiener_var(wiener_variance); |
| kmeans_data->pos = mi_row * cpi->kmeans_data_stride + mi_col; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(&cpi->kmeans_mutex); |
| #endif // CONFIG_MULTITHREAD |
| } |
| } |
| |
| vp9_kmeans(cpi->kmeans_ctr_ls, cpi->kmeans_boundary_ls, |
| cpi->kmeans_count_ls, cpi->kmeans_ctr_num, cpi->kmeans_data_arr, |
| cpi->kmeans_data_size); |
| |
| vp9_perceptual_aq_mode_setup(cpi, &cm->seg); |
| } |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static int wiener_var_segment(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row, |
| int mi_col) { |
| VP9_COMMON *cm = &cpi->common; |
| int mb_row_start = mi_row >> 1; |
| int mb_col_start = mi_col >> 1; |
| int mb_row_end = |
| VPXMIN((mi_row + num_8x8_blocks_high_lookup[bsize]) >> 1, cm->mb_rows); |
| int mb_col_end = |
| VPXMIN((mi_col + num_8x8_blocks_wide_lookup[bsize]) >> 1, cm->mb_cols); |
| int row, col, idx; |
| int64_t wiener_variance = 0; |
| int segment_id; |
| int8_t seg_hist[MAX_SEGMENTS] = { 0 }; |
| int8_t max_count = 0, max_index = -1; |
| |
| vpx_clear_system_state(); |
| |
| assert(cpi->norm_wiener_variance > 0); |
| |
| for (row = mb_row_start; row < mb_row_end; ++row) { |
| for (col = mb_col_start; col < mb_col_end; ++col) { |
| wiener_variance = cpi->mb_wiener_variance[row * cm->mb_cols + col]; |
| segment_id = |
| vp9_get_group_idx(log_wiener_var(wiener_variance), |
| cpi->kmeans_boundary_ls, cpi->kmeans_ctr_num); |
| ++seg_hist[segment_id]; |
| } |
| } |
| |
| for (idx = 0; idx < cpi->kmeans_ctr_num; ++idx) { |
| if (seg_hist[idx] > max_count) { |
| max_count = seg_hist[idx]; |
| max_index = idx; |
| } |
| } |
| |
| assert(max_index >= 0); |
| segment_id = max_index; |
| |
| return segment_id; |
| } |
| |
| static int get_rdmult_delta(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, int orig_rdmult) { |
| const int gf_group_index = cpi->twopass.gf_group.index; |
| int64_t intra_cost = 0; |
| int64_t mc_dep_cost = 0; |
| int mi_wide = num_8x8_blocks_wide_lookup[bsize]; |
| int mi_high = num_8x8_blocks_high_lookup[bsize]; |
| int row, col; |
| |
| int dr = 0; |
| int count = 0; |
| double r0, rk, beta; |
| |
| TplDepFrame *tpl_frame; |
| TplDepStats *tpl_stats; |
| int tpl_stride; |
| |
| if (gf_group_index >= MAX_ARF_GOP_SIZE) return orig_rdmult; |
| tpl_frame = &cpi->tpl_stats[gf_group_index]; |
| |
| if (tpl_frame->is_valid == 0) return orig_rdmult; |
| tpl_stats = tpl_frame->tpl_stats_ptr; |
| tpl_stride = tpl_frame->stride; |
| |
| if (cpi->twopass.gf_group.layer_depth[gf_group_index] > 1) return orig_rdmult; |
| |
| for (row = mi_row; row < mi_row + mi_high; ++row) { |
| for (col = mi_col; col < mi_col + mi_wide; ++col) { |
| TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col]; |
| |
| if (row >= cpi->common.mi_rows || col >= cpi->common.mi_cols) continue; |
| |
| intra_cost += this_stats->intra_cost; |
| mc_dep_cost += this_stats->mc_dep_cost; |
| |
| ++count; |
| } |
| } |
| |
| vpx_clear_system_state(); |
| |
| r0 = cpi->rd.r0; |
| rk = (double)intra_cost / mc_dep_cost; |
| beta = r0 / rk; |
| dr = vp9_get_adaptive_rdmult(cpi, beta); |
| |
| dr = VPXMIN(dr, orig_rdmult * 3 / 2); |
| dr = VPXMAX(dr, orig_rdmult * 1 / 2); |
| |
| dr = VPXMAX(1, dr); |
| |
| return dr; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #if CONFIG_RATE_CTRL |
| static void assign_partition_info( |
| const int row_start_4x4, const int col_start_4x4, const int block_width_4x4, |
| const int block_height_4x4, const int num_unit_rows, |
| const int num_unit_cols, PARTITION_INFO *partition_info) { |
| int i, j; |
| for (i = 0; i < block_height_4x4; ++i) { |
| for (j = 0; j < block_width_4x4; ++j) { |
| const int row_4x4 = row_start_4x4 + i; |
| const int col_4x4 = col_start_4x4 + j; |
| const int unit_index = row_4x4 * num_unit_cols + col_4x4; |
| if (row_4x4 >= num_unit_rows || col_4x4 >= num_unit_cols) continue; |
| partition_info[unit_index].row = row_4x4 << 2; |
| partition_info[unit_index].column = col_4x4 << 2; |
| partition_info[unit_index].row_start = row_start_4x4 << 2; |
| partition_info[unit_index].column_start = col_start_4x4 << 2; |
| partition_info[unit_index].width = block_width_4x4 << 2; |
| partition_info[unit_index].height = block_height_4x4 << 2; |
| } |
| } |
| } |
| |
| static void assign_motion_vector_info(const int block_width_4x4, |
| const int block_height_4x4, |
| const int row_start_4x4, |
| const int col_start_4x4, |
| const int num_unit_rows, |
| const int num_unit_cols, MV *source_mv[2], |
| MV_REFERENCE_FRAME source_ref_frame[2], |
| MOTION_VECTOR_INFO *motion_vector_info) { |
| int i, j; |
| for (i = 0; i < block_height_4x4; ++i) { |
| for (j = 0; j < block_width_4x4; ++j) { |
| const int row_4x4 = row_start_4x4 + i; |
| const int col_4x4 = col_start_4x4 + j; |
| const int unit_index = row_4x4 * num_unit_cols + col_4x4; |
| if (row_4x4 >= num_unit_rows || col_4x4 >= num_unit_cols) continue; |
| if (source_ref_frame[1] == NONE) { |
| assert(source_mv[1]->row == 0 && source_mv[1]->col == 0); |
| } |
| motion_vector_info[unit_index].ref_frame[0] = source_ref_frame[0]; |
| motion_vector_info[unit_index].ref_frame[1] = source_ref_frame[1]; |
| motion_vector_info[unit_index].mv[0].as_mv.row = source_mv[0]->row; |
| motion_vector_info[unit_index].mv[0].as_mv.col = source_mv[0]->col; |
| motion_vector_info[unit_index].mv[1].as_mv.row = source_mv[1]->row; |
| motion_vector_info[unit_index].mv[1].as_mv.col = source_mv[1]->col; |
| } |
| } |
| } |
| |
| static void store_superblock_info( |
| const PC_TREE *const pc_tree, MODE_INFO **mi_grid_visible, |
| const int mi_stride, const int square_size_4x4, const int num_unit_rows, |
| const int num_unit_cols, const int row_start_4x4, const int col_start_4x4, |
| PARTITION_INFO *partition_info, MOTION_VECTOR_INFO *motion_vector_info) { |
| const int subblock_square_size_4x4 = square_size_4x4 >> 1; |
| if (row_start_4x4 >= num_unit_rows || col_start_4x4 >= num_unit_cols) return; |
| assert(pc_tree->partitioning != PARTITION_INVALID); |
| // End node, no split. |
| if (pc_tree->partitioning == PARTITION_NONE || |
| pc_tree->partitioning == PARTITION_HORZ || |
| pc_tree->partitioning == PARTITION_VERT || square_size_4x4 == 1) { |
| const int mi_row = row_start_4x4 >> 1; |
| const int mi_col = col_start_4x4 >> 1; |
| const int mi_idx = mi_stride * mi_row + mi_col; |
| MODE_INFO **mi = mi_grid_visible + mi_idx; |
| MV *source_mv[2]; |
| MV_REFERENCE_FRAME source_ref_frame[2]; |
| |
| // partition info |
| const int block_width_4x4 = (pc_tree->partitioning == PARTITION_VERT) |
| ? square_size_4x4 >> 1 |
| : square_size_4x4; |
| const int block_height_4x4 = (pc_tree->partitioning == PARTITION_HORZ) |
| ? square_size_4x4 >> 1 |
| : square_size_4x4; |
| assign_partition_info(row_start_4x4, col_start_4x4, block_width_4x4, |
| block_height_4x4, num_unit_rows, num_unit_cols, |
| partition_info); |
| if (pc_tree->partitioning == PARTITION_VERT) { |
| assign_partition_info(row_start_4x4, col_start_4x4 + block_width_4x4, |
| block_width_4x4, block_height_4x4, num_unit_rows, |
| num_unit_cols, partition_info); |
| } else if (pc_tree->partitioning == PARTITION_HORZ) { |
| assign_partition_info(row_start_4x4 + block_height_4x4, col_start_4x4, |
| block_width_4x4, block_height_4x4, num_unit_rows, |
| num_unit_cols, partition_info); |
| } |
| |
| // motion vector info |
| if (pc_tree->partitioning == PARTITION_HORZ) { |
| int is_valid_second_rectangle = 0; |
| assert(square_size_4x4 > 1); |
| // First rectangle. |
| source_ref_frame[0] = mi[0]->ref_frame[0]; |
| source_ref_frame[1] = mi[0]->ref_frame[1]; |
| source_mv[0] = &mi[0]->mv[0].as_mv; |
| source_mv[1] = &mi[0]->mv[1].as_mv; |
| assign_motion_vector_info(block_width_4x4, block_height_4x4, |
| row_start_4x4, col_start_4x4, num_unit_rows, |
| num_unit_cols, source_mv, source_ref_frame, |
| motion_vector_info); |
| // Second rectangle. |
| if (square_size_4x4 == 2) { |
| is_valid_second_rectangle = 1; |
| source_ref_frame[0] = mi[0]->ref_frame[0]; |
| source_ref_frame[1] = mi[0]->ref_frame[1]; |
| source_mv[0] = &mi[0]->bmi[2].as_mv[0].as_mv; |
| source_mv[1] = &mi[0]->bmi[2].as_mv[1].as_mv; |
| } else { |
| const int mi_row_2 = mi_row + (block_height_4x4 >> 1); |
| const int mi_col_2 = mi_col; |
| if (mi_row_2 * 2 < num_unit_rows && mi_col_2 * 2 < num_unit_cols) { |
| const int mi_idx_2 = mi_stride * mi_row_2 + mi_col_2; |
| is_valid_second_rectangle = 1; |
| mi = mi_grid_visible + mi_idx_2; |
| source_ref_frame[0] = mi[0]->ref_frame[0]; |
| source_ref_frame[1] = mi[0]->ref_frame[1]; |
| source_mv[0] = &mi[0]->mv[0].as_mv; |
| source_mv[1] = &mi[0]->mv[1].as_mv; |
| } |
| } |
| if (is_valid_second_rectangle) { |
| assign_motion_vector_info( |
| block_width_4x4, block_height_4x4, row_start_4x4 + block_height_4x4, |
| col_start_4x4, num_unit_rows, num_unit_cols, source_mv, |
| source_ref_frame, motion_vector_info); |
| } |
| } else if (pc_tree->partitioning == PARTITION_VERT) { |
| int is_valid_second_rectangle = 0; |
| assert(square_size_4x4 > 1); |
| // First rectangle. |
| source_ref_frame[0] = mi[0]->ref_frame[0]; |
| source_ref_frame[1] = mi[0]->ref_frame[1]; |
| source_mv[0] = &mi[0]->mv[0].as_mv; |
| source_mv[1] = &mi[0]->mv[1].as_mv; |
| assign_motion_vector_info(block_width_4x4, block_height_4x4, |
| row_start_4x4, col_start_4x4, num_unit_rows, |
| num_unit_cols, source_mv, source_ref_frame, |
| motion_vector_info); |
| // Second rectangle. |
| if (square_size_4x4 == 2) { |
| is_valid_second_rectangle = 1; |
| source_ref_frame[0] = mi[0]->ref_frame[0]; |
| source_ref_frame[1] = mi[0]->ref_frame[1]; |
| source_mv[0] = &mi[0]->bmi[1].as_mv[0].as_mv; |
| source_mv[1] = &mi[0]->bmi[1].as_mv[1].as_mv; |
| } else { |
| const int mi_row_2 = mi_row; |
| const int mi_col_2 = mi_col + (block_width_4x4 >> 1); |
| if (mi_row_2 * 2 < num_unit_rows && mi_col_2 * 2 < num_unit_cols) { |
| const int mi_idx_2 = mi_stride * mi_row_2 + mi_col_2; |
| is_valid_second_rectangle = 1; |
| mi = mi_grid_visible + mi_idx_2; |
| source_ref_frame[0] = mi[0]->ref_frame[0]; |
| source_ref_frame[1] = mi[0]->ref_frame[1]; |
| source_mv[0] = &mi[0]->mv[0].as_mv; |
| source_mv[1] = &mi[0]->mv[1].as_mv; |
| } |
| } |
| if (is_valid_second_rectangle) { |
| assign_motion_vector_info( |
| block_width_4x4, block_height_4x4, row_start_4x4, |
| col_start_4x4 + block_width_4x4, num_unit_rows, num_unit_cols, |
| source_mv, source_ref_frame, motion_vector_info); |
| } |
| } else { |
| assert(pc_tree->partitioning == PARTITION_NONE || square_size_4x4 == 1); |
| source_ref_frame[0] = mi[0]->ref_frame[0]; |
| source_ref_frame[1] = mi[0]->ref_frame[1]; |
| if (square_size_4x4 == 1) { |
| const int sub8x8_row = row_start_4x4 % 2; |
| const int sub8x8_col = col_start_4x4 % 2; |
| const int sub8x8_idx = sub8x8_row * 2 + sub8x8_col; |
| source_mv[0] = &mi[0]->bmi[sub8x8_idx].as_mv[0].as_mv; |
| source_mv[1] = &mi[0]->bmi[sub8x8_idx].as_mv[1].as_mv; |
| } else { |
| source_mv[0] = &mi[0]->mv[0].as_mv; |
| source_mv[1] = &mi[0]->mv[1].as_mv; |
| } |
| assign_motion_vector_info(block_width_4x4, block_height_4x4, |
| row_start_4x4, col_start_4x4, num_unit_rows, |
| num_unit_cols, source_mv, source_ref_frame, |
| motion_vector_info); |
| } |
| |
| return; |
| } |
| // recursively traverse partition tree when partition is split. |
| assert(pc_tree->partitioning == PARTITION_SPLIT); |
| store_superblock_info(pc_tree->split[0], mi_grid_visible, mi_stride, |
| subblock_square_size_4x4, num_unit_rows, num_unit_cols, |
| row_start_4x4, col_start_4x4, partition_info, |
| motion_vector_info); |
| store_superblock_info(pc_tree->split[1], mi_grid_visible, mi_stride, |
| subblock_square_size_4x4, num_unit_rows, num_unit_cols, |
| row_start_4x4, col_start_4x4 + subblock_square_size_4x4, |
| partition_info, motion_vector_info); |
| store_superblock_info(pc_tree->split[2], mi_grid_visible, mi_stride, |
| subblock_square_size_4x4, num_unit_rows, num_unit_cols, |
| row_start_4x4 + subblock_square_size_4x4, col_start_4x4, |
| partition_info, motion_vector_info); |
| store_superblock_info(pc_tree->split[3], mi_grid_visible, mi_stride, |
| subblock_square_size_4x4, num_unit_rows, num_unit_cols, |
| row_start_4x4 + subblock_square_size_4x4, |
| col_start_4x4 + subblock_square_size_4x4, |
| partition_info, motion_vector_info); |
| } |
| #endif // CONFIG_RATE_CTRL |
| |
| #if !CONFIG_REALTIME_ONLY |
| // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are |
| // unlikely to be selected depending on previous rate-distortion optimization |
| // results, for encoding speed-up. |
| static int rd_pick_partition(VP9_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, TOKENEXTRA **tp, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| RD_COST *rd_cost, RD_COST best_rdc, |
| PC_TREE *pc_tree) { |
| VP9_COMMON *const cm = &cpi->common; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2; |
| ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; |
| PARTITION_CONTEXT sl[8], sa[8]; |
| TOKENEXTRA *tp_orig = *tp; |
| PICK_MODE_CONTEXT *const ctx = &pc_tree->none; |
| int i; |
| const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| BLOCK_SIZE subsize; |
| RD_COST this_rdc, sum_rdc; |
| int do_split = bsize >= BLOCK_8X8; |
| int do_rect = 1; |
| INTERP_FILTER pred_interp_filter; |
| |
| // Override skipping rectangular partition operations for edge blocks |
| const int force_horz_split = (mi_row + mi_step >= cm->mi_rows); |
| const int force_vert_split = (mi_col + mi_step >= cm->mi_cols); |
| const int xss = x->e_mbd.plane[1].subsampling_x; |
| const int yss = x->e_mbd.plane[1].subsampling_y; |
| |
| BLOCK_SIZE min_size = x->min_partition_size; |
| BLOCK_SIZE max_size = x->max_partition_size; |
| |
| #if CONFIG_FP_MB_STATS |
| unsigned int src_diff_var = UINT_MAX; |
| int none_complexity = 0; |
| #endif |
| |
| int partition_none_allowed = !force_horz_split && !force_vert_split; |
| int partition_horz_allowed = |
| !force_vert_split && yss <= xss && bsize >= BLOCK_8X8; |
| int partition_vert_allowed = |
| !force_horz_split && xss <= yss && bsize >= BLOCK_8X8; |
| |
| int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_thr.dist; |
| int rate_breakout_thr = cpi->sf.partition_search_breakout_thr.rate; |
| int must_split = 0; |
| int should_encode_sb = 0; |
| |
| // Ref frames picked in the [i_th] quarter subblock during square partition |
| // RD search. It may be used to prune ref frame selection of rect partitions. |
| uint8_t ref_frames_used[4] = { 0, 0, 0, 0 }; |
| |
| int partition_mul = x->cb_rdmult; |
| |
| (void)*tp_orig; |
| |
| assert(num_8x8_blocks_wide_lookup[bsize] == |
| num_8x8_blocks_high_lookup[bsize]); |
| |
| dist_breakout_thr >>= |
| 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); |
| |
| rate_breakout_thr *= num_pels_log2_lookup[bsize]; |
| |
| vp9_rd_cost_init(&this_rdc); |
| vp9_rd_cost_init(&sum_rdc); |
| |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| |
| if (oxcf->tuning == VP8_TUNE_SSIM) { |
| set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &partition_mul); |
| } |
| vp9_rd_cost_update(partition_mul, x->rddiv, &best_rdc); |
| |
| if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ && |
| cpi->oxcf.aq_mode != LOOKAHEAD_AQ) |
| x->mb_energy = vp9_block_energy(cpi, x, bsize); |
| |
| if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) { |
| int cb_partition_search_ctrl = |
| ((pc_tree->index == 0 || pc_tree->index == 3) + |
| get_chessboard_index(cm->current_video_frame)) & |
| 0x1; |
| |
| if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size) |
| set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size); |
| } |
| |
| // Get sub block energy range |
| if (bsize >= BLOCK_16X16) { |
| int min_energy, max_energy; |
| vp9_get_sub_block_energy(cpi, x, mi_row, mi_col, bsize, &min_energy, |
| &max_energy); |
| must_split = (min_energy < -3) && (max_energy - min_energy > 2); |
| } |
| |
| // Determine partition types in search according to the speed features. |
| // The threshold set here has to be of square block size. |
| if (cpi->sf.auto_min_max_partition_size) { |
| partition_none_allowed &= (bsize <= max_size); |
| partition_horz_allowed &= |
| ((bsize <= max_size && bsize > min_size) || force_horz_split); |
| partition_vert_allowed &= |
| ((bsize <= max_size && bsize > min_size) || force_vert_split); |
| do_split &= bsize > min_size; |
| } |
| |
| if (cpi->sf.use_square_partition_only && |
| (bsize > cpi->sf.use_square_only_thresh_high || |
| bsize < cpi->sf.use_square_only_thresh_low)) { |
| if (cpi->use_svc) { |
| if (!vp9_active_h_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless) |
| partition_horz_allowed &= force_horz_split; |
| if (!vp9_active_v_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless) |
| partition_vert_allowed &= force_vert_split; |
| } else { |
| partition_horz_allowed &= force_horz_split; |
| partition_vert_allowed &= force_vert_split; |
| } |
| } |
| |
| save_context(x, mi_row, mi_col, a, l, sa, sl, bsize); |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row, |
| mi_col, bsize); |
| } |
| #endif |
| |
| #if CONFIG_FP_MB_STATS |
| // Decide whether we shall split directly and skip searching NONE by using |
| // the first pass block statistics |
| if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split && |
| partition_none_allowed && src_diff_var > 4 && |
| cm->base_qindex < qindex_split_threshold_lookup[bsize]) { |
| int mb_row = mi_row >> 1; |
| int mb_col = mi_col >> 1; |
| int mb_row_end = |
| VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); |
| int mb_col_end = |
| VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); |
| int r, c; |
| |
| // compute a complexity measure, basically measure inconsistency of motion |
| // vectors obtained from the first pass in the current block |
| for (r = mb_row; r < mb_row_end; r++) { |
| for (c = mb_col; c < mb_col_end; c++) { |
| const int mb_index = r * cm->mb_cols + c; |
| |
| MOTION_DIRECTION this_mv; |
| MOTION_DIRECTION right_mv; |
| MOTION_DIRECTION bottom_mv; |
| |
| this_mv = |
| get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]); |
| |
| // to its right |
| if (c != mb_col_end - 1) { |
| right_mv = get_motion_direction_fp( |
| cpi->twopass.this_frame_mb_stats[mb_index + 1]); |
| none_complexity += get_motion_inconsistency(this_mv, right_mv); |
| } |
| |
| // to its bottom |
| if (r != mb_row_end - 1) { |
| bottom_mv = get_motion_direction_fp( |
| cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]); |
| none_complexity += get_motion_inconsistency(this_mv, bottom_mv); |
| } |
| |
| // do not count its left and top neighbors to avoid double counting |
| } |
| } |
| |
| if (none_complexity > complexity_16x16_blocks_threshold[bsize]) { |
| partition_none_allowed = 0; |
| } |
| } |
| #endif |
| |
| pc_tree->partitioning = PARTITION_NONE; |
| |
| if (cpi->sf.rd_ml_partition.var_pruning && !frame_is_intra_only(cm)) { |
| const int do_rd_ml_partition_var_pruning = |
| partition_none_allowed && do_split && |
| mi_row + num_8x8_blocks_high_lookup[bsize] <= cm->mi_rows && |
| mi_col + num_8x8_blocks_wide_lookup[bsize] <= cm->mi_cols; |
| if (do_rd_ml_partition_var_pruning) { |
| ml_predict_var_rd_paritioning(cpi, x, pc_tree, bsize, mi_row, mi_col, |
| &partition_none_allowed, &do_split); |
| } else { |
| vp9_zero(pc_tree->mv); |
| } |
| if (bsize > BLOCK_8X8) { // Store MV result as reference for subblocks. |
| for (i = 0; i < 4; ++i) pc_tree->split[i]->mv = pc_tree->mv; |
| } |
| } |
| |
| // PARTITION_NONE |
| if (partition_none_allowed) { |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, ctx, |
| best_rdc.rate, best_rdc.dist); |
| ctx->rdcost = this_rdc.rdcost; |
| if (this_rdc.rate != INT_MAX) { |
| if (cpi->sf.prune_ref_frame_for_rect_partitions) { |
| const int ref1 = ctx->mic.ref_frame[0]; |
| const int ref2 = ctx->mic.ref_frame[1]; |
| for (i = 0; i < 4; ++i) { |
| ref_frames_used[i] |= (1 << ref1); |
| if (ref2 > 0) ref_frames_used[i] |= (1 << ref2); |
| } |
| } |
| if (bsize >= BLOCK_8X8) { |
| this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; |
| vp9_rd_cost_update(partition_mul, x->rddiv, &this_rdc); |
| } |
| |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| MODE_INFO *mi = xd->mi[0]; |
| |
| best_rdc = this_rdc; |
| should_encode_sb = 1; |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; |
| |
| if (cpi->sf.rd_ml_partition.search_early_termination) { |
| // Currently, the machine-learning based partition search early |
| // termination is only used while bsize is 16x16, 32x32 or 64x64, |
| // VPXMIN(cm->width, cm->height) >= 480, and speed = 0. |
| if (!x->e_mbd.lossless && |
| !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP) && |
| ctx->mic.mode >= INTRA_MODES && bsize >= BLOCK_16X16) { |
| if (ml_pruning_partition(cm, xd, ctx, mi_row, mi_col, bsize)) { |
| do_split = 0; |
| do_rect = 0; |
| } |
| } |
| } |
| |
| if ((do_split || do_rect) && !x->e_mbd.lossless && ctx->skippable) { |
| const int use_ml_based_breakout = |
| cpi->sf.rd_ml_partition.search_breakout && cm->base_qindex >= 100; |
| if (use_ml_based_breakout) { |
| if (ml_predict_breakout(cpi, bsize, x, &this_rdc)) { |
| do_split = 0; |
| do_rect = 0; |
| } |
| } else { |
| if (!cpi->sf.rd_ml_partition.search_early_termination) { |
| if ((best_rdc.dist < (dist_breakout_thr >> 2)) || |
| (best_rdc.dist < dist_breakout_thr && |
| best_rdc.rate < rate_breakout_thr)) { |
| do_split = 0; |
| do_rect = 0; |
| } |
| } |
| } |
| } |
| |
| #if CONFIG_FP_MB_STATS |
| // Check if every 16x16 first pass block statistics has zero |
| // motion and the corresponding first pass residue is small enough. |
| // If that is the case, check the difference variance between the |
| // current frame and the last frame. If the variance is small enough, |
| // stop further splitting in RD optimization |
| if (cpi->use_fp_mb_stats && do_split != 0 && |
| cm->base_qindex > qindex_skip_threshold_lookup[bsize]) { |
| int mb_row = mi_row >> 1; |
| int mb_col = mi_col >> 1; |
| int mb_row_end = |
| VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); |
| int mb_col_end = |
| VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); |
| int r, c; |
| |
| int skip = 1; |
| for (r = mb_row; r < mb_row_end; r++) { |
| for (c = mb_col; c < mb_col_end; c++) { |
| const int mb_index = r * cm->mb_cols + c; |
| if (!(cpi->twopass.this_frame_mb_stats[mb_index] & |
| FPMB_MOTION_ZERO_MASK) || |
| !(cpi->twopass.this_frame_mb_stats[mb_index] & |
| FPMB_ERROR_SMALL_MASK)) { |
| skip = 0; |
| break; |
| } |
| } |
| if (skip == 0) { |
| break; |
| } |
| } |
| |
| if (skip) { |
| if (src_diff_var == UINT_MAX) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| src_diff_var = get_sby_perpixel_diff_variance( |
| cpi, &x->plane[0].src, mi_row, mi_col, bsize); |
| } |
| if (src_diff_var < 8) { |
| do_split = 0; |
| do_rect = 0; |
| } |
| } |
| } |
| #endif |
| } |
| } |
| restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); |
| } else { |
| vp9_zero(ctx->pred_mv); |
| ctx->mic.interp_filter = EIGHTTAP; |
| } |
| |
| // store estimated motion vector |
| store_pred_mv(x, ctx); |
| |
| // If the interp_filter is marked as SWITCHABLE_FILTERS, it was for an |
| // intra block and used for context purposes. |
| if (ctx->mic.interp_filter == SWITCHABLE_FILTERS) { |
| pred_interp_filter = EIGHTTAP; |
| } else { |
| pred_interp_filter = ctx->mic.interp_filter; |
| } |
| |
| // PARTITION_SPLIT |
| // TODO(jingning): use the motion vectors given by the above search as |
| // the starting point of motion search in the following partition type check. |
| pc_tree->split[0]->none.rdcost = 0; |
| pc_tree->split[1]->none.rdcost = 0; |
| pc_tree->split[2]->none.rdcost = 0; |
| pc_tree->split[3]->none.rdcost = 0; |
| if (do_split || must_split) { |
| subsize = get_subsize(bsize, PARTITION_SPLIT); |
| load_pred_mv(x, ctx); |
| if (bsize == BLOCK_8X8) { |
| i = 4; |
| if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed) |
| pc_tree->leaf_split[0]->pred_interp_filter = pred_interp_filter; |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, |
| pc_tree->leaf_split[0], best_rdc.rate, best_rdc.dist); |
| if (sum_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| } else { |
| if (cpi->sf.prune_ref_frame_for_rect_partitions) { |
| const int ref1 = pc_tree->leaf_split[0]->mic.ref_frame[0]; |
| const int ref2 = pc_tree->leaf_split[0]->mic.ref_frame[1]; |
| for (i = 0; i < 4; ++i) { |
| ref_frames_used[i] |= (1 << ref1); |
| if (ref2 > 0) ref_frames_used[i] |= (1 << ref2); |
| } |
| } |
| } |
| } else { |
| for (i = 0; (i < 4) && ((sum_rdc.rdcost < best_rdc.rdcost) || must_split); |
| ++i) { |
| const int x_idx = (i & 1) * mi_step; |
| const int y_idx = (i >> 1) * mi_step; |
| int found_best_rd = 0; |
| RD_COST best_rdc_split; |
| vp9_rd_cost_reset(&best_rdc_split); |
| |
| if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) { |
| // A must split test here increases the number of sub |
| // partitions but hurts metrics results quite a bit, |
| // so this extra test is commented out pending |
| // further tests on whether it adds much in terms of |
| // visual quality. |
| // (must_split) ? best_rdc.rate |
| // : best_rdc.rate - sum_rdc.rate, |
| // (must_split) ? best_rdc.dist |
| // : best_rdc.dist - sum_rdc.dist, |
| best_rdc_split.rate = best_rdc.rate - sum_rdc.rate; |
| best_rdc_split.dist = best_rdc.dist - sum_rdc.dist; |
| } |
| |
| if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) |
| continue; |
| |
| pc_tree->split[i]->index = i; |
| if (cpi->sf.prune_ref_frame_for_rect_partitions) |
| pc_tree->split[i]->none.rate = INT_MAX; |
| found_best_rd = rd_pick_partition( |
| cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize, |
| &this_rdc, best_rdc_split, pc_tree->split[i]); |
| |
| if (found_best_rd == 0) { |
| sum_rdc.rdcost = INT64_MAX; |
| break; |
| } else { |
| if (cpi->sf.prune_ref_frame_for_rect_partitions && |
| pc_tree->split[i]->none.rate != INT_MAX) { |
| const int ref1 = pc_tree->split[i]->none.mic.ref_frame[0]; |
| const int ref2 = pc_tree->split[i]->none.mic.ref_frame[1]; |
| ref_frames_used[i] |= (1 << ref1); |
| if (ref2 > 0) ref_frames_used[i] |= (1 << ref2); |
| } |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc); |
| } |
| } |
| } |
| |
| if (((sum_rdc.rdcost < best_rdc.rdcost) || must_split) && i == 4) { |
| sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT]; |
| vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc); |
| |
| if ((sum_rdc.rdcost < best_rdc.rdcost) || |
| (must_split && (sum_rdc.dist < best_rdc.dist))) { |
| best_rdc = sum_rdc; |
| should_encode_sb = 1; |
| pc_tree->partitioning = PARTITION_SPLIT; |
| |
| // Rate and distortion based partition search termination clause. |
| if (!cpi->sf.rd_ml_partition.search_early_termination && |
| !x->e_mbd.lossless && |
| ((best_rdc.dist < (dist_breakout_thr >> 2)) || |
| (best_rdc.dist < dist_breakout_thr && |
| best_rdc.rate < rate_breakout_thr))) { |
| do_rect = 0; |
| } |
| } |
| } else { |
| // skip rectangular partition test when larger block size |
| // gives better rd cost |
| if (cpi->sf.less_rectangular_check && |
| (bsize > cpi->sf.use_square_only_thresh_high || |
| best_rdc.dist < dist_breakout_thr)) |
| do_rect &= !partition_none_allowed; |
| } |
| restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); |
| } |
| |
| pc_tree->horizontal[0].skip_ref_frame_mask = 0; |
| pc_tree->horizontal[1].skip_ref_frame_mask = 0; |
| pc_tree->vertical[0].skip_ref_frame_mask = 0; |
| pc_tree->vertical[1].skip_ref_frame_mask = 0; |
| if (cpi->sf.prune_ref_frame_for_rect_partitions) { |
| uint8_t used_frames; |
| used_frames = ref_frames_used[0] | ref_frames_used[1]; |
| if (used_frames) { |
| pc_tree->horizontal[0].skip_ref_frame_mask = ~used_frames & 0xff; |
| } |
| used_frames = ref_frames_used[2] | ref_frames_used[3]; |
| if (used_frames) { |
| pc_tree->horizontal[1].skip_ref_frame_mask = ~used_frames & 0xff; |
| } |
| used_frames = ref_frames_used[0] | ref_frames_used[2]; |
| if (used_frames) { |
| pc_tree->vertical[0].skip_ref_frame_mask = ~used_frames & 0xff; |
| } |
| used_frames = ref_frames_used[1] | ref_frames_used[3]; |
| if (used_frames) { |
| pc_tree->vertical[1].skip_ref_frame_mask = ~used_frames & 0xff; |
| } |
| } |
| |
| { |
| const int do_ml_rect_partition_pruning = |
| !frame_is_intra_only(cm) && !force_horz_split && !force_vert_split && |
| (partition_horz_allowed || partition_vert_allowed) && bsize > BLOCK_8X8; |
| if (do_ml_rect_partition_pruning) { |
| ml_prune_rect_partition(cpi, x, bsize, pc_tree, &partition_horz_allowed, |
| &partition_vert_allowed, best_rdc.rdcost); |
| } |
| } |
| |
| // PARTITION_HORZ |
| if (partition_horz_allowed && |
| (do_rect || vp9_active_h_edge(cpi, mi_row, mi_step))) { |
| const int part_mode_rate = cpi->partition_cost[pl][PARTITION_HORZ]; |
| subsize = get_subsize(bsize, PARTITION_HORZ); |
| load_pred_mv(x, ctx); |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) |
| pc_tree->horizontal[0].pred_interp_filter = pred_interp_filter; |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, |
| &pc_tree->horizontal[0], best_rdc.rate - part_mode_rate, |
| best_rdc.dist); |
| if (sum_rdc.rdcost < INT64_MAX) { |
| sum_rdc.rate += part_mode_rate; |
| vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc); |
| } |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows && |
| bsize > BLOCK_8X8) { |
| PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0]; |
| update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0); |
| encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx); |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) |
| pc_tree->horizontal[1].pred_interp_filter = pred_interp_filter; |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc, |
| subsize, &pc_tree->horizontal[1], |
| best_rdc.rate - sum_rdc.rate, |
| best_rdc.dist - sum_rdc.dist); |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc); |
| } |
| } |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| should_encode_sb = 1; |
| pc_tree->partitioning = PARTITION_HORZ; |
| |
| if (cpi->sf.less_rectangular_check && |
| bsize > cpi->sf.use_square_only_thresh_high) |
| do_rect = 0; |
| } |
| restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); |
| } |
| |
| // PARTITION_VERT |
| if (partition_vert_allowed && |
| (do_rect || vp9_active_v_edge(cpi, mi_col, mi_step))) { |
| const int part_mode_rate = cpi->partition_cost[pl][PARTITION_VERT]; |
| subsize = get_subsize(bsize, PARTITION_VERT); |
| load_pred_mv(x, ctx); |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) |
| pc_tree->vertical[0].pred_interp_filter = pred_interp_filter; |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, |
| &pc_tree->vertical[0], best_rdc.rate - part_mode_rate, |
| best_rdc.dist); |
| if (sum_rdc.rdcost < INT64_MAX) { |
| sum_rdc.rate += part_mode_rate; |
| vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc); |
| } |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols && |
| bsize > BLOCK_8X8) { |
| update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0); |
| encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, |
| &pc_tree->vertical[0]); |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) |
| pc_tree->vertical[1].pred_interp_filter = pred_interp_filter; |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc, |
| subsize, &pc_tree->vertical[1], |
| best_rdc.rate - sum_rdc.rate, |
| best_rdc.dist - sum_rdc.dist); |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc); |
| } |
| } |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| should_encode_sb = 1; |
| pc_tree->partitioning = PARTITION_VERT; |
| } |
| restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); |
| } |
| |
| *rd_cost = best_rdc; |
| |
| if (should_encode_sb && pc_tree->index != 3) { |
| int output_enabled = (bsize == BLOCK_64X64); |
| encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize, |
| pc_tree); |
| #if CONFIG_RATE_CTRL |
| // Store partition, motion vector of the superblock. |
| if (output_enabled) { |
| const int num_unit_rows = get_num_unit_4x4(cpi->frame_info.frame_height); |
| const int num_unit_cols = get_num_unit_4x4(cpi->frame_info.frame_width); |
| store_superblock_info(pc_tree, cm->mi_grid_visible, cm->mi_stride, |
| num_4x4_blocks_wide_lookup[BLOCK_64X64], |
| num_unit_rows, num_unit_cols, mi_row << 1, |
| mi_col << 1, cpi->partition_info, |
| cpi->motion_vector_info); |
| } |
| #endif // CONFIG_RATE_CTRL |
| } |
| |
| if (bsize == BLOCK_64X64) { |
| assert(tp_orig < *tp); |
| assert(best_rdc.rate < INT_MAX); |
| assert(best_rdc.dist < INT64_MAX); |
| } else { |
| assert(tp_orig == *tp); |
| } |
| |
| return should_encode_sb; |
| } |
| |
| static void encode_rd_sb_row(VP9_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, int mi_row, |
| TOKENEXTRA **tp) { |
| VP9_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| const int mi_col_start = tile_info->mi_col_start; |
| const int mi_col_end = tile_info->mi_col_end; |
| int mi_col; |
| const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2; |
| const int num_sb_cols = |
| get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2); |
| int sb_col_in_tile; |
| |
| // Initialize the left context for the new SB row |
| memset(&xd->left_context, 0, sizeof(xd->left_context)); |
| memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context)); |
| |
| // Code each SB in the row |
| for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end; |
| mi_col += MI_BLOCK_SIZE, sb_col_in_tile++) { |
| const struct segmentation *const seg = &cm->seg; |
| int dummy_rate; |
| int64_t dummy_dist; |
| RD_COST dummy_rdc; |
| int i; |
| int seg_skip = 0; |
| int orig_rdmult = cpi->rd.RDMULT; |
| |
| const int idx_str = cm->mi_stride * mi_row + mi_col; |
| MODE_INFO **mi = cm->mi_grid_visible + idx_str; |
| |
| vp9_rd_cost_reset(&dummy_rdc); |
| (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row, |
| sb_col_in_tile); |
| |
| if (sf->adaptive_pred_interp_filter) { |
| for (i = 0; i < 64; ++i) td->leaf_tree[i].pred_interp_filter = SWITCHABLE; |
| |
| for (i = 0; i < 64; ++i) { |
| td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE; |
| td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE; |
| td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE; |
| td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE; |
| } |
| } |
| |
| for (i = 0; i < MAX_REF_FRAMES; ++i) { |
| x->pred_mv[i].row = INT16_MAX; |
| x->pred_mv[i].col = INT16_MAX; |
| } |
| td->pc_root->index = 0; |
| |
| if (seg->enabled) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col); |
| seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); |
| } |
| |
| x->source_variance = UINT_MAX; |
| |
| x->cb_rdmult = orig_rdmult; |
| |
| if (sf->partition_search_type == FIXED_PARTITION || seg_skip) { |
| const BLOCK_SIZE bsize = |
| seg_skip ? BLOCK_64X64 : sf->always_this_block_size; |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64); |
| set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64, |
| &dummy_rate, &dummy_dist, 1, td->pc_root); |
| } else if (cpi->partition_search_skippable_frame) { |
| BLOCK_SIZE bsize; |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64); |
| bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col); |
| set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64, |
| &dummy_rate, &dummy_dist, 1, td->pc_root); |
| } else if (sf->partition_search_type == VAR_BASED_PARTITION && |
| cm->frame_type != KEY_FRAME) { |
| choose_partitioning(cpi, tile_info, x, mi_row, mi_col); |
| rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64, |
| &dummy_rate, &dummy_dist, 1, td->pc_root); |
| } else { |
| if (cpi->twopass.gf_group.index > 0 && cpi->sf.enable_tpl_model) { |
| int dr = |
| get_rdmult_delta(cpi, BLOCK_64X64, mi_row, mi_col, orig_rdmult); |
| x->cb_rdmult = dr; |
| } |
| |
| if (cpi->oxcf.aq_mode == PERCEPTUAL_AQ && cm->show_frame) { |
| x->segment_id = wiener_var_segment(cpi, BLOCK_64X64, mi_row, mi_col); |
| x->cb_rdmult = vp9_compute_rd_mult( |
| cpi, vp9_get_qindex(&cm->seg, x->segment_id, cm->base_qindex)); |
| } |
| |
| // If required set upper and lower partition size limits |
| if (sf->auto_min_max_partition_size) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64); |
| rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col, |
| &x->min_partition_size, &x->max_partition_size); |
| } |
| td->pc_root->none.rdcost = 0; |
| rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64, |
| &dummy_rdc, dummy_rdc, td->pc_root); |
| } |
| (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row, |
| sb_col_in_tile, num_sb_cols); |
| } |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static void init_encode_frame_mb_context(VP9_COMP *cpi) { |
| MACROBLOCK *const x = &cpi->td.mb; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); |
| |
| // Copy data over into macro block data structures. |
| vp9_setup_src_planes(x, cpi->Source, 0, 0); |
| |
| vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); |
| |
| // Note: this memset assumes above_context[0], [1] and [2] |
| // are allocated as part of the same buffer. |
| memset(xd->above_context[0], 0, |
| sizeof(*xd->above_context[0]) * 2 * aligned_mi_cols * MAX_MB_PLANE); |
| memset(xd->above_seg_context, 0, |
| sizeof(*xd->above_seg_context) * aligned_mi_cols); |
| } |
| |
| static int check_dual_ref_flags(VP9_COMP *cpi) { |
| const int ref_flags = cpi->ref_frame_flags; |
| |
| if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) { |
| return 0; |
| } else { |
| return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG) + |
| !!(ref_flags & VP9_ALT_FLAG)) >= 2; |
| } |
| } |
| |
| static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) { |
| int mi_row, mi_col; |
| const int mis = cm->mi_stride; |
| MODE_INFO **mi_ptr = cm->mi_grid_visible; |
| |
| for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) { |
| for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) { |
| if (mi_ptr[mi_col]->tx_size > max_tx_size) |
| mi_ptr[mi_col]->tx_size = max_tx_size; |
| } |
| } |
| } |
| |
| static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) { |
| if (frame_is_intra_only(&cpi->common)) |
| return INTRA_FRAME; |
| else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) |
| return ALTREF_FRAME; |
| else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) |
| return GOLDEN_FRAME; |
| else |
| return LAST_FRAME; |
| } |
| |
| static TX_MODE select_tx_mode(const VP9_COMP *cpi, MACROBLOCKD *const xd) { |
| if (xd->lossless) return ONLY_4X4; |
| if (cpi->common.frame_type == KEY_FRAME && cpi->sf.use_nonrd_pick_mode) |
| return ALLOW_16X16; |
| if (cpi->sf.tx_size_search_method == USE_LARGESTALL) |
| return ALLOW_32X32; |
| else if (cpi->sf.tx_size_search_method == USE_FULL_RD || |
| cpi->sf.tx_size_search_method == USE_TX_8X8) |
| return TX_MODE_SELECT; |
| else |
| return cpi->common.tx_mode; |
| } |
| |
| static void hybrid_intra_mode_search(VP9_COMP *cpi, MACROBLOCK *const x, |
| RD_COST *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx) { |
| if (!cpi->sf.nonrd_keyframe && bsize < BLOCK_16X16) |
| vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX); |
| else |
| vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx); |
| } |
| |
| static void hybrid_search_svc_baseiskey(VP9_COMP *cpi, MACROBLOCK *const x, |
| RD_COST *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, |
| TileDataEnc *tile_data, int mi_row, |
| int mi_col) { |
| if (!cpi->sf.nonrd_keyframe && bsize <= BLOCK_8X8) { |
| vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX); |
| } else { |
| if (cpi->svc.disable_inter_layer_pred == INTER_LAYER_PRED_OFF) |
| vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx); |
| else if (bsize >= BLOCK_8X8) |
| vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize, |
| ctx); |
| else |
| vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx); |
| } |
| } |
| |
| static void hybrid_search_scene_change(VP9_COMP *cpi, MACROBLOCK *const x, |
| RD_COST *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, |
| TileDataEnc *tile_data, int mi_row, |
| int mi_col) { |
| if (!cpi->sf.nonrd_keyframe && bsize <= BLOCK_8X8) { |
| vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX); |
| } else { |
| vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize, ctx); |
| } |
| } |
| |
| static void nonrd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| RD_COST *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx) { |
| VP9_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *mi; |
| ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; |
| BLOCK_SIZE bs = VPXMAX(bsize, BLOCK_8X8); // processing unit block size |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bs]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bs]; |
| int plane; |
| |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| |
| set_segment_index(cpi, x, mi_row, mi_col, bsize, 0); |
| |
| mi = xd->mi[0]; |
| mi->sb_type = bsize; |
| |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| struct macroblockd_plane *pd = &xd->plane[plane]; |
| memcpy(a + num_4x4_blocks_wide * plane, pd->above_context, |
| (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x); |
| memcpy(l + num_4x4_blocks_high * plane, pd->left_context, |
| (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y); |
| } |
| |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) |
| if (cyclic_refresh_segment_id_boosted(mi->segment_id)) |
| x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); |
| |
| if (frame_is_intra_only(cm)) |
| hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx); |
| else if (cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame) |
| hybrid_search_svc_baseiskey(cpi, x, rd_cost, bsize, ctx, tile_data, mi_row, |
| mi_col); |
| else if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) |
| set_mode_info_seg_skip(x, cm->tx_mode, rd_cost, bsize); |
| else if (bsize >= BLOCK_8X8) { |
| if (cpi->rc.hybrid_intra_scene_change) |
| hybrid_search_scene_change(cpi, x, rd_cost, bsize, ctx, tile_data, mi_row, |
| mi_col); |
| else |
| vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize, |
| ctx); |
| } else { |
| vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx); |
| } |
| |
| duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize); |
| |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| struct macroblockd_plane *pd = &xd->plane[plane]; |
| memcpy(pd->above_context, a + num_4x4_blocks_wide * plane, |
| (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x); |
| memcpy(pd->left_context, l + num_4x4_blocks_high * plane, |
| (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y); |
| } |
| |
| if (rd_cost->rate == INT_MAX) vp9_rd_cost_reset(rd_cost); |
| |
| ctx->rate = rd_cost->rate; |
| ctx->dist = rd_cost->dist; |
| } |
| |
| static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; |
| PARTITION_TYPE partition = pc_tree->partitioning; |
| BLOCK_SIZE subsize = get_subsize(bsize, partition); |
| |
| assert(bsize >= BLOCK_8X8); |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| set_mode_info_offsets(cm, x, xd, mi_row, mi_col); |
| *(xd->mi[0]) = pc_tree->none.mic; |
| *(x->mbmi_ext) = pc_tree->none.mbmi_ext; |
| duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize); |
| break; |
| case PARTITION_VERT: |
| set_mode_info_offsets(cm, x, xd, mi_row, mi_col); |
| *(xd->mi[0]) = pc_tree->vertical[0].mic; |
| *(x->mbmi_ext) = pc_tree->vertical[0].mbmi_ext; |
| duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize); |
| |
| if (mi_col + hbs < cm->mi_cols) { |
| set_mode_info_offsets(cm, x, xd, mi_row, mi_col + hbs); |
| *(xd->mi[0]) = pc_tree->vertical[1].mic; |
| *(x->mbmi_ext) = pc_tree->vertical[1].mbmi_ext; |
| duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, subsize); |
| } |
| break; |
| case PARTITION_HORZ: |
| set_mode_info_offsets(cm, x, xd, mi_row, mi_col); |
| *(xd->mi[0]) = pc_tree->horizontal[0].mic; |
| *(x->mbmi_ext) = pc_tree->horizontal[0].mbmi_ext; |
| duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize); |
| if (mi_row + hbs < cm->mi_rows) { |
| set_mode_info_offsets(cm, x, xd, mi_row + hbs, mi_col); |
| *(xd->mi[0]) = pc_tree->horizontal[1].mic; |
| *(x->mbmi_ext) = pc_tree->horizontal[1].mbmi_ext; |
| duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, subsize); |
| } |
| break; |
| case PARTITION_SPLIT: { |
| fill_mode_info_sb(cm, x, mi_row, mi_col, subsize, pc_tree->split[0]); |
| fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize, |
| pc_tree->split[1]); |
| fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize, |
| pc_tree->split[2]); |
| fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize, |
| pc_tree->split[3]); |
| break; |
| } |
| default: break; |
| } |
| } |
| |
| // Reset the prediction pixel ready flag recursively. |
| static void pred_pixel_ready_reset(PC_TREE *pc_tree, BLOCK_SIZE bsize) { |
| pc_tree->none.pred_pixel_ready = 0; |
| pc_tree->horizontal[0].pred_pixel_ready = 0; |
| pc_tree->horizontal[1].pred_pixel_ready = 0; |
| pc_tree->vertical[0].pred_pixel_ready = 0; |
| pc_tree->vertical[1].pred_pixel_ready = 0; |
| |
| if (bsize > BLOCK_8X8) { |
| BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT); |
| int i; |
| for (i = 0; i < 4; ++i) pred_pixel_ready_reset(pc_tree->split[i], subsize); |
| } |
| } |
| |
| #define FEATURES 6 |
| #define LABELS 2 |
| static int ml_predict_var_paritioning(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int mi_row, |
| int mi_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| const NN_CONFIG *nn_config = NULL; |
| |
| switch (bsize) { |
| case BLOCK_64X64: nn_config = &vp9_var_part_nnconfig_64; break; |
| case BLOCK_32X32: nn_config = &vp9_var_part_nnconfig_32; break; |
| case BLOCK_16X16: nn_config = &vp9_var_part_nnconfig_16; break; |
| case BLOCK_8X8: break; |
| default: assert(0 && "Unexpected block size."); return -1; |
| } |
| |
| if (!nn_config) return -1; |
| |
| vpx_clear_system_state(); |
| |
| { |
| const float thresh = cpi->oxcf.speed <= 5 ? 1.25f : 0.0f; |
| float features[FEATURES] = { 0.0f }; |
| const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth); |
| int feature_idx = 0; |
| float score[LABELS]; |
| |
| features[feature_idx++] = logf((float)(dc_q * dc_q) / 256.0f + 1.0f); |
| vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); |
| { |
| const int bs = 4 * num_4x4_blocks_wide_lookup[bsize]; |
| const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT); |
| const int sb_offset_row = 8 * (mi_row & 7); |
| const int sb_offset_col = 8 * (mi_col & 7); |
| const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col; |
| const uint8_t *src = x->plane[0].src.buf; |
| const int src_stride = x->plane[0].src.stride; |
| const int pred_stride = 64; |
| unsigned int sse; |
| int i; |
| // Variance of whole block. |
| const unsigned int var = |
| cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse); |
| const float factor = (var == 0) ? 1.0f : (1.0f / (float)var); |
| |
| features[feature_idx++] = logf((float)var + 1.0f); |
| for (i = 0; i < 4; ++i) { |
| const int x_idx = (i & 1) * bs / 2; |
| const int y_idx = (i >> 1) * bs / 2; |
| const int src_offset = y_idx * src_stride + x_idx; |
| const int pred_offset = y_idx * pred_stride + x_idx; |
| // Variance of quarter block. |
| const unsigned int sub_var = |
| cpi->fn_ptr[subsize].vf(src + src_offset, src_stride, |
| pred + pred_offset, pred_stride, &sse); |
| const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var; |
| features[feature_idx++] = var_ratio; |
| } |
| } |
| |
| assert(feature_idx == FEATURES); |
| nn_predict(features, nn_config, score); |
| if (score[0] > thresh) return PARTITION_SPLIT; |
| if (score[0] < -thresh) return PARTITION_NONE; |
| return -1; |
| } |
| } |
| #undef FEATURES |
| #undef LABELS |
| |
| static void nonrd_pick_partition(VP9_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, TOKENEXTRA **tp, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| RD_COST *rd_cost, int do_recon, |
| int64_t best_rd, PC_TREE *pc_tree) { |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| VP9_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int ms = num_8x8_blocks_wide_lookup[bsize] / 2; |
| TOKENEXTRA *tp_orig = *tp; |
| PICK_MODE_CONTEXT *ctx = &pc_tree->none; |
| int i; |
| BLOCK_SIZE subsize = bsize; |
| RD_COST this_rdc, sum_rdc, best_rdc; |
| int do_split = bsize >= BLOCK_8X8; |
| int do_rect = 1; |
| // Override skipping rectangular partition operations for edge blocks |
| const int force_horz_split = (mi_row + ms >= cm->mi_rows); |
| const int force_vert_split = (mi_col + ms >= cm->mi_cols); |
| const int xss = x->e_mbd.plane[1].subsampling_x; |
| const int yss = x->e_mbd.plane[1].subsampling_y; |
| |
| int partition_none_allowed = !force_horz_split && !force_vert_split; |
| int partition_horz_allowed = |
| !force_vert_split && yss <= xss && bsize >= BLOCK_8X8; |
| int partition_vert_allowed = |
| !force_horz_split && xss <= yss && bsize >= BLOCK_8X8; |
| const int use_ml_based_partitioning = |
| sf->partition_search_type == ML_BASED_PARTITION; |
| |
| (void)*tp_orig; |
| |
| // Avoid checking for rectangular partitions for speed >= 5. |
| if (cpi->oxcf.speed >= 5) do_rect = 0; |
| |
| assert(num_8x8_blocks_wide_lookup[bsize] == |
| num_8x8_blocks_high_lookup[bsize]); |
| |
| vp9_rd_cost_init(&sum_rdc); |
| vp9_rd_cost_reset(&best_rdc); |
| best_rdc.rdcost = best_rd; |
| |
| // Determine partition types in search according to the speed features. |
| // The threshold set here has to be of square block size. |
| if (sf->auto_min_max_partition_size) { |
| partition_none_allowed &= |
| (bsize <= x->max_partition_size && bsize >= x->min_partition_size); |
| partition_horz_allowed &= |
| ((bsize <= x->max_partition_size && bsize > x->min_partition_size) || |
| force_horz_split); |
| partition_vert_allowed &= |
| ((bsize <= x->max_partition_size && bsize > x->min_partition_size) || |
| force_vert_split); |
| do_split &= bsize > x->min_partition_size; |
| } |
| if (sf->use_square_partition_only) { |
| partition_horz_allowed &= force_horz_split; |
| partition_vert_allowed &= force_vert_split; |
| } |
| |
| if (use_ml_based_partitioning) { |
| if (partition_none_allowed || do_split) do_rect = 0; |
| if (partition_none_allowed && do_split) { |
| const int ml_predicted_partition = |
| ml_predict_var_paritioning(cpi, x, bsize, mi_row, mi_col); |
| if (ml_predicted_partition == PARTITION_NONE) do_split = 0; |
| if (ml_predicted_partition == PARTITION_SPLIT) partition_none_allowed = 0; |
| } |
| } |
| |
| if (!partition_none_allowed && !do_split) do_rect = 1; |
| |
| ctx->pred_pixel_ready = |
| !(partition_vert_allowed || partition_horz_allowed || do_split); |
| |
| // PARTITION_NONE |
| if (partition_none_allowed) { |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, |
| ctx); |
| ctx->mic = *xd->mi[0]; |
| ctx->mbmi_ext = *x->mbmi_ext; |
| ctx->skip_txfm[0] = x->skip_txfm[0]; |
| ctx->skip = x->skip; |
| |
| if (this_rdc.rate != INT_MAX) { |
| const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; |
| this_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = this_rdc; |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; |
| |
| if (!use_ml_based_partitioning) { |
| int64_t dist_breakout_thr = sf->partition_search_breakout_thr.dist; |
| int64_t rate_breakout_thr = sf->partition_search_breakout_thr.rate; |
| dist_breakout_thr >>= |
| 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); |
| rate_breakout_thr *= num_pels_log2_lookup[bsize]; |
| if (!x->e_mbd.lossless && this_rdc.rate < rate_breakout_thr && |
| this_rdc.dist < dist_breakout_thr) { |
| do_split = 0; |
| do_rect = 0; |
| } |
| } |
| } |
| } |
| } |
| |
| // store estimated motion vector |
| store_pred_mv(x, ctx); |
| |
| // PARTITION_SPLIT |
| if (do_split) { |
| int pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); |
| subsize = get_subsize(bsize, PARTITION_SPLIT); |
| for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) { |
| const int x_idx = (i & 1) * ms; |
| const int y_idx = (i >> 1) * ms; |
| |
| if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) |
| continue; |
| load_pred_mv(x, ctx); |
| nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, |
| mi_col + x_idx, subsize, &this_rdc, 0, |
| best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]); |
| |
| if (this_rdc.rate == INT_MAX) { |
| vp9_rd_cost_reset(&sum_rdc); |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| sum_rdc.rdcost += this_rdc.rdcost; |
| } |
| } |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| pc_tree->partitioning = PARTITION_SPLIT; |
| } else { |
| // skip rectangular partition test when larger block size |
| // gives better rd cost |
| if (sf->less_rectangular_check) do_rect &= !partition_none_allowed; |
| } |
| } |
| |
| // PARTITION_HORZ |
| if (partition_horz_allowed && do_rect) { |
| subsize = get_subsize(bsize, PARTITION_HORZ); |
| load_pred_mv(x, ctx); |
| pc_tree->horizontal[0].pred_pixel_ready = 1; |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, |
| &pc_tree->horizontal[0]); |
| |
| pc_tree->horizontal[0].mic = *xd->mi[0]; |
| pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext; |
| pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0]; |
| pc_tree->horizontal[0].skip = x->skip; |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + ms < cm->mi_rows) { |
| load_pred_mv(x, ctx); |
| pc_tree->horizontal[1].pred_pixel_ready = 1; |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + ms, mi_col, &this_rdc, |
| subsize, &pc_tree->horizontal[1]); |
| |
| pc_tree->horizontal[1].mic = *xd->mi[0]; |
| pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext; |
| pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0]; |
| pc_tree->horizontal[1].skip = x->skip; |
| |
| if (this_rdc.rate == INT_MAX) { |
| vp9_rd_cost_reset(&sum_rdc); |
| } else { |
| int pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| this_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ]; |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| sum_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); |
| } |
| } |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| pc_tree->partitioning = PARTITION_HORZ; |
| } else { |
| pred_pixel_ready_reset(pc_tree, bsize); |
| } |
| } |
| |
| // PARTITION_VERT |
| if (partition_vert_allowed && do_rect) { |
| subsize = get_subsize(bsize, PARTITION_VERT); |
| load_pred_mv(x, ctx); |
| pc_tree->vertical[0].pred_pixel_ready = 1; |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, |
| &pc_tree->vertical[0]); |
| pc_tree->vertical[0].mic = *xd->mi[0]; |
| pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext; |
| pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0]; |
| pc_tree->vertical[0].skip = x->skip; |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + ms < cm->mi_cols) { |
| load_pred_mv(x, ctx); |
| pc_tree->vertical[1].pred_pixel_ready = 1; |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + ms, &this_rdc, |
| subsize, &pc_tree->vertical[1]); |
| pc_tree->vertical[1].mic = *xd->mi[0]; |
| pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext; |
| pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0]; |
| pc_tree->vertical[1].skip = x->skip; |
| |
| if (this_rdc.rate == INT_MAX) { |
| vp9_rd_cost_reset(&sum_rdc); |
| } else { |
| int pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT]; |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| sum_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); |
| } |
| } |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| pc_tree->partitioning = PARTITION_VERT; |
| } else { |
| pred_pixel_ready_reset(pc_tree, bsize); |
| } |
| } |
| |
| *rd_cost = best_rdc; |
| |
| if (best_rdc.rate == INT_MAX) { |
| vp9_rd_cost_reset(rd_cost); |
| return; |
| } |
| |
| // update mode info array |
| fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, pc_tree); |
| |
| if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && do_recon) { |
| int output_enabled = (bsize == BLOCK_64X64); |
| encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize, |
| pc_tree); |
| } |
| |
| if (bsize == BLOCK_64X64 && do_recon) { |
| assert(tp_orig < *tp); |
| assert(best_rdc.rate < INT_MAX); |
| assert(best_rdc.dist < INT64_MAX); |
| } else { |
| assert(tp_orig == *tp); |
| } |
| } |
| |
| static void nonrd_select_partition(VP9_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, MODE_INFO **mi, |
| TOKENEXTRA **tp, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int output_enabled, |
| RD_COST *rd_cost, PC_TREE *pc_tree) { |
| VP9_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; |
| const int mis = cm->mi_stride; |
| PARTITION_TYPE partition; |
| BLOCK_SIZE subsize; |
| RD_COST this_rdc; |
| BLOCK_SIZE subsize_ref = |
| (cpi->sf.adapt_partition_source_sad) ? BLOCK_8X8 : BLOCK_16X16; |
| |
| vp9_rd_cost_reset(&this_rdc); |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4; |
| partition = partition_lookup[bsl][subsize]; |
| |
| if (bsize == BLOCK_32X32 && subsize == BLOCK_32X32) { |
| x->max_partition_size = BLOCK_32X32; |
| x->min_partition_size = BLOCK_16X16; |
| nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost, |
| 0, INT64_MAX, pc_tree); |
| } else if (bsize == BLOCK_32X32 && partition != PARTITION_NONE && |
| subsize >= subsize_ref) { |
| x->max_partition_size = BLOCK_32X32; |
| x->min_partition_size = BLOCK_8X8; |
| nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost, |
| 0, INT64_MAX, pc_tree); |
| } else if (bsize == BLOCK_16X16 && partition != PARTITION_NONE) { |
| x->max_partition_size = BLOCK_16X16; |
| x->min_partition_size = BLOCK_8X8; |
| nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost, |
| 0, INT64_MAX, pc_tree); |
| } else { |
| switch (partition) { |
| case PARTITION_NONE: |
| pc_tree->none.pred_pixel_ready = 1; |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize, |
| &pc_tree->none); |
| pc_tree->none.mic = *xd->mi[0]; |
| pc_tree->none.mbmi_ext = *x->mbmi_ext; |
| pc_tree->none.skip_txfm[0] = x->skip_txfm[0]; |
| pc_tree->none.skip = x->skip; |
| break; |
| case PARTITION_VERT: |
| pc_tree->vertical[0].pred_pixel_ready = 1; |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize, |
| &pc_tree->vertical[0]); |
| pc_tree->vertical[0].mic = *xd->mi[0]; |
| pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext; |
| pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0]; |
| pc_tree->vertical[0].skip = x->skip; |
| if (mi_col + hbs < cm->mi_cols) { |
| pc_tree->vertical[1].pred_pixel_ready = 1; |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, |
| &this_rdc, subsize, &pc_tree->vertical[1]); |
| pc_tree->vertical[1].mic = *xd->mi[0]; |
| pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext; |
| pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0]; |
| pc_tree->vertical[1].skip = x->skip; |
| if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && |
| rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { |
| rd_cost->rate += this_rdc.rate; |
| rd_cost->dist += this_rdc.dist; |
| } |
| } |
| break; |
| case PARTITION_HORZ: |
| pc_tree->horizontal[0].pred_pixel_ready = 1; |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize, |
| &pc_tree->horizontal[0]); |
| pc_tree->horizontal[0].mic = *xd->mi[0]; |
| pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext; |
| pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0]; |
| pc_tree->horizontal[0].skip = x->skip; |
| if (mi_row + hbs < cm->mi_rows) { |
| pc_tree->horizontal[1].pred_pixel_ready = 1; |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, |
| &this_rdc, subsize, &pc_tree->horizontal[1]); |
| pc_tree->horizontal[1].mic = *xd->mi[0]; |
| pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext; |
| pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0]; |
| pc_tree->horizontal[1].skip = x->skip; |
| if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && |
| rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { |
| rd_cost->rate += this_rdc.rate; |
| rd_cost->dist += this_rdc.dist; |
| } |
| } |
| break; |
| default: |
| assert(partition == PARTITION_SPLIT); |
| subsize = get_subsize(bsize, PARTITION_SPLIT); |
| nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, |
| subsize, output_enabled, rd_cost, |
| pc_tree->split[0]); |
| nonrd_select_partition(cpi, td, tile_data, mi + hbs, tp, mi_row, |
| mi_col + hbs, subsize, output_enabled, &this_rdc, |
| pc_tree->split[1]); |
| if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && |
| rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { |
| rd_cost->rate += this_rdc.rate; |
| rd_cost->dist += this_rdc.dist; |
| } |
| nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis, tp, |
| mi_row + hbs, mi_col, subsize, output_enabled, |
| &this_rdc, pc_tree->split[2]); |
| if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && |
| rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { |
| rd_cost->rate += this_rdc.rate; |
| rd_cost->dist += this_rdc.dist; |
| } |
| nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp, |
| mi_row + hbs, mi_col + hbs, subsize, |
| output_enabled, &this_rdc, pc_tree->split[3]); |
| if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && |
| rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { |
| rd_cost->rate += this_rdc.rate; |
| rd_cost->dist += this_rdc.dist; |
| } |
| break; |
| } |
| } |
| |
| if (bsize == BLOCK_64X64 && output_enabled) |
| encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, 1, bsize, pc_tree); |
| } |
| |
| static void nonrd_use_partition(VP9_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, MODE_INFO **mi, |
| TOKENEXTRA **tp, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int output_enabled, |
| RD_COST *dummy_cost, PC_TREE *pc_tree) { |
| VP9_COMMON *const cm = &cpi->common; |
| TileInfo *tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; |
| const int mis = cm->mi_stride; |
| PARTITION_TYPE partition; |
| BLOCK_SIZE subsize; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4; |
| partition = partition_lookup[bsl][subsize]; |
| |
| if (output_enabled && bsize != BLOCK_4X4) { |
| int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); |
| td->counts->partition[ctx][partition]++; |
| } |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| pc_tree->none.pred_pixel_ready = 1; |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost, |
| subsize, &pc_tree->none); |
| pc_tree->none.mic = *xd->mi[0]; |
| pc_tree->none.mbmi_ext = *x->mbmi_ext; |
| pc_tree->none.skip_txfm[0] = x->skip_txfm[0]; |
| pc_tree->none.skip = x->skip; |
| encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, |
| subsize, &pc_tree->none); |
| break; |
| case PARTITION_VERT: |
| pc_tree->vertical[0].pred_pixel_ready = 1; |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost, |
| subsize, &pc_tree->vertical[0]); |
| pc_tree->vertical[0].mic = *xd->mi[0]; |
| pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext; |
| pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0]; |
| pc_tree->vertical[0].skip = x->skip; |
| encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, |
| subsize, &pc_tree->vertical[0]); |
| if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { |
| pc_tree->vertical[1].pred_pixel_ready = 1; |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, dummy_cost, |
| subsize, &pc_tree->vertical[1]); |
| pc_tree->vertical[1].mic = *xd->mi[0]; |
| pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext; |
| pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0]; |
| pc_tree->vertical[1].skip = x->skip; |
| encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col + hbs, |
| output_enabled, subsize, &pc_tree->vertical[1]); |
| } |
| break; |
| case PARTITION_HORZ: |
| pc_tree->horizontal[0].pred_pixel_ready = 1; |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost, |
| subsize, &pc_tree->horizontal[0]); |
| pc_tree->horizontal[0].mic = *xd->mi[0]; |
| pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext; |
| pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0]; |
| pc_tree->horizontal[0].skip = x->skip; |
| encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, |
| subsize, &pc_tree->horizontal[0]); |
| |
| if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { |
| pc_tree->horizontal[1].pred_pixel_ready = 1; |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, dummy_cost, |
| subsize, &pc_tree->horizontal[1]); |
| pc_tree->horizontal[1].mic = *xd->mi[0]; |
| pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext; |
| pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0]; |
| pc_tree->horizontal[1].skip = x->skip; |
| encode_b_rt(cpi, td, tile_info, tp, mi_row + hbs, mi_col, |
| output_enabled, subsize, &pc_tree->horizontal[1]); |
| } |
| break; |
| default: |
| assert(partition == PARTITION_SPLIT); |
| subsize = get_subsize(bsize, PARTITION_SPLIT); |
| if (bsize == BLOCK_8X8) { |
| nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost, |
| subsize, pc_tree->leaf_split[0]); |
| encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, |
| subsize, pc_tree->leaf_split[0]); |
| } else { |
| nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, subsize, |
| output_enabled, dummy_cost, pc_tree->split[0]); |
| nonrd_use_partition(cpi, td, tile_data, mi + hbs, tp, mi_row, |
| mi_col + hbs, subsize, output_enabled, dummy_cost, |
| pc_tree->split[1]); |
| nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis, tp, |
| mi_row + hbs, mi_col, subsize, output_enabled, |
| dummy_cost, pc_tree->split[2]); |
| nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp, |
| mi_row + hbs, mi_col + hbs, subsize, output_enabled, |
| dummy_cost, pc_tree->split[3]); |
| } |
| break; |
| } |
| |
| if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| } |
| |
| // Get a prediction(stored in x->est_pred) for the whole 64x64 superblock. |
| static void get_estimated_pred(VP9_COMP *cpi, const TileInfo *const tile, |
| MACROBLOCK *x, int mi_row, int mi_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int is_key_frame = frame_is_intra_only(cm); |
| MACROBLOCKD *xd = &x->e_mbd; |
| |
| set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64); |
| |
| if (!is_key_frame) { |
| MODE_INFO *mi = xd->mi[0]; |
| YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); |
| const YV12_BUFFER_CONFIG *yv12_g = NULL; |
| const BLOCK_SIZE bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 + |
| (mi_row + 4 < cm->mi_rows); |
| unsigned int y_sad_g, y_sad_thr; |
| unsigned int y_sad = UINT_MAX; |
| |
| assert(yv12 != NULL); |
| |
| if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id) || |
| cpi->svc.use_gf_temporal_ref_current_layer) { |
| // For now, GOLDEN will not be used for non-zero spatial layers, since |
| // it may not be a temporal reference. |
| yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME); |
| } |
| |
| // Only compute y_sad_g (sad for golden reference) for speed < 8. |
| if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 && |
| (cpi->ref_frame_flags & VP9_GOLD_FLAG)) { |
| vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, |
| &cm->frame_refs[GOLDEN_FRAME - 1].sf); |
| y_sad_g = cpi->fn_ptr[bsize].sdf( |
| x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, |
| xd->plane[0].pre[0].stride); |
| } else { |
| y_sad_g = UINT_MAX; |
| } |
| |
| if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR && |
| cpi->rc.is_src_frame_alt_ref) { |
| yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME); |
| vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, |
| &cm->frame_refs[ALTREF_FRAME - 1].sf); |
| mi->ref_frame[0] = ALTREF_FRAME; |
| y_sad_g = UINT_MAX; |
| } else { |
| vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, |
| &cm->frame_refs[LAST_FRAME - 1].sf); |
| mi->ref_frame[0] = LAST_FRAME; |
| } |
| mi->ref_frame[1] = NONE; |
| mi->sb_type = BLOCK_64X64; |
| mi->mv[0].as_int = 0; |
| mi->interp_filter = BILINEAR; |
| |
| { |
| const MV dummy_mv = { 0, 0 }; |
| y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col, |
| &dummy_mv); |
| x->sb_use_mv_part = 1; |
| x->sb_mvcol_part = mi->mv[0].as_mv.col; |
| x->sb_mvrow_part = mi->mv[0].as_mv.row; |
| } |
| |
| // Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad |
| // are close if short_circuit_low_temp_var is on. |
| y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad; |
| if (y_sad_g < y_sad_thr) { |
| vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, |
| &cm->frame_refs[GOLDEN_FRAME - 1].sf); |
| mi->ref_frame[0] = GOLDEN_FRAME; |
| mi->mv[0].as_int = 0; |
| } else { |
| x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv; |
| } |
| |
| set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); |
| xd->plane[0].dst.buf = x->est_pred; |
| xd->plane[0].dst.stride = 64; |
| vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64); |
| } else { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| switch (xd->bd) { |
| case 8: memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); break; |
| case 10: |
| memset(x->est_pred, 128 * 4, 64 * 64 * sizeof(x->est_pred[0])); |
| break; |
| case 12: |
| memset(x->est_pred, 128 * 16, 64 * 64 * sizeof(x->est_pred[0])); |
| break; |
| } |
| #else |
| memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| } |
| |
| static void encode_nonrd_sb_row(VP9_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, int mi_row, |
| TOKENEXTRA **tp) { |
| SPEED_FEATURES *const sf = &cpi->sf; |
| VP9_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int mi_col_start = tile_info->mi_col_start; |
| const int mi_col_end = tile_info->mi_col_end; |
| int mi_col; |
| const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2; |
| const int num_sb_cols = |
| get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2); |
| int sb_col_in_tile; |
| |
| // Initialize the left context for the new SB row |
| memset(&xd->left_context, 0, sizeof(xd->left_context)); |
| memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context)); |
| |
| // Code each SB in the row |
| for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end; |
| mi_col += MI_BLOCK_SIZE, ++sb_col_in_tile) { |
| const struct segmentation *const seg = &cm->seg; |
| RD_COST dummy_rdc; |
| const int idx_str = cm->mi_stride * mi_row + mi_col; |
| MODE_INFO **mi = cm->mi_grid_visible + idx_str; |
| PARTITION_SEARCH_TYPE partition_search_type = sf->partition_search_type; |
| BLOCK_SIZE bsize = BLOCK_64X64; |
| int seg_skip = 0; |
| int i; |
| |
| (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row, |
| sb_col_in_tile); |
| |
| if (cpi->use_skin_detection) { |
| vp9_compute_skin_sb(cpi, BLOCK_16X16, mi_row, mi_col); |
| } |
| |
| x->source_variance = UINT_MAX; |
| for (i = 0; i < MAX_REF_FRAMES; ++i) { |
| x->pred_mv[i].row = INT16_MAX; |
| x->pred_mv[i].col = INT16_MAX; |
| } |
| vp9_rd_cost_init(&dummy_rdc); |
| x->color_sensitivity[0] = 0; |
| x->color_sensitivity[1] = 0; |
| x->sb_is_skin = 0; |
| x->skip_low_source_sad = 0; |
| x->lowvar_highsumdiff = 0; |
| x->content_state_sb = 0; |
| x->zero_temp_sad_source = 0; |
| x->sb_use_mv_part = 0; |
| x->sb_mvcol_part = 0; |
| x->sb_mvrow_part = 0; |
| x->sb_pickmode_part = 0; |
| x->arf_frame_usage = 0; |
| x->lastgolden_frame_usage = 0; |
| |
| if (seg->enabled) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col); |
| seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); |
| if (seg_skip) { |
| partition_search_type = FIXED_PARTITION; |
| } |
| } |
| |
| if (cpi->compute_source_sad_onepass && cpi->sf.use_source_sad) { |
| int shift = cpi->Source->y_stride * (mi_row << 3) + (mi_col << 3); |
| int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3); |
| int64_t source_sad = avg_source_sad(cpi, x, shift, sb_offset2); |
| if (sf->adapt_partition_source_sad && |
| (cpi->oxcf.rc_mode == VPX_VBR && !cpi->rc.is_src_frame_alt_ref && |
| source_sad > sf->adapt_partition_thresh && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) |
| partition_search_type = REFERENCE_PARTITION; |
| } |
| |
| // Set the partition type of the 64X64 block |
| switch (partition_search_type) { |
| case VAR_BASED_PARTITION: |
| // TODO(jingning, marpan): The mode decision and encoding process |
| // support both intra and inter sub8x8 block coding for RTC mode. |
| // Tune the thresholds accordingly to use sub8x8 block coding for |
| // coding performance improvement. |
| choose_partitioning(cpi, tile_info, x, mi_row, mi_col); |
| nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, |
| BLOCK_64X64, 1, &dummy_rdc, td->pc_root); |
| break; |
| case ML_BASED_PARTITION: |
| get_estimated_pred(cpi, tile_info, x, mi_row, mi_col); |
| x->max_partition_size = BLOCK_64X64; |
| x->min_partition_size = BLOCK_8X8; |
| x->sb_pickmode_part = 1; |
| nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, |
| BLOCK_64X64, &dummy_rdc, 1, INT64_MAX, |
| td->pc_root); |
| break; |
| case SOURCE_VAR_BASED_PARTITION: |
| set_source_var_based_partition(cpi, tile_info, x, mi, mi_row, mi_col); |
| nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, |
| BLOCK_64X64, 1, &dummy_rdc, td->pc_root); |
| break; |
| case FIXED_PARTITION: |
| if (!seg_skip) bsize = sf->always_this_block_size; |
| set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, |
| BLOCK_64X64, 1, &dummy_rdc, td->pc_root); |
| break; |
| default: |
| assert(partition_search_type == REFERENCE_PARTITION); |
| x->sb_pickmode_part = 1; |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64); |
| // Use nonrd_pick_partition on scene-cut for VBR mode. |
| // nonrd_pick_partition does not support 4x4 partition, so avoid it |
| // on key frame for now. |
| if ((cpi->oxcf.rc_mode == VPX_VBR && cpi->rc.high_source_sad && |
| cpi->oxcf.speed < 6 && !frame_is_intra_only(cm) && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) { |
| // Use lower max_partition_size for low resoultions. |
| if (cm->width <= 352 && cm->height <= 288) |
| x->max_partition_size = BLOCK_32X32; |
| else |
| x->max_partition_size = BLOCK_64X64; |
| x->min_partition_size = BLOCK_8X8; |
| nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, |
| BLOCK_64X64, &dummy_rdc, 1, INT64_MAX, |
| td->pc_root); |
| } else { |
| choose_partitioning(cpi, tile_info, x, mi_row, mi_col); |
| // TODO(marpan): Seems like nonrd_select_partition does not support |
| // 4x4 partition. Since 4x4 is used on key frame, use this switch |
| // for now. |
| if (frame_is_intra_only(cm)) |
| nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, |
| BLOCK_64X64, 1, &dummy_rdc, td->pc_root); |
| else |
| nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, |
| BLOCK_64X64, 1, &dummy_rdc, td->pc_root); |
| } |
| |
| break; |
| } |
| |
| // Update ref_frame usage for inter frame if this group is ARF group. |
| if (!cpi->rc.is_src_frame_alt_ref && !cpi->refresh_golden_frame && |
| !cpi->refresh_alt_ref_frame && cpi->rc.alt_ref_gf_group && |
| cpi->sf.use_altref_onepass) { |
| int sboffset = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3); |
| if (cpi->count_arf_frame_usage != NULL) |
| cpi->count_arf_frame_usage[sboffset] = x->arf_frame_usage; |
| if (cpi->count_lastgolden_frame_usage != NULL) |
| cpi->count_lastgolden_frame_usage[sboffset] = x->lastgolden_frame_usage; |
| } |
| |
| (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row, |
| sb_col_in_tile, num_sb_cols); |
| } |
| } |
| // end RTC play code |
| |
| static INLINE uint32_t variance(const diff *const d) { |
| return d->sse - (uint32_t)(((int64_t)d->sum * d->sum) >> 8); |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static INLINE uint32_t variance_highbd(diff *const d) { |
| const int64_t var = (int64_t)d->sse - (((int64_t)d->sum * d->sum) >> 8); |
| return (var >= 0) ? (uint32_t)var : 0; |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| static int set_var_thresh_from_histogram(VP9_COMP *cpi) { |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| const VP9_COMMON *const cm = &cpi->common; |
| |
| const uint8_t *src = cpi->Source->y_buffer; |
| const uint8_t *last_src = cpi->Last_Source->y_buffer; |
| const int src_stride = cpi->Source->y_stride; |
| const int last_stride = cpi->Last_Source->y_stride; |
| |
| // Pick cutoff threshold |
| const int cutoff = (VPXMIN(cm->width, cm->height) >= 720) |
| ? (cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100) |
| : (cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100); |
| DECLARE_ALIGNED(16, int, hist[VAR_HIST_BINS]); |
| diff *var16 = cpi->source_diff_var; |
| |
| int sum = 0; |
| int i, j; |
| |
| memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0])); |
| |
| for (i = 0; i < cm->mb_rows; i++) { |
| for (j = 0; j < cm->mb_cols; j++) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| switch (cm->bit_depth) { |
| case VPX_BITS_8: |
| vpx_highbd_8_get16x16var(src, src_stride, last_src, last_stride, |
| &var16->sse, &var16->sum); |
| var16->var = variance(var16); |
| break; |
| case VPX_BITS_10: |
| vpx_highbd_10_get16x16var(src, src_stride, last_src, last_stride, |
| &var16->sse, &var16->sum); |
| var16->var = variance_highbd(var16); |
| break; |
| default: |
| assert(cm->bit_depth == VPX_BITS_12); |
| vpx_highbd_12_get16x16var(src, src_stride, last_src, last_stride, |
| &var16->sse, &var16->sum); |
| var16->var = variance_highbd(var16); |
| break; |
| } |
| } else { |
| vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse, |
| &var16->sum); |
| var16->var = variance(var16); |
| } |
| #else |
| vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse, |
| &var16->sum); |
| var16->var = variance(var16); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| if (var16->var >= VAR_HIST_MAX_BG_VAR) |
| hist[VAR_HIST_BINS - 1]++; |
| else |
| hist[var16->var / VAR_HIST_FACTOR]++; |
| |
| src += 16; |
| last_src += 16; |
| var16++; |
| } |
| |
| src = src - cm->mb_cols * 16 + 16 * src_stride; |
| last_src = last_src - cm->mb_cols * 16 + 16 * last_stride; |
| } |
| |
| cpi->source_var_thresh = 0; |
| |
| if (hist[VAR_HIST_BINS - 1] < cutoff) { |
| for (i = 0; i < VAR_HIST_BINS - 1; i++) { |
| sum += hist[i]; |
| |
| if (sum > cutoff) { |
| cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR; |
| return 0; |
| } |
| } |
| } |
| |
| return sf->search_type_check_frequency; |
| } |
| |
| static void source_var_based_partition_search_method(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| |
| if (cm->frame_type == KEY_FRAME) { |
| // For key frame, use SEARCH_PARTITION. |
| sf->partition_search_type = SEARCH_PARTITION; |
| } else if (cm->intra_only) { |
| sf->partition_search_type = FIXED_PARTITION; |
| } else { |
| if (cm->last_width != cm->width || cm->last_height != cm->height) { |
| if (cpi->source_diff_var) vpx_free(cpi->source_diff_var); |
| |
| CHECK_MEM_ERROR(cm, cpi->source_diff_var, |
| vpx_calloc(cm->MBs, sizeof(diff))); |
| } |
| |
| if (!cpi->frames_till_next_var_check) |
| cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi); |
| |
| if (cpi->frames_till_next_var_check > 0) { |
| sf->partition_search_type = FIXED_PARTITION; |
| cpi->frames_till_next_var_check--; |
| } |
| } |
| } |
| |
| static int get_skip_encode_frame(const VP9_COMMON *cm, ThreadData *const td) { |
| unsigned int intra_count = 0, inter_count = 0; |
| int j; |
| |
| for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) { |
| intra_count += td->counts->intra_inter[j][0]; |
| inter_count += td->counts->intra_inter[j][1]; |
| } |
| |
| return (intra_count << 2) < inter_count && cm->frame_type != KEY_FRAME && |
| cm->show_frame; |
| } |
| |
| void vp9_init_tile_data(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int tile_rows = 1 << cm->log2_tile_rows; |
| int tile_col, tile_row; |
| TOKENEXTRA *pre_tok = cpi->tile_tok[0][0]; |
| TOKENLIST *tplist = cpi->tplist[0][0]; |
| int tile_tok = 0; |
| int tplist_count = 0; |
| |
| if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) { |
| if (cpi->tile_data != NULL) vpx_free(cpi->tile_data); |
| CHECK_MEM_ERROR( |
| cm, cpi->tile_data, |
| vpx_malloc(tile_cols * tile_rows * sizeof(*cpi->tile_data))); |
| cpi->allocated_tiles = tile_cols * tile_rows; |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileDataEnc *tile_data = |
| &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| int i, j; |
| for (i = 0; i < BLOCK_SIZES; ++i) { |
| for (j = 0; j < MAX_MODES; ++j) { |
| tile_data->thresh_freq_fact[i][j] = RD_THRESH_INIT_FACT; |
| #if CONFIG_CONSISTENT_RECODE || CONFIG_RATE_CTRL |
| tile_data->thresh_freq_fact_prev[i][j] = RD_THRESH_INIT_FACT; |
| #endif // CONFIG_CONSISTENT_RECODE || CONFIG_RATE_CTRL |
| tile_data->mode_map[i][j] = j; |
| } |
| } |
| #if CONFIG_MULTITHREAD |
| tile_data->row_base_thresh_freq_fact = NULL; |
| #endif |
| } |
| } |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) { |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| TileInfo *tile_info = &this_tile->tile_info; |
| if (cpi->sf.adaptive_rd_thresh_row_mt && |
| this_tile->row_base_thresh_freq_fact == NULL) |
| vp9_row_mt_alloc_rd_thresh(cpi, this_tile); |
| vp9_tile_init(tile_info, cm, tile_row, tile_col); |
| |
| cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok; |
| pre_tok = cpi->tile_tok[tile_row][tile_col]; |
| tile_tok = allocated_tokens(*tile_info); |
| |
| cpi->tplist[tile_row][tile_col] = tplist + tplist_count; |
| tplist = cpi->tplist[tile_row][tile_col]; |
| tplist_count = get_num_vert_units(*tile_info, MI_BLOCK_SIZE_LOG2); |
| } |
| } |
| } |
| |
| void vp9_encode_sb_row(VP9_COMP *cpi, ThreadData *td, int tile_row, |
| int tile_col, int mi_row) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| const TileInfo *const tile_info = &this_tile->tile_info; |
| TOKENEXTRA *tok = NULL; |
| int tile_sb_row; |
| int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 1) >> 1; |
| |
| tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile_info->mi_row_start) >> |
| MI_BLOCK_SIZE_LOG2; |
| get_start_tok(cpi, tile_row, tile_col, mi_row, &tok); |
| cpi->tplist[tile_row][tile_col][tile_sb_row].start = tok; |
| |
| if (cpi->sf.use_nonrd_pick_mode) |
| encode_nonrd_sb_row(cpi, td, this_tile, mi_row, &tok); |
| #if !CONFIG_REALTIME_ONLY |
| else |
| encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok); |
| #endif |
| |
| cpi->tplist[tile_row][tile_col][tile_sb_row].stop = tok; |
| cpi->tplist[tile_row][tile_col][tile_sb_row].count = |
| (unsigned int)(cpi->tplist[tile_row][tile_col][tile_sb_row].stop - |
| cpi->tplist[tile_row][tile_col][tile_sb_row].start); |
| assert(tok - cpi->tplist[tile_row][tile_col][tile_sb_row].start <= |
| get_token_alloc(MI_BLOCK_SIZE >> 1, tile_mb_cols)); |
| |
| (void)tile_mb_cols; |
| } |
| |
| void vp9_encode_tile(VP9_COMP *cpi, ThreadData *td, int tile_row, |
| int tile_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| const TileInfo *const tile_info = &this_tile->tile_info; |
| const int mi_row_start = tile_info->mi_row_start; |
| const int mi_row_end = tile_info->mi_row_end; |
| int mi_row; |
| |
| for (mi_row = mi_row_start; mi_row < mi_row_end; mi_row += MI_BLOCK_SIZE) |
| vp9_encode_sb_row(cpi, td, tile_row, tile_col, mi_row); |
| } |
| |
| static void encode_tiles(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int tile_rows = 1 << cm->log2_tile_rows; |
| int tile_col, tile_row; |
| |
| vp9_init_tile_data(cpi); |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) |
| vp9_encode_tile(cpi, &cpi->td, tile_row, tile_col); |
| } |
| |
| #if CONFIG_FP_MB_STATS |
| static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats, |
| VP9_COMMON *cm, uint8_t **this_frame_mb_stats) { |
| uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start + |
| cm->current_video_frame * cm->MBs * sizeof(uint8_t); |
| |
| if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF; |
| |
| *this_frame_mb_stats = mb_stats_in; |
| |
| return 1; |
| } |
| #endif |
| |
| static int compare_kmeans_data(const void *a, const void *b) { |
| if (((const KMEANS_DATA *)a)->value > ((const KMEANS_DATA *)b)->value) { |
| return 1; |
| } else if (((const KMEANS_DATA *)a)->value < |
| ((const KMEANS_DATA *)b)->value) { |
| return -1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static void compute_boundary_ls(const double *ctr_ls, int k, |
| double *boundary_ls) { |
| // boundary_ls[j] is the upper bound of data centered at ctr_ls[j] |
| int j; |
| for (j = 0; j < k - 1; ++j) { |
| boundary_ls[j] = (ctr_ls[j] + ctr_ls[j + 1]) / 2.; |
| } |
| boundary_ls[k - 1] = DBL_MAX; |
| } |
| |
| int vp9_get_group_idx(double value, double *boundary_ls, int k) { |
| int group_idx = 0; |
| while (value >= boundary_ls[group_idx]) { |
| ++group_idx; |
| if (group_idx == k - 1) { |
| break; |
| } |
| } |
| return group_idx; |
| } |
| |
| void vp9_kmeans(double *ctr_ls, double *boundary_ls, int *count_ls, int k, |
| KMEANS_DATA *arr, int size) { |
| int i, j; |
| int itr; |
| int group_idx; |
| double sum[MAX_KMEANS_GROUPS]; |
| int count[MAX_KMEANS_GROUPS]; |
| |
| vpx_clear_system_state(); |
| |
| assert(k >= 2 && k <= MAX_KMEANS_GROUPS); |
| |
| qsort(arr, size, sizeof(*arr), compare_kmeans_data); |
| |
| // initialize the center points |
| for (j = 0; j < k; ++j) { |
| ctr_ls[j] = arr[(size * (2 * j + 1)) / (2 * k)].value; |
| } |
| |
| for (itr = 0; itr < 10; ++itr) { |
| compute_boundary_ls(ctr_ls, k, boundary_ls); |
| for (i = 0; i < MAX_KMEANS_GROUPS; ++i) { |
| sum[i] = 0; |
| count[i] = 0; |
| } |
| |
| // Both the data and centers are sorted in ascending order. |
| // As each data point is processed in order, its corresponding group index |
| // can only increase. So we only need to reset the group index to zero here. |
| group_idx = 0; |
| for (i = 0; i < size; ++i) { |
| while (arr[i].value >= boundary_ls[group_idx]) { |
| // place samples into clusters |
| ++group_idx; |
| if (group_idx == k - 1) { |
| break; |
| } |
| } |
| sum[group_idx] += arr[i].value; |
| ++count[group_idx]; |
| } |
| |
| for (group_idx = 0; group_idx < k; ++group_idx) { |
| if (count[group_idx] > 0) |
| ctr_ls[group_idx] = sum[group_idx] / count[group_idx]; |
| |
| sum[group_idx] = 0; |
| count[group_idx] = 0; |
| } |
| } |
| |
| // compute group_idx, boundary_ls and count_ls |
| for (j = 0; j < k; ++j) { |
| count_ls[j] = 0; |
| } |
| compute_boundary_ls(ctr_ls, k, boundary_ls); |
| group_idx = 0; |
| for (i = 0; i < size; ++i) { |
| while (arr[i].value >= boundary_ls[group_idx]) { |
| ++group_idx; |
| if (group_idx == k - 1) { |
| break; |
| } |
| } |
| arr[i].group_idx = group_idx; |
| ++count_ls[group_idx]; |
| } |
| } |
| |
| static void encode_frame_internal(VP9_COMP *cpi) { |
| SPEED_FEATURES *const sf = &cpi->sf; |
| ThreadData *const td = &cpi->td; |
| MACROBLOCK *const x = &td->mb; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int gf_group_index = cpi->twopass.gf_group.index; |
| |
| xd->mi = cm->mi_grid_visible; |
| xd->mi[0] = cm->mi; |
| vp9_zero(*td->counts); |
| vp9_zero(cpi->td.rd_counts); |
| |
| xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 && |
| cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| x->fwd_txfm4x4 = xd->lossless ? vp9_highbd_fwht4x4 : vpx_highbd_fdct4x4; |
| else |
| x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4; |
| x->highbd_inv_txfm_add = |
| xd->lossless ? vp9_highbd_iwht4x4_add : vp9_highbd_idct4x4_add; |
| #else |
| x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| x->inv_txfm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add; |
| #if CONFIG_CONSISTENT_RECODE |
| x->optimize = sf->optimize_coefficients == 1 && cpi->oxcf.pass != 1; |
| #endif |
| if (xd->lossless) x->optimize = 0; |
| x->sharpness = cpi->oxcf.sharpness; |
| x->adjust_rdmult_by_segment = (cpi->oxcf.aq_mode == VARIANCE_AQ); |
| |
| cm->tx_mode = select_tx_mode(cpi, xd); |
| |
| vp9_frame_init_quantizer(cpi); |
| |
| vp9_initialize_rd_consts(cpi); |
| vp9_initialize_me_consts(cpi, x, cm->base_qindex); |
| init_encode_frame_mb_context(cpi); |
| cm->use_prev_frame_mvs = |
| !cm->error_resilient_mode && cm->width == cm->last_width && |
| cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame; |
| // Special case: set prev_mi to NULL when the previous mode info |
| // context cannot be used. |
| cm->prev_mi = |
| cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL; |
| |
| x->quant_fp = cpi->sf.use_quant_fp; |
| vp9_zero(x->skip_txfm); |
| if (sf->use_nonrd_pick_mode) { |
| // Initialize internal buffer pointers for rtc coding, where non-RD |
| // mode decision is used and hence no buffer pointer swap needed. |
| int i; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| p[i].coeff = ctx->coeff_pbuf[i][0]; |
| p[i].qcoeff = ctx->qcoeff_pbuf[i][0]; |
| pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0]; |
| p[i].eobs = ctx->eobs_pbuf[i][0]; |
| } |
| vp9_zero(x->zcoeff_blk); |
| |
| if (cm->frame_type != KEY_FRAME && cpi->rc.frames_since_golden == 0 && |
| !(cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) && |
| !cpi->use_svc) |
| cpi->ref_frame_flags &= (~VP9_GOLD_FLAG); |
| |
| if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION) |
| source_var_based_partition_search_method(cpi); |
| } else if (gf_group_index && gf_group_index < MAX_ARF_GOP_SIZE && |
| cpi->sf.enable_tpl_model) { |
| TplDepFrame *tpl_frame = &cpi->tpl_stats[cpi->twopass.gf_group.index]; |
| TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| |
| int tpl_stride = tpl_frame->stride; |
| int64_t intra_cost_base = 0; |
| int64_t mc_dep_cost_base = 0; |
| int row, col; |
| |
| for (row = 0; row < cm->mi_rows && tpl_frame->is_valid; ++row) { |
| for (col = 0; col < cm->mi_cols; ++col) { |
| TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col]; |
| intra_cost_base += this_stats->intra_cost; |
| mc_dep_cost_base += this_stats->mc_dep_cost; |
| } |
| } |
| |
| vpx_clear_system_state(); |
| |
| if (tpl_frame->is_valid) |
| cpi->rd.r0 = (double)intra_cost_base / mc_dep_cost_base; |
| } |
| |
| // Frame segmentation |
| if (cpi->oxcf.aq_mode == PERCEPTUAL_AQ) build_kmeans_segmentation(cpi); |
| |
| { |
| struct vpx_usec_timer emr_timer; |
| vpx_usec_timer_start(&emr_timer); |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm, |
| &cpi->twopass.this_frame_mb_stats); |
| } |
| #endif |
| |
| if (!cpi->row_mt) { |
| cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy; |
| cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy; |
| // If allowed, encoding tiles in parallel with one thread handling one |
| // tile when row based multi-threading is disabled. |
| if (VPXMIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1) |
| vp9_encode_tiles_mt(cpi); |
| else |
| encode_tiles(cpi); |
| } else { |
| cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read; |
| cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write; |
| vp9_encode_tiles_row_mt(cpi); |
| } |
| |
| vpx_usec_timer_mark(&emr_timer); |
| cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer); |
| } |
| |
| sf->skip_encode_frame = |
| sf->skip_encode_sb ? get_skip_encode_frame(cm, td) : 0; |
| |
| #if 0 |
| // Keep record of the total distortion this time around for future use |
| cpi->last_frame_distortion = cpi->frame_distortion; |
| #endif |
| } |
| |
| static INTERP_FILTER get_interp_filter( |
| const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) { |
| if (!is_alt_ref && threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] && |
| threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] && |
| threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) { |
| return EIGHTTAP_SMOOTH; |
| } else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] && |
| threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) { |
| return EIGHTTAP_SHARP; |
| } else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) { |
| return EIGHTTAP; |
| } else { |
| return SWITCHABLE; |
| } |
| } |
| |
| static int compute_frame_aq_offset(struct VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible; |
| struct segmentation *const seg = &cm->seg; |
| |
| int mi_row, mi_col; |
| int sum_delta = 0; |
| int map_index = 0; |
| int qdelta_index; |
| int segment_id; |
| |
| for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) { |
| MODE_INFO **mi_8x8 = mi_8x8_ptr; |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col++, mi_8x8++) { |
| segment_id = mi_8x8[0]->segment_id; |
| qdelta_index = get_segdata(seg, segment_id, SEG_LVL_ALT_Q); |
| sum_delta += qdelta_index; |
| map_index++; |
| } |
| mi_8x8_ptr += cm->mi_stride; |
| } |
| |
| return sum_delta / (cm->mi_rows * cm->mi_cols); |
| } |
| |
| #if CONFIG_CONSISTENT_RECODE || CONFIG_RATE_CTRL |
| static void restore_encode_params(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int tile_rows = 1 << cm->log2_tile_rows; |
| int tile_col, tile_row; |
| int i, j; |
| RD_OPT *rd_opt = &cpi->rd; |
| for (i = 0; i < MAX_REF_FRAMES; i++) { |
| for (j = 0; j < REFERENCE_MODES; j++) |
| rd_opt->prediction_type_threshes[i][j] = |
| rd_opt->prediction_type_threshes_prev[i][j]; |
| |
| for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; j++) |
| rd_opt->filter_threshes[i][j] = rd_opt->filter_threshes_prev[i][j]; |
| } |
| |
| if (cpi->tile_data != NULL) { |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileDataEnc *tile_data = |
| &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| for (i = 0; i < BLOCK_SIZES; ++i) { |
| for (j = 0; j < MAX_MODES; ++j) { |
| tile_data->thresh_freq_fact[i][j] = |
| tile_data->thresh_freq_fact_prev[i][j]; |
| } |
| } |
| } |
| } |
| |
| cm->interp_filter = cpi->sf.default_interp_filter; |
| } |
| #endif // CONFIG_CONSISTENT_RECODE || CONFIG_RATE_CTRL |
| |
| void vp9_encode_frame(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| |
| #if CONFIG_CONSISTENT_RECODE || CONFIG_RATE_CTRL |
| restore_encode_params(cpi); |
| #endif |
| |
| #if CONFIG_MISMATCH_DEBUG |
| mismatch_reset_frame(MAX_MB_PLANE); |
| #endif |
| |
| // In the longer term the encoder should be generalized to match the |
| // decoder such that we allow compound where one of the 3 buffers has a |
| // different sign bias and that buffer is then the fixed ref. However, this |
| // requires further work in the rd loop. For now the only supported encoder |
| // side behavior is where the ALT ref buffer has opposite sign bias to |
| // the other two. |
| if (!frame_is_intra_only(cm)) { |
| if (vp9_compound_reference_allowed(cm)) { |
| cpi->allow_comp_inter_inter = 1; |
| vp9_setup_compound_reference_mode(cm); |
| } else { |
| cpi->allow_comp_inter_inter = 0; |
| } |
| } |
| |
| if (cpi->sf.frame_parameter_update) { |
| int i; |
| RD_OPT *const rd_opt = &cpi->rd; |
| FRAME_COUNTS *counts = cpi->td.counts; |
| RD_COUNTS *const rdc = &cpi->td.rd_counts; |
| |
| // This code does a single RD pass over the whole frame assuming |
| // either compound, single or hybrid prediction as per whatever has |
| // worked best for that type of frame in the past. |
| // It also predicts whether another coding mode would have worked |
| // better than this coding mode. If that is the case, it remembers |
| // that for subsequent frames. |
| // It also does the same analysis for transform size selection. |
| const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi); |
| int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type]; |
| int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type]; |
| const int is_alt_ref = frame_type == ALTREF_FRAME; |
| |
| /* prediction (compound, single or hybrid) mode selection */ |
| if (is_alt_ref || !cpi->allow_comp_inter_inter) |
| cm->reference_mode = SINGLE_REFERENCE; |
| else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] && |
| mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] && |
| check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100) |
| cm->reference_mode = COMPOUND_REFERENCE; |
| else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT]) |
| cm->reference_mode = SINGLE_REFERENCE; |
| else |
| cm->reference_mode = REFERENCE_MODE_SELECT; |
| |
| if (cm->interp_filter == SWITCHABLE) |
| cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref); |
| |
| encode_frame_internal(cpi); |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) |
| mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2; |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) |
| filter_thrs[i] = (filter_thrs[i] + rdc->filter_diff[i] / cm->MBs) / 2; |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| int single_count_zero = 0; |
| int comp_count_zero = 0; |
| |
| for (i = 0; i < COMP_INTER_CONTEXTS; i++) { |
| single_count_zero += counts->comp_inter[i][0]; |
| comp_count_zero += counts->comp_inter[i][1]; |
| } |
| |
| if (comp_count_zero == 0) { |
| cm->reference_mode = SINGLE_REFERENCE; |
| vp9_zero(counts->comp_inter); |
| } else if (single_count_zero == 0) { |
| cm->reference_mode = COMPOUND_REFERENCE; |
| vp9_zero(counts->comp_inter); |
| } |
| } |
| |
| if (cm->tx_mode == TX_MODE_SELECT) { |
| int count4x4 = 0; |
| int count8x8_lp = 0, count8x8_8x8p = 0; |
| int count16x16_16x16p = 0, count16x16_lp = 0; |
| int count32x32 = 0; |
| |
| for (i = 0; i < TX_SIZE_CONTEXTS; ++i) { |
| count4x4 += counts->tx.p32x32[i][TX_4X4]; |
| count4x4 += counts->tx.p16x16[i][TX_4X4]; |
| count4x4 += counts->tx.p8x8[i][TX_4X4]; |
| |
| count8x8_lp += counts->tx.p32x32[i][TX_8X8]; |
| count8x8_lp += counts->tx.p16x16[i][TX_8X8]; |
| count8x8_8x8p += counts->tx.p8x8[i][TX_8X8]; |
| |
| count16x16_16x16p += counts->tx.p16x16[i][TX_16X16]; |
| count16x16_lp += counts->tx.p32x32[i][TX_16X16]; |
| count32x32 += counts->tx.p32x32[i][TX_32X32]; |
| } |
| if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 && |
| count32x32 == 0) { |
| cm->tx_mode = ALLOW_8X8; |
| reset_skip_tx_size(cm, TX_8X8); |
| } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 && |
| count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) { |
| cm->tx_mode = ONLY_4X4; |
| reset_skip_tx_size(cm, TX_4X4); |
| } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) { |
| cm->tx_mode = ALLOW_32X32; |
| } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) { |
| cm->tx_mode = ALLOW_16X16; |
| reset_skip_tx_size(cm, TX_16X16); |
| } |
| } |
| } else { |
| FRAME_COUNTS *counts = cpi->td.counts; |
| cm->reference_mode = SINGLE_REFERENCE; |
| if (cpi->allow_comp_inter_inter && cpi->sf.use_compound_nonrd_pickmode && |
| cpi->rc.alt_ref_gf_group && !cpi->rc.is_src_frame_alt_ref && |
| cm->frame_type != KEY_FRAME) |
| cm->reference_mode = REFERENCE_MODE_SELECT; |
| |
| encode_frame_internal(cpi); |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| int single_count_zero = 0; |
| int comp_count_zero = 0; |
| int i; |
| for (i = 0; i < COMP_INTER_CONTEXTS; i++) { |
| single_count_zero += counts->comp_inter[i][0]; |
| comp_count_zero += counts->comp_inter[i][1]; |
| } |
| if (comp_count_zero == 0) { |
| cm->reference_mode = SINGLE_REFERENCE; |
| vp9_zero(counts->comp_inter); |
| } else if (single_count_zero == 0) { |
| cm->reference_mode = COMPOUND_REFERENCE; |
| vp9_zero(counts->comp_inter); |
| } |
| } |
| } |
| |
| // If segmented AQ is enabled compute the average AQ weighting. |
| if (cm->seg.enabled && (cpi->oxcf.aq_mode != NO_AQ) && |
| (cm->seg.update_map || cm->seg.update_data)) { |
| cm->seg.aq_av_offset = compute_frame_aq_offset(cpi); |
| } |
| } |
| |
| static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) { |
| const PREDICTION_MODE y_mode = mi->mode; |
| const PREDICTION_MODE uv_mode = mi->uv_mode; |
| const BLOCK_SIZE bsize = mi->sb_type; |
| |
| if (bsize < BLOCK_8X8) { |
| int idx, idy; |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| for (idy = 0; idy < 2; idy += num_4x4_h) |
| for (idx = 0; idx < 2; idx += num_4x4_w) |
| ++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode]; |
| } else { |
| ++counts->y_mode[size_group_lookup[bsize]][y_mode]; |
| } |
| |
| ++counts->uv_mode[y_mode][uv_mode]; |
| } |
| |
| static void update_zeromv_cnt(VP9_COMP *const cpi, const MODE_INFO *const mi, |
| int mi_row, int mi_col, BLOCK_SIZE bsize) { |
| const VP9_COMMON *const cm = &cpi->common; |
| MV mv = mi->mv[0].as_mv; |
| const int bw = num_8x8_blocks_wide_lookup[bsize]; |
| const int bh = num_8x8_blocks_high_lookup[bsize]; |
| const int xmis = VPXMIN(cm->mi_cols - mi_col, bw); |
| const int ymis = VPXMIN(cm->mi_rows - mi_row, bh); |
| const int block_index = mi_row * cm->mi_cols + mi_col; |
| int x, y; |
| for (y = 0; y < ymis; y++) |
| for (x = 0; x < xmis; x++) { |
| int map_offset = block_index + y * cm->mi_cols + x; |
| if (mi->ref_frame[0] == LAST_FRAME && is_inter_block(mi) && |
| mi->segment_id <= CR_SEGMENT_ID_BOOST2) { |
| if (abs(mv.row) < 8 && abs(mv.col) < 8) { |
| if (cpi->consec_zero_mv[map_offset] < 255) |
| cpi->consec_zero_mv[map_offset]++; |
| } else { |
| cpi->consec_zero_mv[map_offset] = 0; |
| } |
| } |
| } |
| } |
| |
| static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t, |
| int output_enabled, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *mi = xd->mi[0]; |
| const int seg_skip = |
| segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP); |
| x->skip_recode = !x->select_tx_size && mi->sb_type >= BLOCK_8X8 && |
| cpi->oxcf.aq_mode != COMPLEXITY_AQ && |
| cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ && |
| cpi->sf.allow_skip_recode; |
| |
| if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode) |
| memset(x->skip_txfm, 0, sizeof(x->skip_txfm)); |
| |
| x->skip_optimize = ctx->is_coded; |
| ctx->is_coded = 1; |
| x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct; |
| x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame && |
| x->q_index < QIDX_SKIP_THRESH); |
| |
| if (x->skip_encode) return; |
| |
| if (!is_inter_block(mi)) { |
| int plane; |
| #if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH |
| if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && |
| (xd->above_mi == NULL || xd->left_mi == NULL) && |
| need_top_left[mi->uv_mode]) |
| assert(0); |
| #endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH |
| mi->skip = 1; |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) |
| vp9_encode_intra_block_plane(x, VPXMAX(bsize, BLOCK_8X8), plane, 1); |
| if (output_enabled) sum_intra_stats(td->counts, mi); |
| vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip, |
| VPXMAX(bsize, BLOCK_8X8)); |
| } else { |
| int ref; |
| const int is_compound = has_second_ref(mi); |
| set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mi->ref_frame[ref]); |
| assert(cfg != NULL); |
| vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, |
| &xd->block_refs[ref]->sf); |
| } |
| if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip) |
| vp9_build_inter_predictors_sby(xd, mi_row, mi_col, |
| VPXMAX(bsize, BLOCK_8X8)); |
| |
| vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, |
| VPXMAX(bsize, BLOCK_8X8)); |
| |
| #if CONFIG_MISMATCH_DEBUG |
| if (output_enabled) { |
| int plane; |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| int pixel_c, pixel_r; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(VPXMAX(bsize, BLOCK_8X8), &xd->plane[plane]); |
| const int bw = get_block_width(plane_bsize); |
| const int bh = get_block_height(plane_bsize); |
| mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, |
| pd->subsampling_x, pd->subsampling_y); |
| |
| mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, plane, pixel_c, |
| pixel_r, bw, bh, |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); |
| } |
| } |
| #endif |
| |
| vp9_encode_sb(x, VPXMAX(bsize, BLOCK_8X8), mi_row, mi_col, output_enabled); |
| vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip, |
| VPXMAX(bsize, BLOCK_8X8)); |
| } |
| |
| if (seg_skip) { |
| assert(mi->skip); |
| } |
| |
| if (output_enabled) { |
| if (cm->tx_mode == TX_MODE_SELECT && mi->sb_type >= BLOCK_8X8 && |
| !(is_inter_block(mi) && mi->skip)) { |
| ++get_tx_counts(max_txsize_lookup[bsize], get_tx_size_context(xd), |
| &td->counts->tx)[mi->tx_size]; |
| } else { |
| // The new intra coding scheme requires no change of transform size |
| if (is_inter_block(mi)) { |
| mi->tx_size = VPXMIN(tx_mode_to_biggest_tx_size[cm->tx_mode], |
| max_txsize_lookup[bsize]); |
| } else { |
| mi->tx_size = (bsize >= BLOCK_8X8) ? mi->tx_size : TX_4X4; |
| } |
| } |
| |
| ++td->counts->tx.tx_totals[mi->tx_size]; |
| ++td->counts->tx.tx_totals[get_uv_tx_size(mi, &xd->plane[1])]; |
| if (cm->seg.enabled && cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) |
| vp9_cyclic_refresh_update_sb_postencode(cpi, mi, mi_row, mi_col, bsize); |
| if (cpi->oxcf.pass == 0 && cpi->svc.temporal_layer_id == 0 && |
| (!cpi->use_svc || |
| (cpi->use_svc && |
| !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame && |
| cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1))) |
| update_zeromv_cnt(cpi, mi, mi_row, mi_col, bsize); |
| } |
| } |