| /* |
| * Copyright (c) 2014 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "vp9/encoder/vp9_encodeframe.h" |
| #include "vp9/encoder/vp9_encoder.h" |
| #include "vp9/encoder/vp9_ethread.h" |
| #include "vp9/encoder/vp9_firstpass.h" |
| #include "vp9/encoder/vp9_multi_thread.h" |
| #include "vp9/encoder/vp9_temporal_filter.h" |
| #include "vpx_dsp/vpx_dsp_common.h" |
| |
| static void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) { |
| int i, j, k, l, m, n; |
| |
| for (i = 0; i < REFERENCE_MODES; i++) |
| td->rd_counts.comp_pred_diff[i] += td_t->rd_counts.comp_pred_diff[i]; |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) |
| td->rd_counts.filter_diff[i] += td_t->rd_counts.filter_diff[i]; |
| |
| for (i = 0; i < TX_SIZES; i++) |
| for (j = 0; j < PLANE_TYPES; j++) |
| for (k = 0; k < REF_TYPES; k++) |
| for (l = 0; l < COEF_BANDS; l++) |
| for (m = 0; m < COEFF_CONTEXTS; m++) |
| for (n = 0; n < ENTROPY_TOKENS; n++) |
| td->rd_counts.coef_counts[i][j][k][l][m][n] += |
| td_t->rd_counts.coef_counts[i][j][k][l][m][n]; |
| } |
| |
| static int enc_worker_hook(void *arg1, void *unused) { |
| EncWorkerData *const thread_data = (EncWorkerData *)arg1; |
| VP9_COMP *const cpi = thread_data->cpi; |
| const VP9_COMMON *const cm = &cpi->common; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int tile_rows = 1 << cm->log2_tile_rows; |
| int t; |
| |
| (void)unused; |
| |
| for (t = thread_data->start; t < tile_rows * tile_cols; |
| t += cpi->num_workers) { |
| int tile_row = t / tile_cols; |
| int tile_col = t % tile_cols; |
| |
| vp9_encode_tile(cpi, thread_data->td, tile_row, tile_col); |
| } |
| |
| return 0; |
| } |
| |
| static int get_max_tile_cols(VP9_COMP *cpi) { |
| const int aligned_width = ALIGN_POWER_OF_TWO(cpi->oxcf.width, MI_SIZE_LOG2); |
| int mi_cols = aligned_width >> MI_SIZE_LOG2; |
| int min_log2_tile_cols, max_log2_tile_cols; |
| int log2_tile_cols; |
| |
| vp9_get_tile_n_bits(mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); |
| log2_tile_cols = |
| clamp(cpi->oxcf.tile_columns, min_log2_tile_cols, max_log2_tile_cols); |
| if (cpi->oxcf.target_level == LEVEL_AUTO) { |
| const int level_tile_cols = |
| log_tile_cols_from_picsize_level(cpi->common.width, cpi->common.height); |
| if (log2_tile_cols > level_tile_cols) { |
| log2_tile_cols = VPXMAX(level_tile_cols, min_log2_tile_cols); |
| } |
| } |
| return (1 << log2_tile_cols); |
| } |
| |
| static void create_enc_workers(VP9_COMP *cpi, int num_workers) { |
| VP9_COMMON *const cm = &cpi->common; |
| const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); |
| int i; |
| |
| // Only run once to create threads and allocate thread data. |
| if (cpi->num_workers == 0) { |
| int allocated_workers = num_workers; |
| |
| // While using SVC, we need to allocate threads according to the highest |
| // resolution. When row based multithreading is enabled, it is OK to |
| // allocate more threads than the number of max tile columns. |
| if (cpi->use_svc && !cpi->row_mt) { |
| int max_tile_cols = get_max_tile_cols(cpi); |
| allocated_workers = VPXMIN(cpi->oxcf.max_threads, max_tile_cols); |
| } |
| |
| CHECK_MEM_ERROR(cm, cpi->workers, |
| vpx_malloc(allocated_workers * sizeof(*cpi->workers))); |
| |
| CHECK_MEM_ERROR(cm, cpi->tile_thr_data, |
| vpx_calloc(allocated_workers, sizeof(*cpi->tile_thr_data))); |
| |
| for (i = 0; i < allocated_workers; i++) { |
| VPxWorker *const worker = &cpi->workers[i]; |
| EncWorkerData *thread_data = &cpi->tile_thr_data[i]; |
| |
| ++cpi->num_workers; |
| winterface->init(worker); |
| |
| if (i < allocated_workers - 1) { |
| thread_data->cpi = cpi; |
| |
| // Allocate thread data. |
| CHECK_MEM_ERROR(cm, thread_data->td, |
| vpx_memalign(32, sizeof(*thread_data->td))); |
| vp9_zero(*thread_data->td); |
| |
| // Set up pc_tree. |
| thread_data->td->leaf_tree = NULL; |
| thread_data->td->pc_tree = NULL; |
| vp9_setup_pc_tree(cm, thread_data->td); |
| |
| // Allocate frame counters in thread data. |
| CHECK_MEM_ERROR(cm, thread_data->td->counts, |
| vpx_calloc(1, sizeof(*thread_data->td->counts))); |
| |
| // Create threads |
| if (!winterface->reset(worker)) |
| vpx_internal_error(&cm->error, VPX_CODEC_ERROR, |
| "Tile encoder thread creation failed"); |
| } else { |
| // Main thread acts as a worker and uses the thread data in cpi. |
| thread_data->cpi = cpi; |
| thread_data->td = &cpi->td; |
| } |
| winterface->sync(worker); |
| } |
| } |
| } |
| |
| static void launch_enc_workers(VP9_COMP *cpi, VPxWorkerHook hook, void *data2, |
| int num_workers) { |
| const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); |
| int i; |
| |
| for (i = 0; i < num_workers; i++) { |
| VPxWorker *const worker = &cpi->workers[i]; |
| worker->hook = hook; |
| worker->data1 = &cpi->tile_thr_data[i]; |
| worker->data2 = data2; |
| } |
| |
| // Encode a frame |
| for (i = 0; i < num_workers; i++) { |
| VPxWorker *const worker = &cpi->workers[i]; |
| EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; |
| |
| // Set the starting tile for each thread. |
| thread_data->start = i; |
| |
| if (i == cpi->num_workers - 1) |
| winterface->execute(worker); |
| else |
| winterface->launch(worker); |
| } |
| |
| // Encoding ends. |
| for (i = 0; i < num_workers; i++) { |
| VPxWorker *const worker = &cpi->workers[i]; |
| winterface->sync(worker); |
| } |
| } |
| |
| void vp9_encode_tiles_mt(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int num_workers = VPXMIN(cpi->oxcf.max_threads, tile_cols); |
| int i; |
| |
| vp9_init_tile_data(cpi); |
| |
| create_enc_workers(cpi, num_workers); |
| |
| for (i = 0; i < num_workers; i++) { |
| EncWorkerData *thread_data; |
| thread_data = &cpi->tile_thr_data[i]; |
| |
| // Before encoding a frame, copy the thread data from cpi. |
| if (thread_data->td != &cpi->td) { |
| thread_data->td->mb = cpi->td.mb; |
| thread_data->td->rd_counts = cpi->td.rd_counts; |
| } |
| if (thread_data->td->counts != &cpi->common.counts) { |
| memcpy(thread_data->td->counts, &cpi->common.counts, |
| sizeof(cpi->common.counts)); |
| } |
| |
| // Handle use_nonrd_pick_mode case. |
| if (cpi->sf.use_nonrd_pick_mode) { |
| MACROBLOCK *const x = &thread_data->td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| PICK_MODE_CONTEXT *ctx = &thread_data->td->pc_root->none; |
| int j; |
| |
| for (j = 0; j < MAX_MB_PLANE; ++j) { |
| p[j].coeff = ctx->coeff_pbuf[j][0]; |
| p[j].qcoeff = ctx->qcoeff_pbuf[j][0]; |
| pd[j].dqcoeff = ctx->dqcoeff_pbuf[j][0]; |
| p[j].eobs = ctx->eobs_pbuf[j][0]; |
| } |
| } |
| } |
| |
| launch_enc_workers(cpi, enc_worker_hook, NULL, num_workers); |
| |
| for (i = 0; i < num_workers; i++) { |
| VPxWorker *const worker = &cpi->workers[i]; |
| EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; |
| |
| // Accumulate counters. |
| if (i < cpi->num_workers - 1) { |
| vp9_accumulate_frame_counts(&cm->counts, thread_data->td->counts, 0); |
| accumulate_rd_opt(&cpi->td, thread_data->td); |
| } |
| } |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void accumulate_fp_tile_stat(TileDataEnc *tile_data, |
| TileDataEnc *tile_data_t) { |
| tile_data->fp_data.intra_factor += tile_data_t->fp_data.intra_factor; |
| tile_data->fp_data.brightness_factor += |
| tile_data_t->fp_data.brightness_factor; |
| tile_data->fp_data.coded_error += tile_data_t->fp_data.coded_error; |
| tile_data->fp_data.sr_coded_error += tile_data_t->fp_data.sr_coded_error; |
| tile_data->fp_data.frame_noise_energy += |
| tile_data_t->fp_data.frame_noise_energy; |
| tile_data->fp_data.intra_error += tile_data_t->fp_data.intra_error; |
| tile_data->fp_data.intercount += tile_data_t->fp_data.intercount; |
| tile_data->fp_data.second_ref_count += tile_data_t->fp_data.second_ref_count; |
| tile_data->fp_data.neutral_count += tile_data_t->fp_data.neutral_count; |
| tile_data->fp_data.intra_count_low += tile_data_t->fp_data.intra_count_low; |
| tile_data->fp_data.intra_count_high += tile_data_t->fp_data.intra_count_high; |
| tile_data->fp_data.intra_skip_count += tile_data_t->fp_data.intra_skip_count; |
| tile_data->fp_data.mvcount += tile_data_t->fp_data.mvcount; |
| tile_data->fp_data.sum_mvr += tile_data_t->fp_data.sum_mvr; |
| tile_data->fp_data.sum_mvr_abs += tile_data_t->fp_data.sum_mvr_abs; |
| tile_data->fp_data.sum_mvc += tile_data_t->fp_data.sum_mvc; |
| tile_data->fp_data.sum_mvc_abs += tile_data_t->fp_data.sum_mvc_abs; |
| tile_data->fp_data.sum_mvrs += tile_data_t->fp_data.sum_mvrs; |
| tile_data->fp_data.sum_mvcs += tile_data_t->fp_data.sum_mvcs; |
| tile_data->fp_data.sum_in_vectors += tile_data_t->fp_data.sum_in_vectors; |
| tile_data->fp_data.intra_smooth_count += |
| tile_data_t->fp_data.intra_smooth_count; |
| tile_data->fp_data.image_data_start_row = |
| VPXMIN(tile_data->fp_data.image_data_start_row, |
| tile_data_t->fp_data.image_data_start_row) == INVALID_ROW |
| ? VPXMAX(tile_data->fp_data.image_data_start_row, |
| tile_data_t->fp_data.image_data_start_row) |
| : VPXMIN(tile_data->fp_data.image_data_start_row, |
| tile_data_t->fp_data.image_data_start_row); |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| // Allocate memory for row synchronization |
| void vp9_row_mt_sync_mem_alloc(VP9RowMTSync *row_mt_sync, VP9_COMMON *cm, |
| int rows) { |
| row_mt_sync->rows = rows; |
| #if CONFIG_MULTITHREAD |
| { |
| int i; |
| |
| CHECK_MEM_ERROR(cm, row_mt_sync->mutex, |
| vpx_malloc(sizeof(*row_mt_sync->mutex) * rows)); |
| if (row_mt_sync->mutex) { |
| for (i = 0; i < rows; ++i) { |
| pthread_mutex_init(&row_mt_sync->mutex[i], NULL); |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, row_mt_sync->cond, |
| vpx_malloc(sizeof(*row_mt_sync->cond) * rows)); |
| if (row_mt_sync->cond) { |
| for (i = 0; i < rows; ++i) { |
| pthread_cond_init(&row_mt_sync->cond[i], NULL); |
| } |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| |
| CHECK_MEM_ERROR(cm, row_mt_sync->cur_col, |
| vpx_malloc(sizeof(*row_mt_sync->cur_col) * rows)); |
| |
| // Set up nsync. |
| row_mt_sync->sync_range = 1; |
| } |
| |
| // Deallocate row based multi-threading synchronization related mutex and data |
| void vp9_row_mt_sync_mem_dealloc(VP9RowMTSync *row_mt_sync) { |
| if (row_mt_sync != NULL) { |
| #if CONFIG_MULTITHREAD |
| int i; |
| |
| if (row_mt_sync->mutex != NULL) { |
| for (i = 0; i < row_mt_sync->rows; ++i) { |
| pthread_mutex_destroy(&row_mt_sync->mutex[i]); |
| } |
| vpx_free(row_mt_sync->mutex); |
| } |
| if (row_mt_sync->cond != NULL) { |
| for (i = 0; i < row_mt_sync->rows; ++i) { |
| pthread_cond_destroy(&row_mt_sync->cond[i]); |
| } |
| vpx_free(row_mt_sync->cond); |
| } |
| #endif // CONFIG_MULTITHREAD |
| vpx_free(row_mt_sync->cur_col); |
| // clear the structure as the source of this call may be dynamic change |
| // in tiles in which case this call will be followed by an _alloc() |
| // which may fail. |
| vp9_zero(*row_mt_sync); |
| } |
| } |
| |
| void vp9_row_mt_sync_read(VP9RowMTSync *const row_mt_sync, int r, int c) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = row_mt_sync->sync_range; |
| |
| if (r && !(c & (nsync - 1))) { |
| pthread_mutex_t *const mutex = &row_mt_sync->mutex[r - 1]; |
| pthread_mutex_lock(mutex); |
| |
| while (c > row_mt_sync->cur_col[r - 1] - nsync + 1) { |
| pthread_cond_wait(&row_mt_sync->cond[r - 1], mutex); |
| } |
| pthread_mutex_unlock(mutex); |
| } |
| #else |
| (void)row_mt_sync; |
| (void)r; |
| (void)c; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| void vp9_row_mt_sync_read_dummy(VP9RowMTSync *const row_mt_sync, int r, int c) { |
| (void)row_mt_sync; |
| (void)r; |
| (void)c; |
| return; |
| } |
| |
| void vp9_row_mt_sync_write(VP9RowMTSync *const row_mt_sync, int r, int c, |
| const int cols) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = row_mt_sync->sync_range; |
| int cur; |
| // Only signal when there are enough encoded blocks for next row to run. |
| int sig = 1; |
| |
| if (c < cols - 1) { |
| cur = c; |
| if (c % nsync != nsync - 1) sig = 0; |
| } else { |
| cur = cols + nsync; |
| } |
| |
| if (sig) { |
| pthread_mutex_lock(&row_mt_sync->mutex[r]); |
| |
| row_mt_sync->cur_col[r] = cur; |
| |
| pthread_cond_signal(&row_mt_sync->cond[r]); |
| pthread_mutex_unlock(&row_mt_sync->mutex[r]); |
| } |
| #else |
| (void)row_mt_sync; |
| (void)r; |
| (void)c; |
| (void)cols; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| void vp9_row_mt_sync_write_dummy(VP9RowMTSync *const row_mt_sync, int r, int c, |
| const int cols) { |
| (void)row_mt_sync; |
| (void)r; |
| (void)c; |
| (void)cols; |
| return; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static int first_pass_worker_hook(void *arg1, void *arg2) { |
| EncWorkerData *const thread_data = (EncWorkerData *)arg1; |
| MultiThreadHandle *multi_thread_ctxt = (MultiThreadHandle *)arg2; |
| VP9_COMP *const cpi = thread_data->cpi; |
| const VP9_COMMON *const cm = &cpi->common; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| int tile_row, tile_col; |
| TileDataEnc *this_tile; |
| int end_of_frame; |
| int thread_id = thread_data->thread_id; |
| int cur_tile_id = multi_thread_ctxt->thread_id_to_tile_id[thread_id]; |
| JobNode *proc_job = NULL; |
| FIRSTPASS_DATA fp_acc_data; |
| MV zero_mv = { 0, 0 }; |
| MV best_ref_mv; |
| int mb_row; |
| |
| end_of_frame = 0; |
| while (0 == end_of_frame) { |
| // Get the next job in the queue |
| proc_job = |
| (JobNode *)vp9_enc_grp_get_next_job(multi_thread_ctxt, cur_tile_id); |
| if (NULL == proc_job) { |
| // Query for the status of other tiles |
| end_of_frame = vp9_get_tiles_proc_status( |
| multi_thread_ctxt, thread_data->tile_completion_status, &cur_tile_id, |
| tile_cols); |
| } else { |
| tile_col = proc_job->tile_col_id; |
| tile_row = proc_job->tile_row_id; |
| |
| this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| mb_row = proc_job->vert_unit_row_num; |
| |
| best_ref_mv = zero_mv; |
| vp9_zero(fp_acc_data); |
| fp_acc_data.image_data_start_row = INVALID_ROW; |
| vp9_first_pass_encode_tile_mb_row(cpi, thread_data->td, &fp_acc_data, |
| this_tile, &best_ref_mv, mb_row); |
| } |
| } |
| return 0; |
| } |
| |
| void vp9_encode_fp_row_mt(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int tile_rows = 1 << cm->log2_tile_rows; |
| MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt; |
| TileDataEnc *first_tile_col; |
| int num_workers = VPXMAX(cpi->oxcf.max_threads, 1); |
| int i; |
| |
| if (multi_thread_ctxt->allocated_tile_cols < tile_cols || |
| multi_thread_ctxt->allocated_tile_rows < tile_rows || |
| multi_thread_ctxt->allocated_vert_unit_rows < cm->mb_rows) { |
| vp9_row_mt_mem_dealloc(cpi); |
| vp9_init_tile_data(cpi); |
| vp9_row_mt_mem_alloc(cpi); |
| } else { |
| vp9_init_tile_data(cpi); |
| } |
| |
| create_enc_workers(cpi, num_workers); |
| |
| vp9_assign_tile_to_thread(multi_thread_ctxt, tile_cols, cpi->num_workers); |
| |
| vp9_prepare_job_queue(cpi, FIRST_PASS_JOB); |
| |
| vp9_multi_thread_tile_init(cpi); |
| |
| for (i = 0; i < num_workers; i++) { |
| EncWorkerData *thread_data; |
| thread_data = &cpi->tile_thr_data[i]; |
| |
| // Before encoding a frame, copy the thread data from cpi. |
| if (thread_data->td != &cpi->td) { |
| thread_data->td->mb = cpi->td.mb; |
| } |
| } |
| |
| launch_enc_workers(cpi, first_pass_worker_hook, multi_thread_ctxt, |
| num_workers); |
| |
| first_tile_col = &cpi->tile_data[0]; |
| for (i = 1; i < tile_cols; i++) { |
| TileDataEnc *this_tile = &cpi->tile_data[i]; |
| accumulate_fp_tile_stat(first_tile_col, this_tile); |
| } |
| } |
| |
| static int temporal_filter_worker_hook(void *arg1, void *arg2) { |
| EncWorkerData *const thread_data = (EncWorkerData *)arg1; |
| MultiThreadHandle *multi_thread_ctxt = (MultiThreadHandle *)arg2; |
| VP9_COMP *const cpi = thread_data->cpi; |
| const VP9_COMMON *const cm = &cpi->common; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| int tile_row, tile_col; |
| int mb_col_start, mb_col_end; |
| TileDataEnc *this_tile; |
| int end_of_frame; |
| int thread_id = thread_data->thread_id; |
| int cur_tile_id = multi_thread_ctxt->thread_id_to_tile_id[thread_id]; |
| JobNode *proc_job = NULL; |
| int mb_row; |
| |
| end_of_frame = 0; |
| while (0 == end_of_frame) { |
| // Get the next job in the queue |
| proc_job = |
| (JobNode *)vp9_enc_grp_get_next_job(multi_thread_ctxt, cur_tile_id); |
| if (NULL == proc_job) { |
| // Query for the status of other tiles |
| end_of_frame = vp9_get_tiles_proc_status( |
| multi_thread_ctxt, thread_data->tile_completion_status, &cur_tile_id, |
| tile_cols); |
| } else { |
| tile_col = proc_job->tile_col_id; |
| tile_row = proc_job->tile_row_id; |
| this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| mb_col_start = (this_tile->tile_info.mi_col_start) >> TF_SHIFT; |
| mb_col_end = (this_tile->tile_info.mi_col_end + TF_ROUND) >> TF_SHIFT; |
| mb_row = proc_job->vert_unit_row_num; |
| |
| vp9_temporal_filter_iterate_row_c(cpi, thread_data->td, mb_row, |
| mb_col_start, mb_col_end); |
| } |
| } |
| return 0; |
| } |
| |
| void vp9_temporal_filter_row_mt(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int tile_rows = 1 << cm->log2_tile_rows; |
| MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt; |
| int num_workers = cpi->num_workers ? cpi->num_workers : 1; |
| int i; |
| |
| if (multi_thread_ctxt->allocated_tile_cols < tile_cols || |
| multi_thread_ctxt->allocated_tile_rows < tile_rows || |
| multi_thread_ctxt->allocated_vert_unit_rows < cm->mb_rows) { |
| vp9_row_mt_mem_dealloc(cpi); |
| vp9_init_tile_data(cpi); |
| vp9_row_mt_mem_alloc(cpi); |
| } else { |
| vp9_init_tile_data(cpi); |
| } |
| |
| create_enc_workers(cpi, num_workers); |
| |
| vp9_assign_tile_to_thread(multi_thread_ctxt, tile_cols, cpi->num_workers); |
| |
| vp9_prepare_job_queue(cpi, ARNR_JOB); |
| |
| for (i = 0; i < num_workers; i++) { |
| EncWorkerData *thread_data; |
| thread_data = &cpi->tile_thr_data[i]; |
| |
| // Before encoding a frame, copy the thread data from cpi. |
| if (thread_data->td != &cpi->td) { |
| thread_data->td->mb = cpi->td.mb; |
| } |
| } |
| |
| launch_enc_workers(cpi, temporal_filter_worker_hook, multi_thread_ctxt, |
| num_workers); |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static int enc_row_mt_worker_hook(void *arg1, void *arg2) { |
| EncWorkerData *const thread_data = (EncWorkerData *)arg1; |
| MultiThreadHandle *multi_thread_ctxt = (MultiThreadHandle *)arg2; |
| VP9_COMP *const cpi = thread_data->cpi; |
| const VP9_COMMON *const cm = &cpi->common; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| int tile_row, tile_col; |
| int end_of_frame; |
| int thread_id = thread_data->thread_id; |
| int cur_tile_id = multi_thread_ctxt->thread_id_to_tile_id[thread_id]; |
| JobNode *proc_job = NULL; |
| int mi_row; |
| |
| end_of_frame = 0; |
| while (0 == end_of_frame) { |
| // Get the next job in the queue |
| proc_job = |
| (JobNode *)vp9_enc_grp_get_next_job(multi_thread_ctxt, cur_tile_id); |
| if (NULL == proc_job) { |
| // Query for the status of other tiles |
| end_of_frame = vp9_get_tiles_proc_status( |
| multi_thread_ctxt, thread_data->tile_completion_status, &cur_tile_id, |
| tile_cols); |
| } else { |
| tile_col = proc_job->tile_col_id; |
| tile_row = proc_job->tile_row_id; |
| mi_row = proc_job->vert_unit_row_num * MI_BLOCK_SIZE; |
| |
| vp9_encode_sb_row(cpi, thread_data->td, tile_row, tile_col, mi_row); |
| } |
| } |
| return 0; |
| } |
| |
| void vp9_encode_tiles_row_mt(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int tile_rows = 1 << cm->log2_tile_rows; |
| MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt; |
| int num_workers = VPXMAX(cpi->oxcf.max_threads, 1); |
| int i; |
| |
| if (multi_thread_ctxt->allocated_tile_cols < tile_cols || |
| multi_thread_ctxt->allocated_tile_rows < tile_rows || |
| multi_thread_ctxt->allocated_vert_unit_rows < cm->mb_rows) { |
| vp9_row_mt_mem_dealloc(cpi); |
| vp9_init_tile_data(cpi); |
| vp9_row_mt_mem_alloc(cpi); |
| } else { |
| vp9_init_tile_data(cpi); |
| } |
| |
| create_enc_workers(cpi, num_workers); |
| |
| vp9_assign_tile_to_thread(multi_thread_ctxt, tile_cols, cpi->num_workers); |
| |
| vp9_prepare_job_queue(cpi, ENCODE_JOB); |
| |
| vp9_multi_thread_tile_init(cpi); |
| |
| for (i = 0; i < num_workers; i++) { |
| EncWorkerData *thread_data; |
| thread_data = &cpi->tile_thr_data[i]; |
| // Before encoding a frame, copy the thread data from cpi. |
| if (thread_data->td != &cpi->td) { |
| thread_data->td->mb = cpi->td.mb; |
| thread_data->td->rd_counts = cpi->td.rd_counts; |
| } |
| if (thread_data->td->counts != &cpi->common.counts) { |
| memcpy(thread_data->td->counts, &cpi->common.counts, |
| sizeof(cpi->common.counts)); |
| } |
| |
| // Handle use_nonrd_pick_mode case. |
| if (cpi->sf.use_nonrd_pick_mode) { |
| MACROBLOCK *const x = &thread_data->td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| PICK_MODE_CONTEXT *ctx = &thread_data->td->pc_root->none; |
| int j; |
| |
| for (j = 0; j < MAX_MB_PLANE; ++j) { |
| p[j].coeff = ctx->coeff_pbuf[j][0]; |
| p[j].qcoeff = ctx->qcoeff_pbuf[j][0]; |
| pd[j].dqcoeff = ctx->dqcoeff_pbuf[j][0]; |
| p[j].eobs = ctx->eobs_pbuf[j][0]; |
| } |
| } |
| } |
| |
| launch_enc_workers(cpi, enc_row_mt_worker_hook, multi_thread_ctxt, |
| num_workers); |
| |
| for (i = 0; i < num_workers; i++) { |
| VPxWorker *const worker = &cpi->workers[i]; |
| EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; |
| |
| // Accumulate counters. |
| if (i < cpi->num_workers - 1) { |
| vp9_accumulate_frame_counts(&cm->counts, thread_data->td->counts, 0); |
| accumulate_rd_opt(&cpi->td, thread_data->td); |
| } |
| } |
| } |