| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| |
| #include "./vp9_rtcd.h" |
| #include "./vpx_dsp_rtcd.h" |
| |
| #include "vpx_dsp/vpx_dsp_common.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_ports/mem.h" |
| #include "vpx_ports/system_state.h" |
| |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/common/vp9_entropy.h" |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_idct.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_quant_common.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/common/vp9_reconintra.h" |
| #include "vp9/common/vp9_scan.h" |
| #include "vp9/common/vp9_seg_common.h" |
| |
| #if !CONFIG_REALTIME_ONLY |
| #include "vp9/encoder/vp9_aq_variance.h" |
| #endif |
| #include "vp9/encoder/vp9_cost.h" |
| #include "vp9/encoder/vp9_encodemb.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/encoder/vp9_encoder.h" |
| #include "vp9/encoder/vp9_mcomp.h" |
| #include "vp9/encoder/vp9_quantize.h" |
| #include "vp9/encoder/vp9_ratectrl.h" |
| #include "vp9/encoder/vp9_rd.h" |
| #include "vp9/encoder/vp9_rdopt.h" |
| |
| #define LAST_FRAME_MODE_MASK \ |
| ((1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME)) |
| #define GOLDEN_FRAME_MODE_MASK \ |
| ((1 << LAST_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME)) |
| #define ALT_REF_MODE_MASK \ |
| ((1 << LAST_FRAME) | (1 << GOLDEN_FRAME) | (1 << INTRA_FRAME)) |
| |
| #define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | 0x01) |
| |
| #define MIN_EARLY_TERM_INDEX 3 |
| #define NEW_MV_DISCOUNT_FACTOR 8 |
| |
| typedef struct { |
| PREDICTION_MODE mode; |
| MV_REFERENCE_FRAME ref_frame[2]; |
| } MODE_DEFINITION; |
| |
| typedef struct { |
| MV_REFERENCE_FRAME ref_frame[2]; |
| } REF_DEFINITION; |
| |
| struct rdcost_block_args { |
| const VP9_COMP *cpi; |
| MACROBLOCK *x; |
| ENTROPY_CONTEXT t_above[16]; |
| ENTROPY_CONTEXT t_left[16]; |
| int this_rate; |
| int64_t this_dist; |
| int64_t this_sse; |
| int64_t this_rd; |
| int64_t best_rd; |
| int exit_early; |
| int use_fast_coef_costing; |
| const scan_order *so; |
| uint8_t skippable; |
| struct buf_2d *this_recon; |
| }; |
| |
| #define LAST_NEW_MV_INDEX 6 |
| |
| #if !CONFIG_REALTIME_ONLY |
| static const MODE_DEFINITION vp9_mode_order[MAX_MODES] = { |
| { NEARESTMV, { LAST_FRAME, NONE } }, |
| { NEARESTMV, { ALTREF_FRAME, NONE } }, |
| { NEARESTMV, { GOLDEN_FRAME, NONE } }, |
| |
| { DC_PRED, { INTRA_FRAME, NONE } }, |
| |
| { NEWMV, { LAST_FRAME, NONE } }, |
| { NEWMV, { ALTREF_FRAME, NONE } }, |
| { NEWMV, { GOLDEN_FRAME, NONE } }, |
| |
| { NEARMV, { LAST_FRAME, NONE } }, |
| { NEARMV, { ALTREF_FRAME, NONE } }, |
| { NEARMV, { GOLDEN_FRAME, NONE } }, |
| |
| { ZEROMV, { LAST_FRAME, NONE } }, |
| { ZEROMV, { GOLDEN_FRAME, NONE } }, |
| { ZEROMV, { ALTREF_FRAME, NONE } }, |
| |
| { NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| |
| { TM_PRED, { INTRA_FRAME, NONE } }, |
| |
| { NEARMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEWMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| |
| { ZEROMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { ZEROMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| |
| { H_PRED, { INTRA_FRAME, NONE } }, |
| { V_PRED, { INTRA_FRAME, NONE } }, |
| { D135_PRED, { INTRA_FRAME, NONE } }, |
| { D207_PRED, { INTRA_FRAME, NONE } }, |
| { D153_PRED, { INTRA_FRAME, NONE } }, |
| { D63_PRED, { INTRA_FRAME, NONE } }, |
| { D117_PRED, { INTRA_FRAME, NONE } }, |
| { D45_PRED, { INTRA_FRAME, NONE } }, |
| }; |
| |
| static const REF_DEFINITION vp9_ref_order[MAX_REFS] = { |
| { { LAST_FRAME, NONE } }, { { GOLDEN_FRAME, NONE } }, |
| { { ALTREF_FRAME, NONE } }, { { LAST_FRAME, ALTREF_FRAME } }, |
| { { GOLDEN_FRAME, ALTREF_FRAME } }, { { INTRA_FRAME, NONE } }, |
| }; |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static void swap_block_ptr(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int m, int n, |
| int min_plane, int max_plane) { |
| int i; |
| |
| for (i = min_plane; i < max_plane; ++i) { |
| struct macroblock_plane *const p = &x->plane[i]; |
| struct macroblockd_plane *const pd = &x->e_mbd.plane[i]; |
| |
| p->coeff = ctx->coeff_pbuf[i][m]; |
| p->qcoeff = ctx->qcoeff_pbuf[i][m]; |
| pd->dqcoeff = ctx->dqcoeff_pbuf[i][m]; |
| p->eobs = ctx->eobs_pbuf[i][m]; |
| |
| ctx->coeff_pbuf[i][m] = ctx->coeff_pbuf[i][n]; |
| ctx->qcoeff_pbuf[i][m] = ctx->qcoeff_pbuf[i][n]; |
| ctx->dqcoeff_pbuf[i][m] = ctx->dqcoeff_pbuf[i][n]; |
| ctx->eobs_pbuf[i][m] = ctx->eobs_pbuf[i][n]; |
| |
| ctx->coeff_pbuf[i][n] = p->coeff; |
| ctx->qcoeff_pbuf[i][n] = p->qcoeff; |
| ctx->dqcoeff_pbuf[i][n] = pd->dqcoeff; |
| ctx->eobs_pbuf[i][n] = p->eobs; |
| } |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, |
| MACROBLOCKD *xd, int *out_rate_sum, |
| int64_t *out_dist_sum, int *skip_txfm_sb, |
| int64_t *skip_sse_sb) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| int i; |
| int64_t rate_sum = 0; |
| int64_t dist_sum = 0; |
| const int ref = xd->mi[0]->ref_frame[0]; |
| unsigned int sse; |
| unsigned int var = 0; |
| int64_t total_sse = 0; |
| int skip_flag = 1; |
| const int shift = 6; |
| int64_t dist; |
| const int dequant_shift = |
| #if CONFIG_VP9_HIGHBITDEPTH |
| (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| 3; |
| unsigned int qstep_vec[MAX_MB_PLANE]; |
| unsigned int nlog2_vec[MAX_MB_PLANE]; |
| unsigned int sum_sse_vec[MAX_MB_PLANE]; |
| int any_zero_sum_sse = 0; |
| |
| x->pred_sse[ref] = 0; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| struct macroblock_plane *const p = &x->plane[i]; |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); |
| const TX_SIZE max_tx_size = max_txsize_lookup[bs]; |
| const BLOCK_SIZE unit_size = txsize_to_bsize[max_tx_size]; |
| const int64_t dc_thr = p->quant_thred[0] >> shift; |
| const int64_t ac_thr = p->quant_thred[1] >> shift; |
| unsigned int sum_sse = 0; |
| // The low thresholds are used to measure if the prediction errors are |
| // low enough so that we can skip the mode search. |
| const int64_t low_dc_thr = VPXMIN(50, dc_thr >> 2); |
| const int64_t low_ac_thr = VPXMIN(80, ac_thr >> 2); |
| int bw = 1 << (b_width_log2_lookup[bs] - b_width_log2_lookup[unit_size]); |
| int bh = 1 << (b_height_log2_lookup[bs] - b_width_log2_lookup[unit_size]); |
| int idx, idy; |
| int lw = b_width_log2_lookup[unit_size] + 2; |
| int lh = b_height_log2_lookup[unit_size] + 2; |
| |
| for (idy = 0; idy < bh; ++idy) { |
| for (idx = 0; idx < bw; ++idx) { |
| uint8_t *src = p->src.buf + (idy * p->src.stride << lh) + (idx << lw); |
| uint8_t *dst = pd->dst.buf + (idy * pd->dst.stride << lh) + (idx << lh); |
| int block_idx = (idy << 1) + idx; |
| int low_err_skip = 0; |
| |
| var = cpi->fn_ptr[unit_size].vf(src, p->src.stride, dst, pd->dst.stride, |
| &sse); |
| x->bsse[(i << 2) + block_idx] = sse; |
| sum_sse += sse; |
| |
| x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_NONE; |
| if (!x->select_tx_size) { |
| // Check if all ac coefficients can be quantized to zero. |
| if (var < ac_thr || var == 0) { |
| x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_ONLY; |
| |
| // Check if dc coefficient can be quantized to zero. |
| if (sse - var < dc_thr || sse == var) { |
| x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_DC; |
| |
| if (!sse || (var < low_ac_thr && sse - var < low_dc_thr)) |
| low_err_skip = 1; |
| } |
| } |
| } |
| |
| if (skip_flag && !low_err_skip) skip_flag = 0; |
| |
| if (i == 0) x->pred_sse[ref] += sse; |
| } |
| } |
| |
| total_sse += sum_sse; |
| sum_sse_vec[i] = sum_sse; |
| any_zero_sum_sse = any_zero_sum_sse || (sum_sse == 0); |
| qstep_vec[i] = pd->dequant[1] >> dequant_shift; |
| nlog2_vec[i] = num_pels_log2_lookup[bs]; |
| } |
| |
| // Fast approximate the modelling function. |
| if (cpi->sf.simple_model_rd_from_var) { |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| int64_t rate; |
| const int64_t square_error = sum_sse_vec[i]; |
| int quantizer = qstep_vec[i]; |
| |
| if (quantizer < 120) |
| rate = (square_error * (280 - quantizer)) >> (16 - VP9_PROB_COST_SHIFT); |
| else |
| rate = 0; |
| dist = (square_error * quantizer) >> 8; |
| rate_sum += rate; |
| dist_sum += dist; |
| } |
| } else { |
| if (any_zero_sum_sse) { |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| int rate; |
| vp9_model_rd_from_var_lapndz(sum_sse_vec[i], nlog2_vec[i], qstep_vec[i], |
| &rate, &dist); |
| rate_sum += rate; |
| dist_sum += dist; |
| } |
| } else { |
| vp9_model_rd_from_var_lapndz_vec(sum_sse_vec, nlog2_vec, qstep_vec, |
| &rate_sum, &dist_sum); |
| } |
| } |
| |
| *skip_txfm_sb = skip_flag; |
| *skip_sse_sb = total_sse << VP9_DIST_SCALE_LOG2; |
| *out_rate_sum = (int)rate_sum; |
| *out_dist_sum = dist_sum << VP9_DIST_SCALE_LOG2; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| int64_t vp9_highbd_block_error_c(const tran_low_t *coeff, |
| const tran_low_t *dqcoeff, intptr_t block_size, |
| int64_t *ssz, int bd) { |
| int i; |
| int64_t error = 0, sqcoeff = 0; |
| int shift = 2 * (bd - 8); |
| int rounding = shift > 0 ? 1 << (shift - 1) : 0; |
| |
| for (i = 0; i < block_size; i++) { |
| const int64_t diff = coeff[i] - dqcoeff[i]; |
| error += diff * diff; |
| sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i]; |
| } |
| assert(error >= 0 && sqcoeff >= 0); |
| error = (error + rounding) >> shift; |
| sqcoeff = (sqcoeff + rounding) >> shift; |
| |
| *ssz = sqcoeff; |
| return error; |
| } |
| |
| static int64_t vp9_highbd_block_error_dispatch(const tran_low_t *coeff, |
| const tran_low_t *dqcoeff, |
| intptr_t block_size, |
| int64_t *ssz, int bd) { |
| if (bd == 8) { |
| return vp9_block_error(coeff, dqcoeff, block_size, ssz); |
| } else { |
| return vp9_highbd_block_error(coeff, dqcoeff, block_size, ssz, bd); |
| } |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| int64_t vp9_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, |
| intptr_t block_size, int64_t *ssz) { |
| int i; |
| int64_t error = 0, sqcoeff = 0; |
| |
| for (i = 0; i < block_size; i++) { |
| const int diff = coeff[i] - dqcoeff[i]; |
| error += diff * diff; |
| sqcoeff += coeff[i] * coeff[i]; |
| } |
| |
| *ssz = sqcoeff; |
| return error; |
| } |
| |
| int64_t vp9_block_error_fp_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, |
| int block_size) { |
| int i; |
| int64_t error = 0; |
| |
| for (i = 0; i < block_size; i++) { |
| const int diff = coeff[i] - dqcoeff[i]; |
| error += diff * diff; |
| } |
| |
| return error; |
| } |
| |
| /* The trailing '0' is a terminator which is used inside cost_coeffs() to |
| * decide whether to include cost of a trailing EOB node or not (i.e. we |
| * can skip this if the last coefficient in this transform block, e.g. the |
| * 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block, |
| * were non-zero). */ |
| static const int16_t band_counts[TX_SIZES][8] = { |
| { 1, 2, 3, 4, 3, 16 - 13, 0 }, |
| { 1, 2, 3, 4, 11, 64 - 21, 0 }, |
| { 1, 2, 3, 4, 11, 256 - 21, 0 }, |
| { 1, 2, 3, 4, 11, 1024 - 21, 0 }, |
| }; |
| static int cost_coeffs(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size, |
| int pt, const int16_t *scan, const int16_t *nb, |
| int use_fast_coef_costing) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *mi = xd->mi[0]; |
| const struct macroblock_plane *p = &x->plane[plane]; |
| const PLANE_TYPE type = get_plane_type(plane); |
| const int16_t *band_count = &band_counts[tx_size][1]; |
| const int eob = p->eobs[block]; |
| const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); |
| unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = |
| x->token_costs[tx_size][type][is_inter_block(mi)]; |
| uint8_t token_cache[32 * 32]; |
| int cost; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const uint16_t *cat6_high_cost = vp9_get_high_cost_table(xd->bd); |
| #else |
| const uint16_t *cat6_high_cost = vp9_get_high_cost_table(8); |
| #endif |
| |
| // Check for consistency of tx_size with mode info |
| assert(type == PLANE_TYPE_Y |
| ? mi->tx_size == tx_size |
| : get_uv_tx_size(mi, &xd->plane[plane]) == tx_size); |
| |
| if (eob == 0) { |
| // single eob token |
| cost = token_costs[0][0][pt][EOB_TOKEN]; |
| } else { |
| if (use_fast_coef_costing) { |
| int band_left = *band_count++; |
| int c; |
| |
| // dc token |
| int v = qcoeff[0]; |
| int16_t prev_t; |
| cost = vp9_get_token_cost(v, &prev_t, cat6_high_cost); |
| cost += (*token_costs)[0][pt][prev_t]; |
| |
| token_cache[0] = vp9_pt_energy_class[prev_t]; |
| ++token_costs; |
| |
| // ac tokens |
| for (c = 1; c < eob; c++) { |
| const int rc = scan[c]; |
| int16_t t; |
| |
| v = qcoeff[rc]; |
| cost += vp9_get_token_cost(v, &t, cat6_high_cost); |
| cost += (*token_costs)[!prev_t][!prev_t][t]; |
| prev_t = t; |
| if (!--band_left) { |
| band_left = *band_count++; |
| ++token_costs; |
| } |
| } |
| |
| // eob token |
| if (band_left) cost += (*token_costs)[0][!prev_t][EOB_TOKEN]; |
| |
| } else { // !use_fast_coef_costing |
| int band_left = *band_count++; |
| int c; |
| |
| // dc token |
| int v = qcoeff[0]; |
| int16_t tok; |
| unsigned int(*tok_cost_ptr)[COEFF_CONTEXTS][ENTROPY_TOKENS]; |
| cost = vp9_get_token_cost(v, &tok, cat6_high_cost); |
| cost += (*token_costs)[0][pt][tok]; |
| |
| token_cache[0] = vp9_pt_energy_class[tok]; |
| ++token_costs; |
| |
| tok_cost_ptr = &((*token_costs)[!tok]); |
| |
| // ac tokens |
| for (c = 1; c < eob; c++) { |
| const int rc = scan[c]; |
| |
| v = qcoeff[rc]; |
| cost += vp9_get_token_cost(v, &tok, cat6_high_cost); |
| pt = get_coef_context(nb, token_cache, c); |
| cost += (*tok_cost_ptr)[pt][tok]; |
| token_cache[rc] = vp9_pt_energy_class[tok]; |
| if (!--band_left) { |
| band_left = *band_count++; |
| ++token_costs; |
| } |
| tok_cost_ptr = &((*token_costs)[!tok]); |
| } |
| |
| // eob token |
| if (band_left) { |
| pt = get_coef_context(nb, token_cache, c); |
| cost += (*token_costs)[0][pt][EOB_TOKEN]; |
| } |
| } |
| } |
| |
| return cost; |
| } |
| |
| static INLINE int num_4x4_to_edge(int plane_4x4_dim, int mb_to_edge_dim, |
| int subsampling_dim, int blk_dim) { |
| return plane_4x4_dim + (mb_to_edge_dim >> (5 + subsampling_dim)) - blk_dim; |
| } |
| |
| // Copy all visible 4x4s in the transform block. |
| static void copy_block_visible(const MACROBLOCKD *xd, |
| const struct macroblockd_plane *const pd, |
| const uint8_t *src, const int src_stride, |
| uint8_t *dst, const int dst_stride, int blk_row, |
| int blk_col, const BLOCK_SIZE plane_bsize, |
| const BLOCK_SIZE tx_bsize) { |
| const int plane_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; |
| const int plane_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; |
| const int tx_4x4_w = num_4x4_blocks_wide_lookup[tx_bsize]; |
| const int tx_4x4_h = num_4x4_blocks_high_lookup[tx_bsize]; |
| int b4x4s_to_right_edge = num_4x4_to_edge(plane_4x4_w, xd->mb_to_right_edge, |
| pd->subsampling_x, blk_col); |
| int b4x4s_to_bottom_edge = num_4x4_to_edge(plane_4x4_h, xd->mb_to_bottom_edge, |
| pd->subsampling_y, blk_row); |
| const int is_highbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; |
| if (tx_bsize == BLOCK_4X4 || |
| (b4x4s_to_right_edge >= tx_4x4_w && b4x4s_to_bottom_edge >= tx_4x4_h)) { |
| const int w = tx_4x4_w << 2; |
| const int h = tx_4x4_h << 2; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (is_highbd) { |
| vpx_highbd_convolve_copy(CONVERT_TO_SHORTPTR(src), src_stride, |
| CONVERT_TO_SHORTPTR(dst), dst_stride, NULL, 0, 0, |
| 0, 0, w, h, xd->bd); |
| } else { |
| #endif |
| vpx_convolve_copy(src, src_stride, dst, dst_stride, NULL, 0, 0, 0, 0, w, |
| h); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } |
| #endif |
| } else { |
| int r, c; |
| int max_r = VPXMIN(b4x4s_to_bottom_edge, tx_4x4_h); |
| int max_c = VPXMIN(b4x4s_to_right_edge, tx_4x4_w); |
| // if we are in the unrestricted motion border. |
| for (r = 0; r < max_r; ++r) { |
| // Skip visiting the sub blocks that are wholly within the UMV. |
| for (c = 0; c < max_c; ++c) { |
| const uint8_t *src_ptr = src + r * src_stride * 4 + c * 4; |
| uint8_t *dst_ptr = dst + r * dst_stride * 4 + c * 4; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (is_highbd) { |
| vpx_highbd_convolve_copy(CONVERT_TO_SHORTPTR(src_ptr), src_stride, |
| CONVERT_TO_SHORTPTR(dst_ptr), dst_stride, |
| NULL, 0, 0, 0, 0, 4, 4, xd->bd); |
| } else { |
| #endif |
| vpx_convolve_copy(src_ptr, src_stride, dst_ptr, dst_stride, NULL, 0, |
| 0, 0, 0, 4, 4); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } |
| #endif |
| } |
| } |
| } |
| (void)is_highbd; |
| } |
| |
| // Compute the pixel domain sum square error on all visible 4x4s in the |
| // transform block. |
| static unsigned pixel_sse(const VP9_COMP *const cpi, const MACROBLOCKD *xd, |
| const struct macroblockd_plane *const pd, |
| const uint8_t *src, const int src_stride, |
| const uint8_t *dst, const int dst_stride, int blk_row, |
| int blk_col, const BLOCK_SIZE plane_bsize, |
| const BLOCK_SIZE tx_bsize) { |
| unsigned int sse = 0; |
| const int plane_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; |
| const int plane_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; |
| const int tx_4x4_w = num_4x4_blocks_wide_lookup[tx_bsize]; |
| const int tx_4x4_h = num_4x4_blocks_high_lookup[tx_bsize]; |
| int b4x4s_to_right_edge = num_4x4_to_edge(plane_4x4_w, xd->mb_to_right_edge, |
| pd->subsampling_x, blk_col); |
| int b4x4s_to_bottom_edge = num_4x4_to_edge(plane_4x4_h, xd->mb_to_bottom_edge, |
| pd->subsampling_y, blk_row); |
| if (tx_bsize == BLOCK_4X4 || |
| (b4x4s_to_right_edge >= tx_4x4_w && b4x4s_to_bottom_edge >= tx_4x4_h)) { |
| cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); |
| } else { |
| const vpx_variance_fn_t vf_4x4 = cpi->fn_ptr[BLOCK_4X4].vf; |
| int r, c; |
| unsigned this_sse = 0; |
| int max_r = VPXMIN(b4x4s_to_bottom_edge, tx_4x4_h); |
| int max_c = VPXMIN(b4x4s_to_right_edge, tx_4x4_w); |
| sse = 0; |
| // if we are in the unrestricted motion border. |
| for (r = 0; r < max_r; ++r) { |
| // Skip visiting the sub blocks that are wholly within the UMV. |
| for (c = 0; c < max_c; ++c) { |
| vf_4x4(src + r * src_stride * 4 + c * 4, src_stride, |
| dst + r * dst_stride * 4 + c * 4, dst_stride, &this_sse); |
| sse += this_sse; |
| } |
| } |
| } |
| return sse; |
| } |
| |
| // Compute the squares sum squares on all visible 4x4s in the transform block. |
| static int64_t sum_squares_visible(const MACROBLOCKD *xd, |
| const struct macroblockd_plane *const pd, |
| const int16_t *diff, const int diff_stride, |
| int blk_row, int blk_col, |
| const BLOCK_SIZE plane_bsize, |
| const BLOCK_SIZE tx_bsize) { |
| int64_t sse; |
| const int plane_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; |
| const int plane_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; |
| const int tx_4x4_w = num_4x4_blocks_wide_lookup[tx_bsize]; |
| const int tx_4x4_h = num_4x4_blocks_high_lookup[tx_bsize]; |
| int b4x4s_to_right_edge = num_4x4_to_edge(plane_4x4_w, xd->mb_to_right_edge, |
| pd->subsampling_x, blk_col); |
| int b4x4s_to_bottom_edge = num_4x4_to_edge(plane_4x4_h, xd->mb_to_bottom_edge, |
| pd->subsampling_y, blk_row); |
| if (tx_bsize == BLOCK_4X4 || |
| (b4x4s_to_right_edge >= tx_4x4_w && b4x4s_to_bottom_edge >= tx_4x4_h)) { |
| assert(tx_4x4_w == tx_4x4_h); |
| sse = (int64_t)vpx_sum_squares_2d_i16(diff, diff_stride, tx_4x4_w << 2); |
| } else { |
| int r, c; |
| int max_r = VPXMIN(b4x4s_to_bottom_edge, tx_4x4_h); |
| int max_c = VPXMIN(b4x4s_to_right_edge, tx_4x4_w); |
| sse = 0; |
| // if we are in the unrestricted motion border. |
| for (r = 0; r < max_r; ++r) { |
| // Skip visiting the sub blocks that are wholly within the UMV. |
| for (c = 0; c < max_c; ++c) { |
| sse += (int64_t)vpx_sum_squares_2d_i16( |
| diff + r * diff_stride * 4 + c * 4, diff_stride, 4); |
| } |
| } |
| } |
| return sse; |
| } |
| |
| static void dist_block(const VP9_COMP *cpi, MACROBLOCK *x, int plane, |
| BLOCK_SIZE plane_bsize, int block, int blk_row, |
| int blk_col, TX_SIZE tx_size, int64_t *out_dist, |
| int64_t *out_sse, struct buf_2d *out_recon) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int eob = p->eobs[block]; |
| |
| if (!out_recon && x->block_tx_domain && eob) { |
| const int ss_txfrm_size = tx_size << 1; |
| int64_t this_sse; |
| const int shift = tx_size == TX_32X32 ? 0 : 2; |
| const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| const tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8; |
| *out_dist = vp9_highbd_block_error_dispatch( |
| coeff, dqcoeff, 16 << ss_txfrm_size, &this_sse, bd) >> |
| shift; |
| #else |
| *out_dist = |
| vp9_block_error(coeff, dqcoeff, 16 << ss_txfrm_size, &this_sse) >> |
| shift; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| *out_sse = this_sse >> shift; |
| |
| if (x->skip_encode && !is_inter_block(xd->mi[0])) { |
| // TODO(jingning): tune the model to better capture the distortion. |
| const int64_t p = |
| (pd->dequant[1] * pd->dequant[1] * (1 << ss_txfrm_size)) >> |
| #if CONFIG_VP9_HIGHBITDEPTH |
| (shift + 2 + (bd - 8) * 2); |
| #else |
| (shift + 2); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| *out_dist += (p >> 4); |
| *out_sse += p; |
| } |
| } else { |
| const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; |
| const int bs = 4 * num_4x4_blocks_wide_lookup[tx_bsize]; |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| const int src_idx = 4 * (blk_row * src_stride + blk_col); |
| const int dst_idx = 4 * (blk_row * dst_stride + blk_col); |
| const uint8_t *src = &p->src.buf[src_idx]; |
| const uint8_t *dst = &pd->dst.buf[dst_idx]; |
| uint8_t *out_recon_ptr = 0; |
| |
| const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| unsigned int tmp; |
| |
| tmp = pixel_sse(cpi, xd, pd, src, src_stride, dst, dst_stride, blk_row, |
| blk_col, plane_bsize, tx_bsize); |
| *out_sse = (int64_t)tmp * 16; |
| if (out_recon) { |
| const int out_recon_idx = 4 * (blk_row * out_recon->stride + blk_col); |
| out_recon_ptr = &out_recon->buf[out_recon_idx]; |
| copy_block_visible(xd, pd, dst, dst_stride, out_recon_ptr, |
| out_recon->stride, blk_row, blk_col, plane_bsize, |
| tx_bsize); |
| } |
| |
| if (eob) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, recon16[1024]); |
| uint8_t *recon = (uint8_t *)recon16; |
| #else |
| DECLARE_ALIGNED(16, uint8_t, recon[1024]); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vpx_highbd_convolve_copy(CONVERT_TO_SHORTPTR(dst), dst_stride, recon16, |
| 32, NULL, 0, 0, 0, 0, bs, bs, xd->bd); |
| if (xd->lossless) { |
| vp9_highbd_iwht4x4_add(dqcoeff, recon16, 32, eob, xd->bd); |
| } else { |
| switch (tx_size) { |
| case TX_4X4: |
| vp9_highbd_idct4x4_add(dqcoeff, recon16, 32, eob, xd->bd); |
| break; |
| case TX_8X8: |
| vp9_highbd_idct8x8_add(dqcoeff, recon16, 32, eob, xd->bd); |
| break; |
| case TX_16X16: |
| vp9_highbd_idct16x16_add(dqcoeff, recon16, 32, eob, xd->bd); |
| break; |
| default: |
| assert(tx_size == TX_32X32); |
| vp9_highbd_idct32x32_add(dqcoeff, recon16, 32, eob, xd->bd); |
| break; |
| } |
| } |
| recon = CONVERT_TO_BYTEPTR(recon16); |
| } else { |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| vpx_convolve_copy(dst, dst_stride, recon, 32, NULL, 0, 0, 0, 0, bs, bs); |
| switch (tx_size) { |
| case TX_32X32: vp9_idct32x32_add(dqcoeff, recon, 32, eob); break; |
| case TX_16X16: vp9_idct16x16_add(dqcoeff, recon, 32, eob); break; |
| case TX_8X8: vp9_idct8x8_add(dqcoeff, recon, 32, eob); break; |
| default: |
| assert(tx_size == TX_4X4); |
| // this is like vp9_short_idct4x4 but has a special case around |
| // eob<=1, which is significant (not just an optimization) for |
| // the lossless case. |
| x->inv_txfm_add(dqcoeff, recon, 32, eob); |
| break; |
| } |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| tmp = pixel_sse(cpi, xd, pd, src, src_stride, recon, 32, blk_row, blk_col, |
| plane_bsize, tx_bsize); |
| if (out_recon) { |
| copy_block_visible(xd, pd, recon, 32, out_recon_ptr, out_recon->stride, |
| blk_row, blk_col, plane_bsize, tx_bsize); |
| } |
| } |
| |
| *out_dist = (int64_t)tmp * 16; |
| } |
| } |
| |
| static int rate_block(int plane, int block, TX_SIZE tx_size, int coeff_ctx, |
| struct rdcost_block_args *args) { |
| return cost_coeffs(args->x, plane, block, tx_size, coeff_ctx, args->so->scan, |
| args->so->neighbors, args->use_fast_coef_costing); |
| } |
| |
| static void block_rd_txfm(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { |
| struct rdcost_block_args *args = arg; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| int64_t rd1, rd2, rd; |
| int rate; |
| int64_t dist; |
| int64_t sse; |
| const int coeff_ctx = |
| combine_entropy_contexts(args->t_left[blk_row], args->t_above[blk_col]); |
| struct buf_2d *recon = args->this_recon; |
| const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int dst_stride = pd->dst.stride; |
| const uint8_t *dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)]; |
| |
| if (args->exit_early) return; |
| |
| if (!is_inter_block(mi)) { |
| #if CONFIG_MISMATCH_DEBUG |
| struct encode_b_args intra_arg = { |
| x, x->block_qcoeff_opt, args->t_above, args->t_left, &mi->skip, 0, 0, 0 |
| }; |
| #else |
| struct encode_b_args intra_arg = { x, x->block_qcoeff_opt, args->t_above, |
| args->t_left, &mi->skip }; |
| #endif |
| vp9_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| &intra_arg); |
| if (recon) { |
| uint8_t *rec_ptr = &recon->buf[4 * (blk_row * recon->stride + blk_col)]; |
| copy_block_visible(xd, pd, dst, dst_stride, rec_ptr, recon->stride, |
| blk_row, blk_col, plane_bsize, tx_bsize); |
| } |
| if (x->block_tx_domain) { |
| dist_block(args->cpi, x, plane, plane_bsize, block, blk_row, blk_col, |
| tx_size, &dist, &sse, /*recon =*/0); |
| } else { |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const int src_stride = p->src.stride; |
| const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; |
| const uint8_t *src = &p->src.buf[4 * (blk_row * src_stride + blk_col)]; |
| const int16_t *diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; |
| unsigned int tmp; |
| sse = sum_squares_visible(xd, pd, diff, diff_stride, blk_row, blk_col, |
| plane_bsize, tx_bsize); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && (xd->bd > 8)) |
| sse = ROUND64_POWER_OF_TWO(sse, (xd->bd - 8) * 2); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| sse = sse * 16; |
| tmp = pixel_sse(args->cpi, xd, pd, src, src_stride, dst, dst_stride, |
| blk_row, blk_col, plane_bsize, tx_bsize); |
| dist = (int64_t)tmp * 16; |
| } |
| } else { |
| int skip_txfm_flag = SKIP_TXFM_NONE; |
| if (max_txsize_lookup[plane_bsize] == tx_size) |
| skip_txfm_flag = x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))]; |
| |
| if (skip_txfm_flag == SKIP_TXFM_NONE || |
| (recon && skip_txfm_flag == SKIP_TXFM_AC_ONLY)) { |
| // full forward transform and quantization |
| vp9_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size); |
| if (x->block_qcoeff_opt) |
| vp9_optimize_b(x, plane, block, tx_size, coeff_ctx); |
| dist_block(args->cpi, x, plane, plane_bsize, block, blk_row, blk_col, |
| tx_size, &dist, &sse, recon); |
| } else if (skip_txfm_flag == SKIP_TXFM_AC_ONLY) { |
| // compute DC coefficient |
| tran_low_t *const coeff = BLOCK_OFFSET(x->plane[plane].coeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(xd->plane[plane].dqcoeff, block); |
| vp9_xform_quant_dc(x, plane, block, blk_row, blk_col, plane_bsize, |
| tx_size); |
| sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4; |
| dist = sse; |
| if (x->plane[plane].eobs[block]) { |
| const int64_t orig_sse = (int64_t)coeff[0] * coeff[0]; |
| const int64_t resd_sse = coeff[0] - dqcoeff[0]; |
| int64_t dc_correct = orig_sse - resd_sse * resd_sse; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| dc_correct >>= ((xd->bd - 8) * 2); |
| #endif |
| if (tx_size != TX_32X32) dc_correct >>= 2; |
| |
| dist = VPXMAX(0, sse - dc_correct); |
| } |
| } else { |
| // SKIP_TXFM_AC_DC |
| // skip forward transform. Because this is handled here, the quantization |
| // does not need to do it. |
| x->plane[plane].eobs[block] = 0; |
| sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4; |
| dist = sse; |
| if (recon) { |
| uint8_t *rec_ptr = &recon->buf[4 * (blk_row * recon->stride + blk_col)]; |
| copy_block_visible(xd, pd, dst, dst_stride, rec_ptr, recon->stride, |
| blk_row, blk_col, plane_bsize, tx_bsize); |
| } |
| } |
| } |
| |
| rd = RDCOST(x->rdmult, x->rddiv, 0, dist); |
| if (args->this_rd + rd > args->best_rd) { |
| args->exit_early = 1; |
| return; |
| } |
| |
| rate = rate_block(plane, block, tx_size, coeff_ctx, args); |
| args->t_above[blk_col] = (x->plane[plane].eobs[block] > 0) ? 1 : 0; |
| args->t_left[blk_row] = (x->plane[plane].eobs[block] > 0) ? 1 : 0; |
| rd1 = RDCOST(x->rdmult, x->rddiv, rate, dist); |
| rd2 = RDCOST(x->rdmult, x->rddiv, 0, sse); |
| |
| // TODO(jingning): temporarily enabled only for luma component |
| rd = VPXMIN(rd1, rd2); |
| if (plane == 0) { |
| x->zcoeff_blk[tx_size][block] = |
| !x->plane[plane].eobs[block] || |
| (x->sharpness == 0 && rd1 > rd2 && !xd->lossless); |
| x->sum_y_eobs[tx_size] += x->plane[plane].eobs[block]; |
| } |
| |
| args->this_rate += rate; |
| args->this_dist += dist; |
| args->this_sse += sse; |
| args->this_rd += rd; |
| |
| if (args->this_rd > args->best_rd) { |
| args->exit_early = 1; |
| return; |
| } |
| |
| args->skippable &= !x->plane[plane].eobs[block]; |
| } |
| |
| static void txfm_rd_in_plane(const VP9_COMP *cpi, MACROBLOCK *x, int *rate, |
| int64_t *distortion, int *skippable, int64_t *sse, |
| int64_t ref_best_rd, int plane, BLOCK_SIZE bsize, |
| TX_SIZE tx_size, int use_fast_coef_costing, |
| struct buf_2d *recon) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| struct rdcost_block_args args; |
| vp9_zero(args); |
| args.cpi = cpi; |
| args.x = x; |
| args.best_rd = ref_best_rd; |
| args.use_fast_coef_costing = use_fast_coef_costing; |
| args.skippable = 1; |
| args.this_recon = recon; |
| |
| if (plane == 0) xd->mi[0]->tx_size = tx_size; |
| |
| vp9_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left); |
| |
| args.so = get_scan(xd, tx_size, get_plane_type(plane), 0); |
| |
| vp9_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm, |
| &args); |
| if (args.exit_early) { |
| *rate = INT_MAX; |
| *distortion = INT64_MAX; |
| *sse = INT64_MAX; |
| *skippable = 0; |
| } else { |
| *distortion = args.this_dist; |
| *rate = args.this_rate; |
| *sse = args.this_sse; |
| *skippable = args.skippable; |
| } |
| } |
| |
| static void choose_largest_tx_size(VP9_COMP *cpi, MACROBLOCK *x, int *rate, |
| int64_t *distortion, int *skip, int64_t *sse, |
| int64_t ref_best_rd, BLOCK_SIZE bs, |
| struct buf_2d *recon) { |
| const TX_SIZE max_tx_size = max_txsize_lookup[bs]; |
| VP9_COMMON *const cm = &cpi->common; |
| const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[cm->tx_mode]; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| |
| mi->tx_size = VPXMIN(max_tx_size, largest_tx_size); |
| |
| txfm_rd_in_plane(cpi, x, rate, distortion, skip, sse, ref_best_rd, 0, bs, |
| mi->tx_size, cpi->sf.use_fast_coef_costing, recon); |
| } |
| |
| static void choose_tx_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, |
| int64_t *distortion, int *skip, |
| int64_t *psse, int64_t ref_best_rd, |
| BLOCK_SIZE bs, struct buf_2d *recon) { |
| const TX_SIZE max_tx_size = max_txsize_lookup[bs]; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| vpx_prob skip_prob = vp9_get_skip_prob(cm, xd); |
| int r[TX_SIZES][2], s[TX_SIZES]; |
| int64_t d[TX_SIZES], sse[TX_SIZES]; |
| int64_t rd[TX_SIZES][2] = { { INT64_MAX, INT64_MAX }, |
| { INT64_MAX, INT64_MAX }, |
| { INT64_MAX, INT64_MAX }, |
| { INT64_MAX, INT64_MAX } }; |
| int n; |
| int s0, s1; |
| int64_t best_rd = ref_best_rd; |
| TX_SIZE best_tx = max_tx_size; |
| int start_tx, end_tx; |
| const int tx_size_ctx = get_tx_size_context(xd); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, recon_buf16[TX_SIZES][64 * 64]); |
| uint8_t *recon_buf[TX_SIZES]; |
| for (n = 0; n < TX_SIZES; ++n) { |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| recon_buf[n] = CONVERT_TO_BYTEPTR(recon_buf16[n]); |
| } else { |
| recon_buf[n] = (uint8_t *)recon_buf16[n]; |
| } |
| } |
| #else |
| DECLARE_ALIGNED(16, uint8_t, recon_buf[TX_SIZES][64 * 64]); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| assert(skip_prob > 0); |
| s0 = vp9_cost_bit(skip_prob, 0); |
| s1 = vp9_cost_bit(skip_prob, 1); |
| |
| if (cm->tx_mode == TX_MODE_SELECT) { |
| start_tx = max_tx_size; |
| end_tx = VPXMAX(start_tx - cpi->sf.tx_size_search_depth, 0); |
| if (bs > BLOCK_32X32) end_tx = VPXMIN(end_tx + 1, start_tx); |
| } else { |
| TX_SIZE chosen_tx_size = |
| VPXMIN(max_tx_size, tx_mode_to_biggest_tx_size[cm->tx_mode]); |
| start_tx = chosen_tx_size; |
| end_tx = chosen_tx_size; |
| } |
| |
| for (n = start_tx; n >= end_tx; n--) { |
| const int r_tx_size = cpi->tx_size_cost[max_tx_size - 1][tx_size_ctx][n]; |
| if (recon) { |
| struct buf_2d this_recon; |
| this_recon.buf = recon_buf[n]; |
| this_recon.stride = recon->stride; |
| txfm_rd_in_plane(cpi, x, &r[n][0], &d[n], &s[n], &sse[n], best_rd, 0, bs, |
| n, cpi->sf.use_fast_coef_costing, &this_recon); |
| } else { |
| txfm_rd_in_plane(cpi, x, &r[n][0], &d[n], &s[n], &sse[n], best_rd, 0, bs, |
| n, cpi->sf.use_fast_coef_costing, 0); |
| } |
| r[n][1] = r[n][0]; |
| if (r[n][0] < INT_MAX) { |
| r[n][1] += r_tx_size; |
| } |
| if (d[n] == INT64_MAX || r[n][0] == INT_MAX) { |
| rd[n][0] = rd[n][1] = INT64_MAX; |
| } else if (s[n]) { |
| if (is_inter_block(mi)) { |
| rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, sse[n]); |
| r[n][1] -= r_tx_size; |
| } else { |
| rd[n][0] = RDCOST(x->rdmult, x->rddiv, s1, sse[n]); |
| rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1 + r_tx_size, sse[n]); |
| } |
| } else { |
| rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]); |
| rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]); |
| } |
| |
| if (is_inter_block(mi) && !xd->lossless && !s[n] && sse[n] != INT64_MAX) { |
| rd[n][0] = VPXMIN(rd[n][0], RDCOST(x->rdmult, x->rddiv, s1, sse[n])); |
| rd[n][1] = VPXMIN(rd[n][1], RDCOST(x->rdmult, x->rddiv, s1, sse[n])); |
| } |
| |
| // Early termination in transform size search. |
| if (cpi->sf.tx_size_search_breakout && |
| (rd[n][1] == INT64_MAX || |
| (n < (int)max_tx_size && rd[n][1] > rd[n + 1][1]) || s[n] == 1)) |
| break; |
| |
| if (rd[n][1] < best_rd) { |
| best_tx = n; |
| best_rd = rd[n][1]; |
| } |
| } |
| mi->tx_size = best_tx; |
| |
| *distortion = d[mi->tx_size]; |
| *rate = r[mi->tx_size][cm->tx_mode == TX_MODE_SELECT]; |
| *skip = s[mi->tx_size]; |
| *psse = sse[mi->tx_size]; |
| if (recon) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| memcpy(CONVERT_TO_SHORTPTR(recon->buf), |
| CONVERT_TO_SHORTPTR(recon_buf[mi->tx_size]), |
| 64 * 64 * sizeof(uint16_t)); |
| } else { |
| #endif |
| memcpy(recon->buf, recon_buf[mi->tx_size], 64 * 64); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } |
| #endif |
| } |
| } |
| |
| static void super_block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, |
| int64_t *distortion, int *skip, int64_t *psse, |
| BLOCK_SIZE bs, int64_t ref_best_rd, |
| struct buf_2d *recon) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| int64_t sse; |
| int64_t *ret_sse = psse ? psse : &sse; |
| |
| assert(bs == xd->mi[0]->sb_type); |
| |
| if (cpi->sf.tx_size_search_method == USE_LARGESTALL || xd->lossless) { |
| choose_largest_tx_size(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd, |
| bs, recon); |
| } else { |
| choose_tx_size_from_rd(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd, |
| bs, recon); |
| } |
| } |
| |
| static int conditional_skipintra(PREDICTION_MODE mode, |
| PREDICTION_MODE best_intra_mode) { |
| if (mode == D117_PRED && best_intra_mode != V_PRED && |
| best_intra_mode != D135_PRED) |
| return 1; |
| if (mode == D63_PRED && best_intra_mode != V_PRED && |
| best_intra_mode != D45_PRED) |
| return 1; |
| if (mode == D207_PRED && best_intra_mode != H_PRED && |
| best_intra_mode != D45_PRED) |
| return 1; |
| if (mode == D153_PRED && best_intra_mode != H_PRED && |
| best_intra_mode != D135_PRED) |
| return 1; |
| return 0; |
| } |
| |
| static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int row, |
| int col, PREDICTION_MODE *best_mode, |
| const int *bmode_costs, ENTROPY_CONTEXT *a, |
| ENTROPY_CONTEXT *l, int *bestrate, |
| int *bestratey, int64_t *bestdistortion, |
| BLOCK_SIZE bsize, int64_t rd_thresh) { |
| PREDICTION_MODE mode; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int64_t best_rd = rd_thresh; |
| struct macroblock_plane *p = &x->plane[0]; |
| struct macroblockd_plane *pd = &xd->plane[0]; |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| const uint8_t *src_init = &p->src.buf[row * 4 * src_stride + col * 4]; |
| uint8_t *dst_init = &pd->dst.buf[row * 4 * src_stride + col * 4]; |
| ENTROPY_CONTEXT ta[2], tempa[2]; |
| ENTROPY_CONTEXT tl[2], templ[2]; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| uint8_t best_dst[8 * 8]; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| uint16_t best_dst16[8 * 8]; |
| #endif |
| memcpy(ta, a, num_4x4_blocks_wide * sizeof(a[0])); |
| memcpy(tl, l, num_4x4_blocks_high * sizeof(l[0])); |
| |
| xd->mi[0]->tx_size = TX_4X4; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| for (mode = DC_PRED; mode <= TM_PRED; ++mode) { |
| int64_t this_rd; |
| int ratey = 0; |
| int64_t distortion = 0; |
| int rate = bmode_costs[mode]; |
| |
| if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue; |
| |
| // Only do the oblique modes if the best so far is |
| // one of the neighboring directional modes |
| if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { |
| if (conditional_skipintra(mode, *best_mode)) continue; |
| } |
| |
| memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0])); |
| memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0])); |
| |
| for (idy = 0; idy < num_4x4_blocks_high; ++idy) { |
| for (idx = 0; idx < num_4x4_blocks_wide; ++idx) { |
| const int block = (row + idy) * 2 + (col + idx); |
| const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride]; |
| uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride]; |
| uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst); |
| int16_t *const src_diff = |
| vp9_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff); |
| tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block); |
| xd->mi[0]->bmi[block].as_mode = mode; |
| vp9_predict_intra_block(xd, 1, TX_4X4, mode, |
| x->skip_encode ? src : dst, |
| x->skip_encode ? src_stride : dst_stride, dst, |
| dst_stride, col + idx, row + idy, 0); |
| vpx_highbd_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, |
| dst_stride, xd->bd); |
| if (xd->lossless) { |
| const scan_order *so = &vp9_default_scan_orders[TX_4X4]; |
| const int coeff_ctx = |
| combine_entropy_contexts(tempa[idx], templ[idy]); |
| vp9_highbd_fwht4x4(src_diff, coeff, 8); |
| vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); |
| ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan, |
| so->neighbors, cpi->sf.use_fast_coef_costing); |
| tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0 ? 1 : 0); |
| if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) |
| goto next_highbd; |
| vp9_highbd_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), dst16, |
| dst_stride, p->eobs[block], xd->bd); |
| } else { |
| int64_t unused; |
| const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block); |
| const scan_order *so = &vp9_scan_orders[TX_4X4][tx_type]; |
| const int coeff_ctx = |
| combine_entropy_contexts(tempa[idx], templ[idy]); |
| if (tx_type == DCT_DCT) |
| vpx_highbd_fdct4x4(src_diff, coeff, 8); |
| else |
| vp9_highbd_fht4x4(src_diff, coeff, 8, tx_type); |
| vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); |
| ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan, |
| so->neighbors, cpi->sf.use_fast_coef_costing); |
| distortion += vp9_highbd_block_error_dispatch( |
| coeff, BLOCK_OFFSET(pd->dqcoeff, block), 16, |
| &unused, xd->bd) >> |
| 2; |
| tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0 ? 1 : 0); |
| if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) |
| goto next_highbd; |
| vp9_highbd_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block), |
| dst16, dst_stride, p->eobs[block], xd->bd); |
| } |
| } |
| } |
| |
| rate += ratey; |
| this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); |
| |
| if (this_rd < best_rd) { |
| *bestrate = rate; |
| *bestratey = ratey; |
| *bestdistortion = distortion; |
| best_rd = this_rd; |
| *best_mode = mode; |
| memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0])); |
| memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0])); |
| for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) { |
| memcpy(best_dst16 + idy * 8, |
| CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride), |
| num_4x4_blocks_wide * 4 * sizeof(uint16_t)); |
| } |
| } |
| next_highbd : {} |
| } |
| if (best_rd >= rd_thresh || x->skip_encode) return best_rd; |
| |
| for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) { |
| memcpy(CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride), |
| best_dst16 + idy * 8, num_4x4_blocks_wide * 4 * sizeof(uint16_t)); |
| } |
| |
| return best_rd; |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| for (mode = DC_PRED; mode <= TM_PRED; ++mode) { |
| int64_t this_rd; |
| int ratey = 0; |
| int64_t distortion = 0; |
| int rate = bmode_costs[mode]; |
| |
| if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue; |
| |
| // Only do the oblique modes if the best so far is |
| // one of the neighboring directional modes |
| if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { |
| if (conditional_skipintra(mode, *best_mode)) continue; |
| } |
| |
| memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0])); |
| memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0])); |
| |
| for (idy = 0; idy < num_4x4_blocks_high; ++idy) { |
| for (idx = 0; idx < num_4x4_blocks_wide; ++idx) { |
| const int block = (row + idy) * 2 + (col + idx); |
| const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride]; |
| uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride]; |
| int16_t *const src_diff = |
| vp9_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff); |
| tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block); |
| xd->mi[0]->bmi[block].as_mode = mode; |
| vp9_predict_intra_block(xd, 1, TX_4X4, mode, x->skip_encode ? src : dst, |
| x->skip_encode ? src_stride : dst_stride, dst, |
| dst_stride, col + idx, row + idy, 0); |
| vpx_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride); |
| |
| if (xd->lossless) { |
| const scan_order *so = &vp9_default_scan_orders[TX_4X4]; |
| const int coeff_ctx = |
| combine_entropy_contexts(tempa[idx], templ[idy]); |
| vp9_fwht4x4(src_diff, coeff, 8); |
| vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); |
| ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan, |
| so->neighbors, cpi->sf.use_fast_coef_costing); |
| tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0) ? 1 : 0; |
| if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) |
| goto next; |
| vp9_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), dst, dst_stride, |
| p->eobs[block]); |
| } else { |
| int64_t unused; |
| const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block); |
| const scan_order *so = &vp9_scan_orders[TX_4X4][tx_type]; |
| const int coeff_ctx = |
| combine_entropy_contexts(tempa[idx], templ[idy]); |
| vp9_fht4x4(src_diff, coeff, 8, tx_type); |
| vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); |
| ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan, |
| so->neighbors, cpi->sf.use_fast_coef_costing); |
| tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0) ? 1 : 0; |
| distortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block), |
| 16, &unused) >> |
| 2; |
| if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) |
| goto next; |
| vp9_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block), dst, |
| dst_stride, p->eobs[block]); |
| } |
| } |
| } |
| |
| rate += ratey; |
| this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); |
| |
| if (this_rd < best_rd) { |
| *bestrate = rate; |
| *bestratey = ratey; |
| *bestdistortion = distortion; |
| best_rd = this_rd; |
| *best_mode = mode; |
| memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0])); |
| memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0])); |
| for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) |
| memcpy(best_dst + idy * 8, dst_init + idy * dst_stride, |
| num_4x4_blocks_wide * 4); |
| } |
| next : {} |
| } |
| |
| if (best_rd >= rd_thresh || x->skip_encode) return best_rd; |
| |
| for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) |
| memcpy(dst_init + idy * dst_stride, best_dst + idy * 8, |
| num_4x4_blocks_wide * 4); |
| |
| return best_rd; |
| } |
| |
| static int64_t rd_pick_intra_sub_8x8_y_mode(VP9_COMP *cpi, MACROBLOCK *mb, |
| int *rate, int *rate_y, |
| int64_t *distortion, |
| int64_t best_rd) { |
| int i, j; |
| const MACROBLOCKD *const xd = &mb->e_mbd; |
| MODE_INFO *const mic = xd->mi[0]; |
| const MODE_INFO *above_mi = xd->above_mi; |
| const MODE_INFO *left_mi = xd->left_mi; |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| int cost = 0; |
| int64_t total_distortion = 0; |
| int tot_rate_y = 0; |
| int64_t total_rd = 0; |
| const int *bmode_costs = cpi->mbmode_cost; |
| |
| // Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block. |
| for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { |
| for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { |
| PREDICTION_MODE best_mode = DC_PRED; |
| int r = INT_MAX, ry = INT_MAX; |
| int64_t d = INT64_MAX, this_rd = INT64_MAX; |
| i = idy * 2 + idx; |
| if (cpi->common.frame_type == KEY_FRAME) { |
| const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, i); |
| const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, i); |
| |
| bmode_costs = cpi->y_mode_costs[A][L]; |
| } |
| |
| this_rd = rd_pick_intra4x4block( |
| cpi, mb, idy, idx, &best_mode, bmode_costs, |
| xd->plane[0].above_context + idx, xd->plane[0].left_context + idy, &r, |
| &ry, &d, bsize, best_rd - total_rd); |
| |
| if (this_rd >= best_rd - total_rd) return INT64_MAX; |
| |
| total_rd += this_rd; |
| cost += r; |
| total_distortion += d; |
| tot_rate_y += ry; |
| |
| mic->bmi[i].as_mode = best_mode; |
| for (j = 1; j < num_4x4_blocks_high; ++j) |
| mic->bmi[i + j * 2].as_mode = best_mode; |
| for (j = 1; j < num_4x4_blocks_wide; ++j) |
| mic->bmi[i + j].as_mode = best_mode; |
| |
| if (total_rd >= best_rd) return INT64_MAX; |
| } |
| } |
| |
| *rate = cost; |
| *rate_y = tot_rate_y; |
| *distortion = total_distortion; |
| mic->mode = mic->bmi[3].as_mode; |
| |
| return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion); |
| } |
| |
| // This function is used only for intra_only frames |
| static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x, int *rate, |
| int *rate_tokenonly, int64_t *distortion, |
| int *skippable, BLOCK_SIZE bsize, |
| int64_t best_rd) { |
| PREDICTION_MODE mode; |
| PREDICTION_MODE mode_selected = DC_PRED; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mic = xd->mi[0]; |
| int this_rate, this_rate_tokenonly, s; |
| int64_t this_distortion, this_rd; |
| TX_SIZE best_tx = TX_4X4; |
| int *bmode_costs; |
| const MODE_INFO *above_mi = xd->above_mi; |
| const MODE_INFO *left_mi = xd->left_mi; |
| const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0); |
| const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0); |
| bmode_costs = cpi->y_mode_costs[A][L]; |
| |
| memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); |
| /* Y Search for intra prediction mode */ |
| for (mode = DC_PRED; mode <= TM_PRED; mode++) { |
| if (cpi->sf.use_nonrd_pick_mode) { |
| // These speed features are turned on in hybrid non-RD and RD mode |
| // for key frame coding in the context of real-time setting. |
| if (conditional_skipintra(mode, mode_selected)) continue; |
| if (*skippable) break; |
| } |
| |
| mic->mode = mode; |
| |
| super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL, |
| bsize, best_rd, /*recon = */ 0); |
| |
| if (this_rate_tokenonly == INT_MAX) continue; |
| |
| this_rate = this_rate_tokenonly + bmode_costs[mode]; |
| this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); |
| |
| if (this_rd < best_rd) { |
| mode_selected = mode; |
| best_rd = this_rd; |
| best_tx = mic->tx_size; |
| *rate = this_rate; |
| *rate_tokenonly = this_rate_tokenonly; |
| *distortion = this_distortion; |
| *skippable = s; |
| } |
| } |
| |
| mic->mode = mode_selected; |
| mic->tx_size = best_tx; |
| |
| return best_rd; |
| } |
| |
| // Return value 0: early termination triggered, no valid rd cost available; |
| // 1: rd cost values are valid. |
| static int super_block_uvrd(const VP9_COMP *cpi, MACROBLOCK *x, int *rate, |
| int64_t *distortion, int *skippable, int64_t *sse, |
| BLOCK_SIZE bsize, int64_t ref_best_rd) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| const TX_SIZE uv_tx_size = get_uv_tx_size(mi, &xd->plane[1]); |
| int plane; |
| int pnrate = 0, pnskip = 1; |
| int64_t pndist = 0, pnsse = 0; |
| int is_cost_valid = 1; |
| |
| if (ref_best_rd < 0) is_cost_valid = 0; |
| |
| if (is_inter_block(mi) && is_cost_valid) { |
| int plane; |
| for (plane = 1; plane < MAX_MB_PLANE; ++plane) |
| vp9_subtract_plane(x, bsize, plane); |
| } |
| |
| *rate = 0; |
| *distortion = 0; |
| *sse = 0; |
| *skippable = 1; |
| |
| for (plane = 1; plane < MAX_MB_PLANE; ++plane) { |
| txfm_rd_in_plane(cpi, x, &pnrate, &pndist, &pnskip, &pnsse, ref_best_rd, |
| plane, bsize, uv_tx_size, cpi->sf.use_fast_coef_costing, |
| /*recon = */ 0); |
| if (pnrate == INT_MAX) { |
| is_cost_valid = 0; |
| break; |
| } |
| *rate += pnrate; |
| *distortion += pndist; |
| *sse += pnsse; |
| *skippable &= pnskip; |
| } |
| |
| if (!is_cost_valid) { |
| // reset cost value |
| *rate = INT_MAX; |
| *distortion = INT64_MAX; |
| *sse = INT64_MAX; |
| *skippable = 0; |
| } |
| |
| return is_cost_valid; |
| } |
| |
| static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x, |
| PICK_MODE_CONTEXT *ctx, int *rate, |
| int *rate_tokenonly, int64_t *distortion, |
| int *skippable, BLOCK_SIZE bsize, |
| TX_SIZE max_tx_size) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| PREDICTION_MODE mode; |
| PREDICTION_MODE mode_selected = DC_PRED; |
| int64_t best_rd = INT64_MAX, this_rd; |
| int this_rate_tokenonly, this_rate, s; |
| int64_t this_distortion, this_sse; |
| |
| memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); |
| for (mode = DC_PRED; mode <= TM_PRED; ++mode) { |
| if (!(cpi->sf.intra_uv_mode_mask[max_tx_size] & (1 << mode))) continue; |
| #if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH |
| if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && |
| (xd->above_mi == NULL || xd->left_mi == NULL) && need_top_left[mode]) |
| continue; |
| #endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH |
| |
| xd->mi[0]->uv_mode = mode; |
| |
| if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, |
| &this_sse, bsize, best_rd)) |
| continue; |
| this_rate = |
| this_rate_tokenonly + |
| cpi->intra_uv_mode_cost[cpi->common.frame_type][xd->mi[0]->mode][mode]; |
| this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); |
| |
| if (this_rd < best_rd) { |
| mode_selected = mode; |
| best_rd = this_rd; |
| *rate = this_rate; |
| *rate_tokenonly = this_rate_tokenonly; |
| *distortion = this_distortion; |
| *skippable = s; |
| if (!x->select_tx_size) swap_block_ptr(x, ctx, 2, 0, 1, MAX_MB_PLANE); |
| } |
| } |
| |
| xd->mi[0]->uv_mode = mode_selected; |
| return best_rd; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static int64_t rd_sbuv_dcpred(const VP9_COMP *cpi, MACROBLOCK *x, int *rate, |
| int *rate_tokenonly, int64_t *distortion, |
| int *skippable, BLOCK_SIZE bsize) { |
| const VP9_COMMON *cm = &cpi->common; |
| int64_t unused; |
| |
| x->e_mbd.mi[0]->uv_mode = DC_PRED; |
| memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); |
| super_block_uvrd(cpi, x, rate_tokenonly, distortion, skippable, &unused, |
| bsize, INT64_MAX); |
| *rate = |
| *rate_tokenonly + |
| cpi->intra_uv_mode_cost[cm->frame_type][x->e_mbd.mi[0]->mode][DC_PRED]; |
| return RDCOST(x->rdmult, x->rddiv, *rate, *distortion); |
| } |
| |
| static void choose_intra_uv_mode(VP9_COMP *cpi, MACROBLOCK *const x, |
| PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize, |
| TX_SIZE max_tx_size, int *rate_uv, |
| int *rate_uv_tokenonly, int64_t *dist_uv, |
| int *skip_uv, PREDICTION_MODE *mode_uv) { |
| // Use an estimated rd for uv_intra based on DC_PRED if the |
| // appropriate speed flag is set. |
| if (cpi->sf.use_uv_intra_rd_estimate) { |
| rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, |
| bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize); |
| // Else do a proper rd search for each possible transform size that may |
| // be considered in the main rd loop. |
| } else { |
| rd_pick_intra_sbuv_mode(cpi, x, ctx, rate_uv, rate_uv_tokenonly, dist_uv, |
| skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, |
| max_tx_size); |
| } |
| *mode_uv = x->e_mbd.mi[0]->uv_mode; |
| } |
| |
| static int cost_mv_ref(const VP9_COMP *cpi, PREDICTION_MODE mode, |
| int mode_context) { |
| assert(is_inter_mode(mode)); |
| return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)]; |
| } |
| |
| static int set_and_cost_bmi_mvs(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, |
| int i, PREDICTION_MODE mode, int_mv this_mv[2], |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], |
| int_mv seg_mvs[MAX_REF_FRAMES], |
| int_mv *best_ref_mv[2], const int *mvjcost, |
| int *mvcost[2]) { |
| MODE_INFO *const mi = xd->mi[0]; |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| int thismvcost = 0; |
| int idx, idy; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mi->sb_type]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mi->sb_type]; |
| const int is_compound = has_second_ref(mi); |
| |
| switch (mode) { |
| case NEWMV: |
| this_mv[0].as_int = seg_mvs[mi->ref_frame[0]].as_int; |
| thismvcost += vp9_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv, |
| mvjcost, mvcost, MV_COST_WEIGHT_SUB); |
| if (is_compound) { |
| this_mv[1].as_int = seg_mvs[mi->ref_frame[1]].as_int; |
| thismvcost += vp9_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv, |
| mvjcost, mvcost, MV_COST_WEIGHT_SUB); |
| } |
| break; |
| case NEARMV: |
| case NEARESTMV: |
| this_mv[0].as_int = frame_mv[mode][mi->ref_frame[0]].as_int; |
| if (is_compound) |
| this_mv[1].as_int = frame_mv[mode][mi->ref_frame[1]].as_int; |
| break; |
| default: |
| assert(mode == ZEROMV); |
| this_mv[0].as_int = 0; |
| if (is_compound) this_mv[1].as_int = 0; |
| break; |
| } |
| |
| mi->bmi[i].as_mv[0].as_int = this_mv[0].as_int; |
| if (is_compound) mi->bmi[i].as_mv[1].as_int = this_mv[1].as_int; |
| |
| mi->bmi[i].as_mode = mode; |
| |
| for (idy = 0; idy < num_4x4_blocks_high; ++idy) |
| for (idx = 0; idx < num_4x4_blocks_wide; ++idx) |
| memmove(&mi->bmi[i + idy * 2 + idx], &mi->bmi[i], sizeof(mi->bmi[i])); |
| |
| return cost_mv_ref(cpi, mode, mbmi_ext->mode_context[mi->ref_frame[0]]) + |
| thismvcost; |
| } |
| |
| static int64_t encode_inter_mb_segment(VP9_COMP *cpi, MACROBLOCK *x, |
| int64_t best_yrd, int i, int *labelyrate, |
| int64_t *distortion, int64_t *sse, |
| ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl, |
| int mi_row, int mi_col) { |
| int k; |
| MACROBLOCKD *xd = &x->e_mbd; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| struct macroblock_plane *const p = &x->plane[0]; |
| MODE_INFO *const mi = xd->mi[0]; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->sb_type, pd); |
| const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; |
| const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize]; |
| int idx, idy; |
| |
| const uint8_t *const src = |
| &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; |
| uint8_t *const dst = |
| &pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)]; |
| int64_t thisdistortion = 0, thissse = 0; |
| int thisrate = 0, ref; |
| const scan_order *so = &vp9_default_scan_orders[TX_4X4]; |
| const int is_compound = has_second_ref(mi); |
| const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter]; |
| |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const int bw = b_width_log2_lookup[BLOCK_8X8]; |
| const int h = 4 * (i >> bw); |
| const int w = 4 * (i & ((1 << bw) - 1)); |
| const struct scale_factors *sf = &xd->block_refs[ref]->sf; |
| int y_stride = pd->pre[ref].stride; |
| uint8_t *pre = pd->pre[ref].buf + (h * pd->pre[ref].stride + w); |
| |
| if (vp9_is_scaled(sf)) { |
| const int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)); |
| const int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)); |
| |
| y_stride = xd->block_refs[ref]->buf->y_stride; |
| pre = xd->block_refs[ref]->buf->y_buffer; |
| pre += scaled_buffer_offset(x_start + w, y_start + h, y_stride, sf); |
| } |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vp9_highbd_build_inter_predictor( |
| CONVERT_TO_SHORTPTR(pre), y_stride, CONVERT_TO_SHORTPTR(dst), |
| pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, |
| &xd->block_refs[ref]->sf, width, height, ref, kernel, MV_PRECISION_Q3, |
| mi_col * MI_SIZE + 4 * (i % 2), mi_row * MI_SIZE + 4 * (i / 2), |
| xd->bd); |
| } else { |
| vp9_build_inter_predictor( |
| pre, y_stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, |
| &xd->block_refs[ref]->sf, width, height, ref, kernel, MV_PRECISION_Q3, |
| mi_col * MI_SIZE + 4 * (i % 2), mi_row * MI_SIZE + 4 * (i / 2)); |
| } |
| #else |
| vp9_build_inter_predictor( |
| pre, y_stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, |
| &xd->block_refs[ref]->sf, width, height, ref, kernel, MV_PRECISION_Q3, |
| mi_col * MI_SIZE + 4 * (i % 2), mi_row * MI_SIZE + 4 * (i / 2)); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vpx_highbd_subtract_block( |
| height, width, vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), |
| 8, src, p->src.stride, dst, pd->dst.stride, xd->bd); |
| } else { |
| vpx_subtract_block(height, width, |
| vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), |
| 8, src, p->src.stride, dst, pd->dst.stride); |
| } |
| #else |
| vpx_subtract_block(height, width, |
| vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), |
| 8, src, p->src.stride, dst, pd->dst.stride); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| k = i; |
| for (idy = 0; idy < height / 4; ++idy) { |
| for (idx = 0; idx < width / 4; ++idx) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8; |
| #endif |
| int64_t ssz, rd, rd1, rd2; |
| tran_low_t *coeff; |
| int coeff_ctx; |
| k += (idy * 2 + idx); |
| coeff_ctx = combine_entropy_contexts(ta[k & 1], tl[k >> 1]); |
| coeff = BLOCK_OFFSET(p->coeff, k); |
| x->fwd_txfm4x4(vp9_raster_block_offset_int16(BLOCK_8X8, k, p->src_diff), |
| coeff, 8); |
| vp9_regular_quantize_b_4x4(x, 0, k, so->scan, so->iscan); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| thisdistortion += vp9_highbd_block_error_dispatch( |
| coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz, bd); |
| #else |
| thisdistortion += |
| vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| thissse += ssz; |
| thisrate += cost_coeffs(x, 0, k, TX_4X4, coeff_ctx, so->scan, |
| so->neighbors, cpi->sf.use_fast_coef_costing); |
| ta[k & 1] = tl[k >> 1] = (x->plane[0].eobs[k] > 0) ? 1 : 0; |
| rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2); |
| rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2); |
| rd = VPXMIN(rd1, rd2); |
| if (rd >= best_yrd) return INT64_MAX; |
| } |
| } |
| |
| *distortion = thisdistortion >> 2; |
| *labelyrate = thisrate; |
| *sse = thissse >> 2; |
| |
| return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion); |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| typedef struct { |
| int eobs; |
| int brate; |
| int byrate; |
| int64_t bdist; |
| int64_t bsse; |
| int64_t brdcost; |
| int_mv mvs[2]; |
| ENTROPY_CONTEXT ta[2]; |
| ENTROPY_CONTEXT tl[2]; |
| } SEG_RDSTAT; |
| |
| typedef struct { |
| int_mv *ref_mv[2]; |
| int_mv mvp; |
| |
| int64_t segment_rd; |
| int r; |
| int64_t d; |
| int64_t sse; |
| int segment_yrate; |
| PREDICTION_MODE modes[4]; |
| SEG_RDSTAT rdstat[4][INTER_MODES]; |
| int mvthresh; |
| } BEST_SEG_INFO; |
| |
| #if !CONFIG_REALTIME_ONLY |
| static INLINE int mv_check_bounds(const MvLimits *mv_limits, const MV *mv) { |
| return (mv->row >> 3) < mv_limits->row_min || |
| (mv->row >> 3) > mv_limits->row_max || |
| (mv->col >> 3) < mv_limits->col_min || |
| (mv->col >> 3) > mv_limits->col_max; |
| } |
| |
| static INLINE void mi_buf_shift(MACROBLOCK *x, int i) { |
| MODE_INFO *const mi = x->e_mbd.mi[0]; |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &x->e_mbd.plane[0]; |
| |
| p->src.buf = |
| &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; |
| assert(((intptr_t)pd->pre[0].buf & 0x7) == 0); |
| pd->pre[0].buf = |
| &pd->pre[0].buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)]; |
| if (has_second_ref(mi)) |
| pd->pre[1].buf = |
| &pd->pre[1] |
| .buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->pre[1].stride)]; |
| } |
| |
| static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src, |
| struct buf_2d orig_pre[2]) { |
| MODE_INFO *mi = x->e_mbd.mi[0]; |
| x->plane[0].src = orig_src; |
| x->e_mbd.plane[0].pre[0] = orig_pre[0]; |
| if (has_second_ref(mi)) x->e_mbd.plane[0].pre[1] = orig_pre[1]; |
| } |
| |
| static INLINE int mv_has_subpel(const MV *mv) { |
| return (mv->row & 0x0F) || (mv->col & 0x0F); |
| } |
| |
| // Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion. |
| // TODO(aconverse): Find out if this is still productive then clean up or remove |
| static int check_best_zero_mv(const VP9_COMP *cpi, |
| const uint8_t mode_context[MAX_REF_FRAMES], |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], |
| int this_mode, |
| const MV_REFERENCE_FRAME ref_frames[2]) { |
| if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) && |
| frame_mv[this_mode][ref_frames[0]].as_int == 0 && |
| (ref_frames[1] == NONE || |
| frame_mv[this_mode][ref_frames[1]].as_int == 0)) { |
| int rfc = mode_context[ref_frames[0]]; |
| int c1 = cost_mv_ref(cpi, NEARMV, rfc); |
| int c2 = cost_mv_ref(cpi, NEARESTMV, rfc); |
| int c3 = cost_mv_ref(cpi, ZEROMV, rfc); |
| |
| if (this_mode == NEARMV) { |
| if (c1 > c3) return 0; |
| } else if (this_mode == NEARESTMV) { |
| if (c2 > c3) return 0; |
| } else { |
| assert(this_mode == ZEROMV); |
| if (ref_frames[1] == NONE) { |
| if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) || |
| (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0)) |
| return 0; |
| } else { |
| if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 && |
| frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) || |
| (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 && |
| frame_mv[NEARMV][ref_frames[1]].as_int == 0)) |
| return 0; |
| } |
| } |
| } |
| return 1; |
| } |
| |
| static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
| int_mv *frame_mv, int mi_row, int mi_col, |
| int_mv single_newmv[MAX_REF_FRAMES], |
| int *rate_mv) { |
| const VP9_COMMON *const cm = &cpi->common; |
| const int pw = 4 * num_4x4_blocks_wide_lookup[bsize]; |
| const int ph = 4 * num_4x4_blocks_high_lookup[bsize]; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MODE_INFO *mi = xd->mi[0]; |
| const int refs[2] = { mi->ref_frame[0], |
| mi->ref_frame[1] < 0 ? 0 : mi->ref_frame[1] }; |
| int_mv ref_mv[2]; |
| int ite, ref; |
| const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter]; |
| struct scale_factors sf; |
| |
| // Do joint motion search in compound mode to get more accurate mv. |
| struct buf_2d backup_yv12[2][MAX_MB_PLANE]; |
| uint32_t last_besterr[2] = { UINT_MAX, UINT_MAX }; |
| const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = { |
| vp9_get_scaled_ref_frame(cpi, mi->ref_frame[0]), |
| vp9_get_scaled_ref_frame(cpi, mi->ref_frame[1]) |
| }; |
| |
| // Prediction buffer from second frame. |
| #if CONFIG_VP9_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[64 * 64]); |
| uint8_t *second_pred; |
| #else |
| DECLARE_ALIGNED(16, uint8_t, second_pred[64 * 64]); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| for (ref = 0; ref < 2; ++ref) { |
| ref_mv[ref] = x->mbmi_ext->ref_mvs[refs[ref]][0]; |
| |
| if (scaled_ref_frame[ref]) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| backup_yv12[ref][i] = xd->plane[i].pre[ref]; |
| vp9_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col, |
| NULL); |
| } |
| |
| frame_mv[refs[ref]].as_int = single_newmv[refs[ref]].as_int; |
| } |
| |
| // Since we have scaled the reference frames to match the size of the current |
| // frame we must use a unit scaling factor during mode selection. |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vp9_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width, |
| cm->height, cm->use_highbitdepth); |
| #else |
| vp9_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width, |
| cm->height); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Allow joint search multiple times iteratively for each reference frame |
| // and break out of the search loop if it couldn't find a better mv. |
| for (ite = 0; ite < 4; ite++) { |
| struct buf_2d ref_yv12[2]; |
| uint32_t bestsme = UINT_MAX; |
| int sadpb = x->sadperbit16; |
| MV tmp_mv; |
| int search_range = 3; |
| |
| const MvLimits tmp_mv_limits = x->mv_limits; |
| int id = ite % 2; // Even iterations search in the first reference frame, |
| // odd iterations search in the second. The predictor |
| // found for the 'other' reference frame is factored in. |
| |
| // Initialized here because of compiler problem in Visual Studio. |
| ref_yv12[0] = xd->plane[0].pre[0]; |
| ref_yv12[1] = xd->plane[0].pre[1]; |
| |
| // Get the prediction block from the 'other' reference frame. |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16); |
| vp9_highbd_build_inter_predictor( |
| CONVERT_TO_SHORTPTR(ref_yv12[!id].buf), ref_yv12[!id].stride, |
| second_pred_alloc_16, pw, &frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0, |
| kernel, MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE, xd->bd); |
| } else { |
| second_pred = (uint8_t *)second_pred_alloc_16; |
| vp9_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride, |
| second_pred, pw, &frame_mv[refs[!id]].as_mv, |
| &sf, pw, ph, 0, kernel, MV_PRECISION_Q3, |
| mi_col * MI_SIZE, mi_row * MI_SIZE); |
| } |
| #else |
| vp9_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride, |
| second_pred, pw, &frame_mv[refs[!id]].as_mv, &sf, |
| pw, ph, 0, kernel, MV_PRECISION_Q3, |
| mi_col * MI_SIZE, mi_row * MI_SIZE); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Do compound motion search on the current reference frame. |
| if (id) xd->plane[0].pre[0] = ref_yv12[id]; |
| vp9_set_mv_search_range(&x->mv_limits, &ref_mv[id].as_mv); |
| |
| // Use the mv result from the single mode as mv predictor. |
| tmp_mv = frame_mv[refs[id]].as_mv; |
| |
| tmp_mv.col >>= 3; |
| tmp_mv.row >>= 3; |
| |
| // Small-range full-pixel motion search. |
| bestsme = vp9_refining_search_8p_c(x, &tmp_mv, sadpb, search_range, |
| &cpi->fn_ptr[bsize], &ref_mv[id].as_mv, |
| second_pred); |
| if (bestsme < UINT_MAX) |
| bestsme = vp9_get_mvpred_av_var(x, &tmp_mv, &ref_mv[id].as_mv, |
| second_pred, &cpi->fn_ptr[bsize], 1); |
| |
| x->mv_limits = tmp_mv_limits; |
| |
| if (bestsme < UINT_MAX) { |
| uint32_t dis; /* TODO: use dis in distortion calculation later. */ |
| uint32_t sse; |
| bestsme = cpi->find_fractional_mv_step( |
| x, &tmp_mv, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv, |
| x->errorperbit, &cpi->fn_ptr[bsize], 0, |
| cpi->sf.mv.subpel_search_level, NULL, x->nmvjointcost, x->mvcost, |
| &dis, &sse, second_pred, pw, ph, cpi->sf.use_accurate_subpel_search); |
| } |
| |
| // Restore the pointer to the first (possibly scaled) prediction buffer. |
| if (id) xd->plane[0].pre[0] = ref_yv12[0]; |
| |
| if (bestsme < last_besterr[id]) { |
| frame_mv[refs[id]].as_mv = tmp_mv; |
| last_besterr[id] = bestsme; |
| } else { |
| break; |
| } |
| } |
| |
| *rate_mv = 0; |
| |
| for (ref = 0; ref < 2; ++ref) { |
| if (scaled_ref_frame[ref]) { |
| // Restore the prediction frame pointers to their unscaled versions. |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| xd->plane[i].pre[ref] = backup_yv12[ref][i]; |
| } |
| |
| *rate_mv += vp9_mv_bit_cost(&frame_mv[refs[ref]].as_mv, |
| &x->mbmi_ext->ref_mvs[refs[ref]][0].as_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| } |
| } |
| |
| static int64_t rd_pick_best_sub8x8_mode( |
| VP9_COMP *cpi, MACROBLOCK *x, int_mv *best_ref_mv, |
| int_mv *second_best_ref_mv, int64_t best_rd, int *returntotrate, |
| int *returnyrate, int64_t *returndistortion, int *skippable, int64_t *psse, |
| int mvthresh, int_mv seg_mvs[4][MAX_REF_FRAMES], BEST_SEG_INFO *bsi_buf, |
| int filter_idx, int mi_row, int mi_col) { |
| int i; |
| BEST_SEG_INFO *bsi = bsi_buf + filter_idx; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MODE_INFO *mi = xd->mi[0]; |
| int mode_idx; |
| int k, br = 0, idx, idy; |
| int64_t bd = 0, block_sse = 0; |
| PREDICTION_MODE this_mode; |
| VP9_COMMON *cm = &cpi->common; |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| const int label_count = 4; |
| int64_t this_segment_rd = 0; |
| int label_mv_thresh; |
| int segmentyrate = 0; |
| const BLOCK_SIZE bsize = mi->sb_type; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| const int pw = num_4x4_blocks_wide << 2; |
| const int ph = num_4x4_blocks_high << 2; |
| ENTROPY_CONTEXT t_above[2], t_left[2]; |
| int subpelmv = 1, have_ref = 0; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| const int has_second_rf = has_second_ref(mi); |
| const int inter_mode_mask = sf->inter_mode_mask[bsize]; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| |
| vp9_zero(*bsi); |
| |
| bsi->segment_rd = best_rd; |
| bsi->ref_mv[0] = best_ref_mv; |
| bsi->ref_mv[1] = second_best_ref_mv; |
| bsi->mvp.as_int = best_ref_mv->as_int; |
| bsi->mvthresh = mvthresh; |
| |
| for (i = 0; i < 4; i++) bsi->modes[i] = ZEROMV; |
| |
| memcpy(t_above, pd->above_context, sizeof(t_above)); |
| memcpy(t_left, pd->left_context, sizeof(t_left)); |
| |
| // 64 makes this threshold really big effectively |
| // making it so that we very rarely check mvs on |
| // segments. setting this to 1 would make mv thresh |
| // roughly equal to what it is for macroblocks |
| label_mv_thresh = 1 * bsi->mvthresh / label_count; |
| |
| // Segmentation method overheads |
| for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { |
| for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { |
| // TODO(jingning,rbultje): rewrite the rate-distortion optimization |
| // loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop |
| int_mv mode_mv[MB_MODE_COUNT][2]; |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| PREDICTION_MODE mode_selected = ZEROMV; |
| int64_t best_rd = INT64_MAX; |
| const int i = idy * 2 + idx; |
| int ref; |
| |
| for (ref = 0; ref < 1 + has_second_rf; ++ref) { |
| const MV_REFERENCE_FRAME frame = mi->ref_frame[ref]; |
| frame_mv[ZEROMV][frame].as_int = 0; |
| vp9_append_sub8x8_mvs_for_idx( |
| cm, xd, i, ref, mi_row, mi_col, &frame_mv[NEARESTMV][frame], |
| &frame_mv[NEARMV][frame], mbmi_ext->mode_context); |
| } |
| |
| // search for the best motion vector on this segment |
| for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { |
| const struct buf_2d orig_src = x->plane[0].src; |
| struct buf_2d orig_pre[2]; |
| |
| mode_idx = INTER_OFFSET(this_mode); |
| bsi->rdstat[i][mode_idx].brdcost = INT64_MAX; |
| if (!(inter_mode_mask & (1 << this_mode))) continue; |
| |
| if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv, |
| this_mode, mi->ref_frame)) |
| continue; |
| |
| memcpy(orig_pre, pd->pre, sizeof(orig_pre)); |
| memcpy(bsi->rdstat[i][mode_idx].ta, t_above, |
| sizeof(bsi->rdstat[i][mode_idx].ta)); |
| memcpy(bsi->rdstat[i][mode_idx].tl, t_left, |
| sizeof(bsi->rdstat[i][mode_idx].tl)); |
| |
| // motion search for newmv (single predictor case only) |
| if (!has_second_rf && this_mode == NEWMV && |
| seg_mvs[i][mi->ref_frame[0]].as_int == INVALID_MV) { |
| MV *const new_mv = &mode_mv[NEWMV][0].as_mv; |
| int step_param = 0; |
| uint32_t bestsme = UINT_MAX; |
| int sadpb = x->sadperbit4; |
| MV mvp_full; |
| int max_mv; |
| int cost_list[5]; |
| const MvLimits tmp_mv_limits = x->mv_limits; |
| |
| /* Is the best so far sufficiently good that we cant justify doing |
| * and new motion search. */ |
| if (best_rd < label_mv_thresh) break; |
| |
| if (cpi->oxcf.mode != BEST) { |
| // use previous block's result as next block's MV predictor. |
| if (i > 0) { |
| bsi->mvp.as_int = mi->bmi[i - 1].as_mv[0].as_int; |
| if (i == 2) bsi->mvp.as_int = mi->bmi[i - 2].as_mv[0].as_int; |
| } |
| } |
| if (i == 0) |
| max_mv = x->max_mv_context[mi->ref_frame[0]]; |
| else |
| max_mv = |
| VPXMAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3; |
| |
| if (sf->mv.auto_mv_step_size && cm->show_frame) { |
| // Take wtd average of the step_params based on the last frame's |
| // max mv magnitude and the best ref mvs of the current block for |
| // the given reference. |
| step_param = |
| (vp9_init_search_range(max_mv) + cpi->mv_step_param) / 2; |
| } else { |
| step_param = cpi->mv_step_param; |
| } |
| |
| mvp_full.row = bsi->mvp.as_mv.row >> 3; |
| mvp_full.col = bsi->mvp.as_mv.col >> 3; |
| |
| if (sf->adaptive_motion_search) { |
| if (x->pred_mv[mi->ref_frame[0]].row != INT16_MAX && |
| x->pred_mv[mi->ref_frame[0]].col != INT16_MAX) { |
| mvp_full.row = x->pred_mv[mi->ref_frame[0]].row >> 3; |
| mvp_full.col = x->pred_mv[mi->ref_frame[0]].col >> 3; |
| } |
| step_param = VPXMAX(step_param, 8); |
| } |
| |
| // adjust src pointer for this block |
| mi_buf_shift(x, i); |
| |
| vp9_set_mv_search_range(&x->mv_limits, &bsi->ref_mv[0]->as_mv); |
| |
| bestsme = vp9_full_pixel_search( |
| cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, |
| sadpb, |
| sf->mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL, |
| &bsi->ref_mv[0]->as_mv, new_mv, INT_MAX, 1); |
| |
| x->mv_limits = tmp_mv_limits; |
| |
| if (bestsme < UINT_MAX) { |
| uint32_t distortion; |
| cpi->find_fractional_mv_step( |
| x, new_mv, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv, |
| x->errorperbit, &cpi->fn_ptr[bsize], sf->mv.subpel_force_stop, |
| sf->mv.subpel_search_level, cond_cost_list(cpi, cost_list), |
| x->nmvjointcost, x->mvcost, &distortion, |
| &x->pred_sse[mi->ref_frame[0]], NULL, pw, ph, |
| cpi->sf.use_accurate_subpel_search); |
| |
| // save motion search result for use in compound prediction |
| seg_mvs[i][mi->ref_frame[0]].as_mv = *new_mv; |
| } |
| |
| x->pred_mv[mi->ref_frame[0]] = *new_mv; |
| |
| // restore src pointers |
| mi_buf_restore(x, orig_src, orig_pre); |
| } |
| |
| if (has_second_rf) { |
| if (seg_mvs[i][mi->ref_frame[1]].as_int == INVALID_MV || |
| seg_mvs[i][mi->ref_frame[0]].as_int == INVALID_MV) |
| continue; |
| } |
| |
| if (has_second_rf && this_mode == NEWMV && |
| mi->interp_filter == EIGHTTAP) { |
| // adjust src pointers |
| mi_buf_shift(x, i); |
| if (sf->comp_inter_joint_search_thresh <= bsize) { |
| int rate_mv; |
| joint_motion_search(cpi, x, bsize, frame_mv[this_mode], mi_row, |
| mi_col, seg_mvs[i], &rate_mv); |
| seg_mvs[i][mi->ref_frame[0]].as_int = |
| frame_mv[this_mode][mi->ref_frame[0]].as_int; |
| seg_mvs[i][mi->ref_frame[1]].as_int = |
| frame_mv[this_mode][mi->ref_frame[1]].as_int; |
| } |
| // restore src pointers |
| mi_buf_restore(x, orig_src, orig_pre); |
| } |
| |
| bsi->rdstat[i][mode_idx].brate = set_and_cost_bmi_mvs( |
| cpi, x, xd, i, this_mode, mode_mv[this_mode], frame_mv, seg_mvs[i], |
| bsi->ref_mv, x->nmvjointcost, x->mvcost); |
| |
| for (ref = 0; ref < 1 + has_second_rf; ++ref) { |
| bsi->rdstat[i][mode_idx].mvs[ref].as_int = |
| mode_mv[this_mode][ref].as_int; |
| if (num_4x4_blocks_wide > 1) |
| bsi->rdstat[i + 1][mode_idx].mvs[ref].as_int = |
| mode_mv[this_mode][ref].as_int; |
| if (num_4x4_blocks_high > 1) |
| bsi->rdstat[i + 2][mode_idx].mvs[ref].as_int = |
| mode_mv[this_mode][ref].as_int; |
| } |
| |
| // Trap vectors that reach beyond the UMV borders |
| if (mv_check_bounds(&x->mv_limits, &mode_mv[this_mode][0].as_mv) || |
| (has_second_rf && |
| mv_check_bounds(&x->mv_limits, &mode_mv[this_mode][1].as_mv))) |
| continue; |
| |
| if (filter_idx > 0) { |
| BEST_SEG_INFO *ref_bsi = bsi_buf; |
| subpelmv = 0; |
| have_ref = 1; |
| |
| for (ref = 0; ref < 1 + has_second_rf; ++ref) { |
| subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv); |
| have_ref &= mode_mv[this_mode][ref].as_int == |
| ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int; |
| } |
| |
| if (filter_idx > 1 && !subpelmv && !have_ref) { |
| ref_bsi = bsi_buf + 1; |
| have_ref = 1; |
| for (ref = 0; ref < 1 + has_second_rf; ++ref) |
| have_ref &= mode_mv[this_mode][ref].as_int == |
| ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int; |
| } |
| |
| if (!subpelmv && have_ref && |
| ref_bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) { |
| memcpy(&bsi->rdstat[i][mode_idx], &ref_bsi->rdstat[i][mode_idx], |
| sizeof(SEG_RDSTAT)); |
| if (num_4x4_blocks_wide > 1) |
| bsi->rdstat[i + 1][mode_idx].eobs = |
| ref_bsi->rdstat[i + 1][mode_idx].eobs; |
| if (num_4x4_blocks_high > 1) |
| bsi->rdstat[i + 2][mode_idx].eobs = |
| ref_bsi->rdstat[i + 2][mode_idx].eobs; |
| |
| if (bsi->rdstat[i][mode_idx].brdcost < best_rd) { |
| mode_selected = this_mode; |
| best_rd = bsi->rdstat[i][mode_idx].brdcost; |
| } |
| continue; |
| } |
| } |
| |
| bsi->rdstat[i][mode_idx].brdcost = encode_inter_mb_segment( |
| cpi, x, bsi->segment_rd - this_segment_rd, i, |
| &bsi->rdstat[i][mode_idx].byrate, &bsi->rdstat[i][mode_idx].bdist, |
| &bsi->rdstat[i][mode_idx].bsse, bsi->rdstat[i][mode_idx].ta, |
| bsi->rdstat[i][mode_idx].tl, mi_row, mi_col); |
| if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) { |
| bsi->rdstat[i][mode_idx].brdcost += |
| RDCOST(x->rdmult, x->rddiv, bsi->rdstat[i][mode_idx].brate, 0); |
| bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate; |
| bsi->rdstat[i][mode_idx].eobs = p->eobs[i]; |
| if (num_4x4_blocks_wide > 1) |
| bsi->rdstat[i + 1][mode_idx].eobs = p->eobs[i + 1]; |
| if (num_4x4_blocks_high > 1) |
| bsi->rdstat[i + 2][mode_idx].eobs = p->eobs[i + 2]; |
| } |
| |
| if (bsi->rdstat[i][mode_idx].brdcost < best_rd) { |
| mode_selected = this_mode; |
| best_rd = bsi->rdstat[i][mode_idx].brdcost; |
| } |
| } /*for each 4x4 mode*/ |
| |
| if (best_rd == INT64_MAX) { |
| int iy, midx; |
| for (iy = i + 1; iy < 4; ++iy) |
| for (midx = 0; midx < INTER_MODES; ++midx) |
| bsi->rdstat[iy][midx].brdcost = INT64_MAX; |
| bsi->segment_rd = INT64_MAX; |
| return INT64_MAX; |
| } |
| |
| mode_idx = INTER_OFFSET(mode_selected); |
| memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above)); |
| memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left)); |
| |
| set_and_cost_bmi_mvs(cpi, x, xd, i, mode_selected, mode_mv[mode_selected], |
| frame_mv, seg_mvs[i], bsi->ref_mv, x->nmvjointcost, |
| x->mvcost); |
| |
| br += bsi->rdstat[i][mode_idx].brate; |
| bd += bsi->rdstat[i][mode_idx].bdist; |
| block_sse += bsi->rdstat[i][mode_idx].bsse; |
| segmentyrate += bsi->rdstat[i][mode_idx].byrate; |
| this_segment_rd += bsi->rdstat[i][mode_idx].brdcost; |
| |
| if (this_segment_rd > bsi->segment_rd) { |
| int iy, midx; |
| for (iy = i + 1; iy < 4; ++iy) |
| for (midx = 0; midx < INTER_MODES; ++midx) |
| bsi->rdstat[iy][midx].brdcost = INT64_MAX; |
| bsi->segment_rd = INT64_MAX; |
| return INT64_MAX; |
| } |
| } |
| } /* for each label */ |
| |
| bsi->r = br; |
| bsi->d = bd; |
| bsi->segment_yrate = segmentyrate; |
| bsi->segment_rd = this_segment_rd; |
| bsi->sse = block_sse; |
| |
| // update the coding decisions |
| for (k = 0; k < 4; ++k) bsi->modes[k] = mi->bmi[k].as_mode; |
| |
| if (bsi->segment_rd > best_rd) return INT64_MAX; |
| /* set it to the best */ |
| for (i = 0; i < 4; i++) { |
| mode_idx = INTER_OFFSET(bsi->modes[i]); |
| mi->bmi[i].as_mv[0].as_int = bsi->rdstat[i][mode_idx].mvs[0].as_int; |
| if (has_second_ref(mi)) |
| mi->bmi[i].as_mv[1].as_int = bsi->rdstat[i][mode_idx].mvs[1].as_int; |
| x->plane[0].eobs[i] = bsi->rdstat[i][mode_idx].eobs; |
| mi->bmi[i].as_mode = bsi->modes[i]; |
| } |
| |
| /* |
| * used to set mbmi->mv.as_int |
| */ |
| *returntotrate = bsi->r; |
| *returndistortion = bsi->d; |
| *returnyrate = bsi->segment_yrate; |
| *skippable = vp9_is_skippable_in_plane(x, BLOCK_8X8, 0); |
| *psse = bsi->sse; |
| mi->mode = bsi->modes[3]; |
| |
| return bsi->segment_rd; |
| } |
| |
| static void estimate_ref_frame_costs(const VP9_COMMON *cm, |
| const MACROBLOCKD *xd, int segment_id, |
| unsigned int *ref_costs_single, |
| unsigned int *ref_costs_comp, |
| vpx_prob *comp_mode_p) { |
| int seg_ref_active = |
| segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); |
| if (seg_ref_active) { |
| memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single)); |
| memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp)); |
| *comp_mode_p = 128; |
| } else { |
| vpx_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd); |
| vpx_prob comp_inter_p = 128; |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| comp_inter_p = vp9_get_reference_mode_prob(cm, xd); |
| *comp_mode_p = comp_inter_p; |
| } else { |
| *comp_mode_p = 128; |
| } |
| |
| ref_costs_single[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0); |
| |
| if (cm->reference_mode != COMPOUND_REFERENCE) { |
| vpx_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd); |
| vpx_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd); |
| unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1); |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) |
| base_cost += vp9_cost_bit(comp_inter_p, 0); |
| |
| ref_costs_single[LAST_FRAME] = ref_costs_single[GOLDEN_FRAME] = |
| ref_costs_single[ALTREF_FRAME] = base_cost; |
| ref_costs_single[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0); |
| ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1); |
| ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1); |
| ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0); |
| ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1); |
| } else { |
| ref_costs_single[LAST_FRAME] = 512; |
| ref_costs_single[GOLDEN_FRAME] = 512; |
| ref_costs_single[ALTREF_FRAME] = 512; |
| } |
| if (cm->reference_mode != SINGLE_REFERENCE) { |
| vpx_prob ref_comp_p = vp9_get_pred_prob_comp_ref_p(cm, xd); |
| unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1); |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) |
| base_cost += vp9_cost_bit(comp_inter_p, 1); |
| |
| ref_costs_comp[LAST_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 0); |
| ref_costs_comp[GOLDEN_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 1); |
| } else { |
| ref_costs_comp[LAST_FRAME] = 512; |
| ref_costs_comp[GOLDEN_FRAME] = 512; |
| } |
| } |
| } |
| |
| static void store_coding_context( |
| MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int mode_index, |
| int64_t comp_pred_diff[REFERENCE_MODES], |
| int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS], int skippable) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| // Take a snapshot of the coding context so it can be |
| // restored if we decide to encode this way |
| ctx->skip = x->skip; |
| ctx->skippable = skippable; |
| ctx->best_mode_index = mode_index; |
| ctx->mic = *xd->mi[0]; |
| ctx->mbmi_ext = *x->mbmi_ext; |
| ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE]; |
| ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE]; |
| ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT]; |
| |
| memcpy(ctx->best_filter_diff, best_filter_diff, |
| sizeof(*best_filter_diff) * SWITCHABLE_FILTER_CONTEXTS); |
| } |
| |
| static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x, |
| MV_REFERENCE_FRAME ref_frame, |
| BLOCK_SIZE block_size, int mi_row, int mi_col, |
| int_mv frame_nearest_mv[MAX_REF_FRAMES], |
| int_mv frame_near_mv[MAX_REF_FRAMES], |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE]) { |
| const VP9_COMMON *cm = &cpi->common; |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame]; |
| const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| |
| assert(yv12 != NULL); |
| |
| // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this |
| // use the UV scaling factors. |
| vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf); |
| |
| // Gets an initial list of candidate vectors from neighbours and orders them |
| vp9_find_mv_refs(cm, xd, mi, ref_frame, candidates, mi_row, mi_col, |
| mbmi_ext->mode_context); |
| |
| // Candidate refinement carried out at encoder and decoder |
| vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates, |
| &frame_nearest_mv[ref_frame], |
| &frame_near_mv[ref_frame]); |
| |
| // Further refinement that is encode side only to test the top few candidates |
| // in full and choose the best as the centre point for subsequent searches. |
| // The current implementation doesn't support scaling. |
| if (!vp9_is_scaled(sf) && block_size >= BLOCK_8X8) |
| vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, |
| block_size); |
| } |
| |
| #if CONFIG_NON_GREEDY_MV |
| static int ref_frame_to_gf_rf_idx(int ref_frame) { |
| if (ref_frame == GOLDEN_FRAME) { |
| return 0; |
| } |
| if (ref_frame == LAST_FRAME) { |
| return 1; |
| } |
| if (ref_frame == ALTREF_FRAME) { |
| return 2; |
| } |
| assert(0); |
| return -1; |
| } |
| #endif |
| |
| static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, int_mv *tmp_mv, |
| int *rate_mv) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const VP9_COMMON *cm = &cpi->common; |
| MODE_INFO *mi = xd->mi[0]; |
| struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0 } }; |
| int step_param; |
| MV mvp_full; |
| int ref = mi->ref_frame[0]; |
| MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv; |
| const MvLimits tmp_mv_limits = x->mv_limits; |
| int cost_list[5]; |
| const int best_predmv_idx = x->mv_best_ref_index[ref]; |
| const YV12_BUFFER_CONFIG *scaled_ref_frame = |
| vp9_get_scaled_ref_frame(cpi, ref); |
| const int pw = num_4x4_blocks_wide_lookup[bsize] << 2; |
| const int ph = num_4x4_blocks_high_lookup[bsize] << 2; |
| MV pred_mv[3]; |
| |
| int bestsme = INT_MAX; |
| #if CONFIG_NON_GREEDY_MV |
| int gf_group_idx = cpi->twopass.gf_group.index; |
| int gf_rf_idx = ref_frame_to_gf_rf_idx(ref); |
| BLOCK_SIZE square_bsize = get_square_block_size(bsize); |
| int_mv nb_full_mvs[NB_MVS_NUM] = { 0 }; |
| MotionField *motion_field = vp9_motion_field_info_get_motion_field( |
| &cpi->motion_field_info, gf_group_idx, gf_rf_idx, square_bsize); |
| const int nb_full_mv_num = |
| vp9_prepare_nb_full_mvs(motion_field, mi_row, mi_col, nb_full_mvs); |
| const int lambda = (pw * ph) / 4; |
| assert(pw * ph == lambda << 2); |
| #else // CONFIG_NON_GREEDY_MV |
| int sadpb = x->sadperbit16; |
| #endif // CONFIG_NON_GREEDY_MV |
| |
| pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv; |
| pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv; |
| pred_mv[2] = x->pred_mv[ref]; |
| |
| if (scaled_ref_frame) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0]; |
| |
| vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL); |
| } |
| |
| // Work out the size of the first step in the mv step search. |
| // 0 here is maximum length first step. 1 is VPXMAX >> 1 etc. |
| if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { |
| // Take wtd average of the step_params based on the last frame's |
| // max mv magnitude and that based on the best ref mvs of the current |
| // block for the given reference. |
| step_param = |
| (vp9_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) / |
| 2; |
| } else { |
| step_param = cpi->mv_step_param; |
| } |
| |
| if (cpi->sf.adaptive_motion_search && bsize < BLOCK_64X64) { |
| const int boffset = |
| 2 * (b_width_log2_lookup[BLOCK_64X64] - |
| VPXMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize])); |
| step_param = VPXMAX(step_param, boffset); |
| } |
| |
| if (cpi->sf.adaptive_motion_search) { |
| int bwl = b_width_log2_lookup[bsize]; |
| int bhl = b_height_log2_lookup[bsize]; |
| int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4); |
| |
| if (tlevel < 5) step_param += 2; |
| |
| // prev_mv_sad is not setup for dynamically scaled frames. |
| if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) { |
| int i; |
| for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) { |
| if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) { |
| x->pred_mv[ref].row = INT16_MAX; |
| x->pred_mv[ref].col = INT16_MAX; |
| tmp_mv->as_int = INVALID_MV; |
| |
| if (scaled_ref_frame) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; ++i) |
| xd->plane[i].pre[0] = backup_yv12[i]; |
| } |
| return; |
| } |
| } |
| } |
| } |
| |
| // Note: MV limits are modified here. Always restore the original values |
| // after full-pixel motion search. |
| vp9_set_mv_search_range(&x->mv_limits, &ref_mv); |
| |
| mvp_full = pred_mv[best_predmv_idx]; |
| mvp_full.col >>= 3; |
| mvp_full.row >>= 3; |
| |
| #if CONFIG_NON_GREEDY_MV |
| bestsme = vp9_full_pixel_diamond_new(cpi, x, bsize, &mvp_full, step_param, |
| lambda, 1, nb_full_mvs, nb_full_mv_num, |
| &tmp_mv->as_mv); |
| #else // CONFIG_NON_GREEDY_MV |
| bestsme = vp9_full_pixel_search( |
| cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, sadpb, |
| cond_cost_list(cpi, cost_list), &ref_mv, &tmp_mv->as_mv, INT_MAX, 1); |
| #endif // CONFIG_NON_GREEDY_MV |
| |
| if (cpi->sf.enhanced_full_pixel_motion_search) { |
| int i; |
| for (i = 0; i < 3; ++i) { |
| int this_me; |
| MV this_mv; |
| int diff_row; |
| int diff_col; |
| int step; |
| |
| if (pred_mv[i].row == INT16_MAX || pred_mv[i].col == INT16_MAX) continue; |
| if (i == best_predmv_idx) continue; |
| |
| diff_row = ((int)pred_mv[i].row - |
| pred_mv[i > 0 ? (i - 1) : best_predmv_idx].row) >> |
| 3; |
| diff_col = ((int)pred_mv[i].col - |
| pred_mv[i > 0 ? (i - 1) : best_predmv_idx].col) >> |
| 3; |
| if (diff_row == 0 && diff_col == 0) continue; |
| if (diff_row < 0) diff_row = -diff_row; |
| if (diff_col < 0) diff_col = -diff_col; |
| step = get_msb((diff_row + diff_col + 1) >> 1); |
| if (step <= 0) continue; |
| |
| mvp_full = pred_mv[i]; |
| mvp_full.col >>= 3; |
| mvp_full.row >>= 3; |
| #if CONFIG_NON_GREEDY_MV |
| this_me = vp9_full_pixel_diamond_new( |
| cpi, x, bsize, &mvp_full, |
| VPXMAX(step_param, MAX_MVSEARCH_STEPS - step), lambda, 1, nb_full_mvs, |
| nb_full_mv_num, &this_mv); |
| #else // CONFIG_NON_GREEDY_MV |
| this_me = vp9_full_pixel_search( |
| cpi, x, bsize, &mvp_full, |
| VPXMAX(step_param, MAX_MVSEARCH_STEPS - step), |
| cpi->sf.mv.search_method, sadpb, cond_cost_list(cpi, cost_list), |
| &ref_mv, &this_mv, INT_MAX, 1); |
| #endif // CONFIG_NON_GREEDY_MV |
| if (this_me < bestsme) { |
| tmp_mv->as_mv = this_mv; |
| bestsme = this_me; |
| } |
| } |
| } |
| |
| x->mv_limits = tmp_mv_limits; |
| |
| if (bestsme < INT_MAX) { |
| uint32_t dis; /* TODO: use dis in distortion calculation later. */ |
| cpi->find_fractional_mv_step( |
| x, &tmp_mv->as_mv, &ref_mv, cm->allow_high_precision_mv, x->errorperbit, |
| &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_search_level, cond_cost_list(cpi, cost_list), |
| x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, pw, ph, |
| cpi->sf.use_accurate_subpel_search); |
| } |
| *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost, |
| x->mvcost, MV_COST_WEIGHT); |
| |
| x->pred_mv[ref] = tmp_mv->as_mv; |
| |
| if (scaled_ref_frame) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; |
| } |
| } |
| |
| static INLINE void restore_dst_buf(MACROBLOCKD *xd, |
| uint8_t *orig_dst[MAX_MB_PLANE], |
| int orig_dst_stride[MAX_MB_PLANE]) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = orig_dst[i]; |
| xd->plane[i].dst.stride = orig_dst_stride[i]; |
| } |
| } |
| |
| // In some situations we want to discount tha pparent cost of a new motion |
| // vector. Where there is a subtle motion field and especially where there is |
| // low spatial complexity then it can be hard to cover the cost of a new motion |
| // vector in a single block, even if that motion vector reduces distortion. |
| // However, once established that vector may be usable through the nearest and |
| // near mv modes to reduce distortion in subsequent blocks and also improve |
| // visual quality. |
| static int discount_newmv_test(VP9_COMP *cpi, int this_mode, int_mv this_mv, |
| int_mv (*mode_mv)[MAX_REF_FRAMES], int ref_frame, |
| int mi_row, int mi_col, BLOCK_SIZE bsize) { |
| #if CONFIG_NON_GREEDY_MV |
| (void)mode_mv; |
| (void)this_mv; |
| if (this_mode == NEWMV && bsize >= BLOCK_8X8 && cpi->tpl_ready) { |
| const int gf_group_idx = cpi->twopass.gf_group.index; |
| const int gf_rf_idx = ref_frame_to_gf_rf_idx(ref_frame); |
| const TplDepFrame tpl_frame = cpi->tpl_stats[gf_group_idx]; |
| const MotionField *motion_field = vp9_motion_field_info_get_motion_field( |
| &cpi->motion_field_info, gf_group_idx, gf_rf_idx, cpi->tpl_bsize); |
| const int tpl_block_mi_h = num_8x8_blocks_high_lookup[cpi->tpl_bsize]; |
| const int tpl_block_mi_w = num_8x8_blocks_wide_lookup[cpi->tpl_bsize]; |
| const int tpl_mi_row = mi_row - (mi_row % tpl_block_mi_h); |
| const int tpl_mi_col = mi_col - (mi_col % tpl_block_mi_w); |
| const int mv_mode = |
| tpl_frame |
| .mv_mode_arr[gf_rf_idx][tpl_mi_row * tpl_frame.stride + tpl_mi_col]; |
| if (mv_mode == NEW_MV_MODE) { |
| int_mv tpl_new_mv = |
| vp9_motion_field_mi_get_mv(motion_field, tpl_mi_row, tpl_mi_col); |
| int row_diff = abs(tpl_new_mv.as_mv.row - this_mv.as_mv.row); |
| int col_diff = abs(tpl_new_mv.as_mv.col - this_mv.as_mv.col); |
| if (VPXMAX(row_diff, col_diff) <= 8) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } else { |
| return 0; |
| } |
| } else { |
| return 0; |
| } |
| #else |
| (void)mi_row; |
| (void)mi_col; |
| (void)bsize; |
| return (!cpi->rc.is_src_frame_alt_ref && (this_mode == NEWMV) && |
| (this_mv.as_int != 0) && |
| ((mode_mv[NEARESTMV][ref_frame].as_int == 0) || |
| (mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) && |
| ((mode_mv[NEARMV][ref_frame].as_int == 0) || |
| (mode_mv[NEARMV][ref_frame].as_int == INVALID_MV))); |
| #endif |
| } |
| |
| static int64_t handle_inter_mode( |
| VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int *rate2, |
| int64_t *distortion, int *skippable, int *rate_y, int *rate_uv, |
| struct buf_2d *recon, int *disable_skip, int_mv (*mode_mv)[MAX_REF_FRAMES], |
| int mi_row, int mi_col, int_mv single_newmv[MAX_REF_FRAMES], |
| INTERP_FILTER (*single_filter)[MAX_REF_FRAMES], |
| int (*single_skippable)[MAX_REF_FRAMES], int64_t *psse, |
| const int64_t ref_best_rd, int64_t *mask_filter, int64_t filter_cache[]) { |
| VP9_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MODE_INFO *mi = xd->mi[0]; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const int is_comp_pred = has_second_ref(mi); |
| const int this_mode = mi->mode; |
| int_mv *frame_mv = mode_mv[this_mode]; |
| int i; |
| int refs[2] = { mi->ref_frame[0], |
| (mi->ref_frame[1] < 0 ? 0 : mi->ref_frame[1]) }; |
| int_mv cur_mv[2]; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, tmp_buf16[MAX_MB_PLANE * 64 * 64]); |
| uint8_t *tmp_buf; |
| #else |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf[MAX_MB_PLANE * 64 * 64]); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| int pred_exists = 0; |
| int intpel_mv; |
| int64_t rd, tmp_rd, best_rd = INT64_MAX; |
| int best_needs_copy = 0; |
| uint8_t *orig_dst[MAX_MB_PLANE]; |
| int orig_dst_stride[MAX_MB_PLANE]; |
| int rs = 0; |
| INTERP_FILTER best_filter = SWITCHABLE; |
| uint8_t skip_txfm[MAX_MB_PLANE << 2] = { 0 }; |
| int64_t bsse[MAX_MB_PLANE << 2] = { 0 }; |
| |
| int bsl = mi_width_log2_lookup[bsize]; |
| int pred_filter_search = |
| cpi->sf.cb_pred_filter_search |
| ? (((mi_row + mi_col) >> bsl) + |
| get_chessboard_index(cm->current_video_frame)) & |
| 0x1 |
| : 0; |
| |
| int skip_txfm_sb = 0; |
| int64_t skip_sse_sb = INT64_MAX; |
| int64_t distortion_y = 0, distortion_uv = 0; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf16); |
| } else { |
| tmp_buf = (uint8_t *)tmp_buf16; |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| if (pred_filter_search) { |
| INTERP_FILTER af = SWITCHABLE, lf = SWITCHABLE; |
| if (xd->above_mi && is_inter_block(xd->above_mi)) |
| af = xd->above_mi->interp_filter; |
| if (xd->left_mi && is_inter_block(xd->left_mi)) |
| lf = xd->left_mi->interp_filter; |
| |
| if ((this_mode != NEWMV) || (af == lf)) best_filter = af; |
| } |
| |
| if (is_comp_pred) { |
| if (frame_mv[refs[0]].as_int == INVALID_MV || |
| frame_mv[refs[1]].as_int == INVALID_MV) |
| return INT64_MAX; |
| |
| if (cpi->sf.adaptive_mode_search) { |
| if (single_filter[this_mode][refs[0]] == |
| single_filter[this_mode][refs[1]]) |
| best_filter = single_filter[this_mode][refs[0]]; |
| } |
| } |
| |
| if (this_mode == NEWMV) { |
| int rate_mv; |
| if (is_comp_pred) { |
| // Initialize mv using single prediction mode result. |
| frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; |
| frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; |
| |
| if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { |
| joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col, |
| single_newmv, &rate_mv); |
| } else { |
| rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]].as_mv, |
| &x->mbmi_ext->ref_mvs[refs[0]][0].as_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]].as_mv, |
| &x->mbmi_ext->ref_mvs[refs[1]][0].as_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| } |
| *rate2 += rate_mv; |
| } else { |
| int_mv tmp_mv; |
| single_motion_search(cpi, x, bsize, mi_row, mi_col, &tmp_mv, &rate_mv); |
| if (tmp_mv.as_int == INVALID_MV) return INT64_MAX; |
| |
| frame_mv[refs[0]].as_int = xd->mi[0]->bmi[0].as_mv[0].as_int = |
| tmp_mv.as_int; |
| single_newmv[refs[0]].as_int = tmp_mv.as_int; |
| |
| // Estimate the rate implications of a new mv but discount this |
| // under certain circumstances where we want to help initiate a weak |
| // motion field, where the distortion gain for a single block may not |
| // be enough to overcome the cost of a new mv. |
| if (discount_newmv_test(cpi, this_mode, tmp_mv, mode_mv, refs[0], mi_row, |
| mi_col, bsize)) { |
| *rate2 += VPXMAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); |
| } else { |
| *rate2 += rate_mv; |
| } |
| } |
| } |
| |
| for (i = 0; i < is_comp_pred + 1; ++i) { |
| cur_mv[i] = frame_mv[refs[i]]; |
| // Clip "next_nearest" so that it does not extend to far out of image |
| if (this_mode != NEWMV) clamp_mv2(&cur_mv[i].as_mv, xd); |
| |
| if (mv_check_bounds(&x->mv_limits, &cur_mv[i].as_mv)) return INT64_MAX; |
| mi->mv[i].as_int = cur_mv[i].as_int; |
| } |
| |
| // do first prediction into the destination buffer. Do the next |
| // prediction into a temporary buffer. Then keep track of which one |
| // of these currently holds the best predictor, and use the other |
| // one for future predictions. In the end, copy from tmp_buf to |
| // dst if necessary. |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| orig_dst[i] = xd->plane[i].dst.buf; |
| orig_dst_stride[i] = xd->plane[i].dst.stride; |
| } |
| |
| // We don't include the cost of the second reference here, because there |
| // are only two options: Last/ARF or Golden/ARF; The second one is always |
| // known, which is ARF. |
| // |
| // Under some circumstances we discount the cost of new mv mode to encourage |
| // initiation of a motion field. |
| if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]], mode_mv, refs[0], |
| mi_row, mi_col, bsize)) { |
| *rate2 += |
| VPXMIN(cost_mv_ref(cpi, this_mode, mbmi_ext->mode_context[refs[0]]), |
| cost_mv_ref(cpi, NEARESTMV, mbmi_ext->mode_context[refs[0]])); |
| } else { |
| *rate2 += cost_mv_ref(cpi, this_mode, mbmi_ext->mode_context[refs[0]]); |
| } |
| |
| if (RDCOST(x->rdmult, x->rddiv, *rate2, 0) > ref_best_rd && |
| mi->mode != NEARESTMV) |
| return INT64_MAX; |
| |
| pred_exists = 0; |
| // Are all MVs integer pel for Y and UV |
| intpel_mv = !mv_has_subpel(&mi->mv[0].as_mv); |
| if (is_comp_pred) intpel_mv &= !mv_has_subpel(&mi->mv[1].as_mv); |
| |
| // Search for best switchable filter by checking the variance of |
| // pred error irrespective of whether the filter will be used |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX; |
| |
| if (cm->interp_filter != BILINEAR) { |
| if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) { |
| best_filter = EIGHTTAP; |
| } else if (best_filter == SWITCHABLE) { |
| int newbest; |
| int tmp_rate_sum = 0; |
| int64_t tmp_dist_sum = 0; |
| |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| int j; |
| int64_t rs_rd; |
| int tmp_skip_sb = 0; |
| int64_t tmp_skip_sse = INT64_MAX; |
| |
| mi->interp_filter = i; |
| rs = vp9_get_switchable_rate(cpi, xd); |
| rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); |
| |
| if (i > 0 && intpel_mv) { |
| rd = RDCOST(x->rdmult, x->rddiv, tmp_rate_sum, tmp_dist_sum); |
| filter_cache[i] = rd; |
| filter_cache[SWITCHABLE_FILTERS] = |
| VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd); |
| if (cm->interp_filter == SWITCHABLE) rd += rs_rd; |
| *mask_filter = VPXMAX(*mask_filter, rd); |
| } else { |
| int rate_sum = 0; |
| int64_t dist_sum = 0; |
| if (i > 0 && cpi->sf.adaptive_interp_filter_search && |
| (cpi->sf.interp_filter_search_mask & (1 << i))) { |
| rate_sum = INT_MAX; |
| dist_sum = INT64_MAX; |
| continue; |
| } |
| |
| if ((cm->interp_filter == SWITCHABLE && (!i || best_needs_copy)) || |
| (cm->interp_filter != SWITCHABLE && |
| (cm->interp_filter == mi->interp_filter || |
| (i == 0 && intpel_mv)))) { |
| restore_dst_buf(xd, orig_dst, orig_dst_stride); |
| } else { |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| xd->plane[j].dst.buf = tmp_buf + j * 64 * 64; |
| xd->plane[j].dst.stride = 64; |
| } |
| } |
| vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); |
| model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum, &tmp_skip_sb, |
| &tmp_skip_sse); |
| |
| rd = RDCOST(x->rdmult, x->rddiv, rate_sum, dist_sum); |
| filter_cache[i] = rd; |
| filter_cache[SWITCHABLE_FILTERS] = |
| VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd); |
| if (cm->interp_filter == SWITCHABLE) rd += rs_rd; |
| *mask_filter = VPXMAX(*mask_filter, rd); |
| |
| if (i == 0 && intpel_mv) { |
| tmp_rate_sum = rate_sum; |
| tmp_dist_sum = dist_sum; |
| } |
| } |
| |
| if (i == 0 && cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { |
| if (rd / 2 > ref_best_rd) { |
| restore_dst_buf(xd, orig_dst, orig_dst_stride); |
| return INT64_MAX; |
| } |
| } |
| newbest = i == 0 || rd < best_rd; |
| |
| if (newbest) { |
| best_rd = rd; |
| best_filter = mi->interp_filter; |
| if (cm->interp_filter == SWITCHABLE && i && !intpel_mv) |
| best_needs_copy = !best_needs_copy; |
| } |
| |
| if ((cm->interp_filter == SWITCHABLE && newbest) || |
| (cm->interp_filter != SWITCHABLE && |
| cm->interp_filter == mi->interp_filter)) { |
| pred_exists = 1; |
| tmp_rd = best_rd; |
| |
| skip_txfm_sb = tmp_skip_sb; |
| skip_sse_sb = tmp_skip_sse; |
| memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm)); |
| memcpy(bsse, x->bsse, sizeof(bsse)); |
| } |
| } |
| restore_dst_buf(xd, orig_dst, orig_dst_stride); |
| } |
| } |
| // Set the appropriate filter |
| mi->interp_filter = |
| cm->interp_filter != SWITCHABLE ? cm->interp_filter : best_filter; |
| rs = cm->interp_filter == SWITCHABLE ? vp9_get_switchable_rate(cpi, xd) : 0; |
| |
| if (pred_exists) { |
| if (best_needs_copy) { |
| // again temporarily set the buffers to local memory to prevent a memcpy |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = tmp_buf + i * 64 * 64; |
| xd->plane[i].dst.stride = 64; |
| } |
| } |
| rd = tmp_rd + RDCOST(x->rdmult, x->rddiv, rs, 0); |
| } else { |
| int tmp_rate; |
| int64_t tmp_dist; |
| // Handles the special case when a filter that is not in the |
| // switchable list (ex. bilinear) is indicated at the frame level, or |
| // skip condition holds. |
| vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); |
| model_rd_for_sb(cpi, bsize, x, xd, &tmp_rate, &tmp_dist, &skip_txfm_sb, |
| &skip_sse_sb); |
| rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist); |
| memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm)); |
| memcpy(bsse, x->bsse, sizeof(bsse)); |
| } |
| |
| if (!is_comp_pred) single_filter[this_mode][refs[0]] = mi->interp_filter; |
| |
| if (cpi->sf.adaptive_mode_search) |
| if (is_comp_pred) |
| if (single_skippable[this_mode][refs[0]] && |
| single_skippable[this_mode][refs[1]]) |
| memset(skip_txfm, SKIP_TXFM_AC_DC, sizeof(skip_txfm)); |
| |
| if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { |
| // if current pred_error modeled rd is substantially more than the best |
| // so far, do not bother doing full rd |
| if (rd / 2 > ref_best_rd) { |
| restore_dst_buf(xd, orig_dst, orig_dst_stride); |
| return INT64_MAX; |
| } |
| } |
| |
| if (cm->interp_filter == SWITCHABLE) *rate2 += rs; |
| |
| memcpy(x->skip_txfm, skip_txfm, sizeof(skip_txfm)); |
| memcpy(x->bsse, bsse, sizeof(bsse)); |
| |
| if (!skip_txfm_sb || xd->lossless) { |
| int skippable_y, skippable_uv; |
| int64_t sseuv = INT64_MAX; |
| int64_t rdcosty = INT64_MAX; |
| |
| // Y cost and distortion |
| vp9_subtract_plane(x, bsize, 0); |
| super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse, bsize, |
| ref_best_rd, recon); |
| |
| if (*rate_y == INT_MAX) { |
| *rate2 = INT_MAX; |
| *distortion = INT64_MAX; |
| restore_dst_buf(xd, orig_dst, orig_dst_stride); |
| return INT64_MAX; |
| } |
| |
| *rate2 += *rate_y; |
| *distortion += distortion_y; |
| |
| rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion); |
| rdcosty = VPXMIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse)); |
| |
| if (!super_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv, |
| &sseuv, bsize, ref_best_rd - rdcosty)) { |
| *rate2 = INT_MAX; |
| *distortion = INT64_MAX; |
| restore_dst_buf(xd, orig_dst, orig_dst_stride); |
| return INT64_MAX; |
| } |
| |
| *psse += sseuv; |
| *rate2 += *rate_uv; |
| *distortion += distortion_uv; |
| *skippable = skippable_y && skippable_uv; |
| } else { |
| x->skip = 1; |
| *disable_skip = 1; |
| |
| // The cost of skip bit needs to be added. |
| *rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); |
| |
| *distortion = skip_sse_sb; |
| } |
| |
| if (!is_comp_pred) single_skippable[this_mode][refs[0]] = *skippable; |
| |
| restore_dst_buf(xd, orig_dst, orig_dst_stride); |
| return 0; // The rate-distortion cost will be re-calculated by caller. |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, |
| int64_t best_rd) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblockd_plane *const pd = xd->plane; |
| int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0; |
| int y_skip = 0, uv_skip = 0; |
| int64_t dist_y = 0, dist_uv = 0; |
| TX_SIZE max_uv_tx_size; |
| x->skip_encode = 0; |
| ctx->skip = 0; |
| xd->mi[0]->ref_frame[0] = INTRA_FRAME; |
| xd->mi[0]->ref_frame[1] = NONE; |
| // Initialize interp_filter here so we do not have to check for inter block |
| // modes in get_pred_context_switchable_interp() |
| xd->mi[0]->interp_filter = SWITCHABLE_FILTERS; |
| |
| if (bsize >= BLOCK_8X8) { |
| if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y, |
| &y_skip, bsize, best_rd) >= best_rd) { |
| rd_cost->rate = INT_MAX; |
| return; |
| } |
| } else { |
| y_skip = 0; |
| if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly, |
| &dist_y, best_rd) >= best_rd) { |
| rd_cost->rate = INT_MAX; |
| return; |
| } |
| } |
| max_uv_tx_size = uv_txsize_lookup[bsize][xd->mi[0]->tx_size] |
| [pd[1].subsampling_x][pd[1].subsampling_y]; |
| rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv, &rate_uv_tokenonly, &dist_uv, |
| &uv_skip, VPXMAX(BLOCK_8X8, bsize), max_uv_tx_size); |
| |
| if (y_skip && uv_skip) { |
| rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly + |
| vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); |
| rd_cost->dist = dist_y + dist_uv; |
| } else { |
| rd_cost->rate = |
| rate_y + rate_uv + vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0); |
| rd_cost->dist = dist_y + dist_uv; |
| } |
| |
| ctx->mic = *xd->mi[0]; |
| ctx->mbmi_ext = *x->mbmi_ext; |
| rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| // This function is designed to apply a bias or adjustment to an rd value based |
| // on the relative variance of the source and reconstruction. |
| #define LOW_VAR_THRESH 250 |
| #define VAR_MULT 250 |
| static unsigned int max_var_adjust[VP9E_CONTENT_INVALID] = { 16, 16, 250 }; |
| |
| static void rd_variance_adjustment(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int64_t *this_rd, |
| struct buf_2d *recon, |
| MV_REFERENCE_FRAME ref_frame, |
| MV_REFERENCE_FRAME second_ref_frame, |
| PREDICTION_MODE this_mode) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| unsigned int rec_variance; |
| unsigned int src_variance; |
| unsigned int src_rec_min; |
| unsigned int var_diff = 0; |
| unsigned int var_factor = 0; |
| unsigned int adj_max; |
| unsigned int low_var_thresh = LOW_VAR_THRESH; |
| const int bw = num_8x8_blocks_wide_lookup[bsize]; |
| const int bh = num_8x8_blocks_high_lookup[bsize]; |
| vp9e_tune_content content_type = cpi->oxcf.content; |
| |
| if (*this_rd == INT64_MAX) return; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| rec_variance = vp9_high_get_sby_variance(cpi, recon, bsize, xd->bd); |
| src_variance = |
| vp9_high_get_sby_variance(cpi, &x->plane[0].src, bsize, xd->bd); |
| } else { |
| rec_variance = vp9_get_sby_variance(cpi, recon, bsize); |
| src_variance = vp9_get_sby_variance(cpi, &x->plane[0].src, bsize); |
| } |
| #else |
| rec_variance = vp9_get_sby_variance(cpi, recon, bsize); |
| src_variance = vp9_get_sby_variance(cpi, &x->plane[0].src, bsize); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Scale based on area in 8x8 blocks |
| rec_variance /= (bw * bh); |
| src_variance /= (bw * bh); |
| |
| if (content_type == VP9E_CONTENT_FILM) { |
| if (cpi->oxcf.pass == 2) { |
| // Adjust low variance threshold based on estimated group noise enegry. |
| double noise_factor = |
| (double)cpi->twopass.gf_group.group_noise_energy / SECTION_NOISE_DEF; |
| low_var_thresh = (unsigned int)(low_var_thresh * noise_factor); |
| |
| if (ref_frame == INTRA_FRAME) { |
| low_var_thresh *= 2; |
| if (this_mode == DC_PRED) low_var_thresh *= 5; |
| } else if (second_ref_frame > INTRA_FRAME) { |
| low_var_thresh *= 2; |
| } |
| } |
| } else { |
| low_var_thresh = LOW_VAR_THRESH / 2; |
| } |
| |
| // Lower of source (raw per pixel value) and recon variance. Note that |
| // if the source per pixel is 0 then the recon value here will not be per |
| // pixel (see above) so will likely be much larger. |
| src_rec_min = VPXMIN(src_variance, rec_variance); |
| |
| if (src_rec_min > low_var_thresh) return; |
| |
| // We care more when the reconstruction has lower variance so give this case |
| // a stronger weighting. |
| var_diff = (src_variance > rec_variance) ? (src_variance - rec_variance) * 2 |
| : (rec_variance - src_variance) / 2; |
| |
| adj_max = max_var_adjust[content_type]; |
| |
| var_factor = |
| (unsigned int)((int64_t)VAR_MULT * var_diff) / VPXMAX(1, src_variance); |
| var_factor = VPXMIN(adj_max, var_factor); |
| |
| if ((content_type == VP9E_CONTENT_FILM) && |
| ((ref_frame == INTRA_FRAME) || (second_ref_frame > INTRA_FRAME))) { |
| var_factor *= 2; |
| } |
| |
| *this_rd += (*this_rd * var_factor) / 100; |
| |
| (void)xd; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| // Do we have an internal image edge (e.g. formatting bars). |
| int vp9_internal_image_edge(VP9_COMP *cpi) { |
| return (cpi->oxcf.pass == 2) && |
| ((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) || |
| (cpi->twopass.this_frame_stats.inactive_zone_cols > 0)); |
| } |
| |
| // Checks to see if a super block is on a horizontal image edge. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| int vp9_active_h_edge(VP9_COMP *cpi, int mi_row, int mi_step) { |
| int top_edge = 0; |
| int bottom_edge = cpi->common.mi_rows; |
| int is_active_h_edge = 0; |
| |
| // For two pass account for any formatting bars detected. |
| if (cpi->oxcf.pass == 2) { |
| TWO_PASS *twopass = &cpi->twopass; |
| |
| // The inactive region is specified in MBs not mi units. |
| // The image edge is in the following MB row. |
| top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2); |
| |
| bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2); |
| bottom_edge = VPXMAX(top_edge, bottom_edge); |
| } |
| |
| if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || |
| ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { |
| is_active_h_edge = 1; |
| } |
| return is_active_h_edge; |
| } |
| |
| // Checks to see if a super block is on a vertical image edge. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| int vp9_active_v_edge(VP9_COMP *cpi, int mi_col, int mi_step) { |
| int left_edge = 0; |
| int right_edge = cpi->common.mi_cols; |
| int is_active_v_edge = 0; |
| |
| // For two pass account for any formatting bars detected. |
| if (cpi->oxcf.pass == 2) { |
| TWO_PASS *twopass = &cpi->twopass; |
| |
| // The inactive region is specified in MBs not mi units. |
| // The image edge is in the following MB row. |
| left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2); |
| |
| right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2); |
| right_edge = VPXMAX(left_edge, right_edge); |
| } |
| |
| if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || |
| ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { |
| is_active_v_edge = 1; |
| } |
| return is_active_v_edge; |
| } |
| |
| // Checks to see if a super block is at the edge of the active image. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| int vp9_active_edge_sb(VP9_COMP *cpi, int mi_row, int mi_col) { |
| return vp9_active_h_edge(cpi, mi_row, MI_BLOCK_SIZE) || |
| vp9_active_v_edge(cpi, mi_col, MI_BLOCK_SIZE); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| void vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, TileDataEnc *tile_data, |
| MACROBLOCK *x, int mi_row, int mi_col, |
| RD_COST *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { |
| VP9_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| RD_OPT *const rd_opt = &cpi->rd; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const struct segmentation *const seg = &cm->seg; |
| PREDICTION_MODE this_mode; |
| MV_REFERENCE_FRAME ref_frame, second_ref_frame; |
| unsigned char segment_id = mi->segment_id; |
| int comp_pred, i, k; |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE]; |
| int_mv single_newmv[MAX_REF_FRAMES] = { { 0 } }; |
| INTERP_FILTER single_inter_filter[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| int single_skippable[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, |
| VP9_ALT_FLAG }; |
| int64_t best_rd = best_rd_so_far; |
| int64_t best_pred_diff[REFERENCE_MODES]; |
| int64_t best_pred_rd[REFERENCE_MODES]; |
| int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS]; |
| int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS]; |
| MODE_INFO best_mbmode; |
| int best_mode_skippable = 0; |
| int midx, best_mode_index = -1; |
| unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES]; |
| vpx_prob comp_mode_p; |
| int64_t best_intra_rd = INT64_MAX; |
| unsigned int best_pred_sse = UINT_MAX; |
| PREDICTION_MODE best_intra_mode = DC_PRED; |
| int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES]; |
| int64_t dist_uv[TX_SIZES]; |
| int skip_uv[TX_SIZES]; |
| PREDICTION_MODE mode_uv[TX_SIZES]; |
| const int intra_cost_penalty = |
| vp9_get_intra_cost_penalty(cpi, bsize, cm->base_qindex, cm->y_dc_delta_q); |
| int best_skip2 = 0; |
| uint8_t ref_frame_skip_mask[2] = { 0, 1 }; |
| uint16_t mode_skip_mask[MAX_REF_FRAMES] = { 0 }; |
| int mode_skip_start = sf->mode_skip_start + 1; |
| const int *const rd_threshes = rd_opt->threshes[segment_id][bsize]; |
| const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize]; |
| int64_t mode_threshold[MAX_MODES]; |
| int8_t *tile_mode_map = tile_data->mode_map[bsize]; |
| int8_t mode_map[MAX_MODES]; // Maintain mode_map information locally to avoid |
| // lock mechanism involved with reads from |
| // tile_mode_map |
| const int mode_search_skip_flags = sf->mode_search_skip_flags; |
| const int is_rect_partition = |
| num_4x4_blocks_wide_lookup[bsize] != num_4x4_blocks_high_lookup[bsize]; |
| int64_t mask_filter = 0; |
| int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS]; |
| |
| struct buf_2d *recon; |
| struct buf_2d recon_buf; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, recon16[64 * 64]); |
| recon_buf.buf = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH |
| ? CONVERT_TO_BYTEPTR(recon16) |
| : (uint8_t *)recon16; |
| #else |
| DECLARE_ALIGNED(16, uint8_t, recon8[64 * 64]); |
| recon_buf.buf = recon8; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| recon_buf.stride = 64; |
| recon = cpi->oxcf.content == VP9E_CONTENT_FILM ? &recon_buf : 0; |
| |
| vp9_zero(best_mbmode); |
| |
| x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX; |
| |
| estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, |
| &comp_mode_p); |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX; |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) |
| best_filter_rd[i] = INT64_MAX; |
| for (i = 0; i < TX_SIZES; i++) rate_uv_intra[i] = INT_MAX; |
| for (i = 0; i < MAX_REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; |
| for (i = 0; i < MB_MODE_COUNT; ++i) { |
| for (k = 0; k < MAX_REF_FRAMES; ++k) { |
| single_inter_filter[i][k] = SWITCHABLE; |
| single_skippable[i][k] = 0; |
| } |
| } |
| |
| rd_cost->rate = INT_MAX; |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| x->pred_mv_sad[ref_frame] = INT_MAX; |
| if ((cpi->ref_frame_flags & flag_list[ref_frame]) && |
| !(is_rect_partition && (ctx->skip_ref_frame_mask & (1 << ref_frame)))) { |
| assert(get_ref_frame_buffer(cpi, ref_frame) != NULL); |
| setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, |
| frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb); |
| } |
| frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; |
| frame_mv[ZEROMV][ref_frame].as_int = 0; |
| } |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| if (!(cpi->ref_frame_flags & flag_list[ref_frame])) { |
| // Skip checking missing references in both single and compound reference |
| // modes. Note that a mode will be skipped if both reference frames |
| // are masked out. |
| ref_frame_skip_mask[0] |= (1 << ref_frame); |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| } else if (sf->reference_masking) { |
| for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { |
| // Skip fixed mv modes for poor references |
| if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) { |
| mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO; |
| break; |
| } |
| } |
| } |
| // If the segment reference frame feature is enabled.... |
| // then do nothing if the current ref frame is not allowed.. |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { |
| ref_frame_skip_mask[0] |= (1 << ref_frame); |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| } |
| } |
| |
| // Disable this drop out case if the ref frame |
| // segment level feature is enabled for this segment. This is to |
| // prevent the possibility that we end up unable to pick any mode. |
| if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { |
| // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, |
| // unless ARNR filtering is enabled in which case we want |
| // an unfiltered alternative. We allow near/nearest as well |
| // because they may result in zero-zero MVs but be cheaper. |
| if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { |
| ref_frame_skip_mask[0] = (1 << LAST_FRAME) | (1 << GOLDEN_FRAME); |
| ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; |
| mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO; |
| if (frame_mv[NEARMV][ALTREF_FRAME].as_int != 0) |
| mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV); |
| if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != 0) |
| mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV); |
| } |
| } |
| |
| if (cpi->rc.is_src_frame_alt_ref) { |
| if (sf->alt_ref_search_fp) { |
| mode_skip_mask[ALTREF_FRAME] = 0; |
| ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME) & 0xff; |
| ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; |
| } |
| } |
| |
| if (sf->alt_ref_search_fp) |
| if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX) |
| if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1)) |
| mode_skip_mask[ALTREF_FRAME] |= INTER_ALL; |
| |
| if (sf->adaptive_mode_search) { |
| if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref && |
| cpi->rc.frames_since_golden >= 3) |
| if (x->pred_mv_sad[GOLDEN_FRAME] > (x->pred_mv_sad[LAST_FRAME] << 1)) |
| mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL; |
| } |
| |
| if (bsize > sf->max_intra_bsize) { |
| ref_frame_skip_mask[0] |= (1 << INTRA_FRAME); |
| ref_frame_skip_mask[1] |= (1 << INTRA_FRAME); |
| } |
| |
| mode_skip_mask[INTRA_FRAME] |= |
| ~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]); |
| |
| for (i = 0; i <= LAST_NEW_MV_INDEX; ++i) mode_threshold[i] = 0; |
| |
| for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i) |
| mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5; |
| |
| midx = sf->schedule_mode_search ? mode_skip_start : 0; |
| |
| while (midx > 4) { |
| uint8_t end_pos = 0; |
| for (i = 5; i < midx; ++i) { |
| if (mode_threshold[tile_mode_map[i - 1]] > |
| mode_threshold[tile_mode_map[i]]) { |
| uint8_t tmp = tile_mode_map[i]; |
| tile_mode_map[i] = tile_mode_map[i - 1]; |
| tile_mode_map[i - 1] = tmp; |
| end_pos = i; |
| } |
| } |
| midx = end_pos; |
| } |
| |
| memcpy(mode_map, tile_mode_map, sizeof(mode_map)); |
| |
| for (midx = 0; midx < MAX_MODES; ++midx) { |
| int mode_index = mode_map[midx]; |
| int mode_excluded = 0; |
| int64_t this_rd = INT64_MAX; |
| int disable_skip = 0; |
| int compmode_cost = 0; |
| int rate2 = 0, rate_y = 0, rate_uv = 0; |
| int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; |
| int skippable = 0; |
| int this_skip2 = 0; |
| int64_t total_sse = INT64_MAX; |
| int early_term = 0; |
| |
| this_mode = vp9_mode_order[mode_index].mode; |
| ref_frame = vp9_mode_order[mode_index].ref_frame[0]; |
| second_ref_frame = vp9_mode_order[mode_index].ref_frame[1]; |
| |
| vp9_zero(x->sum_y_eobs); |
| |
| if (is_rect_partition) { |
| if (ctx->skip_ref_frame_mask & (1 << ref_frame)) continue; |
| if (second_ref_frame > 0 && |
| (ctx->skip_ref_frame_mask & (1 << second_ref_frame))) |
| continue; |
| } |
| |
| // Look at the reference frame of the best mode so far and set the |
| // skip mask to look at a subset of the remaining modes. |
| if (midx == mode_skip_start && best_mode_index >= 0) { |
| switch (best_mbmode.ref_frame[0]) { |
| case INTRA_FRAME: break; |
| case LAST_FRAME: ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK; break; |
| case GOLDEN_FRAME: |
| ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK; |
| break; |
| case ALTREF_FRAME: ref_frame_skip_mask[0] |= ALT_REF_MODE_MASK; break; |
| case NONE: |
| case MAX_REF_FRAMES: assert(0 && "Invalid Reference frame"); break; |
| } |
| } |
| |
| if ((ref_frame_skip_mask[0] & (1 << ref_frame)) && |
| (ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame)))) |
| continue; |
| |
| if (mode_skip_mask[ref_frame] & (1 << this_mode)) continue; |
| |
| // Test best rd so far against threshold for trying this mode. |
| if (best_mode_skippable && sf->schedule_mode_search) |
| mode_threshold[mode_index] <<= 1; |
| |
| if (best_rd < mode_threshold[mode_index]) continue; |
| |
| // This is only used in motion vector unit test. |
| if (cpi->oxcf.motion_vector_unit_test && ref_frame == INTRA_FRAME) continue; |
| |
| if (sf->motion_field_mode_search) { |
| const int mi_width = VPXMIN(num_8x8_blocks_wide_lookup[bsize], |
| tile_info->mi_col_end - mi_col); |
| const int mi_height = VPXMIN(num_8x8_blocks_high_lookup[bsize], |
| tile_info->mi_row_end - mi_row); |
| const int bsl = mi_width_log2_lookup[bsize]; |
| int cb_partition_search_ctrl = |
| (((mi_row + mi_col) >> bsl) + |
| get_chessboard_index(cm->current_video_frame)) & |
| 0x1; |
| MODE_INFO *ref_mi; |
| int const_motion = 1; |
| int skip_ref_frame = !cb_partition_search_ctrl; |
| MV_REFERENCE_FRAME rf = NONE; |
| int_mv ref_mv; |
| ref_mv.as_int = INVALID_MV; |
| |
| if ((mi_row - 1) >= tile_info->mi_row_start) { |
| ref_mv = xd->mi[-xd->mi_stride]->mv[0]; |
| rf = xd->mi[-xd->mi_stride]->ref_frame[0]; |
| for (i = 0; i < mi_width; ++i) { |
| ref_mi = xd->mi[-xd->mi_stride + i]; |
| const_motion &= (ref_mv.as_int == ref_mi->mv[0].as_int) && |
| (ref_frame == ref_mi->ref_frame[0]); |
| skip_ref_frame &= (rf == ref_mi->ref_frame[0]); |
| } |
| } |
| |
| if ((mi_col - 1) >= tile_info->mi_col_start) { |
| if (ref_mv.as_int == INVALID_MV) ref_mv = xd->mi[-1]->mv[0]; |
| if (rf == NONE) rf = xd->mi[-1]->ref_frame[0]; |
| for (i = 0; i < mi_height; ++i) { |
| ref_mi = xd->mi[i * xd->mi_stride - 1]; |
| const_motion &= (ref_mv.as_int == ref_mi->mv[0].as_int) && |
| (ref_frame == ref_mi->ref_frame[0]); |
| skip_ref_frame &= (rf == ref_mi->ref_frame[0]); |
| } |
| } |
| |
| if (skip_ref_frame && this_mode != NEARESTMV && this_mode != NEWMV) |
| if (rf > INTRA_FRAME) |
| if (ref_frame != rf) continue; |
| |
| if (const_motion) |
| if (this_mode == NEARMV || this_mode == ZEROMV) continue; |
| } |
| |
| comp_pred = second_ref_frame > INTRA_FRAME; |
| if (comp_pred) { |
| if (!cpi->allow_comp_inter_inter) continue; |
| |
| if (cm->ref_frame_sign_bias[ref_frame] == |
| cm->ref_frame_sign_bias[second_ref_frame]) |
| continue; |
| |
| // Skip compound inter modes if ARF is not available. |
| if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue; |
| |
| // Do not allow compound prediction if the segment level reference frame |
| // feature is in use as in this case there can only be one reference. |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue; |
| |
| if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && |
| best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME) |
| continue; |
| |
| mode_excluded = cm->reference_mode == SINGLE_REFERENCE; |
| } else { |
| if (ref_frame != INTRA_FRAME) |
| mode_excluded = cm->reference_mode == COMPOUND_REFERENCE; |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| if (sf->adaptive_mode_search) |
| if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse) |
| continue; |
| |
| if (this_mode != DC_PRED) { |
| // Disable intra modes other than DC_PRED for blocks with low variance |
| // Threshold for intra skipping based on source variance |
| // TODO(debargha): Specialize the threshold for super block sizes |
| const unsigned int skip_intra_var_thresh = |
| (cpi->oxcf.content == VP9E_CONTENT_FILM) ? 0 : 64; |
| if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) && |
| x->source_variance < skip_intra_var_thresh) |
| continue; |
| // Only search the oblique modes if the best so far is |
| // one of the neighboring directional modes |
| if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && |
| (this_mode >= D45_PRED && this_mode <= TM_PRED)) { |
| if (best_mode_index >= 0 && best_mbmode.ref_frame[0] > INTRA_FRAME) |
| continue; |
| } |
| if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { |
| if (conditional_skipintra(this_mode, best_intra_mode)) continue; |
| } |
| } |
| } else { |
| const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, second_ref_frame }; |
| if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv, this_mode, |
| ref_frames)) |
| continue; |
| } |
| |
| mi->mode = this_mode; |
| mi->uv_mode = DC_PRED; |
| mi->ref_frame[0] = ref_frame; |
| mi->ref_frame[1] = second_ref_frame; |
| // Evaluate all sub-pel filters irrespective of whether we can use |
| // them for this frame. |
| mi->interp_filter = |
| cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter; |
| mi->mv[0].as_int = mi->mv[1].as_int = 0; |
| |
| x->skip = 0; |
| set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); |
| |
| // Select prediction reference frames. |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| TX_SIZE uv_tx; |
| struct macroblockd_plane *const pd = &xd->plane[1]; |
| memset(x->skip_txfm, 0, sizeof(x->skip_txfm)); |
| super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, bsize, |
| best_rd, recon); |
| if (rate_y == INT_MAX) continue; |
| |
| uv_tx = uv_txsize_lookup[bsize][mi->tx_size][pd->subsampling_x] |
| [pd->subsampling_y]; |
| if (rate_uv_intra[uv_tx] == INT_MAX) { |
| choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx], |
| &rate_uv_tokenonly[uv_tx], &dist_uv[uv_tx], |
| &skip_uv[uv_tx], &mode_uv[uv_tx]); |
| } |
| |
| rate_uv = rate_uv_tokenonly[uv_tx]; |
| distortion_uv = dist_uv[uv_tx]; |
| skippable = skippable && skip_uv[uv_tx]; |
| mi->uv_mode = mode_uv[uv_tx]; |
| |
| rate2 = rate_y + cpi->mbmode_cost[mi->mode] + rate_uv_intra[uv_tx]; |
| if (this_mode != DC_PRED && this_mode != TM_PRED) |
| rate2 += intra_cost_penalty; |
| distortion2 = distortion_y + distortion_uv; |
| } else { |
| this_rd = handle_inter_mode( |
| cpi, x, bsize, &rate2, &distortion2, &skippable, &rate_y, &rate_uv, |
| recon, &disable_skip, frame_mv, mi_row, mi_col, single_newmv, |
| single_inter_filter, single_skippable, &total_sse, best_rd, |
| &mask_filter, filter_cache); |
| if (this_rd == INT64_MAX) continue; |
| |
| compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred); |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost; |
| } |
| |
| // Estimate the reference frame signaling cost and add it |
| // to the rolling cost variable. |
| if (comp_pred) { |
| rate2 += ref_costs_comp[ref_frame]; |
| } else { |
| rate2 += ref_costs_single[ref_frame]; |
| } |
| |
| if (!disable_skip) { |
| const vpx_prob skip_prob = vp9_get_skip_prob(cm, xd); |
| const int skip_cost0 = vp9_cost_bit(skip_prob, 0); |
| const int skip_cost1 = vp9_cost_bit(skip_prob, 1); |
| |
| if (skippable) { |
| // Back out the coefficient coding costs |
| rate2 -= (rate_y + rate_uv); |
| |
| // Cost the skip mb case |
| rate2 += skip_cost1; |
| } else if (ref_frame != INTRA_FRAME && !xd->lossless && |
| !cpi->oxcf.sharpness) { |
| if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv + skip_cost0, |
| distortion2) < |
| RDCOST(x->rdmult, x->rddiv, skip_cost1, total_sse)) { |
| // Add in the cost of the no skip flag. |
| rate2 += skip_cost0; |
| } else { |
| // FIXME(rbultje) make this work for splitmv also |
| assert(total_sse >= 0); |
| |
| rate2 += skip_cost1; |
| distortion2 = total_sse; |
| rate2 -= (rate_y + rate_uv); |
| this_skip2 = 1; |
| } |
| } else { |
| // Add in the cost of the no skip flag. |
| rate2 += skip_cost0; |
| } |
| |
| // Calculate the final RD estimate for this mode. |
| this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); |
| } |
| |
| if (recon) { |
| // In film mode bias against DC pred and other intra if there is a |
| // significant difference between the variance of the sub blocks in the |
| // the source. Also apply some bias against compound modes which also |
| // tend to blur fine texture such as film grain over time. |
| // |
| // The sub block test here acts in the case where one or more sub |
| // blocks have high relatively variance but others relatively low |
| // variance. Here the high variance sub blocks may push the |
| // total variance for the current block size over the thresholds |
| // used in rd_variance_adjustment() below. |
| if (cpi->oxcf.content == VP9E_CONTENT_FILM) { |
| if (bsize >= BLOCK_16X16) { |
| int min_energy, max_energy; |
| vp9_get_sub_block_energy(cpi, x, mi_row, mi_col, bsize, &min_energy, |
| &max_energy); |
| if (max_energy > min_energy) { |
| if (ref_frame == INTRA_FRAME) { |
| if (this_mode == DC_PRED) |
| this_rd += (this_rd * (max_energy - min_energy)); |
| else |
| this_rd += (this_rd * (max_energy - min_energy)) / 4; |
| } else if (second_ref_frame > INTRA_FRAME) { |
| this_rd += this_rd / 4; |
| } |
| } |
| } |
| } |
| // Apply an adjustment to the rd value based on the similarity of the |
| // source variance and reconstructed variance. |
| rd_variance_adjustment(cpi, x, bsize, &this_rd, recon, ref_frame, |
| second_ref_frame, this_mode); |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| // Keep record of best intra rd |
| if (this_rd < best_intra_rd) { |
| best_intra_rd = this_rd; |
| best_intra_mode = mi->mode; |
| } |
| } |
| |
| if (!disable_skip && ref_frame == INTRA_FRAME) { |
| for (i = 0; i < REFERENCE_MODES; ++i) |
| best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd); |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) |
| best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd); |
| } |
| |
| // Did this mode help.. i.e. is it the new best mode |
| if (this_rd < best_rd || x->skip) { |
| int max_plane = MAX_MB_PLANE; |
| if (!mode_excluded) { |
| // Note index of best mode so far |
| best_mode_index = mode_index; |
| |
| if (ref_frame == INTRA_FRAME) { |
| /* required for left and above block mv */ |
| mi->mv[0].as_int = 0; |
| max_plane = 1; |
| // Initialize interp_filter here so we do not have to check for |
| // inter block modes in get_pred_context_switchable_interp() |
| mi->interp_filter = SWITCHABLE_FILTERS; |
| } else { |
| best_pred_sse = x->pred_sse[ref_frame]; |
| } |
| |
| rd_cost->rate = rate2; |
| rd_cost->dist = distortion2; |
| rd_cost->rdcost = this_rd; |
| best_rd = this_rd; |
| best_mbmode = *mi; |
| best_skip2 = this_skip2; |
| best_mode_skippable = skippable; |
| |
| if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, max_plane); |
| memcpy(ctx->zcoeff_blk, x->zcoeff_blk[mi->tx_size], |
| sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk); |
| ctx->sum_y_eobs = x->sum_y_eobs[mi->tx_size]; |
| |
| // TODO(debargha): enhance this test with a better distortion prediction |
| // based on qp, activity mask and history |
| if ((mode_search_skip_flags & FLAG_EARLY_TERMINATE) && |
| (mode_index > MIN_EARLY_TERM_INDEX)) { |
| int qstep = xd->plane[0].dequant[1]; |
| // TODO(debargha): Enhance this by specializing for each mode_index |
| int scale = 4; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| qstep >>= (xd->bd - 8); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| if (x->source_variance < UINT_MAX) { |
| const int var_adjust = (x->source_variance < 16); |
| scale -= var_adjust; |
| } |
| if (ref_frame > INTRA_FRAME && distortion2 * scale < qstep * qstep) { |
| early_term = 1; |
| } |
| } |
| } |
| } |
| |
| /* keep record of best compound/single-only prediction */ |
| if (!disable_skip && ref_frame != INTRA_FRAME) { |
| int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| single_rate = rate2 - compmode_cost; |
| hybrid_rate = rate2; |
| } else { |
| single_rate = rate2; |
| hybrid_rate = rate2 + compmode_cost; |
| } |
| |
| single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); |
| hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); |
| |
| if (!comp_pred) { |
| if (single_rd < best_pred_rd[SINGLE_REFERENCE]) |
| best_pred_rd[SINGLE_REFERENCE] = single_rd; |
| } else { |
| if (single_rd < best_pred_rd[COMPOUND_REFERENCE]) |
| best_pred_rd[COMPOUND_REFERENCE] = single_rd; |
| } |
| if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT]) |
| best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; |
| |
| /* keep record of best filter type */ |
| if (!mode_excluded && cm->interp_filter != BILINEAR) { |
| int64_t ref = |
| filter_cache[cm->interp_filter == SWITCHABLE ? SWITCHABLE_FILTERS |
| : cm->interp_filter]; |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { |
| int64_t adj_rd; |
| if (ref == INT64_MAX) |
| adj_rd = 0; |
| else if (filter_cache[i] == INT64_MAX) |
| // when early termination is triggered, the encoder does not have |
| // access to the rate-distortion cost. it only knows that the cost |
| // should be above the maximum valid value. hence it takes the known |
| // maximum plus an arbitrary constant as the rate-distortion cost. |
| adj_rd = mask_filter - ref + 10; |
| else |
| adj_rd = filter_cache[i] - ref; |
| |
| adj_rd += this_rd; |
| best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd); |
| } |
| } |
| } |
| |
| if (early_term) break; |
| |
| if (x->skip && !comp_pred) break; |
| } |
| |
| // The inter modes' rate costs are not calculated precisely in some cases. |
| // Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and |
| // ZEROMV. Here, checks are added for those cases, and the mode decisions |
| // are corrected. |
| if (best_mbmode.mode == NEWMV) { |
| const MV_REFERENCE_FRAME refs[2] = { best_mbmode.ref_frame[0], |
| best_mbmode.ref_frame[1] }; |
| int comp_pred_mode = refs[1] > INTRA_FRAME; |
| |
| if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int && |
| ((comp_pred_mode && |
| frame_mv[NEARESTMV][refs[1]].as_int == best_mbmode.mv[1].as_int) || |
| !comp_pred_mode)) |
| best_mbmode.mode = NEARESTMV; |
| else if (frame_mv[NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int && |
| ((comp_pred_mode && |
| frame_mv[NEARMV][refs[1]].as_int == best_mbmode.mv[1].as_int) || |
| !comp_pred_mode)) |
| best_mbmode.mode = NEARMV; |
| else if (best_mbmode.mv[0].as_int == 0 && |
| ((comp_pred_mode && best_mbmode.mv[1].as_int == 0) || |
| !comp_pred_mode)) |
| best_mbmode.mode = ZEROMV; |
| } |
| |
| if (best_mode_index < 0 || best_rd >= best_rd_so_far) { |
| // If adaptive interp filter is enabled, then the current leaf node of 8x8 |
| // data is needed for sub8x8. Hence preserve the context. |
| #if CONFIG_CONSISTENT_RECODE |
| if (bsize == BLOCK_8X8) ctx->mic = *xd->mi[0]; |
| #else |
| if (cpi->row_mt && bsize == BLOCK_8X8) ctx->mic = *xd->mi[0]; |
| #endif |
| rd_cost->rate = INT_MAX; |
| rd_cost->rdcost = INT64_MAX; |
| return; |
| } |
| |
| // If we used an estimate for the uv intra rd in the loop above... |
| if (sf->use_uv_intra_rd_estimate) { |
| // Do Intra UV best rd mode selection if best mode choice above was intra. |
| if (best_mbmode.ref_frame[0] == INTRA_FRAME) { |
| TX_SIZE uv_tx_size; |
| *mi = best_mbmode; |
| uv_tx_size = get_uv_tx_size(mi, &xd->plane[1]); |
| rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra[uv_tx_size], |
| &rate_uv_tokenonly[uv_tx_size], |
| &dist_uv[uv_tx_size], &skip_uv[uv_tx_size], |
| bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, |
| uv_tx_size); |
| } |
| } |
| |
| assert((cm->interp_filter == SWITCHABLE) || |
| (cm->interp_filter == best_mbmode.interp_filter) || |
| !is_inter_block(&best_mbmode)); |
| |
| if (!cpi->rc.is_src_frame_alt_ref) |
| vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact, |
| sf->adaptive_rd_thresh, bsize, best_mode_index); |
| |
| // macroblock modes |
| *mi = best_mbmode; |
| x->skip |= best_skip2; |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) { |
| if (best_pred_rd[i] == INT64_MAX) |
| best_pred_diff[i] = INT_MIN; |
| else |
| best_pred_diff[i] = best_rd - best_pred_rd[i]; |
| } |
| |
| if (!x->skip) { |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { |
| if (best_filter_rd[i] == INT64_MAX) |
| best_filter_diff[i] = 0; |
| else |
| best_filter_diff[i] = best_rd - best_filter_rd[i]; |
| } |
| if (cm->interp_filter == SWITCHABLE) |
| assert(best_filter_diff[SWITCHABLE_FILTERS] == 0); |
| } else { |
| vp9_zero(best_filter_diff); |
| } |
| |
| // TODO(yunqingwang): Moving this line in front of the above best_filter_diff |
| // updating code causes PSNR loss. Need to figure out the confliction. |
| x->skip |= best_mode_skippable; |
| |
| if (!x->skip && !x->select_tx_size) { |
| int has_high_freq_coeff = 0; |
| int plane; |
| int max_plane = is_inter_block(xd->mi[0]) ? MAX_MB_PLANE : 1; |
| for (plane = 0; plane < max_plane; ++plane) { |
| x->plane[plane].eobs = ctx->eobs_pbuf[plane][1]; |
| has_high_freq_coeff |= vp9_has_high_freq_in_plane(x, bsize, plane); |
| } |
| |
| for (plane = max_plane; plane < MAX_MB_PLANE; ++plane) { |
| x->plane[plane].eobs = ctx->eobs_pbuf[plane][2]; |
| has_high_freq_coeff |= vp9_has_high_freq_in_plane(x, bsize, plane); |
| } |
| |
| best_mode_skippable |= !has_high_freq_coeff; |
| } |
| |
| assert(best_mode_index >= 0); |
| |
| store_coding_context(x, ctx, best_mode_index, best_pred_diff, |
| best_filter_diff, best_mode_skippable); |
| } |
| |
| void vp9_rd_pick_inter_mode_sb_seg_skip(VP9_COMP *cpi, TileDataEnc *tile_data, |
| MACROBLOCK *x, RD_COST *rd_cost, |
| BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, |
| int64_t best_rd_so_far) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| unsigned char segment_id = mi->segment_id; |
| const int comp_pred = 0; |
| int i; |
| int64_t best_pred_diff[REFERENCE_MODES]; |
| int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS]; |
| unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES]; |
| vpx_prob comp_mode_p; |
| INTERP_FILTER best_filter = SWITCHABLE; |
| int64_t this_rd = INT64_MAX; |
| int rate2 = 0; |
| const int64_t distortion2 = 0; |
| |
| x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; |
| |
| estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, |
| &comp_mode_p); |
| |
| for (i = 0; i < MAX_REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; |
| for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX; |
| |
| rd_cost->rate = INT_MAX; |
| |
| assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)); |
| |
| mi->mode = ZEROMV; |
| mi->uv_mode = DC_PRED; |
| mi->ref_frame[0] = LAST_FRAME; |
| mi->ref_frame[1] = NONE; |
| mi->mv[0].as_int = 0; |
| x->skip = 1; |
| |
| ctx->sum_y_eobs = 0; |
| |
| if (cm->interp_filter != BILINEAR) { |
| best_filter = EIGHTTAP; |
| if (cm->interp_filter == SWITCHABLE && |
| x->source_variance >= cpi->sf.disable_filter_search_var_thresh) { |
| int rs; |
| int best_rs = INT_MAX; |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| mi->interp_filter = i; |
| rs = vp9_get_switchable_rate(cpi, xd); |
| if (rs < best_rs) { |
| best_rs = rs; |
| best_filter = mi->interp_filter; |
| } |
| } |
| } |
| } |
| // Set the appropriate filter |
| if (cm->interp_filter == SWITCHABLE) { |
| mi->interp_filter = best_filter; |
| rate2 += vp9_get_switchable_rate(cpi, xd); |
| } else { |
| mi->interp_filter = cm->interp_filter; |
| } |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) |
| rate2 += vp9_cost_bit(comp_mode_p, comp_pred); |
| |
| // Estimate the reference frame signaling cost and add it |
| // to the rolling cost variable. |
| rate2 += ref_costs_single[LAST_FRAME]; |
| this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); |
| |
| rd_cost->rate = rate2; |
| rd_cost->dist = distortion2; |
| rd_cost->rdcost = this_rd; |
| |
| if (this_rd >= best_rd_so_far) { |
| rd_cost->rate = INT_MAX; |
| rd_cost->rdcost = INT64_MAX; |
| return; |
| } |
| |
| assert((cm->interp_filter == SWITCHABLE) || |
| (cm->interp_filter == mi->interp_filter)); |
| |
| vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact, |
| cpi->sf.adaptive_rd_thresh, bsize, THR_ZEROMV); |
| |
| vp9_zero(best_pred_diff); |
| vp9_zero(best_filter_diff); |
| |
| if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, MAX_MB_PLANE); |
| store_coding_context(x, ctx, THR_ZEROMV, best_pred_diff, best_filter_diff, 0); |
| } |
| |
| void vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, TileDataEnc *tile_data, |
| MACROBLOCK *x, int mi_row, int mi_col, |
| RD_COST *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, |
| int64_t best_rd_so_far) { |
| VP9_COMMON *const cm = &cpi->common; |
| RD_OPT *const rd_opt = &cpi->rd; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| const struct segmentation *const seg = &cm->seg; |
| MV_REFERENCE_FRAME ref_frame, second_ref_frame; |
| unsigned char segment_id = mi->segment_id; |
| int comp_pred, i; |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE]; |
| static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, |
| VP9_ALT_FLAG }; |
| int64_t best_rd = best_rd_so_far; |
| int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise |
| int64_t best_pred_diff[REFERENCE_MODES]; |
| int64_t best_pred_rd[REFERENCE_MODES]; |
| int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS]; |
| int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS]; |
| MODE_INFO best_mbmode; |
| int ref_index, best_ref_index = 0; |
| unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES]; |
| vpx_prob comp_mode_p; |
| INTERP_FILTER tmp_best_filter = SWITCHABLE; |
| int rate_uv_intra, rate_uv_tokenonly; |
| int64_t dist_uv; |
| int skip_uv; |
| PREDICTION_MODE mode_uv = DC_PRED; |
| const int intra_cost_penalty = |
| vp9_get_intra_cost_penalty(cpi, bsize, cm->base_qindex, cm->y_dc_delta_q); |
| int_mv seg_mvs[4][MAX_REF_FRAMES]; |
| b_mode_info best_bmodes[4]; |
| int best_skip2 = 0; |
| int ref_frame_skip_mask[2] = { 0 }; |
| int64_t mask_filter = 0; |
| int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS]; |
| int internal_active_edge = |
| vp9_active_edge_sb(cpi, mi_row, mi_col) && vp9_internal_image_edge(cpi); |
| const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize]; |
| |
| x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; |
| memset(x->zcoeff_blk[TX_4X4], 0, 4); |
| vp9_zero(best_mbmode); |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX; |
| |
| for (i = 0; i < 4; i++) { |
| int j; |
| for (j = 0; j < MAX_REF_FRAMES; j++) seg_mvs[i][j].as_int = INVALID_MV; |
| } |
| |
| estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, |
| &comp_mode_p); |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX; |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) |
| best_filter_rd[i] = INT64_MAX; |
| rate_uv_intra = INT_MAX; |
| |
| rd_cost->rate = INT_MAX; |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { |
| if (cpi->ref_frame_flags & flag_list[ref_frame]) { |
| setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, |
| frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb); |
| } else { |
| ref_frame_skip_mask[0] |= (1 << ref_frame); |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| } |
| frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; |
| frame_mv[ZEROMV][ref_frame].as_int = 0; |
| } |
| |
| for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) { |
| int mode_excluded = 0; |
| int64_t this_rd = INT64_MAX; |
| int disable_skip = 0; |
| int compmode_cost = 0; |
| int rate2 = 0, rate_y = 0, rate_uv = 0; |
| int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; |
| int skippable = 0; |
| int i; |
| int this_skip2 = 0; |
| int64_t total_sse = INT_MAX; |
| int early_term = 0; |
| struct buf_2d backup_yv12[2][MAX_MB_PLANE]; |
| |
| ref_frame = vp9_ref_order[ref_index].ref_frame[0]; |
| second_ref_frame = vp9_ref_order[ref_index].ref_frame[1]; |
| |
| vp9_zero(x->sum_y_eobs); |
| |
| #if CONFIG_BETTER_HW_COMPATIBILITY |
| // forbid 8X4 and 4X8 partitions if any reference frame is scaled. |
| if (bsize == BLOCK_8X4 || bsize == BLOCK_4X8) { |
| int ref_scaled = ref_frame > INTRA_FRAME && |
| vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf); |
| if (second_ref_frame > INTRA_FRAME) |
| ref_scaled += vp9_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf); |
| if (ref_scaled) continue; |
| } |
| #endif |
| // Look at the reference frame of the best mode so far and set the |
| // skip mask to look at a subset of the remaining modes. |
| if (ref_index > 2 && sf->mode_skip_start < MAX_MODES) { |
| if (ref_index == 3) { |
| switch (best_mbmode.ref_frame[0]) { |
| case INTRA_FRAME: break; |
| case LAST_FRAME: |
| ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME); |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| break; |
| case GOLDEN_FRAME: |
| ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << ALTREF_FRAME); |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| break; |
| case ALTREF_FRAME: |
| ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << LAST_FRAME); |
| break; |
| case NONE: |
| case MAX_REF_FRAMES: assert(0 && "Invalid Reference frame"); break; |
| } |
| } |
| } |
| |
| if ((ref_frame_skip_mask[0] & (1 << ref_frame)) && |
| (ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame)))) |
| continue; |
| |
| // Test best rd so far against threshold for trying this mode. |
| if (!internal_active_edge && |
| rd_less_than_thresh(best_rd, |
| rd_opt->threshes[segment_id][bsize][ref_index], |
| &rd_thresh_freq_fact[ref_index])) |
| continue; |
| |
| // This is only used in motion vector unit test. |
| if (cpi->oxcf.motion_vector_unit_test && ref_frame == INTRA_FRAME) continue; |
| |
| comp_pred = second_ref_frame > INTRA_FRAME; |
| if (comp_pred) { |
| if (!cpi->allow_comp_inter_inter) continue; |
| |
| if (cm->ref_frame_sign_bias[ref_frame] == |
| cm->ref_frame_sign_bias[second_ref_frame]) |
| continue; |
| |
| if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue; |
| // Do not allow compound prediction if the segment level reference frame |
| // feature is in use as in this case there can only be one reference. |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue; |
| |
| if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && |
| best_mbmode.ref_frame[0] == INTRA_FRAME) |
| continue; |
| } |
| |
| if (comp_pred) |
| mode_excluded = cm->reference_mode == SINGLE_REFERENCE; |
| else if (ref_frame != INTRA_FRAME) |
| mode_excluded = cm->reference_mode == COMPOUND_REFERENCE; |
| |
| // If the segment reference frame feature is enabled.... |
| // then do nothing if the current ref frame is not allowed.. |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { |
| continue; |
| // Disable this drop out case if the ref frame |
| // segment level feature is enabled for this segment. This is to |
| // prevent the possibility that we end up unable to pick any mode. |
| } else if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { |
| // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, |
| // unless ARNR filtering is enabled in which case we want |
| // an unfiltered alternative. We allow near/nearest as well |
| // because they may result in zero-zero MVs but be cheaper. |
| if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) |
| continue; |
| } |
| |
| mi->tx_size = TX_4X4; |
| mi->uv_mode = DC_PRED; |
| mi->ref_frame[0] = ref_frame; |
| mi->ref_frame[1] = second_ref_frame; |
| // Evaluate all sub-pel filters irrespective of whether we can use |
| // them for this frame. |
| mi->interp_filter = |
| cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter; |
| x->skip = 0; |
| set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); |
| |
| // Select prediction reference frames. |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| int rate; |
| if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y, &distortion_y, |
| best_rd) >= best_rd) |
| continue; |
| rate2 += rate; |
| rate2 += intra_cost_penalty; |
| distortion2 += distortion_y; |
| |
| if (rate_uv_intra == INT_MAX) { |
| choose_intra_uv_mode(cpi, x, ctx, bsize, TX_4X4, &rate_uv_intra, |
| &rate_uv_tokenonly, &dist_uv, &skip_uv, &mode_uv); |
| } |
| rate2 += rate_uv_intra; |
| rate_uv = rate_uv_tokenonly; |
| distortion2 += dist_uv; |
| distortion_uv = dist_uv; |
| mi->uv_mode = mode_uv; |
| } else { |
| int rate; |
| int64_t distortion; |
| int64_t this_rd_thresh; |
| int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX; |
| int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX; |
| int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse; |
| int tmp_best_skippable = 0; |
| int switchable_filter_index; |
| int_mv *second_ref = |
| comp_pred ? &x->mbmi_ext->ref_mvs[second_ref_frame][0] : NULL; |
| b_mode_info tmp_best_bmodes[16]; |
| MODE_INFO tmp_best_mbmode; |
| BEST_SEG_INFO bsi[SWITCHABLE_FILTERS]; |
| int pred_exists = 0; |
| int uv_skippable; |
| |
| YV12_BUFFER_CONFIG *scaled_ref_frame[2] = { NULL, NULL }; |
| int ref; |
| |
| for (ref = 0; ref < 2; ++ref) { |
| scaled_ref_frame[ref] = |
| mi->ref_frame[ref] > INTRA_FRAME |
| ? vp9_get_scaled_ref_frame(cpi, mi->ref_frame[ref]) |
| : NULL; |
| |
| if (scaled_ref_frame[ref]) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| backup_yv12[ref][i] = xd->plane[i].pre[ref]; |
| vp9_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col, |
| NULL); |
| } |
| } |
| |
| this_rd_thresh = (ref_frame == LAST_FRAME) |
| ? rd_opt->threshes[segment_id][bsize][THR_LAST] |
| : rd_opt->threshes[segment_id][bsize][THR_ALTR]; |
| this_rd_thresh = (ref_frame == GOLDEN_FRAME) |
| ? rd_opt->threshes[segment_id][bsize][THR_GOLD] |
| : this_rd_thresh; |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) |
| filter_cache[i] = INT64_MAX; |
| |
| if (cm->interp_filter != BILINEAR) { |
| tmp_best_filter = EIGHTTAP; |
| if (x->source_variance < sf->disable_filter_search_var_thresh) { |
| tmp_best_filter = EIGHTTAP; |
| } else if (sf->adaptive_pred_interp_filter == 1 && |
| ctx->pred_interp_filter < SWITCHABLE) { |
| tmp_best_filter = ctx->pred_interp_filter; |
| } else if (sf->adaptive_pred_interp_filter == 2) { |
| tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE |
| ? ctx->pred_interp_filter |
| : 0; |
| } else { |
| for (switchable_filter_index = 0; |
| switchable_filter_index < SWITCHABLE_FILTERS; |
| ++switchable_filter_index) { |
| int newbest, rs; |
| int64_t rs_rd; |
| MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext; |
| mi->interp_filter = switchable_filter_index; |
| tmp_rd = rd_pick_best_sub8x8_mode( |
| cpi, x, &mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd, |
| &rate, &rate_y, &distortion, &skippable, &total_sse, |
| (int)this_rd_thresh, seg_mvs, bsi, switchable_filter_index, |
| mi_row, mi_col); |
| |
| if (tmp_rd == INT64_MAX) continue; |
| rs = vp9_get_switchable_rate(cpi, xd); |
| rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); |
| filter_cache[switchable_filter_index] = tmp_rd; |
| filter_cache[SWITCHABLE_FILTERS] = |
| VPXMIN(filter_cache[SWITCHABLE_FILTERS], tmp_rd + rs_rd); |
| if (cm->interp_filter == SWITCHABLE) tmp_rd += rs_rd; |
| |
| mask_filter = VPXMAX(mask_filter, tmp_rd); |
| |
| newbest = (tmp_rd < tmp_best_rd); |
| if (newbest) { |
| tmp_best_filter = mi->interp_filter; |
| tmp_best_rd = tmp_rd; |
| } |
| if ((newbest && cm->interp_filter == SWITCHABLE) || |
| (mi->interp_filter == cm->interp_filter && |
| cm->interp_filter != SWITCHABLE)) { |
| tmp_best_rdu = tmp_rd; |
| tmp_best_rate = rate; |
| tmp_best_ratey = rate_y; |
| tmp_best_distortion = distortion; |
| tmp_best_sse = total_sse; |
| tmp_best_skippable = skippable; |
| tmp_best_mbmode = *mi; |
| x->sum_y_eobs[TX_4X4] = 0; |
| for (i = 0; i < 4; i++) { |
| tmp_best_bmodes[i] = xd->mi[0]->bmi[i]; |
| x->zcoeff_blk[TX_4X4][i] = !x->plane[0].eobs[i]; |
| x->sum_y_eobs[TX_4X4] += x->plane[0].eobs[i]; |
| } |
| pred_exists = 1; |
| if (switchable_filter_index == 0 && sf->use_rd_breakout && |
| best_rd < INT64_MAX) { |
| if (tmp_best_rdu / 2 > best_rd) { |
| // skip searching the other filters if the first is |
| // already substantially larger than the best so far |
| tmp_best_filter = mi->interp_filter; |
| tmp_best_rdu = INT64_MAX; |
| break; |
| } |
| } |
| } |
| } // switchable_filter_index loop |
| } |
| } |
| |
| if (tmp_best_rdu == INT64_MAX && pred_exists) continue; |
| |
| mi->interp_filter = (cm->interp_filter == SWITCHABLE ? tmp_best_filter |
| : cm->interp_filter); |
| if (!pred_exists) { |
| // Handles the special case when a filter that is not in the |
| // switchable list (bilinear, 6-tap) is indicated at the frame level |
| tmp_rd = rd_pick_best_sub8x8_mode( |
| cpi, x, &x->mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd, |
| &rate, &rate_y, &distortion, &skippable, &total_sse, |
| (int)this_rd_thresh, seg_mvs, bsi, 0, mi_row, mi_col); |
| if (tmp_rd == INT64_MAX) continue; |
| x->sum_y_eobs[TX_4X4] = 0; |
| for (i = 0; i < 4; i++) { |
| x->zcoeff_blk[TX_4X4][i] = !x->plane[0].eobs[i]; |
| x->sum_y_eobs[TX_4X4] += x->plane[0].eobs[i]; |
| } |
| } else { |
| total_sse = tmp_best_sse; |
| rate = tmp_best_rate; |
| rate_y = tmp_best_ratey; |
| distortion = tmp_best_distortion; |
| skippable = tmp_best_skippable; |
| *mi = tmp_best_mbmode; |
| for (i = 0; i < 4; i++) xd->mi[0]->bmi[i] = tmp_best_bmodes[i]; |
| } |
| |
| rate2 += rate; |
| distortion2 += distortion; |
| |
| if (cm->interp_filter == SWITCHABLE) |
| rate2 += vp9_get_switchable_rate(cpi, xd); |
| |
| if (!mode_excluded) |
| mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE |
| : cm->reference_mode == COMPOUND_REFERENCE; |
| |
| compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred); |
| |
| tmp_best_rdu = |
| best_rd - VPXMIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2), |
| RDCOST(x->rdmult, x->rddiv, 0, total_sse)); |
| |
| if (tmp_best_rdu > 0) { |
| // If even the 'Y' rd value of split is higher than best so far |
| // then dont bother looking at UV |
| vp9_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col, BLOCK_8X8); |
| memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); |
| if (!super_block_uvrd(cpi, x, &rate_uv, &distortion_uv, &uv_skippable, |
| &uv_sse, BLOCK_8X8, tmp_best_rdu)) { |
| for (ref = 0; ref < 2; ++ref) { |
| if (scaled_ref_frame[ref]) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; ++i) |
| xd->plane[i].pre[ref] = backup_yv12[ref][i]; |
| } |
| } |
| continue; |
| } |
| |
| rate2 += rate_uv; |
| distortion2 += distortion_uv; |
| skippable = skippable && uv_skippable; |
| total_sse += uv_sse; |
| } |
| |
| for (ref = 0; ref < 2; ++ref) { |
| if (scaled_ref_frame[ref]) { |
| // Restore the prediction frame pointers to their unscaled versions. |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; ++i) |
| xd->plane[i].pre[ref] = backup_yv12[ref][i]; |
| } |
| } |
| } |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost; |
| |
| // Estimate the reference frame signaling cost and add it |
| // to the rolling cost variable. |
| if (second_ref_frame > INTRA_FRAME) { |
| rate2 += ref_costs_comp[ref_frame]; |
| } else { |
| rate2 += ref_costs_single[ref_frame]; |
| } |
| |
| if (!disable_skip) { |
| const vpx_prob skip_prob = vp9_get_skip_prob(cm, xd); |
| const int skip_cost0 = vp9_cost_bit(skip_prob, 0); |
| const int skip_cost1 = vp9_cost_bit(skip_prob, 1); |
| |
| // Skip is never coded at the segment level for sub8x8 blocks and instead |
| // always coded in the bitstream at the mode info level. |
| if (ref_frame != INTRA_FRAME && !xd->lossless) { |
| if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv + skip_cost0, |
| distortion2) < |
| RDCOST(x->rdmult, x->rddiv, skip_cost1, total_sse)) { |
| // Add in the cost of the no skip flag. |
| rate2 += skip_cost0; |
| } else { |
| // FIXME(rbultje) make this work for splitmv also |
| rate2 += skip_cost1; |
| distortion2 = total_sse; |
| assert(total_sse >= 0); |
| rate2 -= (rate_y + rate_uv); |
| rate_y = 0; |
| rate_uv = 0; |
| this_skip2 = 1; |
| } |
| } else { |
| // Add in the cost of the no skip flag. |
| rate2 += skip_cost0; |
| } |
| |
| // Calculate the final RD estimate for this mode. |
| this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); |
| } |
| |
| if (!disable_skip && ref_frame == INTRA_FRAME) { |
| for (i = 0; i < REFERENCE_MODES; ++i) |
| best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd); |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) |
| best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd); |
| } |
| |
| // Did this mode help.. i.e. is it the new best mode |
| if (this_rd < best_rd || x->skip) { |
| if (!mode_excluded) { |
| int max_plane = MAX_MB_PLANE; |
| // Note index of best mode so far |
| best_ref_index = ref_index; |
| |
| if (ref_frame == INTRA_FRAME) { |
| /* required for left and above block mv */ |
| mi->mv[0].as_int = 0; |
| max_plane = 1; |
| // Initialize interp_filter here so we do not have to check for |
| // inter block modes in get_pred_context_switchable_interp() |
| mi->interp_filter = SWITCHABLE_FILTERS; |
| } |
| |
| rd_cost->rate = rate2; |
| rd_cost->dist = distortion2; |
| rd_cost->rdcost = this_rd; |
| best_rd = this_rd; |
| best_yrd = |
| best_rd - RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv); |
| best_mbmode = *mi; |
| best_skip2 = this_skip2; |
| if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, max_plane); |
| memcpy(ctx->zcoeff_blk, x->zcoeff_blk[TX_4X4], |
| sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk); |
| ctx->sum_y_eobs = x->sum_y_eobs[TX_4X4]; |
| |
| for (i = 0; i < 4; i++) best_bmodes[i] = xd->mi[0]->bmi[i]; |
| |
| // TODO(debargha): enhance this test with a better distortion prediction |
| // based on qp, activity mask and history |
| if ((sf->mode_search_skip_flags & FLAG_EARLY_TERMINATE) && |
| (ref_index > MIN_EARLY_TERM_INDEX)) { |
| int qstep = xd->plane[0].dequant[1]; |
| // TODO(debargha): Enhance this by specializing for each mode_index |
| int scale = 4; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| qstep >>= (xd->bd - 8); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| if (x->source_variance < UINT_MAX) { |
| const int var_adjust = (x->source_variance < 16); |
| scale -= var_adjust; |
| } |
| if (ref_frame > INTRA_FRAME && distortion2 * scale < qstep * qstep) { |
| early_term = 1; |
| } |
| } |
| } |
| } |
| |
| /* keep record of best compound/single-only prediction */ |
| if (!disable_skip && ref_frame != INTRA_FRAME) { |
| int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| single_rate = rate2 - compmode_cost; |
| hybrid_rate = rate2; |
| } else { |
| single_rate = rate2; |
| hybrid_rate = rate2 + compmode_cost; |
| } |
| |
| single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); |
| hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); |
| |
| if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE]) |
| best_pred_rd[SINGLE_REFERENCE] = single_rd; |
| else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE]) |
| best_pred_rd[COMPOUND_REFERENCE] = single_rd; |
| |
| if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT]) |
| best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; |
| } |
| |
| /* keep record of best filter type */ |
| if (!mode_excluded && !disable_skip && ref_frame != INTRA_FRAME && |
| cm->interp_filter != BILINEAR) { |
| int64_t ref = |
| filter_cache[cm->interp_filter == SWITCHABLE ? SWITCHABLE_FILTERS |
| : cm->interp_filter]; |
| int64_t adj_rd; |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { |
| if (ref == INT64_MAX) |
| adj_rd = 0; |
| else if (filter_cache[i] == INT64_MAX) |
| // when early termination is triggered, the encoder does not have |
| // access to the rate-distortion cost. it only knows that the cost |
| // should be above the maximum valid value. hence it takes the known |
| // maximum plus an arbitrary constant as the rate-distortion cost. |
| adj_rd = mask_filter - ref + 10; |
| else |
| adj_rd = filter_cache[i] - ref; |
| |
| adj_rd += this_rd; |
| best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd); |
| } |
| } |
| |
| if (early_term) break; |
| |
| if (x->skip && !comp_pred) break; |
| } |
| |
| if (best_rd >= best_rd_so_far) { |
| rd_cost->rate = INT_MAX; |
| rd_cost->rdcost = INT64_MAX; |
| return; |
| } |
| |
| // If we used an estimate for the uv intra rd in the loop above... |
| if (sf->use_uv_intra_rd_estimate) { |
| // Do Intra UV best rd mode selection if best mode choice above was intra. |
| if (best_mbmode.ref_frame[0] == INTRA_FRAME) { |
| *mi = best_mbmode; |
| rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra, &rate_uv_tokenonly, |
| &dist_uv, &skip_uv, BLOCK_8X8, TX_4X4); |
| } |
| } |
| |
| if (best_rd == INT64_MAX) { |
| rd_cost->rate = INT_MAX; |
| rd_cost->dist = INT64_MAX; |
| rd_cost->rdcost = INT64_MAX; |
| return; |
| } |
| |
| assert((cm->interp_filter == SWITCHABLE) || |
| (cm->interp_filter == best_mbmode.interp_filter) || |
| !is_inter_block(&best_mbmode)); |
| |
| vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact, sf->adaptive_rd_thresh, |
| bsize, best_ref_index); |
| |
| // macroblock modes |
| *mi = best_mbmode; |
| x->skip |= best_skip2; |
| if (!is_inter_block(&best_mbmode)) { |
| for (i = 0; i < 4; i++) xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode; |
| } else { |
| for (i = 0; i < 4; ++i) |
| memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info)); |
| |
| mi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int; |
| mi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int; |
| } |
| // If the second reference does not exist, set the corresponding mv to zero. |
| if (mi->ref_frame[1] == NONE) { |
| mi->mv[1].as_int = 0; |
| for (i = 0; i < 4; ++i) { |
| mi->bmi[i].as_mv[1].as_int = 0; |
| } |
| } |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) { |
| if (best_pred_rd[i] == INT64_MAX) |
| best_pred_diff[i] = INT_MIN; |
| else |
| best_pred_diff[i] = best_rd - best_pred_rd[i]; |
| } |
| |
| if (!x->skip) { |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { |
| if (best_filter_rd[i] == INT64_MAX) |
| best_filter_diff[i] = 0; |
| else |
| best_filter_diff[i] = best_rd - best_filter_rd[i]; |
| } |
| if (cm->interp_filter == SWITCHABLE) |
| assert(best_filter_diff[SWITCHABLE_FILTERS] == 0); |
| } else { |
| vp9_zero(best_filter_diff); |
| } |
| |
| store_coding_context(x, ctx, best_ref_index, best_pred_diff, best_filter_diff, |
| 0); |
| } |
| #endif // !CONFIG_REALTIME_ONLY |