blob: 5af853d4ef28fda69978e0926d7f73862339c9e5 [file] [log] [blame]
#include "llvm/ADT/DenseMap.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
#include "llvm/Object/ObjectFile.h"
#define DEBUG_TYPE "dwarfdump"
using namespace llvm;
using namespace object;
/// Holds statistics for one function (or other entity that has a PC range and
/// contains variables, such as a compile unit).
struct PerFunctionStats {
/// Number of inlined instances of this function.
unsigned NumFnInlined = 0;
/// Number of variables with location across all inlined instances.
unsigned TotalVarWithLoc = 0;
/// Number of constants with location across all inlined instances.
unsigned ConstantMembers = 0;
/// List of all Variables in this function.
SmallDenseSet<uint32_t, 4> VarsInFunction;
/// Compile units also cover a PC range, but have this flag set to false.
bool IsFunction = false;
};
/// Holds accumulated global statistics about local variables.
struct GlobalStats {
/// Total number of PC range bytes covered by DW_AT_locations.
unsigned ScopeBytesCovered = 0;
/// Total number of PC range bytes in each variable's enclosing scope,
/// starting from the first definition of the variable.
unsigned ScopeBytesFromFirstDefinition = 0;
};
/// Extract the low pc from a Die.
static uint64_t getLowPC(DWARFDie Die) {
auto RangesOrError = Die.getAddressRanges();
DWARFAddressRangesVector Ranges;
if (RangesOrError)
Ranges = RangesOrError.get();
else
llvm::consumeError(RangesOrError.takeError());
if (Ranges.size())
return Ranges[0].LowPC;
return dwarf::toAddress(Die.find(dwarf::DW_AT_low_pc), 0);
}
/// Collect debug info quality metrics for one DIE.
static void collectStatsForDie(DWARFDie Die, std::string Prefix,
uint64_t ScopeLowPC, uint64_t BytesInScope,
StringMap<PerFunctionStats> &FnStatMap,
GlobalStats &GlobalStats) {
bool HasLoc = false;
uint64_t BytesCovered = 0;
uint64_t OffsetToFirstDefinition = 0;
if (Die.find(dwarf::DW_AT_const_value)) {
// This catches constant members *and* variables.
HasLoc = true;
BytesCovered = BytesInScope;
} else if (Die.getTag() == dwarf::DW_TAG_variable ||
Die.getTag() == dwarf::DW_TAG_formal_parameter) {
// Handle variables and function arguments.
auto FormValue = Die.find(dwarf::DW_AT_location);
HasLoc = FormValue.hasValue();
if (HasLoc) {
// Get PC coverage.
if (auto DebugLocOffset = FormValue->getAsSectionOffset()) {
auto *DebugLoc = Die.getDwarfUnit()->getContext().getDebugLoc();
if (auto List = DebugLoc->getLocationListAtOffset(*DebugLocOffset)) {
for (auto Entry : List->Entries)
BytesCovered += Entry.End - Entry.Begin;
if (List->Entries.size()) {
uint64_t FirstDef = List->Entries[0].Begin;
uint64_t UnitOfs = getLowPC(Die.getDwarfUnit()->getUnitDIE());
// Ranges sometimes start before the lexical scope.
if (UnitOfs + FirstDef >= ScopeLowPC)
OffsetToFirstDefinition = UnitOfs + FirstDef - ScopeLowPC;
// Or even after it. Count that as a failure.
if (OffsetToFirstDefinition > BytesInScope)
OffsetToFirstDefinition = 0;
}
}
assert(BytesInScope);
} else {
// Assume the entire range is covered by a single location.
BytesCovered = BytesInScope;
}
}
} else {
// Not a variable or constant member.
return;
}
// Collect PC range coverage data.
auto &FnStats = FnStatMap[Prefix];
if (DWARFDie D =
Die.getAttributeValueAsReferencedDie(dwarf::DW_AT_abstract_origin))
Die = D;
// This is a unique ID for the variable inside the current object file.
unsigned CanonicalDieOffset = Die.getOffset();
FnStats.VarsInFunction.insert(CanonicalDieOffset);
if (BytesInScope) {
FnStats.TotalVarWithLoc += (unsigned)HasLoc;
// Adjust for the fact the variables often start their lifetime in the
// middle of the scope.
BytesInScope -= OffsetToFirstDefinition;
// Turns out we have a lot of ranges that extend past the lexical scope.
GlobalStats.ScopeBytesCovered += std::min(BytesInScope, BytesCovered);
GlobalStats.ScopeBytesFromFirstDefinition += BytesInScope;
assert(GlobalStats.ScopeBytesCovered <=
GlobalStats.ScopeBytesFromFirstDefinition);
} else {
FnStats.ConstantMembers++;
}
}
/// Recursively collect debug info quality metrics.
static void collectStatsRecursive(DWARFDie Die, std::string Prefix,
uint64_t ScopeLowPC, uint64_t BytesInScope,
StringMap<PerFunctionStats> &FnStatMap,
GlobalStats &GlobalStats) {
// Handle any kind of lexical scope.
if (Die.getTag() == dwarf::DW_TAG_subprogram ||
Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
Die.getTag() == dwarf::DW_TAG_lexical_block) {
// Ignore forward declarations.
if (Die.find(dwarf::DW_AT_declaration))
return;
// Count the function.
if (Die.getTag() != dwarf::DW_TAG_lexical_block) {
StringRef Name = Die.getName(DINameKind::LinkageName);
if (Name.empty())
Name = Die.getName(DINameKind::ShortName);
Prefix = Name;
// Skip over abstract origins.
if (Die.find(dwarf::DW_AT_inline))
return;
// We've seen an (inlined) instance of this function.
auto &FnStats = FnStatMap[Name];
FnStats.NumFnInlined++;
FnStats.IsFunction = true;
}
// PC Ranges.
auto RangesOrError = Die.getAddressRanges();
if (!RangesOrError) {
llvm::consumeError(RangesOrError.takeError());
return;
}
auto Ranges = RangesOrError.get();
uint64_t BytesInThisScope = 0;
for (auto Range : Ranges)
BytesInThisScope += Range.HighPC - Range.LowPC;
ScopeLowPC = getLowPC(Die);
if (BytesInThisScope)
BytesInScope = BytesInThisScope;
} else {
// Not a scope, visit the Die itself. It could be a variable.
collectStatsForDie(Die, Prefix, ScopeLowPC, BytesInScope, FnStatMap,
GlobalStats);
}
// Traverse children.
DWARFDie Child = Die.getFirstChild();
while (Child) {
collectStatsRecursive(Child, Prefix, ScopeLowPC, BytesInScope, FnStatMap,
GlobalStats);
Child = Child.getSibling();
}
}
/// Print machine-readable output.
/// The machine-readable format is single-line JSON output.
/// \{
static void printDatum(raw_ostream &OS, const char *Key, StringRef Value) {
OS << ",\"" << Key << "\":\"" << Value << '"';
LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n');
}
static void printDatum(raw_ostream &OS, const char *Key, uint64_t Value) {
OS << ",\"" << Key << "\":" << Value;
LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n');
}
/// \}
/// Collect debug info quality metrics for an entire DIContext.
///
/// Do the impossible and reduce the quality of the debug info down to a few
/// numbers. The idea is to condense the data into numbers that can be tracked
/// over time to identify trends in newer compiler versions and gauge the effect
/// of particular optimizations. The raw numbers themselves are not particularly
/// useful, only the delta between compiling the same program with different
/// compilers is.
bool collectStatsForObjectFile(ObjectFile &Obj, DWARFContext &DICtx,
Twine Filename, raw_ostream &OS) {
StringRef FormatName = Obj.getFileFormatName();
GlobalStats GlobalStats;
StringMap<PerFunctionStats> Statistics;
for (const auto &CU : static_cast<DWARFContext *>(&DICtx)->compile_units())
if (DWARFDie CUDie = CU->getUnitDIE(false))
collectStatsRecursive(CUDie, "/", 0, 0, Statistics, GlobalStats);
/// The version number should be increased every time the algorithm is changed
/// (including bug fixes). New metrics may be added without increasing the
/// version.
unsigned Version = 1;
unsigned VarTotal = 0;
unsigned VarUnique = 0;
unsigned VarWithLoc = 0;
unsigned NumFunctions = 0;
unsigned NumInlinedFunctions = 0;
for (auto &Entry : Statistics) {
PerFunctionStats &Stats = Entry.getValue();
unsigned TotalVars = Stats.VarsInFunction.size() * Stats.NumFnInlined;
unsigned Constants = Stats.ConstantMembers;
VarWithLoc += Stats.TotalVarWithLoc + Constants;
VarTotal += TotalVars + Constants;
VarUnique += Stats.VarsInFunction.size();
LLVM_DEBUG(for (auto V
: Stats.VarsInFunction) llvm::dbgs()
<< Entry.getKey() << ": " << V << "\n");
NumFunctions += Stats.IsFunction;
NumInlinedFunctions += Stats.IsFunction * Stats.NumFnInlined;
}
// Print summary.
OS.SetBufferSize(1024);
OS << "{\"version\":\"" << Version << '"';
LLVM_DEBUG(llvm::dbgs() << "Variable location quality metrics\n";
llvm::dbgs() << "---------------------------------\n");
printDatum(OS, "file", Filename.str());
printDatum(OS, "format", FormatName);
printDatum(OS, "source functions", NumFunctions);
printDatum(OS, "inlined functions", NumInlinedFunctions);
printDatum(OS, "unique source variables", VarUnique);
printDatum(OS, "source variables", VarTotal);
printDatum(OS, "variables with location", VarWithLoc);
printDatum(OS, "scope bytes total",
GlobalStats.ScopeBytesFromFirstDefinition);
printDatum(OS, "scope bytes covered", GlobalStats.ScopeBytesCovered);
OS << "}\n";
LLVM_DEBUG(
llvm::dbgs() << "Total Availability: "
<< (int)std::round((VarWithLoc * 100.0) / VarTotal) << "%\n";
llvm::dbgs() << "PC Ranges covered: "
<< (int)std::round((GlobalStats.ScopeBytesCovered * 100.0) /
GlobalStats.ScopeBytesFromFirstDefinition)
<< "%\n");
return true;
}