| //===- llvm-stress.cpp - Generate random LL files to stress-test LLVM -----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This program is a utility that generates random .ll files to stress-test |
| // different components in LLVM. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/IRPrintingPasses.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/PrettyStackTrace.h" |
| #include "llvm/Support/ToolOutputFile.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <memory> |
| #include <string> |
| #include <system_error> |
| #include <vector> |
| |
| namespace llvm { |
| |
| static cl::opt<unsigned> SeedCL("seed", |
| cl::desc("Seed used for randomness"), cl::init(0)); |
| |
| static cl::opt<unsigned> SizeCL("size", |
| cl::desc("The estimated size of the generated function (# of instrs)"), |
| cl::init(100)); |
| |
| static cl::opt<std::string> |
| OutputFilename("o", cl::desc("Override output filename"), |
| cl::value_desc("filename")); |
| |
| static LLVMContext Context; |
| |
| namespace cl { |
| |
| template <> class parser<Type*> final : public basic_parser<Type*> { |
| public: |
| parser(Option &O) : basic_parser(O) {} |
| |
| // Parse options as IR types. Return true on error. |
| bool parse(Option &O, StringRef, StringRef Arg, Type *&Value) { |
| if (Arg == "half") Value = Type::getHalfTy(Context); |
| else if (Arg == "fp128") Value = Type::getFP128Ty(Context); |
| else if (Arg == "x86_fp80") Value = Type::getX86_FP80Ty(Context); |
| else if (Arg == "ppc_fp128") Value = Type::getPPC_FP128Ty(Context); |
| else if (Arg == "x86_mmx") Value = Type::getX86_MMXTy(Context); |
| else if (Arg.startswith("i")) { |
| unsigned N = 0; |
| Arg.drop_front().getAsInteger(10, N); |
| if (N > 0) |
| Value = Type::getIntNTy(Context, N); |
| } |
| |
| if (!Value) |
| return O.error("Invalid IR scalar type: '" + Arg + "'!"); |
| return false; |
| } |
| |
| StringRef getValueName() const override { return "IR scalar type"; } |
| }; |
| |
| } // end namespace cl |
| |
| static cl::list<Type*> AdditionalScalarTypes("types", cl::CommaSeparated, |
| cl::desc("Additional IR scalar types " |
| "(always includes i1, i8, i16, i32, i64, float and double)")); |
| |
| namespace { |
| |
| /// A utility class to provide a pseudo-random number generator which is |
| /// the same across all platforms. This is somewhat close to the libc |
| /// implementation. Note: This is not a cryptographically secure pseudorandom |
| /// number generator. |
| class Random { |
| public: |
| /// C'tor |
| Random(unsigned _seed):Seed(_seed) {} |
| |
| /// Return a random integer, up to a |
| /// maximum of 2**19 - 1. |
| uint32_t Rand() { |
| uint32_t Val = Seed + 0x000b07a1; |
| Seed = (Val * 0x3c7c0ac1); |
| // Only lowest 19 bits are random-ish. |
| return Seed & 0x7ffff; |
| } |
| |
| /// Return a random 64 bit integer. |
| uint64_t Rand64() { |
| uint64_t Val = Rand() & 0xffff; |
| Val |= uint64_t(Rand() & 0xffff) << 16; |
| Val |= uint64_t(Rand() & 0xffff) << 32; |
| Val |= uint64_t(Rand() & 0xffff) << 48; |
| return Val; |
| } |
| |
| /// Rand operator for STL algorithms. |
| ptrdiff_t operator()(ptrdiff_t y) { |
| return Rand64() % y; |
| } |
| |
| /// Make this like a C++11 random device |
| using result_type = uint32_t ; |
| |
| static constexpr result_type min() { return 0; } |
| static constexpr result_type max() { return 0x7ffff; } |
| |
| uint32_t operator()() { |
| uint32_t Val = Rand(); |
| assert(Val <= max() && "Random value out of range"); |
| return Val; |
| } |
| |
| private: |
| unsigned Seed; |
| }; |
| |
| /// Generate an empty function with a default argument list. |
| Function *GenEmptyFunction(Module *M) { |
| // Define a few arguments |
| LLVMContext &Context = M->getContext(); |
| Type* ArgsTy[] = { |
| Type::getInt8PtrTy(Context), |
| Type::getInt32PtrTy(Context), |
| Type::getInt64PtrTy(Context), |
| Type::getInt32Ty(Context), |
| Type::getInt64Ty(Context), |
| Type::getInt8Ty(Context) |
| }; |
| |
| auto *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, false); |
| // Pick a unique name to describe the input parameters |
| Twine Name = "autogen_SD" + Twine{SeedCL}; |
| auto *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage, Name, M); |
| Func->setCallingConv(CallingConv::C); |
| return Func; |
| } |
| |
| /// A base class, implementing utilities needed for |
| /// modifying and adding new random instructions. |
| struct Modifier { |
| /// Used to store the randomly generated values. |
| using PieceTable = std::vector<Value *>; |
| |
| public: |
| /// C'tor |
| Modifier(BasicBlock *Block, PieceTable *PT, Random *R) |
| : BB(Block), PT(PT), Ran(R), Context(BB->getContext()) {} |
| |
| /// virtual D'tor to silence warnings. |
| virtual ~Modifier() = default; |
| |
| /// Add a new instruction. |
| virtual void Act() = 0; |
| |
| /// Add N new instructions, |
| virtual void ActN(unsigned n) { |
| for (unsigned i=0; i<n; ++i) |
| Act(); |
| } |
| |
| protected: |
| /// Return a random integer. |
| uint32_t getRandom() { |
| return Ran->Rand(); |
| } |
| |
| /// Return a random value from the list of known values. |
| Value *getRandomVal() { |
| assert(PT->size()); |
| return PT->at(getRandom() % PT->size()); |
| } |
| |
| Constant *getRandomConstant(Type *Tp) { |
| if (Tp->isIntegerTy()) { |
| if (getRandom() & 1) |
| return ConstantInt::getAllOnesValue(Tp); |
| return ConstantInt::getNullValue(Tp); |
| } else if (Tp->isFloatingPointTy()) { |
| if (getRandom() & 1) |
| return ConstantFP::getAllOnesValue(Tp); |
| return ConstantFP::getNullValue(Tp); |
| } |
| return UndefValue::get(Tp); |
| } |
| |
| /// Return a random value with a known type. |
| Value *getRandomValue(Type *Tp) { |
| unsigned index = getRandom(); |
| for (unsigned i=0; i<PT->size(); ++i) { |
| Value *V = PT->at((index + i) % PT->size()); |
| if (V->getType() == Tp) |
| return V; |
| } |
| |
| // If the requested type was not found, generate a constant value. |
| if (Tp->isIntegerTy()) { |
| if (getRandom() & 1) |
| return ConstantInt::getAllOnesValue(Tp); |
| return ConstantInt::getNullValue(Tp); |
| } else if (Tp->isFloatingPointTy()) { |
| if (getRandom() & 1) |
| return ConstantFP::getAllOnesValue(Tp); |
| return ConstantFP::getNullValue(Tp); |
| } else if (Tp->isVectorTy()) { |
| VectorType *VTp = cast<VectorType>(Tp); |
| |
| std::vector<Constant*> TempValues; |
| TempValues.reserve(VTp->getNumElements()); |
| for (unsigned i = 0; i < VTp->getNumElements(); ++i) |
| TempValues.push_back(getRandomConstant(VTp->getScalarType())); |
| |
| ArrayRef<Constant*> VectorValue(TempValues); |
| return ConstantVector::get(VectorValue); |
| } |
| |
| return UndefValue::get(Tp); |
| } |
| |
| /// Return a random value of any pointer type. |
| Value *getRandomPointerValue() { |
| unsigned index = getRandom(); |
| for (unsigned i=0; i<PT->size(); ++i) { |
| Value *V = PT->at((index + i) % PT->size()); |
| if (V->getType()->isPointerTy()) |
| return V; |
| } |
| return UndefValue::get(pickPointerType()); |
| } |
| |
| /// Return a random value of any vector type. |
| Value *getRandomVectorValue() { |
| unsigned index = getRandom(); |
| for (unsigned i=0; i<PT->size(); ++i) { |
| Value *V = PT->at((index + i) % PT->size()); |
| if (V->getType()->isVectorTy()) |
| return V; |
| } |
| return UndefValue::get(pickVectorType()); |
| } |
| |
| /// Pick a random type. |
| Type *pickType() { |
| return (getRandom() & 1 ? pickVectorType() : pickScalarType()); |
| } |
| |
| /// Pick a random pointer type. |
| Type *pickPointerType() { |
| Type *Ty = pickType(); |
| return PointerType::get(Ty, 0); |
| } |
| |
| /// Pick a random vector type. |
| Type *pickVectorType(unsigned len = (unsigned)-1) { |
| // Pick a random vector width in the range 2**0 to 2**4. |
| // by adding two randoms we are generating a normal-like distribution |
| // around 2**3. |
| unsigned width = 1<<((getRandom() % 3) + (getRandom() % 3)); |
| Type *Ty; |
| |
| // Vectors of x86mmx are illegal; keep trying till we get something else. |
| do { |
| Ty = pickScalarType(); |
| } while (Ty->isX86_MMXTy()); |
| |
| if (len != (unsigned)-1) |
| width = len; |
| return VectorType::get(Ty, width); |
| } |
| |
| /// Pick a random scalar type. |
| Type *pickScalarType() { |
| static std::vector<Type*> ScalarTypes; |
| if (ScalarTypes.empty()) { |
| ScalarTypes.assign({ |
| Type::getInt1Ty(Context), |
| Type::getInt8Ty(Context), |
| Type::getInt16Ty(Context), |
| Type::getInt32Ty(Context), |
| Type::getInt64Ty(Context), |
| Type::getFloatTy(Context), |
| Type::getDoubleTy(Context) |
| }); |
| ScalarTypes.insert(ScalarTypes.end(), |
| AdditionalScalarTypes.begin(), AdditionalScalarTypes.end()); |
| } |
| |
| return ScalarTypes[getRandom() % ScalarTypes.size()]; |
| } |
| |
| /// Basic block to populate |
| BasicBlock *BB; |
| |
| /// Value table |
| PieceTable *PT; |
| |
| /// Random number generator |
| Random *Ran; |
| |
| /// Context |
| LLVMContext &Context; |
| }; |
| |
| struct LoadModifier: public Modifier { |
| LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R) |
| : Modifier(BB, PT, R) {} |
| |
| void Act() override { |
| // Try to use predefined pointers. If non-exist, use undef pointer value; |
| Value *Ptr = getRandomPointerValue(); |
| Value *V = new LoadInst(Ptr, "L", BB->getTerminator()); |
| PT->push_back(V); |
| } |
| }; |
| |
| struct StoreModifier: public Modifier { |
| StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R) |
| : Modifier(BB, PT, R) {} |
| |
| void Act() override { |
| // Try to use predefined pointers. If non-exist, use undef pointer value; |
| Value *Ptr = getRandomPointerValue(); |
| Type *Tp = Ptr->getType(); |
| Value *Val = getRandomValue(Tp->getContainedType(0)); |
| Type *ValTy = Val->getType(); |
| |
| // Do not store vectors of i1s because they are unsupported |
| // by the codegen. |
| if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1) |
| return; |
| |
| new StoreInst(Val, Ptr, BB->getTerminator()); |
| } |
| }; |
| |
| struct BinModifier: public Modifier { |
| BinModifier(BasicBlock *BB, PieceTable *PT, Random *R) |
| : Modifier(BB, PT, R) {} |
| |
| void Act() override { |
| Value *Val0 = getRandomVal(); |
| Value *Val1 = getRandomValue(Val0->getType()); |
| |
| // Don't handle pointer types. |
| if (Val0->getType()->isPointerTy() || |
| Val1->getType()->isPointerTy()) |
| return; |
| |
| // Don't handle i1 types. |
| if (Val0->getType()->getScalarSizeInBits() == 1) |
| return; |
| |
| bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy(); |
| Instruction* Term = BB->getTerminator(); |
| unsigned R = getRandom() % (isFloat ? 7 : 13); |
| Instruction::BinaryOps Op; |
| |
| switch (R) { |
| default: llvm_unreachable("Invalid BinOp"); |
| case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; } |
| case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; } |
| case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; } |
| case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; } |
| case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; } |
| case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; } |
| case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; } |
| case 7: {Op = Instruction::Shl; break; } |
| case 8: {Op = Instruction::LShr; break; } |
| case 9: {Op = Instruction::AShr; break; } |
| case 10:{Op = Instruction::And; break; } |
| case 11:{Op = Instruction::Or; break; } |
| case 12:{Op = Instruction::Xor; break; } |
| } |
| |
| PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term)); |
| } |
| }; |
| |
| /// Generate constant values. |
| struct ConstModifier: public Modifier { |
| ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R) |
| : Modifier(BB, PT, R) {} |
| |
| void Act() override { |
| Type *Ty = pickType(); |
| |
| if (Ty->isVectorTy()) { |
| switch (getRandom() % 2) { |
| case 0: if (Ty->isIntOrIntVectorTy()) |
| return PT->push_back(ConstantVector::getAllOnesValue(Ty)); |
| break; |
| case 1: if (Ty->isIntOrIntVectorTy()) |
| return PT->push_back(ConstantVector::getNullValue(Ty)); |
| } |
| } |
| |
| if (Ty->isFloatingPointTy()) { |
| // Generate 128 random bits, the size of the (currently) |
| // largest floating-point types. |
| uint64_t RandomBits[2]; |
| for (unsigned i = 0; i < 2; ++i) |
| RandomBits[i] = Ran->Rand64(); |
| |
| APInt RandomInt(Ty->getPrimitiveSizeInBits(), makeArrayRef(RandomBits)); |
| APFloat RandomFloat(Ty->getFltSemantics(), RandomInt); |
| |
| if (getRandom() & 1) |
| return PT->push_back(ConstantFP::getNullValue(Ty)); |
| return PT->push_back(ConstantFP::get(Ty->getContext(), RandomFloat)); |
| } |
| |
| if (Ty->isIntegerTy()) { |
| switch (getRandom() % 7) { |
| case 0: |
| return PT->push_back(ConstantInt::get( |
| Ty, APInt::getAllOnesValue(Ty->getPrimitiveSizeInBits()))); |
| case 1: |
| return PT->push_back(ConstantInt::get( |
| Ty, APInt::getNullValue(Ty->getPrimitiveSizeInBits()))); |
| case 2: |
| case 3: |
| case 4: |
| case 5: |
| case 6: |
| PT->push_back(ConstantInt::get(Ty, getRandom())); |
| } |
| } |
| } |
| }; |
| |
| struct AllocaModifier: public Modifier { |
| AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R) |
| : Modifier(BB, PT, R) {} |
| |
| void Act() override { |
| Type *Tp = pickType(); |
| const DataLayout &DL = BB->getModule()->getDataLayout(); |
| PT->push_back(new AllocaInst(Tp, DL.getAllocaAddrSpace(), |
| "A", BB->getFirstNonPHI())); |
| } |
| }; |
| |
| struct ExtractElementModifier: public Modifier { |
| ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R) |
| : Modifier(BB, PT, R) {} |
| |
| void Act() override { |
| Value *Val0 = getRandomVectorValue(); |
| Value *V = ExtractElementInst::Create(Val0, |
| ConstantInt::get(Type::getInt32Ty(BB->getContext()), |
| getRandom() % cast<VectorType>(Val0->getType())->getNumElements()), |
| "E", BB->getTerminator()); |
| return PT->push_back(V); |
| } |
| }; |
| |
| struct ShuffModifier: public Modifier { |
| ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R) |
| : Modifier(BB, PT, R) {} |
| |
| void Act() override { |
| Value *Val0 = getRandomVectorValue(); |
| Value *Val1 = getRandomValue(Val0->getType()); |
| |
| unsigned Width = cast<VectorType>(Val0->getType())->getNumElements(); |
| std::vector<Constant*> Idxs; |
| |
| Type *I32 = Type::getInt32Ty(BB->getContext()); |
| for (unsigned i=0; i<Width; ++i) { |
| Constant *CI = ConstantInt::get(I32, getRandom() % (Width*2)); |
| // Pick some undef values. |
| if (!(getRandom() % 5)) |
| CI = UndefValue::get(I32); |
| Idxs.push_back(CI); |
| } |
| |
| Constant *Mask = ConstantVector::get(Idxs); |
| |
| Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff", |
| BB->getTerminator()); |
| PT->push_back(V); |
| } |
| }; |
| |
| struct InsertElementModifier: public Modifier { |
| InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R) |
| : Modifier(BB, PT, R) {} |
| |
| void Act() override { |
| Value *Val0 = getRandomVectorValue(); |
| Value *Val1 = getRandomValue(Val0->getType()->getScalarType()); |
| |
| Value *V = InsertElementInst::Create(Val0, Val1, |
| ConstantInt::get(Type::getInt32Ty(BB->getContext()), |
| getRandom() % cast<VectorType>(Val0->getType())->getNumElements()), |
| "I", BB->getTerminator()); |
| return PT->push_back(V); |
| } |
| }; |
| |
| struct CastModifier: public Modifier { |
| CastModifier(BasicBlock *BB, PieceTable *PT, Random *R) |
| : Modifier(BB, PT, R) {} |
| |
| void Act() override { |
| Value *V = getRandomVal(); |
| Type *VTy = V->getType(); |
| Type *DestTy = pickScalarType(); |
| |
| // Handle vector casts vectors. |
| if (VTy->isVectorTy()) { |
| VectorType *VecTy = cast<VectorType>(VTy); |
| DestTy = pickVectorType(VecTy->getNumElements()); |
| } |
| |
| // no need to cast. |
| if (VTy == DestTy) return; |
| |
| // Pointers: |
| if (VTy->isPointerTy()) { |
| if (!DestTy->isPointerTy()) |
| DestTy = PointerType::get(DestTy, 0); |
| return PT->push_back( |
| new BitCastInst(V, DestTy, "PC", BB->getTerminator())); |
| } |
| |
| unsigned VSize = VTy->getScalarType()->getPrimitiveSizeInBits(); |
| unsigned DestSize = DestTy->getScalarType()->getPrimitiveSizeInBits(); |
| |
| // Generate lots of bitcasts. |
| if ((getRandom() & 1) && VSize == DestSize) { |
| return PT->push_back( |
| new BitCastInst(V, DestTy, "BC", BB->getTerminator())); |
| } |
| |
| // Both types are integers: |
| if (VTy->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy()) { |
| if (VSize > DestSize) { |
| return PT->push_back( |
| new TruncInst(V, DestTy, "Tr", BB->getTerminator())); |
| } else { |
| assert(VSize < DestSize && "Different int types with the same size?"); |
| if (getRandom() & 1) |
| return PT->push_back( |
| new ZExtInst(V, DestTy, "ZE", BB->getTerminator())); |
| return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator())); |
| } |
| } |
| |
| // Fp to int. |
| if (VTy->isFPOrFPVectorTy() && DestTy->isIntOrIntVectorTy()) { |
| if (getRandom() & 1) |
| return PT->push_back( |
| new FPToSIInst(V, DestTy, "FC", BB->getTerminator())); |
| return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator())); |
| } |
| |
| // Int to fp. |
| if (VTy->isIntOrIntVectorTy() && DestTy->isFPOrFPVectorTy()) { |
| if (getRandom() & 1) |
| return PT->push_back( |
| new SIToFPInst(V, DestTy, "FC", BB->getTerminator())); |
| return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator())); |
| } |
| |
| // Both floats. |
| if (VTy->isFPOrFPVectorTy() && DestTy->isFPOrFPVectorTy()) { |
| if (VSize > DestSize) { |
| return PT->push_back( |
| new FPTruncInst(V, DestTy, "Tr", BB->getTerminator())); |
| } else if (VSize < DestSize) { |
| return PT->push_back( |
| new FPExtInst(V, DestTy, "ZE", BB->getTerminator())); |
| } |
| // If VSize == DestSize, then the two types must be fp128 and ppc_fp128, |
| // for which there is no defined conversion. So do nothing. |
| } |
| } |
| }; |
| |
| struct SelectModifier: public Modifier { |
| SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R) |
| : Modifier(BB, PT, R) {} |
| |
| void Act() override { |
| // Try a bunch of different select configuration until a valid one is found. |
| Value *Val0 = getRandomVal(); |
| Value *Val1 = getRandomValue(Val0->getType()); |
| |
| Type *CondTy = Type::getInt1Ty(Context); |
| |
| // If the value type is a vector, and we allow vector select, then in 50% |
| // of the cases generate a vector select. |
| if (Val0->getType()->isVectorTy() && (getRandom() % 1)) { |
| unsigned NumElem = cast<VectorType>(Val0->getType())->getNumElements(); |
| CondTy = VectorType::get(CondTy, NumElem); |
| } |
| |
| Value *Cond = getRandomValue(CondTy); |
| Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator()); |
| return PT->push_back(V); |
| } |
| }; |
| |
| struct CmpModifier: public Modifier { |
| CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R) |
| : Modifier(BB, PT, R) {} |
| |
| void Act() override { |
| Value *Val0 = getRandomVal(); |
| Value *Val1 = getRandomValue(Val0->getType()); |
| |
| if (Val0->getType()->isPointerTy()) return; |
| bool fp = Val0->getType()->getScalarType()->isFloatingPointTy(); |
| |
| int op; |
| if (fp) { |
| op = getRandom() % |
| (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) + |
| CmpInst::FIRST_FCMP_PREDICATE; |
| } else { |
| op = getRandom() % |
| (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) + |
| CmpInst::FIRST_ICMP_PREDICATE; |
| } |
| |
| Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp, |
| (CmpInst::Predicate)op, Val0, Val1, "Cmp", |
| BB->getTerminator()); |
| return PT->push_back(V); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| static void FillFunction(Function *F, Random &R) { |
| // Create a legal entry block. |
| BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F); |
| ReturnInst::Create(F->getContext(), BB); |
| |
| // Create the value table. |
| Modifier::PieceTable PT; |
| |
| // Consider arguments as legal values. |
| for (auto &arg : F->args()) |
| PT.push_back(&arg); |
| |
| // List of modifiers which add new random instructions. |
| std::vector<std::unique_ptr<Modifier>> Modifiers; |
| Modifiers.emplace_back(new LoadModifier(BB, &PT, &R)); |
| Modifiers.emplace_back(new StoreModifier(BB, &PT, &R)); |
| auto SM = Modifiers.back().get(); |
| Modifiers.emplace_back(new ExtractElementModifier(BB, &PT, &R)); |
| Modifiers.emplace_back(new ShuffModifier(BB, &PT, &R)); |
| Modifiers.emplace_back(new InsertElementModifier(BB, &PT, &R)); |
| Modifiers.emplace_back(new BinModifier(BB, &PT, &R)); |
| Modifiers.emplace_back(new CastModifier(BB, &PT, &R)); |
| Modifiers.emplace_back(new SelectModifier(BB, &PT, &R)); |
| Modifiers.emplace_back(new CmpModifier(BB, &PT, &R)); |
| |
| // Generate the random instructions |
| AllocaModifier{BB, &PT, &R}.ActN(5); // Throw in a few allocas |
| ConstModifier{BB, &PT, &R}.ActN(40); // Throw in a few constants |
| |
| for (unsigned i = 0; i < SizeCL / Modifiers.size(); ++i) |
| for (auto &Mod : Modifiers) |
| Mod->Act(); |
| |
| SM->ActN(5); // Throw in a few stores. |
| } |
| |
| static void IntroduceControlFlow(Function *F, Random &R) { |
| std::vector<Instruction*> BoolInst; |
| for (auto &Instr : F->front()) { |
| if (Instr.getType() == IntegerType::getInt1Ty(F->getContext())) |
| BoolInst.push_back(&Instr); |
| } |
| |
| std::shuffle(BoolInst.begin(), BoolInst.end(), R); |
| |
| for (auto *Instr : BoolInst) { |
| BasicBlock *Curr = Instr->getParent(); |
| BasicBlock::iterator Loc = Instr->getIterator(); |
| BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF"); |
| Instr->moveBefore(Curr->getTerminator()); |
| if (Curr != &F->getEntryBlock()) { |
| BranchInst::Create(Curr, Next, Instr, Curr->getTerminator()); |
| Curr->getTerminator()->eraseFromParent(); |
| } |
| } |
| } |
| |
| } // end namespace llvm |
| |
| int main(int argc, char **argv) { |
| using namespace llvm; |
| |
| // Init LLVM, call llvm_shutdown() on exit, parse args, etc. |
| PrettyStackTraceProgram X(argc, argv); |
| cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n"); |
| llvm_shutdown_obj Y; |
| |
| auto M = llvm::make_unique<Module>("/tmp/autogen.bc", Context); |
| Function *F = GenEmptyFunction(M.get()); |
| |
| // Pick an initial seed value |
| Random R(SeedCL); |
| // Generate lots of random instructions inside a single basic block. |
| FillFunction(F, R); |
| // Break the basic block into many loops. |
| IntroduceControlFlow(F, R); |
| |
| // Figure out what stream we are supposed to write to... |
| std::unique_ptr<ToolOutputFile> Out; |
| // Default to standard output. |
| if (OutputFilename.empty()) |
| OutputFilename = "-"; |
| |
| std::error_code EC; |
| Out.reset(new ToolOutputFile(OutputFilename, EC, sys::fs::F_None)); |
| if (EC) { |
| errs() << EC.message() << '\n'; |
| return 1; |
| } |
| |
| legacy::PassManager Passes; |
| Passes.add(createVerifierPass()); |
| Passes.add(createPrintModulePass(Out->os())); |
| Passes.run(*M.get()); |
| Out->keep(); |
| |
| return 0; |
| } |