blob: d61507aa321e02143f6b13b9a476acb75398329d [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/cert/internal/parse_certificate.h"
#include "base/strings/stringprintf.h"
#include "net/cert/internal/cert_errors.h"
#include "net/cert/internal/parsed_certificate.h"
#include "net/cert/internal/test_helpers.h"
#include "net/der/input.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/boringssl/src/include/openssl/pool.h"
namespace net {
namespace {
// Pretty-prints a GeneralizedTime as a human-readable string for use in test
// expectations (it is more readable to specify the expected results as a
// string).
std::string ToString(const der::GeneralizedTime& time) {
return base::StringPrintf(
"year=%d, month=%d, day=%d, hours=%d, minutes=%d, seconds=%d", time.year,
time.month, time.day, time.hours, time.minutes, time.seconds);
}
std::string GetFilePath(const std::string& file_name) {
return std::string("net/data/parse_certificate_unittest/") + file_name;
}
// Loads certificate data and expectations from the PEM file |file_name|.
// Verifies that parsing the Certificate matches expectations:
// * If expected to fail, emits the expected errors
// * If expected to succeeds, the parsed fields match expectations
void RunCertificateTest(const std::string& file_name) {
std::string data;
std::string expected_errors;
std::string expected_tbs_certificate;
std::string expected_signature_algorithm;
std::string expected_signature;
// Read the certificate data and test expectations from a single PEM file.
const PemBlockMapping mappings[] = {
{"CERTIFICATE", &data},
{"ERRORS", &expected_errors, true /*optional*/},
{"SIGNATURE", &expected_signature, true /*optional*/},
{"SIGNATURE ALGORITHM", &expected_signature_algorithm, true /*optional*/},
{"TBS CERTIFICATE", &expected_tbs_certificate, true /*optional*/},
};
std::string test_file_path = GetFilePath(file_name);
ASSERT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings));
// Note that empty expected_errors doesn't necessarily mean success.
bool expected_result = !expected_tbs_certificate.empty();
// Parsing the certificate.
der::Input tbs_certificate_tlv;
der::Input signature_algorithm_tlv;
der::BitString signature_value;
CertErrors errors;
bool actual_result =
ParseCertificate(der::Input(&data), &tbs_certificate_tlv,
&signature_algorithm_tlv, &signature_value, &errors);
EXPECT_EQ(expected_result, actual_result);
VerifyCertErrors(expected_errors, errors, test_file_path);
// Ensure that the parsed certificate matches expectations.
if (expected_result && actual_result) {
EXPECT_EQ(0, signature_value.unused_bits());
EXPECT_EQ(der::Input(&expected_signature), signature_value.bytes());
EXPECT_EQ(der::Input(&expected_signature_algorithm),
signature_algorithm_tlv);
EXPECT_EQ(der::Input(&expected_tbs_certificate), tbs_certificate_tlv);
}
}
// Tests parsing a Certificate.
TEST(ParseCertificateTest, Version3) {
RunCertificateTest("cert_version3.pem");
}
// Tests parsing a simplified Certificate-like structure (the sub-fields for
// algorithm and tbsCertificate are not actually valid, but ParseCertificate()
// doesn't check them)
TEST(ParseCertificateTest, Skeleton) {
RunCertificateTest("cert_skeleton.pem");
}
// Tests parsing a Certificate that is not a sequence fails.
TEST(ParseCertificateTest, NotSequence) {
RunCertificateTest("cert_not_sequence.pem");
}
// Tests that uncomsumed data is not allowed after the main SEQUENCE.
TEST(ParseCertificateTest, DataAfterSignature) {
RunCertificateTest("cert_data_after_signature.pem");
}
// Tests that parsing fails if the signature BIT STRING is missing.
TEST(ParseCertificateTest, MissingSignature) {
RunCertificateTest("cert_missing_signature.pem");
}
// Tests that parsing fails if the signature is present but not a BIT STRING.
TEST(ParseCertificateTest, SignatureNotBitString) {
RunCertificateTest("cert_signature_not_bit_string.pem");
}
// Tests that parsing fails if the main SEQUENCE is empty (missing all the
// fields).
TEST(ParseCertificateTest, EmptySequence) {
RunCertificateTest("cert_empty_sequence.pem");
}
// Tests what happens when the signature algorithm is present, but has the wrong
// tag.
TEST(ParseCertificateTest, AlgorithmNotSequence) {
RunCertificateTest("cert_algorithm_not_sequence.pem");
}
// Loads tbsCertificate data and expectations from the PEM file |file_name|.
// Verifies that parsing the TBSCertificate succeeds, and each parsed field
// matches the expectations.
//
// TODO(eroman): Get rid of the |expected_version| parameter -- this should be
// encoded in the test expectations file.
void RunTbsCertificateTestGivenVersion(const std::string& file_name,
CertificateVersion expected_version) {
std::string data;
std::string expected_serial_number;
std::string expected_signature_algorithm;
std::string expected_issuer;
std::string expected_validity_not_before;
std::string expected_validity_not_after;
std::string expected_subject;
std::string expected_spki;
std::string expected_issuer_unique_id;
std::string expected_subject_unique_id;
std::string expected_extensions;
std::string expected_errors;
// Read the certificate data and test expectations from a single PEM file.
const PemBlockMapping mappings[] = {
{"TBS CERTIFICATE", &data},
{"SIGNATURE ALGORITHM", &expected_signature_algorithm, true},
{"SERIAL NUMBER", &expected_serial_number, true},
{"ISSUER", &expected_issuer, true},
{"VALIDITY NOTBEFORE", &expected_validity_not_before, true},
{"VALIDITY NOTAFTER", &expected_validity_not_after, true},
{"SUBJECT", &expected_subject, true},
{"SPKI", &expected_spki, true},
{"ISSUER UNIQUE ID", &expected_issuer_unique_id, true},
{"SUBJECT UNIQUE ID", &expected_subject_unique_id, true},
{"EXTENSIONS", &expected_extensions, true},
{"ERRORS", &expected_errors, true},
};
std::string test_file_path = GetFilePath(file_name);
ASSERT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings));
bool expected_result = !expected_spki.empty();
ParsedTbsCertificate parsed;
CertErrors errors;
bool actual_result =
ParseTbsCertificate(der::Input(&data), {}, &parsed, &errors);
EXPECT_EQ(expected_result, actual_result);
VerifyCertErrors(expected_errors, errors, test_file_path);
if (!expected_result || !actual_result)
return;
// Ensure that the ParsedTbsCertificate matches expectations.
EXPECT_EQ(expected_version, parsed.version);
EXPECT_EQ(der::Input(&expected_serial_number), parsed.serial_number);
EXPECT_EQ(der::Input(&expected_signature_algorithm),
parsed.signature_algorithm_tlv);
EXPECT_EQ(der::Input(&expected_issuer), parsed.issuer_tlv);
// In the test expectations PEM file, validity is described as a
// textual string of the parsed value (rather than as DER).
EXPECT_EQ(expected_validity_not_before, ToString(parsed.validity_not_before));
EXPECT_EQ(expected_validity_not_after, ToString(parsed.validity_not_after));
EXPECT_EQ(der::Input(&expected_subject), parsed.subject_tlv);
EXPECT_EQ(der::Input(&expected_spki), parsed.spki_tlv);
EXPECT_EQ(der::Input(&expected_issuer_unique_id),
parsed.issuer_unique_id.bytes());
EXPECT_EQ(!expected_issuer_unique_id.empty(), parsed.has_issuer_unique_id);
EXPECT_EQ(der::Input(&expected_subject_unique_id),
parsed.subject_unique_id.bytes());
EXPECT_EQ(!expected_subject_unique_id.empty(), parsed.has_subject_unique_id);
EXPECT_EQ(der::Input(&expected_extensions), parsed.extensions_tlv);
EXPECT_EQ(!expected_extensions.empty(), parsed.has_extensions);
}
void RunTbsCertificateTest(const std::string& file_name) {
RunTbsCertificateTestGivenVersion(file_name, CertificateVersion::V3);
}
// Tests parsing a TBSCertificate for v3 that contains no optional fields.
TEST(ParseTbsCertificateTest, Version3NoOptionals) {
RunTbsCertificateTest("tbs_v3_no_optionals.pem");
}
// Tests parsing a TBSCertificate for v3 that contains extensions.
TEST(ParseTbsCertificateTest, Version3WithExtensions) {
RunTbsCertificateTest("tbs_v3_extensions.pem");
}
// Tests parsing a TBSCertificate which lacks a version number (causing it to
// default to v1).
TEST(ParseTbsCertificateTest, Version1) {
RunTbsCertificateTestGivenVersion("tbs_v1.pem", CertificateVersion::V1);
}
// The version was set to v1 explicitly rather than omitting the version field.
TEST(ParseTbsCertificateTest, ExplicitVersion1) {
RunTbsCertificateTest("tbs_explicit_v1.pem");
}
// Extensions are not defined in version 1.
TEST(ParseTbsCertificateTest, Version1WithExtensions) {
RunTbsCertificateTest("tbs_v1_extensions.pem");
}
// Extensions are not defined in version 2.
TEST(ParseTbsCertificateTest, Version2WithExtensions) {
RunTbsCertificateTest("tbs_v2_extensions.pem");
}
// A boring version 2 certificate with none of the optional fields.
TEST(ParseTbsCertificateTest, Version2NoOptionals) {
RunTbsCertificateTestGivenVersion("tbs_v2_no_optionals.pem",
CertificateVersion::V2);
}
// A version 2 certificate with an issuer unique ID field.
TEST(ParseTbsCertificateTest, Version2IssuerUniqueId) {
RunTbsCertificateTestGivenVersion("tbs_v2_issuer_unique_id.pem",
CertificateVersion::V2);
}
// A version 2 certificate with both a issuer and subject unique ID field.
TEST(ParseTbsCertificateTest, Version2IssuerAndSubjectUniqueId) {
RunTbsCertificateTestGivenVersion("tbs_v2_issuer_and_subject_unique_id.pem",
CertificateVersion::V2);
}
// A version 3 certificate with all of the optional fields (issuer unique id,
// subject unique id, and extensions).
TEST(ParseTbsCertificateTest, Version3AllOptionals) {
RunTbsCertificateTest("tbs_v3_all_optionals.pem");
}
// The version was set to v4, which is unrecognized.
TEST(ParseTbsCertificateTest, Version4) {
RunTbsCertificateTest("tbs_v4.pem");
}
// Tests that extraneous data after extensions in a v3 is rejected.
TEST(ParseTbsCertificateTest, Version3DataAfterExtensions) {
RunTbsCertificateTest("tbs_v3_data_after_extensions.pem");
}
// Tests using a real-world certificate (whereas the other tests are fabricated
// (and in fact invalid) data.
TEST(ParseTbsCertificateTest, Version3Real) {
RunTbsCertificateTest("tbs_v3_real.pem");
}
// Parses a TBSCertificate whose "validity" field expresses both notBefore
// and notAfter using UTCTime.
TEST(ParseTbsCertificateTest, ValidityBothUtcTime) {
RunTbsCertificateTest("tbs_validity_both_utc_time.pem");
}
// Parses a TBSCertificate whose "validity" field expresses both notBefore
// and notAfter using GeneralizedTime.
TEST(ParseTbsCertificateTest, ValidityBothGeneralizedTime) {
RunTbsCertificateTest("tbs_validity_both_generalized_time.pem");
}
// Parses a TBSCertificate whose "validity" field expresses notBefore using
// UTCTime and notAfter using GeneralizedTime.
TEST(ParseTbsCertificateTest, ValidityUTCTimeAndGeneralizedTime) {
RunTbsCertificateTest("tbs_validity_utc_time_and_generalized_time.pem");
}
// Parses a TBSCertificate whose validity" field expresses notBefore using
// GeneralizedTime and notAfter using UTCTime. Also of interest, notBefore >
// notAfter. Parsing will succeed, however no time can satisfy this constraint.
TEST(ParseTbsCertificateTest, ValidityGeneralizedTimeAndUTCTime) {
RunTbsCertificateTest("tbs_validity_generalized_time_and_utc_time.pem");
}
// Parses a TBSCertificate whose "validity" field does not strictly follow
// the DER rules (and fails to be parsed).
TEST(ParseTbsCertificateTest, ValidityRelaxed) {
RunTbsCertificateTest("tbs_validity_relaxed.pem");
}
// Parses a KeyUsage with a single 0 bit.
TEST(ParseKeyUsageTest, OneBitAllZeros) {
const uint8_t der[] = {
0x03, 0x02, // BIT STRING
0x07, // Number of unused bits
0x00, // bits
};
der::BitString key_usage;
ASSERT_FALSE(ParseKeyUsage(der::Input(der), &key_usage));
}
// Parses a KeyUsage with 32 bits that are all 0.
TEST(ParseKeyUsageTest, 32BitsAllZeros) {
const uint8_t der[] = {
0x03, 0x05, // BIT STRING
0x00, // Number of unused bits
0x00, 0x00, 0x00, 0x00,
};
der::BitString key_usage;
ASSERT_FALSE(ParseKeyUsage(der::Input(der), &key_usage));
}
// Parses a KeyUsage with 32 bits, one of which is 1 (but not in recognized
// set).
TEST(ParseKeyUsageTest, 32BitsOneSet) {
const uint8_t der[] = {
0x03, 0x05, // BIT STRING
0x00, // Number of unused bits
0x00, 0x00, 0x00, 0x02,
};
der::BitString key_usage;
ASSERT_TRUE(ParseKeyUsage(der::Input(der), &key_usage));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DIGITAL_SIGNATURE));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_NON_REPUDIATION));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_ENCIPHERMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DATA_ENCIPHERMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_AGREEMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_CRL_SIGN));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_ENCIPHER_ONLY));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DECIPHER_ONLY));
}
// Parses a KeyUsage containing bit string 101.
TEST(ParseKeyUsageTest, ThreeBits) {
const uint8_t der[] = {
0x03, 0x02, // BIT STRING
0x05, // Number of unused bits
0xA0, // bits
};
der::BitString key_usage;
ASSERT_TRUE(ParseKeyUsage(der::Input(der), &key_usage));
EXPECT_TRUE(key_usage.AssertsBit(KEY_USAGE_BIT_DIGITAL_SIGNATURE));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_NON_REPUDIATION));
EXPECT_TRUE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_ENCIPHERMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DATA_ENCIPHERMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_AGREEMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_CRL_SIGN));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_ENCIPHER_ONLY));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DECIPHER_ONLY));
}
// Parses a KeyUsage containing DECIPHER_ONLY, which is the
// only bit that doesn't fit in the first byte.
TEST(ParseKeyUsageTest, DecipherOnly) {
const uint8_t der[] = {
0x03, 0x03, // BIT STRING
0x07, // Number of unused bits
0x00, 0x80, // bits
};
der::BitString key_usage;
ASSERT_TRUE(ParseKeyUsage(der::Input(der), &key_usage));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DIGITAL_SIGNATURE));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_NON_REPUDIATION));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_ENCIPHERMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DATA_ENCIPHERMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_AGREEMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_CRL_SIGN));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_ENCIPHER_ONLY));
EXPECT_TRUE(key_usage.AssertsBit(KEY_USAGE_BIT_DECIPHER_ONLY));
}
// Parses an empty KeyUsage.
TEST(ParseKeyUsageTest, Empty) {
const uint8_t der[] = {
0x03, 0x01, // BIT STRING
0x00, // Number of unused bits
};
der::BitString key_usage;
ASSERT_FALSE(ParseKeyUsage(der::Input(der), &key_usage));
}
// Test fixture for testing ParseCrlDistributionPoints.
//
// Test data is encoded in certificate files. This fixture is responsible for
// reading and parsing the certificates to get at the extension under test.
class ParseCrlDistributionPointsTest : public ::testing::Test {
public:
protected:
bool GetCrlDps(const char* file_name,
std::vector<ParsedDistributionPoint>* dps) {
std::string cert_bytes;
// Read the test certificate file.
const PemBlockMapping mappings[] = {
{"CERTIFICATE", &cert_bytes},
};
std::string test_file_path = GetFilePath(file_name);
EXPECT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings));
// Extract the CRLDP from the test Certificate.
CertErrors errors;
scoped_refptr<ParsedCertificate> cert = ParsedCertificate::Create(
bssl::UniquePtr<CRYPTO_BUFFER>(CRYPTO_BUFFER_new(
reinterpret_cast<const uint8_t*>(cert_bytes.data()),
cert_bytes.size(), nullptr)),
{}, &errors);
if (!cert)
return false;
auto it = cert->extensions().find(CrlDistributionPointsOid());
if (it == cert->extensions().end())
return false;
der::Input crl_dp_tlv = it->second.value;
// Keep the certificate data alive, since this function will return
// der::Inputs that reference it. Run the function under test (for parsing
//
// TODO(eroman): The use of ParsedCertificate in this test should be removed
// in lieu of lazy parsing.
keep_alive_certs_.push_back(cert);
return ParseCrlDistributionPoints(crl_dp_tlv, dps);
}
private:
ParsedCertificateList keep_alive_certs_;
};
TEST_F(ParseCrlDistributionPointsTest, OneUriNoIssuer) {
std::vector<ParsedDistributionPoint> dps;
ASSERT_TRUE(GetCrlDps("crldp_1uri_noissuer.pem", &dps));
ASSERT_EQ(1u, dps.size());
const ParsedDistributionPoint& dp1 = dps.front();
EXPECT_FALSE(dp1.has_crl_issuer);
ASSERT_EQ(1u, dp1.uris.size());
EXPECT_EQ(dp1.uris.front(), std::string("http://www.example.com/foo.crl"));
}
TEST_F(ParseCrlDistributionPointsTest, ThreeUrisNoIssuer) {
std::vector<ParsedDistributionPoint> dps;
ASSERT_TRUE(GetCrlDps("crldp_3uri_noissuer.pem", &dps));
ASSERT_EQ(1u, dps.size());
const ParsedDistributionPoint& dp1 = dps.front();
EXPECT_FALSE(dp1.has_crl_issuer);
ASSERT_EQ(3u, dp1.uris.size());
EXPECT_EQ(dp1.uris[0], std::string("http://www.example.com/foo1.crl"));
EXPECT_EQ(dp1.uris[1], std::string("http://www.example.com/blah.crl"));
EXPECT_EQ(dp1.uris[2], std::string("not-even-a-url"));
}
TEST_F(ParseCrlDistributionPointsTest, CrlIssuerAsDirname) {
std::vector<ParsedDistributionPoint> dps;
ASSERT_TRUE(GetCrlDps("crldp_issuer_as_dirname.pem", &dps));
ASSERT_EQ(1u, dps.size());
const ParsedDistributionPoint& dp1 = dps.front();
EXPECT_TRUE(dp1.has_crl_issuer);
// TODO(eroman): This has directory names under the fullName which are not
// being parsed or reflected here.
ASSERT_EQ(0u, dp1.uris.size());
}
TEST_F(ParseCrlDistributionPointsTest, FullnameAsDirname) {
std::vector<ParsedDistributionPoint> dps;
ASSERT_TRUE(GetCrlDps("crldp_full_name_as_dirname.pem", &dps));
ASSERT_EQ(1u, dps.size());
const ParsedDistributionPoint& dp1 = dps.front();
EXPECT_FALSE(dp1.has_crl_issuer);
// TODO(eroman): This has 1 directory name under the fullName which is not
// being reflected here.
ASSERT_EQ(0u, dp1.uris.size());
}
} // namespace
} // namespace net