| // Copyright 2015 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/cert/internal/verify_certificate_chain.h" |
| |
| #include <algorithm> |
| |
| #include "base/logging.h" |
| #include "net/cert/internal/cert_error_params.h" |
| #include "net/cert/internal/cert_errors.h" |
| #include "net/cert/internal/common_cert_errors.h" |
| #include "net/cert/internal/extended_key_usage.h" |
| #include "net/cert/internal/name_constraints.h" |
| #include "net/cert/internal/parse_certificate.h" |
| #include "net/cert/internal/signature_algorithm.h" |
| #include "net/cert/internal/trust_store.h" |
| #include "net/cert/internal/verify_signed_data.h" |
| #include "net/der/input.h" |
| #include "net/der/parser.h" |
| |
| namespace net { |
| |
| namespace { |
| |
| bool IsHandledCriticalExtension(const ParsedExtension& extension) { |
| if (extension.oid == BasicConstraintsOid()) |
| return true; |
| // Key Usage is NOT processed for end-entity certificates (this is the |
| // responsibility of callers), however it is considered "handled" here in |
| // order to allow being marked as critical. |
| if (extension.oid == KeyUsageOid()) |
| return true; |
| if (extension.oid == ExtKeyUsageOid()) |
| return true; |
| if (extension.oid == NameConstraintsOid()) |
| return true; |
| if (extension.oid == SubjectAltNameOid()) |
| return true; |
| if (extension.oid == CertificatePoliciesOid()) { |
| // Policy qualifiers are skipped during processing, so if the |
| // extension is marked critical need to ensure there weren't any |
| // qualifiers other than User Notice / CPS. |
| // |
| // This follows from RFC 5280 section 4.2.1.4: |
| // |
| // If this extension is critical, the path validation software MUST |
| // be able to interpret this extension (including the optional |
| // qualifier), or MUST reject the certificate. |
| std::vector<der::Input> unused_policies; |
| CertErrors unused_errors; |
| return ParseCertificatePoliciesExtension( |
| extension.value, true /*fail_parsing_unknown_qualifier_oids*/, |
| &unused_policies, &unused_errors); |
| |
| // TODO(eroman): Give a better error message. |
| } |
| if (extension.oid == PolicyMappingsOid()) |
| return true; |
| if (extension.oid == PolicyConstraintsOid()) |
| return true; |
| if (extension.oid == InhibitAnyPolicyOid()) |
| return true; |
| |
| return false; |
| } |
| |
| // Adds errors to |errors| if the certificate contains unconsumed _critical_ |
| // extensions. |
| void VerifyNoUnconsumedCriticalExtensions(const ParsedCertificate& cert, |
| CertErrors* errors) { |
| for (const auto& it : cert.extensions()) { |
| const ParsedExtension& extension = it.second; |
| if (extension.critical && !IsHandledCriticalExtension(extension)) { |
| errors->AddError(cert_errors::kUnconsumedCriticalExtension, |
| CreateCertErrorParams2Der("oid", extension.oid, "value", |
| extension.value)); |
| } |
| } |
| } |
| |
| // Returns true if |cert| was self-issued. The definition of self-issuance |
| // comes from RFC 5280 section 6.1: |
| // |
| // A certificate is self-issued if the same DN appears in the subject |
| // and issuer fields (the two DNs are the same if they match according |
| // to the rules specified in Section 7.1). In general, the issuer and |
| // subject of the certificates that make up a path are different for |
| // each certificate. However, a CA may issue a certificate to itself to |
| // support key rollover or changes in certificate policies. These |
| // self-issued certificates are not counted when evaluating path length |
| // or name constraints. |
| WARN_UNUSED_RESULT bool IsSelfIssued(const ParsedCertificate& cert) { |
| return cert.normalized_subject() == cert.normalized_issuer(); |
| } |
| |
| // Adds errors to |errors| if |cert| is not valid at time |time|. |
| // |
| // The certificate's validity requirements are described by RFC 5280 section |
| // 4.1.2.5: |
| // |
| // The validity period for a certificate is the period of time from |
| // notBefore through notAfter, inclusive. |
| void VerifyTimeValidity(const ParsedCertificate& cert, |
| const der::GeneralizedTime& time, |
| CertErrors* errors) { |
| if (time < cert.tbs().validity_not_before) |
| errors->AddError(cert_errors::kValidityFailedNotBefore); |
| |
| if (cert.tbs().validity_not_after < time) |
| errors->AddError(cert_errors::kValidityFailedNotAfter); |
| } |
| |
| // Adds errors to |errors| if |cert| has internally inconsistent signature |
| // algorithms. |
| // |
| // X.509 certificates contain two different signature algorithms: |
| // (1) The signatureAlgorithm field of Certificate |
| // (2) The signature field of TBSCertificate |
| // |
| // According to RFC 5280 section 4.1.1.2 and 4.1.2.3 these two fields must be |
| // equal: |
| // |
| // This field MUST contain the same algorithm identifier as the |
| // signature field in the sequence tbsCertificate (Section 4.1.2.3). |
| // |
| // The spec is not explicit about what "the same algorithm identifier" means. |
| // Our interpretation is that the two DER-encoded fields must be byte-for-byte |
| // identical. |
| // |
| // In practice however there are certificates which use different encodings for |
| // specifying RSA with SHA1 (different OIDs). This is special-cased for |
| // compatibility sake. |
| bool VerifySignatureAlgorithmsMatch(const ParsedCertificate& cert, |
| CertErrors* errors) { |
| const der::Input& alg1_tlv = cert.signature_algorithm_tlv(); |
| const der::Input& alg2_tlv = cert.tbs().signature_algorithm_tlv; |
| |
| // Ensure that the two DER-encoded signature algorithms are byte-for-byte |
| // equal. |
| if (alg1_tlv == alg2_tlv) |
| return true; |
| |
| // But make a compatibility concession if alternate encodings are used |
| // TODO(eroman): Turn this warning into an error. |
| // TODO(eroman): Add a unit-test that exercises this case. |
| if (SignatureAlgorithm::IsEquivalent(alg1_tlv, alg2_tlv)) { |
| errors->AddWarning( |
| cert_errors::kSignatureAlgorithmsDifferentEncoding, |
| CreateCertErrorParams2Der("Certificate.algorithm", alg1_tlv, |
| "TBSCertificate.signature", alg2_tlv)); |
| return true; |
| } |
| |
| errors->AddError( |
| cert_errors::kSignatureAlgorithmMismatch, |
| CreateCertErrorParams2Der("Certificate.algorithm", alg1_tlv, |
| "TBSCertificate.signature", alg2_tlv)); |
| return false; |
| } |
| |
| // Verify that |cert| can be used for |required_key_purpose|. |
| void VerifyExtendedKeyUsage(const ParsedCertificate& cert, |
| KeyPurpose required_key_purpose, |
| CertErrors* errors) { |
| switch (required_key_purpose) { |
| case KeyPurpose::ANY_EKU: |
| return; |
| case KeyPurpose::SERVER_AUTH: { |
| // TODO(eroman): Is it OK for the target certificate to omit the EKU? |
| if (!cert.has_extended_key_usage()) |
| return; |
| |
| for (const auto& key_purpose_oid : cert.extended_key_usage()) { |
| if (key_purpose_oid == AnyEKU()) |
| return; |
| if (key_purpose_oid == ServerAuth()) |
| return; |
| } |
| |
| // Check if the certificate contains Netscape Server Gated Crypto. |
| // nsSGC is a deprecated mechanism, and not part of RFC 5280's |
| // profile. Some unexpired certificate chains still rely on it though |
| // (there are intermediates valid until 2020 that use it). |
| bool has_nsgc = false; |
| |
| for (const auto& key_purpose_oid : cert.extended_key_usage()) { |
| if (key_purpose_oid == NetscapeServerGatedCrypto()) { |
| has_nsgc = true; |
| break; |
| } |
| } |
| |
| if (has_nsgc) { |
| errors->AddWarning(cert_errors::kEkuLacksServerAuthButHasGatedCrypto); |
| |
| // Allow NSGC for legacy RSA SHA1 intermediates, for compatibility with |
| // platform verifiers. |
| // |
| // In practice the chain will be rejected with or without this |
| // compatibility hack. The difference is whether the final error will be |
| // ERR_CERT_WEAK_SIGNATURE_ALGORITHM (with compatibility hack) vs |
| // ERR_CERT_INVALID (without hack). |
| // |
| // TODO(https://crbug.com/843735): Remove this once error-for-error |
| // equivalence between builtin verifier and platform verifier is less |
| // important. |
| if ((cert.has_basic_constraints() && cert.basic_constraints().is_ca) && |
| (cert.signature_algorithm().algorithm() == |
| SignatureAlgorithmId::RsaPkcs1) && |
| (cert.signature_algorithm().digest() == DigestAlgorithm::Sha1)) { |
| return; |
| } |
| } |
| |
| errors->AddError(cert_errors::kEkuLacksServerAuth); |
| break; |
| } |
| case KeyPurpose::CLIENT_AUTH: { |
| // TODO(eroman): Is it OK for the target certificate to omit the EKU? |
| if (!cert.has_extended_key_usage()) |
| return; |
| |
| for (const auto& key_purpose_oid : cert.extended_key_usage()) { |
| if (key_purpose_oid == AnyEKU()) |
| return; |
| if (key_purpose_oid == ClientAuth()) |
| return; |
| } |
| |
| errors->AddError(cert_errors::kEkuLacksClientAuth); |
| break; |
| } |
| } |
| } |
| |
| // Returns |true| if |policies| contains the OID |search_oid|. |
| bool SetContains(const std::set<der::Input>& policies, |
| const der::Input& search_oid) { |
| return policies.count(search_oid) > 0; |
| } |
| |
| // Representation of RFC 5280's "valid_policy_tree", used to keep track of the |
| // valid policies and policy re-mappings. |
| // |
| // ValidPolicyTree differs slightly from RFC 5280's description in that: |
| // |
| // (1) It does not track "qualifier_set". This is not needed as it is not |
| // output by this implementation. |
| // |
| // (2) It only stores the most recent level of the policy tree rather than |
| // the full tree of nodes. |
| class ValidPolicyTree { |
| public: |
| ValidPolicyTree() = default; |
| |
| struct Node { |
| // |root_policy| is equivalent to |valid_policy|, but in the domain of the |
| // caller. |
| // |
| // The reason for this distinction is the Policy Mappings extension. |
| // |
| // So whereas |valid_policy| is in the remapped domain defined by the |
| // issuing certificate, |root_policy| is in the fixed domain of the caller. |
| // |
| // OIDs in "user_initial_policy_set" and "user_constrained_policy_set" are |
| // directly comparable to |root_policy| values, but not necessarily to |
| // |valid_policy|. |
| // |
| // In terms of the valid policy tree, |root_policy| can be found by |
| // starting at the node's root ancestor, and finding the first node with a |
| // valid_policy other than anyPolicy. This is effectively the same process |
| // as used during policy tree intersection in RFC 5280 6.1.5.g.iii.1 |
| der::Input root_policy; |
| |
| // The same as RFC 5280's "valid_policy" variable. |
| der::Input valid_policy; |
| |
| // The same as RFC 5280s "expected_policy_set" variable. |
| std::set<der::Input> expected_policy_set; |
| |
| // Note that RFC 5280's "qualifier_set" is omitted. |
| }; |
| |
| // Level represents all the nodes at depth "i" in the valid_policy_tree. |
| using Level = std::vector<Node>; |
| |
| // Initializes the ValidPolicyTree for the given "user_initial_policy_set". |
| // |
| // In RFC 5280, the valid_policy_tree is initialized to a root node at depth |
| // 0 of "anyPolicy"; the intersection with the "user_initial_policy_set" is |
| // done at the end (Wrap Up) as described in section 6.1.5 step g. |
| // |
| // Whereas in this implementation, the restriction on policies is added here, |
| // and intersecting the valid policy tree during Wrap Up is no longer needed. |
| // |
| // The final "user_constrained_policy_set" obtained will be the same. The |
| // advantages of this approach is simpler code. |
| void Init(const std::set<der::Input>& user_initial_policy_set) { |
| Clear(); |
| for (const der::Input& policy_oid : user_initial_policy_set) |
| AddRootNode(policy_oid); |
| } |
| |
| // Returns the current level (i.e. all nodes at depth i in the valid |
| // policy tree). |
| const Level& current_level() const { return current_level_; } |
| Level& current_level() { return current_level_; } |
| |
| // In RFC 5280 valid_policy_tree may be set to null. That is represented here |
| // by emptiness. |
| bool IsNull() const { return current_level_.empty(); } |
| void SetNull() { Clear(); } |
| |
| // This implementation keeps only the last level of the valid policy |
| // tree. Calling StartLevel() returns the nodes for the previous |
| // level, and starts a new level. |
| Level StartLevel() { |
| Level prev_level; |
| std::swap(prev_level, current_level_); |
| return prev_level; |
| } |
| |
| // Gets the set of policies (in terms of root authority's policy domain) that |
| // are valid at the curent level of the policy tree. |
| // |
| // For example: |
| // |
| // * If the valid policy tree was initialized with anyPolicy, then this |
| // function returns what X.509 calls "authorities-constrained-policy-set". |
| // |
| // * If the valid policy tree was instead initialized with the |
| // "user-initial-policy_set", then this function returns what X.509 |
| // calls "user-constrained-policy-set" |
| // ("authorities-constrained-policy-set" intersected with the |
| // "user-initial-policy-set"). |
| void GetValidRootPolicySet(std::set<der::Input>* policy_set) { |
| policy_set->clear(); |
| for (const Node& node : current_level_) |
| policy_set->insert(node.root_policy); |
| |
| // If the result includes anyPolicy, simplify it to a set of size 1. |
| if (policy_set->size() > 1 && SetContains(*policy_set, AnyPolicy())) |
| *policy_set = {AnyPolicy()}; |
| } |
| |
| // Adds a node |n| to the current level which is a child of |parent| |
| // such that: |
| // * n.valid_policy = policy_oid |
| // * n.expected_policy_set = {policy_oid} |
| void AddNode(const Node& parent, const der::Input& policy_oid) { |
| AddNodeWithExpectedPolicySet(parent, policy_oid, {policy_oid}); |
| } |
| |
| // Adds a node |n| to the current level which is a child of |parent| |
| // such that: |
| // * n.valid_policy = policy_oid |
| // * n.expected_policy_set = expected_policy_set |
| void AddNodeWithExpectedPolicySet( |
| const Node& parent, |
| const der::Input& policy_oid, |
| const std::set<der::Input>& expected_policy_set) { |
| Node new_node; |
| new_node.valid_policy = policy_oid; |
| new_node.expected_policy_set = expected_policy_set; |
| |
| // Consider the root policy as the first policy other than anyPolicy (or |
| // anyPolicy if it hasn't been restricted yet). |
| new_node.root_policy = |
| (parent.root_policy == AnyPolicy()) ? policy_oid : parent.root_policy; |
| |
| current_level_.push_back(std::move(new_node)); |
| } |
| |
| // Returns the first node having valid_policy == anyPolicy in |level|, or |
| // nullptr if there is none. |
| static const Node* FindAnyPolicyNode(const Level& level) { |
| for (const Node& node : level) { |
| if (node.valid_policy == AnyPolicy()) |
| return &node; |
| } |
| return nullptr; |
| } |
| |
| // Deletes all nodes |n| in |level| where |n.valid_policy| matches the given |
| // |valid_policy|. This may re-order the nodes in |level|. |
| static void DeleteNodesMatchingValidPolicy(const der::Input& valid_policy, |
| Level* level) { |
| // This works by swapping nodes to the end of the vector, and then doing a |
| // single resize to delete them all. |
| auto cur = level->begin(); |
| auto end = level->end(); |
| while (cur != end) { |
| bool should_delete_node = cur->valid_policy == valid_policy; |
| if (should_delete_node) { |
| end = std::prev(end); |
| if (cur != end) |
| std::iter_swap(cur, end); |
| } else { |
| ++cur; |
| } |
| } |
| level->erase(end, level->end()); |
| } |
| |
| private: |
| // Deletes all nodes in the valid policy tree. |
| void Clear() { current_level_.clear(); } |
| |
| // Adds a node to the current level for OID |policy_oid|. The current level |
| // is assumed to be the root level. |
| void AddRootNode(const der::Input& policy_oid) { |
| Node new_node; |
| new_node.root_policy = policy_oid; |
| new_node.valid_policy = policy_oid; |
| new_node.expected_policy_set = {policy_oid}; |
| current_level_.push_back(std::move(new_node)); |
| } |
| |
| Level current_level_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ValidPolicyTree); |
| }; |
| |
| // Class that encapsulates the state variables used by certificate path |
| // validation. |
| class PathVerifier { |
| public: |
| // Same parameters and meaning as VerifyCertificateChain(). |
| void Run(const ParsedCertificateList& certs, |
| const CertificateTrust& last_cert_trust, |
| VerifyCertificateChainDelegate* delegate, |
| const der::GeneralizedTime& time, |
| KeyPurpose required_key_purpose, |
| InitialExplicitPolicy initial_explicit_policy, |
| const std::set<der::Input>& user_initial_policy_set, |
| InitialPolicyMappingInhibit initial_policy_mapping_inhibit, |
| InitialAnyPolicyInhibit initial_any_policy_inhibit, |
| std::set<der::Input>* user_constrained_policy_set, |
| CertPathErrors* errors); |
| |
| private: |
| // Verifies and updates the valid policies. This corresponds with RFC 5280 |
| // section 6.1.3 steps d-f. |
| void VerifyPolicies(const ParsedCertificate& cert, |
| bool is_target_cert, |
| CertErrors* errors); |
| |
| // Applies the policy mappings. This corresponds with RFC 5280 section 6.1.4 |
| // steps a-b. |
| void VerifyPolicyMappings(const ParsedCertificate& cert, CertErrors* errors); |
| |
| // This function corresponds to RFC 5280 section 6.1.3's "Basic Certificate |
| // Processing" procedure. |
| void BasicCertificateProcessing(const ParsedCertificate& cert, |
| bool is_target_cert, |
| const der::GeneralizedTime& time, |
| KeyPurpose required_key_purpose, |
| CertErrors* errors, |
| bool* shortcircuit_chain_validation); |
| |
| // This function corresponds to RFC 5280 section 6.1.4's "Preparation for |
| // Certificate i+1" procedure. |cert| is expected to be an intermediate. |
| void PrepareForNextCertificate(const ParsedCertificate& cert, |
| CertErrors* errors); |
| |
| // This function corresponds with RFC 5280 section 6.1.5's "Wrap-Up |
| // Procedure". It does processing for the final certificate (the target cert). |
| void WrapUp(const ParsedCertificate& cert, CertErrors* errors); |
| |
| // Enforces trust anchor constraints compatibile with RFC 5937. |
| // |
| // Note that the anchor constraints are encoded via the attached certificate |
| // itself. |
| void ApplyTrustAnchorConstraints(const ParsedCertificate& cert, |
| KeyPurpose required_key_purpose, |
| CertErrors* errors); |
| |
| // Initializes the path validation algorithm given anchor constraints. This |
| // follows the description in RFC 5937 |
| void ProcessRootCertificate(const ParsedCertificate& cert, |
| const CertificateTrust& trust, |
| KeyPurpose required_key_purpose, |
| CertErrors* errors, |
| bool* shortcircuit_chain_validation); |
| |
| // Parses |spki| to an EVP_PKEY and checks whether the public key is accepted |
| // by |delegate_|. On failure parsing returns nullptr. If either parsing the |
| // key or key policy failed, adds a high-severity error to |errors|. |
| bssl::UniquePtr<EVP_PKEY> ParseAndCheckPublicKey(const der::Input& spki, |
| CertErrors* errors); |
| |
| ValidPolicyTree valid_policy_tree_; |
| |
| // Will contain a NameConstraints for each previous cert in the chain which |
| // had nameConstraints. This corresponds to the permitted_subtrees and |
| // excluded_subtrees state variables from RFC 5280. |
| std::vector<const NameConstraints*> name_constraints_list_; |
| |
| // |explicit_policy_| corresponds with the same named variable from RFC 5280 |
| // section 6.1.2: |
| // |
| // explicit_policy: an integer that indicates if a non-NULL |
| // valid_policy_tree is required. The integer indicates the |
| // number of non-self-issued certificates to be processed before |
| // this requirement is imposed. Once set, this variable may be |
| // decreased, but may not be increased. That is, if a certificate in the |
| // path requires a non-NULL valid_policy_tree, a later certificate cannot |
| // remove this requirement. If initial-explicit-policy is set, then the |
| // initial value is 0, otherwise the initial value is n+1. |
| size_t explicit_policy_; |
| |
| // |inhibit_any_policy_| corresponds with the same named variable from RFC |
| // 5280 section 6.1.2: |
| // |
| // inhibit_anyPolicy: an integer that indicates whether the |
| // anyPolicy policy identifier is considered a match. The |
| // integer indicates the number of non-self-issued certificates |
| // to be processed before the anyPolicy OID, if asserted in a |
| // certificate other than an intermediate self-issued |
| // certificate, is ignored. Once set, this variable may be |
| // decreased, but may not be increased. That is, if a |
| // certificate in the path inhibits processing of anyPolicy, a |
| // later certificate cannot permit it. If initial-any-policy- |
| // inhibit is set, then the initial value is 0, otherwise the |
| // initial value is n+1. |
| size_t inhibit_any_policy_; |
| |
| // |policy_mapping_| corresponds with the same named variable from RFC 5280 |
| // section 6.1.2: |
| // |
| // policy_mapping: an integer that indicates if policy mapping |
| // is permitted. The integer indicates the number of non-self- |
| // issued certificates to be processed before policy mapping is |
| // inhibited. Once set, this variable may be decreased, but may |
| // not be increased. That is, if a certificate in the path |
| // specifies that policy mapping is not permitted, it cannot be |
| // overridden by a later certificate. If initial-policy- |
| // mapping-inhibit is set, then the initial value is 0, |
| // otherwise the initial value is n+1. |
| size_t policy_mapping_; |
| |
| // |working_public_key_| is an amalgamation of 3 separate variables from RFC |
| // 5280: |
| // * working_public_key |
| // * working_public_key_algorithm |
| // * working_public_key_parameters |
| // |
| // They are combined for simplicity since the signature verification takes an |
| // EVP_PKEY, and the parameter inheritence is not applicable for the supported |
| // key types. |working_public_key_| may be null if parsing failed. |
| // |
| // An approximate explanation of |working_public_key_| is this description |
| // from RFC 5280 section 6.1.2: |
| // |
| // working_public_key: the public key used to verify the |
| // signature of a certificate. |
| bssl::UniquePtr<EVP_PKEY> working_public_key_; |
| |
| // |working_normalized_issuer_name_| is the normalized value of the |
| // working_issuer_name variable in RFC 5280 section 6.1.2: |
| // |
| // working_issuer_name: the issuer distinguished name expected |
| // in the next certificate in the chain. |
| der::Input working_normalized_issuer_name_; |
| |
| // |max_path_length_| corresponds with the same named variable in RFC 5280 |
| // section 6.1.2. |
| // |
| // max_path_length: this integer is initialized to n, is |
| // decremented for each non-self-issued certificate in the path, |
| // and may be reduced to the value in the path length constraint |
| // field within the basic constraints extension of a CA |
| // certificate. |
| size_t max_path_length_; |
| |
| VerifyCertificateChainDelegate* delegate_; |
| }; |
| |
| void PathVerifier::VerifyPolicies(const ParsedCertificate& cert, |
| bool is_target_cert, |
| CertErrors* errors) { |
| // From RFC 5280 section 6.1.3: |
| // |
| // (d) If the certificate policies extension is present in the |
| // certificate and the valid_policy_tree is not NULL, process |
| // the policy information by performing the following steps in |
| // order: |
| if (cert.has_policy_oids() && !valid_policy_tree_.IsNull()) { |
| ValidPolicyTree::Level previous_level = valid_policy_tree_.StartLevel(); |
| |
| // Identify if there was a node with valid_policy == anyPolicy at depth i-1. |
| const ValidPolicyTree::Node* any_policy_node_prev_level = |
| ValidPolicyTree::FindAnyPolicyNode(previous_level); |
| |
| // (1) For each policy P not equal to anyPolicy in the |
| // certificate policies extension, let P-OID denote the OID |
| // for policy P and P-Q denote the qualifier set for policy |
| // P. Perform the following steps in order: |
| bool cert_has_any_policy = false; |
| for (const der::Input& p_oid : cert.policy_oids()) { |
| if (p_oid == AnyPolicy()) { |
| cert_has_any_policy = true; |
| continue; |
| } |
| |
| // (i) For each node of depth i-1 in the valid_policy_tree |
| // where P-OID is in the expected_policy_set, create a |
| // child node as follows: set the valid_policy to P-OID, |
| // set the qualifier_set to P-Q, and set the |
| // expected_policy_set to {P-OID}. |
| bool found_match = false; |
| for (const ValidPolicyTree::Node& prev_node : previous_level) { |
| if (SetContains(prev_node.expected_policy_set, p_oid)) { |
| valid_policy_tree_.AddNode(prev_node, p_oid); |
| found_match = true; |
| } |
| } |
| |
| // (ii) If there was no match in step (i) and the |
| // valid_policy_tree includes a node of depth i-1 with |
| // the valid_policy anyPolicy, generate a child node with |
| // the following values: set the valid_policy to P-OID, |
| // set the qualifier_set to P-Q, and set the |
| // expected_policy_set to {P-OID}. |
| if (!found_match && any_policy_node_prev_level) |
| valid_policy_tree_.AddNode(*any_policy_node_prev_level, p_oid); |
| } |
| |
| // (2) If the certificate policies extension includes the policy |
| // anyPolicy with the qualifier set AP-Q and either (a) |
| // inhibit_anyPolicy is greater than 0 or (b) i<n and the |
| // certificate is self-issued, then: |
| // |
| // For each node in the valid_policy_tree of depth i-1, for |
| // each value in the expected_policy_set (including |
| // anyPolicy) that does not appear in a child node, create a |
| // child node with the following values: set the valid_policy |
| // to the value from the expected_policy_set in the parent |
| // node, set the qualifier_set to AP-Q, and set the |
| // expected_policy_set to the value in the valid_policy from |
| // this node. |
| if (cert_has_any_policy && ((inhibit_any_policy_ > 0) || |
| (!is_target_cert && IsSelfIssued(cert)))) { |
| // Keep track of the existing policies at depth i. |
| std::set<der::Input> child_node_policies; |
| for (const ValidPolicyTree::Node& node : |
| valid_policy_tree_.current_level()) |
| child_node_policies.insert(node.valid_policy); |
| |
| for (const ValidPolicyTree::Node& prev_node : previous_level) { |
| for (const der::Input& expected_policy : |
| prev_node.expected_policy_set) { |
| if (!SetContains(child_node_policies, expected_policy)) { |
| child_node_policies.insert(expected_policy); |
| valid_policy_tree_.AddNode(prev_node, expected_policy); |
| } |
| } |
| } |
| } |
| |
| // (3) If there is a node in the valid_policy_tree of depth i-1 |
| // or less without any child nodes, delete that node. Repeat |
| // this step until there are no nodes of depth i-1 or less |
| // without children. |
| // |
| // Nothing needs to be done for this step, since this implementation only |
| // stores the nodes at depth i, and the entire level has already been |
| // calculated. |
| } |
| |
| // (e) If the certificate policies extension is not present, set the |
| // valid_policy_tree to NULL. |
| if (!cert.has_policy_oids()) |
| valid_policy_tree_.SetNull(); |
| |
| // (f) Verify that either explicit_policy is greater than 0 or the |
| // valid_policy_tree is not equal to NULL; |
| if (!((explicit_policy_ > 0) || !valid_policy_tree_.IsNull())) |
| errors->AddError(cert_errors::kNoValidPolicy); |
| } |
| |
| void PathVerifier::VerifyPolicyMappings(const ParsedCertificate& cert, |
| CertErrors* errors) { |
| if (!cert.has_policy_mappings()) |
| return; |
| |
| // From RFC 5280 section 6.1.4: |
| // |
| // (a) If a policy mappings extension is present, verify that the |
| // special value anyPolicy does not appear as an |
| // issuerDomainPolicy or a subjectDomainPolicy. |
| for (const ParsedPolicyMapping& mapping : cert.policy_mappings()) { |
| if (mapping.issuer_domain_policy == AnyPolicy() || |
| mapping.subject_domain_policy == AnyPolicy()) { |
| // Because this implementation continues processing certificates after |
| // this error, clear the valid policy tree to ensure the |
| // "user_constrained_policy_set" output upon failure is empty. |
| valid_policy_tree_.SetNull(); |
| errors->AddError(cert_errors::kPolicyMappingAnyPolicy); |
| } |
| } |
| |
| // (b) If a policy mappings extension is present, then for each |
| // issuerDomainPolicy ID-P in the policy mappings extension: |
| // |
| // (1) If the policy_mapping variable is greater than 0, for each |
| // node in the valid_policy_tree of depth i where ID-P is the |
| // valid_policy, set expected_policy_set to the set of |
| // subjectDomainPolicy values that are specified as |
| // equivalent to ID-P by the policy mappings extension. |
| // |
| // If no node of depth i in the valid_policy_tree has a |
| // valid_policy of ID-P but there is a node of depth i with a |
| // valid_policy of anyPolicy, then generate a child node of |
| // the node of depth i-1 that has a valid_policy of anyPolicy |
| // as follows: |
| // |
| // (i) set the valid_policy to ID-P; |
| // |
| // (ii) set the qualifier_set to the qualifier set of the |
| // policy anyPolicy in the certificate policies |
| // extension of certificate i; and |
| // |
| // (iii) set the expected_policy_set to the set of |
| // subjectDomainPolicy values that are specified as |
| // equivalent to ID-P by the policy mappings extension. |
| // |
| if (policy_mapping_ > 0) { |
| const ValidPolicyTree::Node* any_policy_node = |
| ValidPolicyTree::FindAnyPolicyNode(valid_policy_tree_.current_level()); |
| |
| // Group mappings by issuer domain policy. |
| std::map<der::Input, std::set<der::Input>> mappings; |
| for (const ParsedPolicyMapping& mapping : cert.policy_mappings()) { |
| mappings[mapping.issuer_domain_policy].insert( |
| mapping.subject_domain_policy); |
| } |
| |
| for (const auto& it : mappings) { |
| const der::Input& issuer_domain_policy = it.first; |
| const std::set<der::Input>& subject_domain_policies = it.second; |
| bool found_node = false; |
| |
| for (ValidPolicyTree::Node& node : valid_policy_tree_.current_level()) { |
| if (node.valid_policy == issuer_domain_policy) { |
| node.expected_policy_set = subject_domain_policies; |
| found_node = true; |
| } |
| } |
| |
| if (!found_node && any_policy_node) { |
| valid_policy_tree_.AddNodeWithExpectedPolicySet( |
| *any_policy_node, issuer_domain_policy, subject_domain_policies); |
| } |
| } |
| } |
| |
| // (b) If a policy mappings extension is present, then for each |
| // issuerDomainPolicy ID-P in the policy mappings extension: |
| // |
| // ... |
| // |
| // (2) If the policy_mapping variable is equal to 0: |
| // |
| // (i) delete each node of depth i in the valid_policy_tree |
| // where ID-P is the valid_policy. |
| // |
| // (ii) If there is a node in the valid_policy_tree of depth |
| // i-1 or less without any child nodes, delete that |
| // node. Repeat this step until there are no nodes of |
| // depth i-1 or less without children. |
| if (policy_mapping_ == 0) { |
| for (const ParsedPolicyMapping& mapping : cert.policy_mappings()) { |
| ValidPolicyTree::DeleteNodesMatchingValidPolicy( |
| mapping.issuer_domain_policy, &valid_policy_tree_.current_level()); |
| } |
| } |
| } |
| |
| void PathVerifier::BasicCertificateProcessing( |
| const ParsedCertificate& cert, |
| bool is_target_cert, |
| const der::GeneralizedTime& time, |
| KeyPurpose required_key_purpose, |
| CertErrors* errors, |
| bool* shortcircuit_chain_validation) { |
| *shortcircuit_chain_validation = false; |
| // Check that the signature algorithms in Certificate vs TBSCertificate |
| // match. This isn't part of RFC 5280 section 6.1.3, but is mandated by |
| // sections 4.1.1.2 and 4.1.2.3. |
| if (!VerifySignatureAlgorithmsMatch(cert, errors)) |
| *shortcircuit_chain_validation = true; |
| |
| // Check whether this signature algorithm is allowed. |
| if (!delegate_->IsSignatureAlgorithmAcceptable(cert.signature_algorithm(), |
| errors)) { |
| *shortcircuit_chain_validation = true; |
| errors->AddError(cert_errors::kUnacceptableSignatureAlgorithm); |
| } |
| |
| if (working_public_key_) { |
| // Verify the digital signature using the previous certificate's key (RFC |
| // 5280 section 6.1.3 step a.1). |
| if (!VerifySignedData(cert.signature_algorithm(), |
| cert.tbs_certificate_tlv(), cert.signature_value(), |
| working_public_key_.get())) { |
| *shortcircuit_chain_validation = true; |
| errors->AddError(cert_errors::kVerifySignedDataFailed); |
| } |
| } |
| if (*shortcircuit_chain_validation) |
| return; |
| |
| // Check the time range for the certificate's validity, ensuring it is valid |
| // at |time|. |
| // (RFC 5280 section 6.1.3 step a.2) |
| VerifyTimeValidity(cert, time, errors); |
| |
| // TODO(eroman): Check revocation (RFC 5280 section 6.1.3 step a.3) |
| |
| // Verify the certificate's issuer name matches the issuing certificate's |
| // subject name. (RFC 5280 section 6.1.3 step a.4) |
| if (cert.normalized_issuer() != working_normalized_issuer_name_) |
| errors->AddError(cert_errors::kSubjectDoesNotMatchIssuer); |
| |
| // Name constraints (RFC 5280 section 6.1.3 step b & c) |
| // If certificate i is self-issued and it is not the final certificate in the |
| // path, skip this step for certificate i. |
| if (!name_constraints_list_.empty() && |
| (!IsSelfIssued(cert) || is_target_cert)) { |
| for (const NameConstraints* nc : name_constraints_list_) { |
| nc->IsPermittedCert(cert.normalized_subject(), cert.subject_alt_names(), |
| errors); |
| } |
| } |
| |
| // RFC 5280 section 6.1.3 step d - f. |
| VerifyPolicies(cert, is_target_cert, errors); |
| |
| // The key purpose is checked not just for the end-entity certificate, but |
| // also interpreted as a constraint when it appears in intermediates. This |
| // goes beyond what RFC 5280 describes, but is the de-facto standard. See |
| // https://wiki.mozilla.org/CA:CertificatePolicyV2.1#Frequently_Asked_Questions |
| VerifyExtendedKeyUsage(cert, required_key_purpose, errors); |
| } |
| |
| void PathVerifier::PrepareForNextCertificate(const ParsedCertificate& cert, |
| CertErrors* errors) { |
| // RFC 5280 section 6.1.4 step a-b |
| VerifyPolicyMappings(cert, errors); |
| |
| // From RFC 5280 section 6.1.4 step c: |
| // |
| // Assign the certificate subject name to working_normalized_issuer_name. |
| working_normalized_issuer_name_ = cert.normalized_subject(); |
| |
| // From RFC 5280 section 6.1.4 step d: |
| // |
| // Assign the certificate subjectPublicKey to working_public_key. |
| working_public_key_ = ParseAndCheckPublicKey(cert.tbs().spki_tlv, errors); |
| |
| // Note that steps e and f are omitted as they are handled by |
| // the assignment to |working_spki| above. See the definition |
| // of |working_spki|. |
| |
| // From RFC 5280 section 6.1.4 step g: |
| if (cert.has_name_constraints()) |
| name_constraints_list_.push_back(&cert.name_constraints()); |
| |
| // (h) If certificate i is not self-issued: |
| if (!IsSelfIssued(cert)) { |
| // (1) If explicit_policy is not 0, decrement explicit_policy by |
| // 1. |
| if (explicit_policy_ > 0) |
| explicit_policy_ -= 1; |
| |
| // (2) If policy_mapping is not 0, decrement policy_mapping by 1. |
| if (policy_mapping_ > 0) |
| policy_mapping_ -= 1; |
| |
| // (3) If inhibit_anyPolicy is not 0, decrement inhibit_anyPolicy |
| // by 1. |
| if (inhibit_any_policy_ > 0) |
| inhibit_any_policy_ -= 1; |
| } |
| |
| // (i) If a policy constraints extension is included in the |
| // certificate, modify the explicit_policy and policy_mapping |
| // state variables as follows: |
| if (cert.has_policy_constraints()) { |
| // (1) If requireExplicitPolicy is present and is less than |
| // explicit_policy, set explicit_policy to the value of |
| // requireExplicitPolicy. |
| if (cert.policy_constraints().has_require_explicit_policy && |
| cert.policy_constraints().require_explicit_policy < explicit_policy_) { |
| explicit_policy_ = cert.policy_constraints().require_explicit_policy; |
| } |
| |
| // (2) If inhibitPolicyMapping is present and is less than |
| // policy_mapping, set policy_mapping to the value of |
| // inhibitPolicyMapping. |
| if (cert.policy_constraints().has_inhibit_policy_mapping && |
| cert.policy_constraints().inhibit_policy_mapping < policy_mapping_) { |
| policy_mapping_ = cert.policy_constraints().inhibit_policy_mapping; |
| } |
| } |
| |
| // (j) If the inhibitAnyPolicy extension is included in the |
| // certificate and is less than inhibit_anyPolicy, set |
| // inhibit_anyPolicy to the value of inhibitAnyPolicy. |
| if (cert.has_inhibit_any_policy() && |
| cert.inhibit_any_policy() < inhibit_any_policy_) { |
| inhibit_any_policy_ = cert.inhibit_any_policy(); |
| } |
| |
| // From RFC 5280 section 6.1.4 step k: |
| // |
| // If certificate i is a version 3 certificate, verify that the |
| // basicConstraints extension is present and that cA is set to |
| // TRUE. (If certificate i is a version 1 or version 2 |
| // certificate, then the application MUST either verify that |
| // certificate i is a CA certificate through out-of-band means |
| // or reject the certificate. Conforming implementations may |
| // choose to reject all version 1 and version 2 intermediate |
| // certificates.) |
| // |
| // This code implicitly rejects non version 3 intermediates, since they |
| // can't contain a BasicConstraints extension. |
| if (!cert.has_basic_constraints()) { |
| errors->AddError(cert_errors::kMissingBasicConstraints); |
| } else if (!cert.basic_constraints().is_ca) { |
| errors->AddError(cert_errors::kBasicConstraintsIndicatesNotCa); |
| } |
| |
| // From RFC 5280 section 6.1.4 step l: |
| // |
| // If the certificate was not self-issued, verify that |
| // max_path_length is greater than zero and decrement |
| // max_path_length by 1. |
| if (!IsSelfIssued(cert)) { |
| if (max_path_length_ == 0) { |
| errors->AddError(cert_errors::kMaxPathLengthViolated); |
| } else { |
| --max_path_length_; |
| } |
| } |
| |
| // From RFC 5280 section 6.1.4 step m: |
| // |
| // If pathLenConstraint is present in the certificate and is |
| // less than max_path_length, set max_path_length to the value |
| // of pathLenConstraint. |
| if (cert.has_basic_constraints() && cert.basic_constraints().has_path_len && |
| cert.basic_constraints().path_len < max_path_length_) { |
| max_path_length_ = cert.basic_constraints().path_len; |
| } |
| |
| // From RFC 5280 section 6.1.4 step n: |
| // |
| // If a key usage extension is present, verify that the |
| // keyCertSign bit is set. |
| if (cert.has_key_usage() && |
| !cert.key_usage().AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN)) { |
| errors->AddError(cert_errors::kKeyCertSignBitNotSet); |
| } |
| |
| // From RFC 5280 section 6.1.4 step o: |
| // |
| // Recognize and process any other critical extension present in |
| // the certificate. Process any other recognized non-critical |
| // extension present in the certificate that is relevant to path |
| // processing. |
| VerifyNoUnconsumedCriticalExtensions(cert, errors); |
| } |
| |
| // Checks that if the target certificate has properties that only a CA should |
| // have (keyCertSign, CA=true, pathLenConstraint), then its other properties |
| // are consistent with being a CA. If it does, adds errors to |errors|. |
| // |
| // This follows from some requirements in RFC 5280 section 4.2.1.9. In |
| // particular: |
| // |
| // CAs MUST NOT include the pathLenConstraint field unless the cA |
| // boolean is asserted and the key usage extension asserts the |
| // keyCertSign bit. |
| // |
| // And: |
| // |
| // If the cA boolean is not asserted, then the keyCertSign bit in the key |
| // usage extension MUST NOT be asserted. |
| // |
| // TODO(eroman): Strictly speaking the first requirement is on CAs and not the |
| // certificate client, so could be skipped. |
| // |
| // TODO(eroman): I don't believe Firefox enforces the keyCertSign restriction |
| // for compatibility reasons. Investigate if we need to similarly relax this |
| // constraint. |
| void VerifyTargetCertHasConsistentCaBits(const ParsedCertificate& cert, |
| CertErrors* errors) { |
| // Check if the certificate contains any property specific to CAs. |
| bool has_ca_property = |
| (cert.has_basic_constraints() && |
| (cert.basic_constraints().is_ca || |
| cert.basic_constraints().has_path_len)) || |
| (cert.has_key_usage() && |
| cert.key_usage().AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN)); |
| |
| // If it "looks" like a CA because it has a CA-only property, then check that |
| // it sets ALL the properties expected of a CA. |
| if (has_ca_property) { |
| bool success = cert.has_basic_constraints() && |
| cert.basic_constraints().is_ca && |
| (!cert.has_key_usage() || |
| cert.key_usage().AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN)); |
| if (!success) { |
| // TODO(eroman): Add DER for basic constraints and key usage. |
| errors->AddError(cert_errors::kTargetCertInconsistentCaBits); |
| } |
| } |
| } |
| |
| void PathVerifier::WrapUp(const ParsedCertificate& cert, CertErrors* errors) { |
| // From RFC 5280 section 6.1.5: |
| // (a) If explicit_policy is not 0, decrement explicit_policy by 1. |
| if (explicit_policy_ > 0) |
| explicit_policy_ -= 1; |
| |
| // (b) If a policy constraints extension is included in the |
| // certificate and requireExplicitPolicy is present and has a |
| // value of 0, set the explicit_policy state variable to 0. |
| if (cert.has_policy_constraints() && |
| cert.policy_constraints().has_require_explicit_policy && |
| cert.policy_constraints().require_explicit_policy == 0) { |
| explicit_policy_ = 0; |
| } |
| |
| // Note step c-e are omitted as the verification function does |
| // not output the working public key. |
| |
| // From RFC 5280 section 6.1.5 step f: |
| // |
| // Recognize and process any other critical extension present in |
| // the certificate n. Process any other recognized non-critical |
| // extension present in certificate n that is relevant to path |
| // processing. |
| // |
| // Note that this is duplicated by PrepareForNextCertificate() so as to |
| // directly match the procedures in RFC 5280's section 6.1. |
| VerifyNoUnconsumedCriticalExtensions(cert, errors); |
| |
| // RFC 5280 section 6.1.5 step g is skipped, as the intersection of valid |
| // policies was computed during previous steps. |
| // |
| // If either (1) the value of explicit_policy variable is greater than |
| // zero or (2) the valid_policy_tree is not NULL, then path processing |
| // has succeeded. |
| if (!(explicit_policy_ > 0 || !valid_policy_tree_.IsNull())) { |
| errors->AddError(cert_errors::kNoValidPolicy); |
| } |
| |
| // The following check is NOT part of RFC 5280 6.1.5's "Wrap-Up Procedure", |
| // however is implied by RFC 5280 section 4.2.1.9. |
| VerifyTargetCertHasConsistentCaBits(cert, errors); |
| |
| // Check the public key for the target certificate. The public key for the |
| // other certificates is already checked by PrepareForNextCertificate(). |
| // Note that this step is not part of RFC 5280 6.1.5. |
| ParseAndCheckPublicKey(cert.tbs().spki_tlv, errors); |
| } |
| |
| void PathVerifier::ApplyTrustAnchorConstraints(const ParsedCertificate& cert, |
| KeyPurpose required_key_purpose, |
| CertErrors* errors) { |
| // This is not part of RFC 5937 nor RFC 5280, but matches the EKU handling |
| // done for intermediates (described in Web PKI's Baseline Requirements). |
| VerifyExtendedKeyUsage(cert, required_key_purpose, errors); |
| |
| // The following enforcements follow from RFC 5937 (primarily section 3.2): |
| |
| // Initialize name constraints initial-permitted/excluded-subtrees. |
| if (cert.has_name_constraints()) |
| name_constraints_list_.push_back(&cert.name_constraints()); |
| |
| // TODO(eroman): Initialize user-initial-policy-set based on anchor |
| // constraints. |
| |
| // TODO(eroman): Initialize inhibit any policy based on anchor constraints. |
| |
| // TODO(eroman): Initialize require explicit policy based on anchor |
| // constraints. |
| |
| // TODO(eroman): Initialize inhibit policy mapping based on anchor |
| // constraints. |
| |
| // From RFC 5937 section 3.2: |
| // |
| // If a basic constraints extension is associated with the trust |
| // anchor and contains a pathLenConstraint value, set the |
| // max_path_length state variable equal to the pathLenConstraint |
| // value from the basic constraints extension. |
| // |
| // NOTE: RFC 5937 does not say to enforce the CA=true part of basic |
| // constraints. |
| if (cert.has_basic_constraints() && cert.basic_constraints().has_path_len) |
| max_path_length_ = cert.basic_constraints().path_len; |
| |
| // From RFC 5937 section 2: |
| // |
| // Extensions may be marked critical or not critical. When trust anchor |
| // constraints are enforced, clients MUST reject certification paths |
| // containing a trust anchor with unrecognized critical extensions. |
| VerifyNoUnconsumedCriticalExtensions(cert, errors); |
| } |
| |
| void PathVerifier::ProcessRootCertificate(const ParsedCertificate& cert, |
| const CertificateTrust& trust, |
| KeyPurpose required_key_purpose, |
| CertErrors* errors, |
| bool* shortcircuit_chain_validation) { |
| *shortcircuit_chain_validation = false; |
| switch (trust.type) { |
| case CertificateTrustType::UNSPECIFIED: |
| // Doesn't chain to a trust anchor - implicitly distrusted |
| errors->AddError(cert_errors::kCertIsNotTrustAnchor); |
| *shortcircuit_chain_validation = true; |
| break; |
| case CertificateTrustType::DISTRUSTED: |
| // Chains to an actively distrusted certificate. |
| errors->AddError(cert_errors::kDistrustedByTrustStore); |
| *shortcircuit_chain_validation = true; |
| break; |
| case CertificateTrustType::TRUSTED_ANCHOR: |
| case CertificateTrustType::TRUSTED_ANCHOR_WITH_CONSTRAINTS: |
| // If the trust anchor has constraints, enforce them. |
| if (trust.type == CertificateTrustType::TRUSTED_ANCHOR_WITH_CONSTRAINTS) { |
| ApplyTrustAnchorConstraints(cert, required_key_purpose, errors); |
| } |
| break; |
| } |
| if (*shortcircuit_chain_validation) |
| return; |
| |
| // Use the certificate's SPKI and subject when verifying the next certificate. |
| working_public_key_ = ParseAndCheckPublicKey(cert.tbs().spki_tlv, errors); |
| working_normalized_issuer_name_ = cert.normalized_subject(); |
| } |
| |
| bssl::UniquePtr<EVP_PKEY> PathVerifier::ParseAndCheckPublicKey( |
| const der::Input& spki, |
| CertErrors* errors) { |
| // Parse the public key. |
| bssl::UniquePtr<EVP_PKEY> pkey; |
| if (!ParsePublicKey(spki, &pkey)) { |
| errors->AddError(cert_errors::kFailedParsingSpki); |
| return nullptr; |
| } |
| |
| // Check if the key is acceptable by the delegate. |
| if (!delegate_->IsPublicKeyAcceptable(pkey.get(), errors)) |
| errors->AddError(cert_errors::kUnacceptablePublicKey); |
| |
| return pkey; |
| } |
| |
| void PathVerifier::Run( |
| const ParsedCertificateList& certs, |
| const CertificateTrust& last_cert_trust, |
| VerifyCertificateChainDelegate* delegate, |
| const der::GeneralizedTime& time, |
| KeyPurpose required_key_purpose, |
| InitialExplicitPolicy initial_explicit_policy, |
| const std::set<der::Input>& user_initial_policy_set, |
| InitialPolicyMappingInhibit initial_policy_mapping_inhibit, |
| InitialAnyPolicyInhibit initial_any_policy_inhibit, |
| std::set<der::Input>* user_constrained_policy_set, |
| CertPathErrors* errors) { |
| // This implementation is structured to mimic the description of certificate |
| // path verification given by RFC 5280 section 6.1. |
| DCHECK(delegate); |
| DCHECK(errors); |
| |
| delegate_ = delegate; |
| |
| // An empty chain is necessarily invalid. |
| if (certs.empty()) { |
| errors->GetOtherErrors()->AddError(cert_errors::kChainIsEmpty); |
| return; |
| } |
| |
| // Verifying a trusted leaf certificate is not permitted. (It isn't a |
| // well-specified operation.) See https://crbug.com/814994. |
| if (certs.size() == 1) { |
| errors->GetOtherErrors()->AddError(cert_errors::kChainIsLength1); |
| return; |
| } |
| |
| // RFC 5280's "n" variable is the length of the path, which does not count |
| // the trust anchor. (Although in practice it doesn't really change behaviors |
| // if n is used in place of n+1). |
| const size_t n = certs.size() - 1; |
| |
| valid_policy_tree_.Init(user_initial_policy_set); |
| |
| // RFC 5280 section section 6.1.2: |
| // |
| // If initial-explicit-policy is set, then the initial value |
| // [of explicit_policy] is 0, otherwise the initial value is n+1. |
| explicit_policy_ = |
| initial_explicit_policy == InitialExplicitPolicy::kTrue ? 0 : n + 1; |
| |
| // RFC 5280 section section 6.1.2: |
| // |
| // If initial-any-policy-inhibit is set, then the initial value |
| // [of inhibit_anyPolicy] is 0, otherwise the initial value is n+1. |
| inhibit_any_policy_ = |
| initial_any_policy_inhibit == InitialAnyPolicyInhibit::kTrue ? 0 : n + 1; |
| |
| // RFC 5280 section section 6.1.2: |
| // |
| // If initial-policy-mapping-inhibit is set, then the initial value |
| // [of policy_mapping] is 0, otherwise the initial value is n+1. |
| policy_mapping_ = |
| initial_policy_mapping_inhibit == InitialPolicyMappingInhibit::kTrue |
| ? 0 |
| : n + 1; |
| |
| // RFC 5280 section section 6.1.2: |
| // |
| // max_path_length: this integer is initialized to n, ... |
| max_path_length_ = n; |
| |
| // Iterate over all the certificates in the reverse direction: starting from |
| // the root certificate and progressing towards the target certificate. |
| // |
| // * i=0 : Root certificate (i.e. trust anchor) |
| // * i=1 : Certificate issued by root |
| // * i=x : Certificate i=x is issued by certificate i=x-1 |
| // * i=n : Target certificate. |
| for (size_t i = 0; i < certs.size(); ++i) { |
| const size_t index_into_certs = certs.size() - i - 1; |
| |
| // |is_target_cert| is true if the current certificate is the target |
| // certificate being verified. The target certificate isn't necessarily an |
| // end-entity certificate. |
| const bool is_target_cert = index_into_certs == 0; |
| const bool is_root_cert = i == 0; |
| |
| const ParsedCertificate& cert = *certs[index_into_certs]; |
| |
| // Output errors for the current certificate into an error bucket that is |
| // associated with that certificate. |
| CertErrors* cert_errors = errors->GetErrorsForCert(index_into_certs); |
| |
| if (is_root_cert) { |
| bool shortcircuit_chain_validation = false; |
| ProcessRootCertificate(cert, last_cert_trust, required_key_purpose, |
| cert_errors, &shortcircuit_chain_validation); |
| if (shortcircuit_chain_validation) { |
| // Chains that don't start from a trusted root should short-circuit the |
| // rest of the verification, as accumulating more errors from untrusted |
| // certificates would not be meaningful. |
| DCHECK(cert_errors->ContainsAnyErrorWithSeverity( |
| CertError::SEVERITY_HIGH)); |
| return; |
| } |
| |
| // Don't do any other checks for root certificates. |
| continue; |
| } |
| |
| bool shortcircuit_chain_validation = false; |
| // Per RFC 5280 section 6.1: |
| // * Do basic processing for each certificate |
| // * If it is the last certificate in the path (target certificate) |
| // - Then run "Wrap up" |
| // - Otherwise run "Prepare for Next cert" |
| BasicCertificateProcessing(cert, is_target_cert, time, required_key_purpose, |
| cert_errors, &shortcircuit_chain_validation); |
| if (shortcircuit_chain_validation) { |
| // Signature errors should short-circuit the rest of the verification, as |
| // accumulating more errors from untrusted certificates would not be |
| // meaningful. |
| DCHECK( |
| cert_errors->ContainsAnyErrorWithSeverity(CertError::SEVERITY_HIGH)); |
| return; |
| } |
| if (!is_target_cert) { |
| PrepareForNextCertificate(cert, cert_errors); |
| } else { |
| WrapUp(cert, cert_errors); |
| } |
| } |
| |
| if (user_constrained_policy_set) { |
| // valid_policy_tree_ already contains the intersection of valid policies |
| // with user_initial_policy_set. |
| valid_policy_tree_.GetValidRootPolicySet(user_constrained_policy_set); |
| } |
| |
| // TODO(eroman): RFC 5280 forbids duplicate certificates per section 6.1: |
| // |
| // A certificate MUST NOT appear more than once in a prospective |
| // certification path. |
| } |
| |
| } // namespace |
| |
| VerifyCertificateChainDelegate::~VerifyCertificateChainDelegate() = default; |
| |
| void VerifyCertificateChain( |
| const ParsedCertificateList& certs, |
| const CertificateTrust& last_cert_trust, |
| VerifyCertificateChainDelegate* delegate, |
| const der::GeneralizedTime& time, |
| KeyPurpose required_key_purpose, |
| InitialExplicitPolicy initial_explicit_policy, |
| const std::set<der::Input>& user_initial_policy_set, |
| InitialPolicyMappingInhibit initial_policy_mapping_inhibit, |
| InitialAnyPolicyInhibit initial_any_policy_inhibit, |
| std::set<der::Input>* user_constrained_policy_set, |
| CertPathErrors* errors) { |
| PathVerifier verifier; |
| verifier.Run(certs, last_cert_trust, delegate, time, required_key_purpose, |
| initial_explicit_policy, user_initial_policy_set, |
| initial_policy_mapping_inhibit, initial_any_policy_inhibit, |
| user_constrained_policy_set, errors); |
| } |
| |
| } // namespace net |