| /* Portions are Copyright (C) 2011 Google Inc */ |
| /* ***** BEGIN LICENSE BLOCK ***** |
| * Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
| * |
| * The contents of this file are subject to the Mozilla Public License Version |
| * 1.1 (the "License"); you may not use this file except in compliance with |
| * the License. You may obtain a copy of the License at |
| * http://www.mozilla.org/MPL/ |
| * |
| * Software distributed under the License is distributed on an "AS IS" basis, |
| * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
| * for the specific language governing rights and limitations under the |
| * License. |
| * |
| * The Original Code is the Netscape Portable Runtime (NSPR). |
| * |
| * The Initial Developer of the Original Code is |
| * Netscape Communications Corporation. |
| * Portions created by the Initial Developer are Copyright (C) 1998-2000 |
| * the Initial Developer. All Rights Reserved. |
| * |
| * Contributor(s): |
| * |
| * Alternatively, the contents of this file may be used under the terms of |
| * either the GNU General Public License Version 2 or later (the "GPL"), or |
| * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
| * in which case the provisions of the GPL or the LGPL are applicable instead |
| * of those above. If you wish to allow use of your version of this file only |
| * under the terms of either the GPL or the LGPL, and not to allow others to |
| * use your version of this file under the terms of the MPL, indicate your |
| * decision by deleting the provisions above and replace them with the notice |
| * and other provisions required by the GPL or the LGPL. If you do not delete |
| * the provisions above, a recipient may use your version of this file under |
| * the terms of any one of the MPL, the GPL or the LGPL. |
| * |
| * ***** END LICENSE BLOCK ***** */ |
| |
| /* |
| * prtime.cc -- |
| * NOTE: The original nspr file name is prtime.c |
| * |
| * NSPR date and time functions |
| * |
| * CVS revision 3.37 |
| */ |
| |
| /* |
| * The following functions were copied from the NSPR prtime.c file. |
| * PR_ParseTimeString |
| * We inlined the new PR_ParseTimeStringToExplodedTime function to avoid |
| * copying PR_ExplodeTime and PR_LocalTimeParameters. (The PR_ExplodeTime |
| * and PR_ImplodeTime calls cancel each other out.) |
| * PR_NormalizeTime |
| * PR_GMTParameters |
| * PR_ImplodeTime |
| * This was modified to use the Win32 SYSTEMTIME/FILETIME structures |
| * and the timezone offsets are applied to the FILETIME structure. |
| * All types and macros are defined in the base/third_party/prtime.h file. |
| * These have been copied from the following nspr files. We have only copied |
| * over the types we need. |
| * 1. prtime.h |
| * 2. prtypes.h |
| * 3. prlong.h |
| */ |
| |
| #include "base/logging.h" |
| #include "base/third_party/nspr/prtime.h" |
| #include "build/build_config.h" |
| |
| #if defined(OS_WIN) || defined(COBALT_WIN) |
| #include <windows.h> |
| #elif defined(OS_MACOSX) |
| #include <CoreFoundation/CoreFoundation.h> |
| #elif defined(OS_ANDROID) || defined(__LB_ANDROID__) |
| #include <ctype.h> |
| #include "base/os_compat_android.h" // For timegm() |
| #elif defined(OS_NACL) |
| #include "base/os_compat_nacl.h" // For timegm() |
| #else |
| #define PRTIME_USE_BASE_TIME |
| #include "base/time.h" |
| #endif |
| |
| #if !defined(OS_STARBOARD) |
| #include <errno.h> /* for EINVAL */ |
| #include <time.h> |
| #endif |
| |
| /* Implements the Unix localtime_r() function for windows */ |
| #if defined(OS_WIN) |
| static void localtime_r(const time_t* secs, struct tm* time) { |
| (void) localtime_s(time, secs); |
| } |
| #endif |
| |
| #if defined(PRTIME_USE_BASE_TIME) |
| // Implodes |exploded| using base::Time's implosion methods. |is_local| states |
| // whether to ignore the time zone params and just interpret as a local time, as |
| // opposed to treating like a UTC exploded time and then adjusting by the TZ |
| // params. |
| static PRTime BaseImplode(const PRExplodedTime* exploded, bool is_local) { |
| static const PRTime kSecondsToMicroseconds = static_cast<PRTime>(1000000); |
| base::Time::Exploded base_exploded; |
| base_exploded.year = exploded->tm_year; |
| base_exploded.month = exploded->tm_month + 1; |
| base_exploded.day_of_week = 0; |
| base_exploded.day_of_month = exploded->tm_mday; |
| base_exploded.hour = exploded->tm_hour; |
| base_exploded.minute = exploded->tm_min; |
| base_exploded.second = exploded->tm_sec; |
| base_exploded.millisecond = 0; |
| base::Time base_time; |
| if (is_local) { |
| base_time = base::Time::FromLocalExploded(base_exploded); |
| } else { |
| base_time = base::Time::FromUTCExploded(base_exploded); |
| } |
| PRTime result = static_cast<PRTime>( |
| (base_time - base::Time::UnixEpoch()).InMicroseconds()); |
| if (!is_local) { |
| result -= (exploded->tm_params.tp_gmt_offset + |
| exploded->tm_params.tp_dst_offset) * |
| kSecondsToMicroseconds; |
| } |
| result += exploded->tm_usec; |
| return result; |
| } |
| #endif // defined(PRTIME_USE_BASE_TIME) |
| |
| /* |
| *------------------------------------------------------------------------ |
| * |
| * PR_ImplodeTime -- |
| * |
| * Cf. time_t mktime(struct tm *tp) |
| * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough. |
| * |
| *------------------------------------------------------------------------ |
| */ |
| PRTime |
| PR_ImplodeTime(const PRExplodedTime *exploded) |
| { |
| // This is important, we want to make sure multiplications are |
| // done with the correct precision. |
| static const PRTime kSecondsToMicroseconds = static_cast<PRTime>(1000000); |
| #if defined(OS_WIN) || defined(COBALT_WIN) |
| // Create the system struct representing our exploded time. |
| SYSTEMTIME st = {0}; |
| FILETIME ft = {0}; |
| ULARGE_INTEGER uli = {0}; |
| |
| st.wYear = exploded->tm_year; |
| st.wMonth = exploded->tm_month + 1; |
| st.wDayOfWeek = exploded->tm_wday; |
| st.wDay = exploded->tm_mday; |
| st.wHour = exploded->tm_hour; |
| st.wMinute = exploded->tm_min; |
| st.wSecond = exploded->tm_sec; |
| st.wMilliseconds = exploded->tm_usec/1000; |
| // Convert to FILETIME. |
| if (!SystemTimeToFileTime(&st, &ft)) { |
| NOTREACHED() << "Unable to convert time"; |
| return 0; |
| } |
| // Apply offsets. |
| uli.LowPart = ft.dwLowDateTime; |
| uli.HighPart = ft.dwHighDateTime; |
| // Convert from Windows epoch to NSPR epoch, and 100-nanoseconds units |
| // to microsecond units. |
| PRTime result = |
| static_cast<PRTime>((uli.QuadPart / 10) - 11644473600000000i64); |
| // Adjust for time zone and dst. Convert from seconds to microseconds. |
| result -= (exploded->tm_params.tp_gmt_offset + |
| exploded->tm_params.tp_dst_offset) * kSecondsToMicroseconds; |
| return result; |
| #elif defined(OS_MACOSX) |
| // Create the system struct representing our exploded time. |
| CFGregorianDate gregorian_date; |
| gregorian_date.year = exploded->tm_year; |
| gregorian_date.month = exploded->tm_month + 1; |
| gregorian_date.day = exploded->tm_mday; |
| gregorian_date.hour = exploded->tm_hour; |
| gregorian_date.minute = exploded->tm_min; |
| gregorian_date.second = exploded->tm_sec; |
| |
| // Compute |absolute_time| in seconds, correct for gmt and dst |
| // (note the combined offset will be negative when we need to add it), then |
| // convert to microseconds which is what PRTime expects. |
| CFAbsoluteTime absolute_time = |
| CFGregorianDateGetAbsoluteTime(gregorian_date, NULL); |
| PRTime result = static_cast<PRTime>(absolute_time); |
| result -= exploded->tm_params.tp_gmt_offset + |
| exploded->tm_params.tp_dst_offset; |
| result += kCFAbsoluteTimeIntervalSince1970; // PRTime epoch is 1970 |
| result *= kSecondsToMicroseconds; |
| result += exploded->tm_usec; |
| return result; |
| #elif defined(OS_POSIX) |
| struct tm exp_tm = {0}; |
| exp_tm.tm_sec = exploded->tm_sec; |
| exp_tm.tm_min = exploded->tm_min; |
| exp_tm.tm_hour = exploded->tm_hour; |
| exp_tm.tm_mday = exploded->tm_mday; |
| exp_tm.tm_mon = exploded->tm_month; |
| exp_tm.tm_year = exploded->tm_year - 1900; |
| time_t absolute_time = timegm(&exp_tm); |
| |
| // If timegm returned -1. Since we don't pass it a time zone, the only |
| // valid case of returning -1 is 1 second before Epoch (Dec 31, 1969). |
| if (absolute_time == -1 && |
| !(exploded->tm_year == 1969 && exploded->tm_month == 11 && |
| exploded->tm_mday == 31 && exploded->tm_hour == 23 && |
| exploded->tm_min == 59 && exploded->tm_sec == 59)) { |
| // If we get here, time_t must be 32 bits. |
| // Date was possibly too far in the future and would overflow. Return |
| // the most future date possible (year 2038). |
| if (exploded->tm_year >= 1970) |
| return INT_MAX * kSecondsToMicroseconds; |
| // Date was possibly too far in the past and would underflow. Return |
| // the most past date possible (year 1901). |
| return INT_MIN * kSecondsToMicroseconds; |
| } |
| |
| PRTime result = static_cast<PRTime>(absolute_time); |
| result -= exploded->tm_params.tp_gmt_offset + |
| exploded->tm_params.tp_dst_offset; |
| result *= kSecondsToMicroseconds; |
| result += exploded->tm_usec; |
| return result; |
| #elif defined(PRTIME_USE_BASE_TIME) |
| return BaseImplode(exploded, false /*is_local*/); |
| #else |
| #error No PR_ImplodeTime implemented on your platform. |
| #endif |
| } |
| |
| /* |
| * The COUNT_LEAPS macro counts the number of leap years passed by |
| * till the start of the given year Y. At the start of the year 4 |
| * A.D. the number of leap years passed by is 0, while at the start of |
| * the year 5 A.D. this count is 1. The number of years divisible by |
| * 100 but not divisible by 400 (the non-leap years) is deducted from |
| * the count to get the correct number of leap years. |
| * |
| * The COUNT_DAYS macro counts the number of days since 01/01/01 till the |
| * start of the given year Y. The number of days at the start of the year |
| * 1 is 0 while the number of days at the start of the year 2 is 365 |
| * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01 |
| * midnight 00:00:00. |
| */ |
| |
| #define COUNT_LEAPS(Y) ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 ) |
| #define COUNT_DAYS(Y) ( ((Y)-1)*365 + COUNT_LEAPS(Y) ) |
| #define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A)) |
| |
| /* |
| * Static variables used by functions in this file |
| */ |
| |
| /* |
| * The following array contains the day of year for the last day of |
| * each month, where index 1 is January, and day 0 is January 1. |
| */ |
| |
| static const int lastDayOfMonth[2][13] = { |
| {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364}, |
| {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365} |
| }; |
| |
| /* |
| * The number of days in a month |
| */ |
| |
| static const PRInt8 nDays[2][12] = { |
| {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
| {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31} |
| }; |
| |
| /* |
| *------------------------------------------------------------------------- |
| * |
| * IsLeapYear -- |
| * |
| * Returns 1 if the year is a leap year, 0 otherwise. |
| * |
| *------------------------------------------------------------------------- |
| */ |
| |
| static int IsLeapYear(PRInt16 year) |
| { |
| if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* |
| * 'secOffset' should be less than 86400 (i.e., a day). |
| * 'time' should point to a normalized PRExplodedTime. |
| */ |
| |
| static void |
| ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset) |
| { |
| time->tm_sec += secOffset; |
| |
| /* Note that in this implementation we do not count leap seconds */ |
| if (time->tm_sec < 0 || time->tm_sec >= 60) { |
| time->tm_min += time->tm_sec / 60; |
| time->tm_sec %= 60; |
| if (time->tm_sec < 0) { |
| time->tm_sec += 60; |
| time->tm_min--; |
| } |
| } |
| |
| if (time->tm_min < 0 || time->tm_min >= 60) { |
| time->tm_hour += time->tm_min / 60; |
| time->tm_min %= 60; |
| if (time->tm_min < 0) { |
| time->tm_min += 60; |
| time->tm_hour--; |
| } |
| } |
| |
| if (time->tm_hour < 0) { |
| /* Decrement mday, yday, and wday */ |
| time->tm_hour += 24; |
| time->tm_mday--; |
| time->tm_yday--; |
| if (time->tm_mday < 1) { |
| time->tm_month--; |
| if (time->tm_month < 0) { |
| time->tm_month = 11; |
| time->tm_year--; |
| if (IsLeapYear(time->tm_year)) |
| time->tm_yday = 365; |
| else |
| time->tm_yday = 364; |
| } |
| time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
| } |
| time->tm_wday--; |
| if (time->tm_wday < 0) |
| time->tm_wday = 6; |
| } else if (time->tm_hour > 23) { |
| /* Increment mday, yday, and wday */ |
| time->tm_hour -= 24; |
| time->tm_mday++; |
| time->tm_yday++; |
| if (time->tm_mday > |
| nDays[IsLeapYear(time->tm_year)][time->tm_month]) { |
| time->tm_mday = 1; |
| time->tm_month++; |
| if (time->tm_month > 11) { |
| time->tm_month = 0; |
| time->tm_year++; |
| time->tm_yday = 0; |
| } |
| } |
| time->tm_wday++; |
| if (time->tm_wday > 6) |
| time->tm_wday = 0; |
| } |
| } |
| |
| void |
| PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params) |
| { |
| int daysInMonth; |
| PRInt32 numDays; |
| |
| /* Get back to GMT */ |
| time->tm_sec -= time->tm_params.tp_gmt_offset |
| + time->tm_params.tp_dst_offset; |
| time->tm_params.tp_gmt_offset = 0; |
| time->tm_params.tp_dst_offset = 0; |
| |
| /* Now normalize GMT */ |
| |
| if (time->tm_usec < 0 || time->tm_usec >= 1000000) { |
| time->tm_sec += time->tm_usec / 1000000; |
| time->tm_usec %= 1000000; |
| if (time->tm_usec < 0) { |
| time->tm_usec += 1000000; |
| time->tm_sec--; |
| } |
| } |
| |
| /* Note that we do not count leap seconds in this implementation */ |
| if (time->tm_sec < 0 || time->tm_sec >= 60) { |
| time->tm_min += time->tm_sec / 60; |
| time->tm_sec %= 60; |
| if (time->tm_sec < 0) { |
| time->tm_sec += 60; |
| time->tm_min--; |
| } |
| } |
| |
| if (time->tm_min < 0 || time->tm_min >= 60) { |
| time->tm_hour += time->tm_min / 60; |
| time->tm_min %= 60; |
| if (time->tm_min < 0) { |
| time->tm_min += 60; |
| time->tm_hour--; |
| } |
| } |
| |
| if (time->tm_hour < 0 || time->tm_hour >= 24) { |
| time->tm_mday += time->tm_hour / 24; |
| time->tm_hour %= 24; |
| if (time->tm_hour < 0) { |
| time->tm_hour += 24; |
| time->tm_mday--; |
| } |
| } |
| |
| /* Normalize month and year before mday */ |
| if (time->tm_month < 0 || time->tm_month >= 12) { |
| time->tm_year += time->tm_month / 12; |
| time->tm_month %= 12; |
| if (time->tm_month < 0) { |
| time->tm_month += 12; |
| time->tm_year--; |
| } |
| } |
| |
| /* Now that month and year are in proper range, normalize mday */ |
| |
| if (time->tm_mday < 1) { |
| /* mday too small */ |
| do { |
| /* the previous month */ |
| time->tm_month--; |
| if (time->tm_month < 0) { |
| time->tm_month = 11; |
| time->tm_year--; |
| } |
| time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
| } while (time->tm_mday < 1); |
| } else { |
| daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
| while (time->tm_mday > daysInMonth) { |
| /* mday too large */ |
| time->tm_mday -= daysInMonth; |
| time->tm_month++; |
| if (time->tm_month > 11) { |
| time->tm_month = 0; |
| time->tm_year++; |
| } |
| daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
| } |
| } |
| |
| /* Recompute yday and wday */ |
| time->tm_yday = time->tm_mday + |
| lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month]; |
| |
| numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday; |
| time->tm_wday = (numDays + 4) % 7; |
| if (time->tm_wday < 0) { |
| time->tm_wday += 7; |
| } |
| |
| /* Recompute time parameters */ |
| |
| time->tm_params = params(time); |
| |
| ApplySecOffset(time, time->tm_params.tp_gmt_offset |
| + time->tm_params.tp_dst_offset); |
| } |
| |
| /* |
| *------------------------------------------------------------------------ |
| * |
| * PR_GMTParameters -- |
| * |
| * Returns the PRTimeParameters for Greenwich Mean Time. |
| * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0. |
| * |
| *------------------------------------------------------------------------ |
| */ |
| |
| PRTimeParameters |
| PR_GMTParameters(const PRExplodedTime *gmt) |
| { |
| #if defined(XP_MAC) |
| #pragma unused (gmt) |
| #endif |
| |
| PRTimeParameters retVal = { 0, 0 }; |
| return retVal; |
| } |
| |
| /* |
| * The following code implements PR_ParseTimeString(). It is based on |
| * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>. |
| */ |
| |
| /* |
| * We only recognize the abbreviations of a small subset of time zones |
| * in North America, Europe, and Japan. |
| * |
| * PST/PDT: Pacific Standard/Daylight Time |
| * MST/MDT: Mountain Standard/Daylight Time |
| * CST/CDT: Central Standard/Daylight Time |
| * EST/EDT: Eastern Standard/Daylight Time |
| * AST: Atlantic Standard Time |
| * NST: Newfoundland Standard Time |
| * GMT: Greenwich Mean Time |
| * BST: British Summer Time |
| * MET: Middle Europe Time |
| * EET: Eastern Europe Time |
| * JST: Japan Standard Time |
| */ |
| |
| typedef enum |
| { |
| TT_UNKNOWN, |
| |
| TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT, |
| |
| TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN, |
| TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC, |
| |
| TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT, |
| TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST |
| } TIME_TOKEN; |
| |
| /* |
| * This parses a time/date string into a PRTime |
| * (microseconds after "1-Jan-1970 00:00:00 GMT"). |
| * It returns PR_SUCCESS on success, and PR_FAILURE |
| * if the time/date string can't be parsed. |
| * |
| * Many formats are handled, including: |
| * |
| * 14 Apr 89 03:20:12 |
| * 14 Apr 89 03:20 GMT |
| * Fri, 17 Mar 89 4:01:33 |
| * Fri, 17 Mar 89 4:01 GMT |
| * Mon Jan 16 16:12 PDT 1989 |
| * Mon Jan 16 16:12 +0130 1989 |
| * 6 May 1992 16:41-JST (Wednesday) |
| * 22-AUG-1993 10:59:12.82 |
| * 22-AUG-1993 10:59pm |
| * 22-AUG-1993 12:59am |
| * 22-AUG-1993 12:59 PM |
| * Friday, August 04, 1995 3:54 PM |
| * 06/21/95 04:24:34 PM |
| * 20/06/95 21:07 |
| * 95-06-08 19:32:48 EDT |
| * |
| * If the input string doesn't contain a description of the timezone, |
| * we consult the `default_to_gmt' to decide whether the string should |
| * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE). |
| * The correct value for this argument depends on what standard specified |
| * the time string which you are parsing. |
| */ |
| |
| PRStatus |
| PR_ParseTimeString( |
| const char *string, |
| PRBool default_to_gmt, |
| PRTime *result_imploded) |
| { |
| PRExplodedTime tm; |
| PRExplodedTime *result = &tm; |
| TIME_TOKEN dotw = TT_UNKNOWN; |
| TIME_TOKEN month = TT_UNKNOWN; |
| TIME_TOKEN zone = TT_UNKNOWN; |
| int zone_offset = -1; |
| int dst_offset = 0; |
| int date = -1; |
| PRInt32 year = -1; |
| int hour = -1; |
| int min = -1; |
| int sec = -1; |
| |
| const char *rest = string; |
| |
| int iterations = 0; |
| |
| PR_ASSERT(string && result); |
| if (!string || !result) return PR_FAILURE; |
| |
| while (*rest) |
| { |
| |
| if (iterations++ > 1000) |
| { |
| return PR_FAILURE; |
| } |
| |
| switch (*rest) |
| { |
| case 'a': case 'A': |
| if (month == TT_UNKNOWN && |
| (rest[1] == 'p' || rest[1] == 'P') && |
| (rest[2] == 'r' || rest[2] == 'R')) |
| month = TT_APR; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_AST; |
| else if (month == TT_UNKNOWN && |
| (rest[1] == 'u' || rest[1] == 'U') && |
| (rest[2] == 'g' || rest[2] == 'G')) |
| month = TT_AUG; |
| break; |
| case 'b': case 'B': |
| if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_BST; |
| break; |
| case 'c': case 'C': |
| if (zone == TT_UNKNOWN && |
| (rest[1] == 'd' || rest[1] == 'D') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_CDT; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_CST; |
| break; |
| case 'd': case 'D': |
| if (month == TT_UNKNOWN && |
| (rest[1] == 'e' || rest[1] == 'E') && |
| (rest[2] == 'c' || rest[2] == 'C')) |
| month = TT_DEC; |
| break; |
| case 'e': case 'E': |
| if (zone == TT_UNKNOWN && |
| (rest[1] == 'd' || rest[1] == 'D') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_EDT; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 'e' || rest[1] == 'E') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_EET; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_EST; |
| break; |
| case 'f': case 'F': |
| if (month == TT_UNKNOWN && |
| (rest[1] == 'e' || rest[1] == 'E') && |
| (rest[2] == 'b' || rest[2] == 'B')) |
| month = TT_FEB; |
| else if (dotw == TT_UNKNOWN && |
| (rest[1] == 'r' || rest[1] == 'R') && |
| (rest[2] == 'i' || rest[2] == 'I')) |
| dotw = TT_FRI; |
| break; |
| case 'g': case 'G': |
| if (zone == TT_UNKNOWN && |
| (rest[1] == 'm' || rest[1] == 'M') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_GMT; |
| break; |
| case 'j': case 'J': |
| if (month == TT_UNKNOWN && |
| (rest[1] == 'a' || rest[1] == 'A') && |
| (rest[2] == 'n' || rest[2] == 'N')) |
| month = TT_JAN; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_JST; |
| else if (month == TT_UNKNOWN && |
| (rest[1] == 'u' || rest[1] == 'U') && |
| (rest[2] == 'l' || rest[2] == 'L')) |
| month = TT_JUL; |
| else if (month == TT_UNKNOWN && |
| (rest[1] == 'u' || rest[1] == 'U') && |
| (rest[2] == 'n' || rest[2] == 'N')) |
| month = TT_JUN; |
| break; |
| case 'm': case 'M': |
| if (month == TT_UNKNOWN && |
| (rest[1] == 'a' || rest[1] == 'A') && |
| (rest[2] == 'r' || rest[2] == 'R')) |
| month = TT_MAR; |
| else if (month == TT_UNKNOWN && |
| (rest[1] == 'a' || rest[1] == 'A') && |
| (rest[2] == 'y' || rest[2] == 'Y')) |
| month = TT_MAY; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 'd' || rest[1] == 'D') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_MDT; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 'e' || rest[1] == 'E') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_MET; |
| else if (dotw == TT_UNKNOWN && |
| (rest[1] == 'o' || rest[1] == 'O') && |
| (rest[2] == 'n' || rest[2] == 'N')) |
| dotw = TT_MON; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_MST; |
| break; |
| case 'n': case 'N': |
| if (month == TT_UNKNOWN && |
| (rest[1] == 'o' || rest[1] == 'O') && |
| (rest[2] == 'v' || rest[2] == 'V')) |
| month = TT_NOV; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_NST; |
| break; |
| case 'o': case 'O': |
| if (month == TT_UNKNOWN && |
| (rest[1] == 'c' || rest[1] == 'C') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| month = TT_OCT; |
| break; |
| case 'p': case 'P': |
| if (zone == TT_UNKNOWN && |
| (rest[1] == 'd' || rest[1] == 'D') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_PDT; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_PST; |
| break; |
| case 's': case 'S': |
| if (dotw == TT_UNKNOWN && |
| (rest[1] == 'a' || rest[1] == 'A') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| dotw = TT_SAT; |
| else if (month == TT_UNKNOWN && |
| (rest[1] == 'e' || rest[1] == 'E') && |
| (rest[2] == 'p' || rest[2] == 'P')) |
| month = TT_SEP; |
| else if (dotw == TT_UNKNOWN && |
| (rest[1] == 'u' || rest[1] == 'U') && |
| (rest[2] == 'n' || rest[2] == 'N')) |
| dotw = TT_SUN; |
| break; |
| case 't': case 'T': |
| if (dotw == TT_UNKNOWN && |
| (rest[1] == 'h' || rest[1] == 'H') && |
| (rest[2] == 'u' || rest[2] == 'U')) |
| dotw = TT_THU; |
| else if (dotw == TT_UNKNOWN && |
| (rest[1] == 'u' || rest[1] == 'U') && |
| (rest[2] == 'e' || rest[2] == 'E')) |
| dotw = TT_TUE; |
| break; |
| case 'u': case 'U': |
| if (zone == TT_UNKNOWN && |
| (rest[1] == 't' || rest[1] == 'T') && |
| !(rest[2] >= 'A' && rest[2] <= 'Z') && |
| !(rest[2] >= 'a' && rest[2] <= 'z')) |
| /* UT is the same as GMT but UTx is not. */ |
| zone = TT_GMT; |
| break; |
| case 'w': case 'W': |
| if (dotw == TT_UNKNOWN && |
| (rest[1] == 'e' || rest[1] == 'E') && |
| (rest[2] == 'd' || rest[2] == 'D')) |
| dotw = TT_WED; |
| break; |
| |
| case '+': case '-': |
| { |
| const char *end; |
| int sign; |
| if (zone_offset != -1) |
| { |
| /* already got one... */ |
| rest++; |
| break; |
| } |
| if (zone != TT_UNKNOWN && zone != TT_GMT) |
| { |
| /* GMT+0300 is legal, but PST+0300 is not. */ |
| rest++; |
| break; |
| } |
| |
| sign = ((*rest == '+') ? 1 : -1); |
| rest++; /* move over sign */ |
| end = rest; |
| while (*end >= '0' && *end <= '9') |
| end++; |
| if (rest == end) /* no digits here */ |
| break; |
| |
| if ((end - rest) == 4) |
| /* offset in HHMM */ |
| zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) + |
| (((rest[2]-'0')*10) + (rest[3]-'0'))); |
| else if ((end - rest) == 2) |
| /* offset in hours */ |
| zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60; |
| else if ((end - rest) == 1) |
| /* offset in hours */ |
| zone_offset = (rest[0]-'0') * 60; |
| else |
| /* 3 or >4 */ |
| break; |
| |
| zone_offset *= sign; |
| zone = TT_GMT; |
| break; |
| } |
| |
| case '0': case '1': case '2': case '3': case '4': |
| case '5': case '6': case '7': case '8': case '9': |
| { |
| int tmp_hour = -1; |
| int tmp_min = -1; |
| int tmp_sec = -1; |
| const char *end = rest + 1; |
| while (*end >= '0' && *end <= '9') |
| end++; |
| |
| /* end is now the first character after a range of digits. */ |
| |
| if (*end == ':') |
| { |
| if (hour >= 0 && min >= 0) /* already got it */ |
| break; |
| |
| /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */ |
| if ((end - rest) > 2) |
| /* it is [0-9][0-9][0-9]+: */ |
| break; |
| else if ((end - rest) == 2) |
| tmp_hour = ((rest[0]-'0')*10 + |
| (rest[1]-'0')); |
| else |
| tmp_hour = (rest[0]-'0'); |
| |
| /* move over the colon, and parse minutes */ |
| |
| rest = ++end; |
| while (*end >= '0' && *end <= '9') |
| end++; |
| |
| if (end == rest) |
| /* no digits after first colon? */ |
| break; |
| else if ((end - rest) > 2) |
| /* it is [0-9][0-9][0-9]+: */ |
| break; |
| else if ((end - rest) == 2) |
| tmp_min = ((rest[0]-'0')*10 + |
| (rest[1]-'0')); |
| else |
| tmp_min = (rest[0]-'0'); |
| |
| /* now go for seconds */ |
| rest = end; |
| if (*rest == ':') |
| rest++; |
| end = rest; |
| while (*end >= '0' && *end <= '9') |
| end++; |
| |
| if (end == rest) |
| /* no digits after second colon - that's ok. */ |
| ; |
| else if ((end - rest) > 2) |
| /* it is [0-9][0-9][0-9]+: */ |
| break; |
| else if ((end - rest) == 2) |
| tmp_sec = ((rest[0]-'0')*10 + |
| (rest[1]-'0')); |
| else |
| tmp_sec = (rest[0]-'0'); |
| |
| /* If we made it here, we've parsed hour and min, |
| and possibly sec, so it worked as a unit. */ |
| |
| /* skip over whitespace and see if there's an AM or PM |
| directly following the time. |
| */ |
| if (tmp_hour <= 12) |
| { |
| const char *s = end; |
| while (*s && (*s == ' ' || *s == '\t')) |
| s++; |
| if ((s[0] == 'p' || s[0] == 'P') && |
| (s[1] == 'm' || s[1] == 'M')) |
| /* 10:05pm == 22:05, and 12:05pm == 12:05 */ |
| tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12); |
| else if (tmp_hour == 12 && |
| (s[0] == 'a' || s[0] == 'A') && |
| (s[1] == 'm' || s[1] == 'M')) |
| /* 12:05am == 00:05 */ |
| tmp_hour = 0; |
| } |
| |
| hour = tmp_hour; |
| min = tmp_min; |
| sec = tmp_sec; |
| rest = end; |
| break; |
| } |
| else if ((*end == '/' || *end == '-') && |
| end[1] >= '0' && end[1] <= '9') |
| { |
| /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95 |
| or even 95-06-05... |
| #### But it doesn't handle 1995-06-22. |
| */ |
| int n1, n2, n3; |
| const char *s; |
| |
| if (month != TT_UNKNOWN) |
| /* if we saw a month name, this can't be. */ |
| break; |
| |
| s = rest; |
| |
| n1 = (*s++ - '0'); /* first 1 or 2 digits */ |
| if (*s >= '0' && *s <= '9') |
| n1 = n1*10 + (*s++ - '0'); |
| |
| if (*s != '/' && *s != '-') /* slash */ |
| break; |
| s++; |
| |
| if (*s < '0' || *s > '9') /* second 1 or 2 digits */ |
| break; |
| n2 = (*s++ - '0'); |
| if (*s >= '0' && *s <= '9') |
| n2 = n2*10 + (*s++ - '0'); |
| |
| if (*s != '/' && *s != '-') /* slash */ |
| break; |
| s++; |
| |
| if (*s < '0' || *s > '9') /* third 1, 2, 4, or 5 digits */ |
| break; |
| n3 = (*s++ - '0'); |
| if (*s >= '0' && *s <= '9') |
| n3 = n3*10 + (*s++ - '0'); |
| |
| if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */ |
| { |
| n3 = n3*10 + (*s++ - '0'); |
| if (*s < '0' || *s > '9') |
| break; |
| n3 = n3*10 + (*s++ - '0'); |
| if (*s >= '0' && *s <= '9') |
| n3 = n3*10 + (*s++ - '0'); |
| } |
| |
| if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */ |
| (*s >= 'A' && *s <= 'Z') || |
| (*s >= 'a' && *s <= 'z')) |
| break; |
| |
| /* Ok, we parsed three 1-2 digit numbers, with / or - |
| between them. Now decide what the hell they are |
| (DD/MM/YY or MM/DD/YY or YY/MM/DD.) |
| */ |
| |
| if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */ |
| { |
| if (n2 > 12) break; |
| if (n3 > 31) break; |
| year = n1; |
| if (year < 70) |
| year += 2000; |
| else if (year < 100) |
| year += 1900; |
| month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); |
| date = n3; |
| rest = s; |
| break; |
| } |
| |
| if (n1 > 12 && n2 > 12) /* illegal */ |
| { |
| rest = s; |
| break; |
| } |
| |
| if (n3 < 70) |
| n3 += 2000; |
| else if (n3 < 100) |
| n3 += 1900; |
| |
| if (n1 > 12) /* must be DD/MM/YY */ |
| { |
| date = n1; |
| month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); |
| year = n3; |
| } |
| else /* assume MM/DD/YY */ |
| { |
| /* #### In the ambiguous case, should we consult the |
| locale to find out the local default? */ |
| month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1); |
| date = n2; |
| year = n3; |
| } |
| rest = s; |
| } |
| else if ((*end >= 'A' && *end <= 'Z') || |
| (*end >= 'a' && *end <= 'z')) |
| /* Digits followed by non-punctuation - what's that? */ |
| ; |
| else if ((end - rest) == 5) /* five digits is a year */ |
| year = (year < 0 |
| ? ((rest[0]-'0')*10000L + |
| (rest[1]-'0')*1000L + |
| (rest[2]-'0')*100L + |
| (rest[3]-'0')*10L + |
| (rest[4]-'0')) |
| : year); |
| else if ((end - rest) == 4) /* four digits is a year */ |
| year = (year < 0 |
| ? ((rest[0]-'0')*1000L + |
| (rest[1]-'0')*100L + |
| (rest[2]-'0')*10L + |
| (rest[3]-'0')) |
| : year); |
| else if ((end - rest) == 2) /* two digits - date or year */ |
| { |
| int n = ((rest[0]-'0')*10 + |
| (rest[1]-'0')); |
| /* If we don't have a date (day of the month) and we see a number |
| less than 32, then assume that is the date. |
| |
| Otherwise, if we have a date and not a year, assume this is the |
| year. If it is less than 70, then assume it refers to the 21st |
| century. If it is two digits (>= 70), assume it refers to this |
| century. Otherwise, assume it refers to an unambiguous year. |
| |
| The world will surely end soon. |
| */ |
| if (date < 0 && n < 32) |
| date = n; |
| else if (year < 0) |
| { |
| if (n < 70) |
| year = 2000 + n; |
| else if (n < 100) |
| year = 1900 + n; |
| else |
| year = n; |
| } |
| /* else what the hell is this. */ |
| } |
| else if ((end - rest) == 1) /* one digit - date */ |
| date = (date < 0 ? (rest[0]-'0') : date); |
| /* else, three or more than five digits - what's that? */ |
| |
| break; |
| } |
| } |
| |
| /* Skip to the end of this token, whether we parsed it or not. |
| Tokens are delimited by whitespace, or ,;-/ |
| But explicitly not :+-. |
| */ |
| while (*rest && |
| *rest != ' ' && *rest != '\t' && |
| *rest != ',' && *rest != ';' && |
| *rest != '-' && *rest != '+' && |
| *rest != '/' && |
| *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']') |
| rest++; |
| /* skip over uninteresting chars. */ |
| SKIP_MORE: |
| while (*rest && |
| (*rest == ' ' || *rest == '\t' || |
| *rest == ',' || *rest == ';' || *rest == '/' || |
| *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']')) |
| rest++; |
| |
| /* "-" is ignored at the beginning of a token if we have not yet |
| parsed a year (e.g., the second "-" in "30-AUG-1966"), or if |
| the character after the dash is not a digit. */ |
| if (*rest == '-' && ((rest > string && |
| isalpha((unsigned char)rest[-1]) && year < 0) || |
| rest[1] < '0' || rest[1] > '9')) |
| { |
| rest++; |
| goto SKIP_MORE; |
| } |
| |
| } |
| |
| if (zone != TT_UNKNOWN && zone_offset == -1) |
| { |
| switch (zone) |
| { |
| case TT_PST: zone_offset = -8 * 60; break; |
| case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break; |
| case TT_MST: zone_offset = -7 * 60; break; |
| case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break; |
| case TT_CST: zone_offset = -6 * 60; break; |
| case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break; |
| case TT_EST: zone_offset = -5 * 60; break; |
| case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break; |
| case TT_AST: zone_offset = -4 * 60; break; |
| case TT_NST: zone_offset = -3 * 60 - 30; break; |
| case TT_GMT: zone_offset = 0 * 60; break; |
| case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break; |
| case TT_MET: zone_offset = 1 * 60; break; |
| case TT_EET: zone_offset = 2 * 60; break; |
| case TT_JST: zone_offset = 9 * 60; break; |
| default: |
| PR_ASSERT (0); |
| break; |
| } |
| } |
| |
| /* If we didn't find a year, month, or day-of-the-month, we can't |
| possibly parse this, and in fact, mktime() will do something random |
| (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt |
| a numerologically significant date... */ |
| if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX) |
| return PR_FAILURE; |
| |
| memset(result, 0, sizeof(*result)); |
| if (sec != -1) |
| result->tm_sec = sec; |
| if (min != -1) |
| result->tm_min = min; |
| if (hour != -1) |
| result->tm_hour = hour; |
| if (date != -1) |
| result->tm_mday = date; |
| if (month != TT_UNKNOWN) |
| result->tm_month = (((int)month) - ((int)TT_JAN)); |
| if (year != -1) |
| result->tm_year = year; |
| if (dotw != TT_UNKNOWN) |
| result->tm_wday = (((int)dotw) - ((int)TT_SUN)); |
| /* |
| * Mainly to compute wday and yday, but normalized time is also required |
| * by the check below that works around a Visual C++ 2005 mktime problem. |
| */ |
| PR_NormalizeTime(result, PR_GMTParameters); |
| /* The remaining work is to set the gmt and dst offsets in tm_params. */ |
| |
| if (zone == TT_UNKNOWN && default_to_gmt) |
| { |
| /* No zone was specified, so pretend the zone was GMT. */ |
| zone = TT_GMT; |
| zone_offset = 0; |
| } |
| |
| if (zone_offset == -1) |
| { |
| /* no zone was specified, and we're to assume that everything |
| is local. */ |
| #if !defined(PRTIME_USE_BASE_TIME) |
| struct tm localTime; |
| time_t secs; |
| #endif |
| |
| PR_ASSERT(result->tm_month > -1 && |
| result->tm_mday > 0 && |
| result->tm_hour > -1 && |
| result->tm_min > -1 && |
| result->tm_sec > -1); |
| |
| #if defined(PRTIME_USE_BASE_TIME) |
| *result_imploded = BaseImplode(result, true /*is_local*/); |
| return PR_SUCCESS; |
| #else // defined(PRTIME_USE_BASE_TIME) |
| /* |
| * To obtain time_t from a tm structure representing the local |
| * time, we call mktime(). However, we need to see if we are |
| * on 1-Jan-1970 or before. If we are, we can't call mktime() |
| * because mktime() will crash on win16. In that case, we |
| * calculate zone_offset based on the zone offset at |
| * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the |
| * date we are parsing to transform the date to GMT. We also |
| * do so if mktime() returns (time_t) -1 (time out of range). |
| */ |
| |
| /* month, day, hours, mins and secs are always non-negative |
| so we dont need to worry about them. */ |
| if(result->tm_year >= 1970) |
| { |
| PRInt64 usec_per_sec; |
| |
| localTime.tm_sec = result->tm_sec; |
| localTime.tm_min = result->tm_min; |
| localTime.tm_hour = result->tm_hour; |
| localTime.tm_mday = result->tm_mday; |
| localTime.tm_mon = result->tm_month; |
| localTime.tm_year = result->tm_year - 1900; |
| /* Set this to -1 to tell mktime "I don't care". If you set |
| it to 0 or 1, you are making assertions about whether the |
| date you are handing it is in daylight savings mode or not; |
| and if you're wrong, it will "fix" it for you. */ |
| localTime.tm_isdst = -1; |
| |
| #if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */ |
| /* |
| * mktime will return (time_t) -1 if the input is a date |
| * after 23:59:59, December 31, 3000, US Pacific Time (not |
| * UTC as documented): |
| * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx |
| * But if the year is 3001, mktime also invokes the invalid |
| * parameter handler, causing the application to crash. This |
| * problem has been reported in |
| * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036. |
| * We avoid this crash by not calling mktime if the date is |
| * out of range. To use a simple test that works in any time |
| * zone, we consider year 3000 out of range as well. (See |
| * bug 480740.) |
| */ |
| if (result->tm_year >= 3000) { |
| /* Emulate what mktime would have done. */ |
| errno = EINVAL; |
| secs = (time_t) -1; |
| } else { |
| secs = mktime(&localTime); |
| } |
| #else |
| secs = mktime(&localTime); |
| #endif |
| if (secs != (time_t) -1) |
| { |
| PRTime usecs64; |
| LL_I2L(usecs64, secs); |
| LL_I2L(usec_per_sec, PR_USEC_PER_SEC); |
| LL_MUL(usecs64, usecs64, usec_per_sec); |
| *result_imploded = usecs64; |
| return PR_SUCCESS; |
| } |
| } |
| |
| /* So mktime() can't handle this case. We assume the |
| zone_offset for the date we are parsing is the same as |
| the zone offset on 00:00:00 2 Jan 1970 GMT. */ |
| secs = 86400; |
| localtime_r(&secs, &localTime); |
| zone_offset = localTime.tm_min |
| + 60 * localTime.tm_hour |
| + 1440 * (localTime.tm_mday - 2); |
| #endif // defined(PRTIME_USE_BASE_TIME) |
| } |
| |
| result->tm_params.tp_gmt_offset = zone_offset * 60; |
| result->tm_params.tp_dst_offset = dst_offset * 60; |
| |
| *result_imploded = PR_ImplodeTime(result); |
| return PR_SUCCESS; |
| } |