| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/tracked_objects.h" |
| |
| #include <math.h> |
| #include <stdlib.h> |
| |
| #include "base/format_macros.h" |
| #include "base/memory/scoped_ptr.h" |
| #include "base/process_util.h" |
| #include "base/profiler/alternate_timer.h" |
| #include "base/stringprintf.h" |
| #include "base/third_party/valgrind/memcheck.h" |
| #include "base/threading/thread_restrictions.h" |
| #include "base/port.h" |
| |
| using base::TimeDelta; |
| |
| namespace tracked_objects { |
| |
| namespace { |
| // Flag to compile out almost all of the task tracking code. |
| #if defined(COBALT_BUILD_TYPE_GOLD) |
| const bool kTrackAllTaskObjects = false; |
| #else |
| const bool kTrackAllTaskObjects = true; |
| #endif |
| |
| // TODO(jar): Evaluate the perf impact of enabling this. If the perf impact is |
| // negligible, enable by default. |
| // Flag to compile out parent-child link recording. |
| const bool kTrackParentChildLinks = false; |
| |
| // When ThreadData is first initialized, should we start in an ACTIVE state to |
| // record all of the startup-time tasks, or should we start up DEACTIVATED, so |
| // that we only record after parsing the command line flag --enable-tracking. |
| // Note that the flag may force either state, so this really controls only the |
| // period of time up until that flag is parsed. If there is no flag seen, then |
| // this state may prevail for much or all of the process lifetime. |
| const ThreadData::Status kInitialStartupState = |
| ThreadData::PROFILING_CHILDREN_ACTIVE; |
| |
| // Control whether an alternate time source (Now() function) is supported by |
| // the ThreadData class. This compile time flag should be set to true if we |
| // want other modules (such as a memory allocator, or a thread-specific CPU time |
| // clock) to be able to provide a thread-specific Now() function. Without this |
| // compile-time flag, the code will only support the wall-clock time. This flag |
| // can be flipped to efficiently disable this path (if there is a performance |
| // problem with its presence). |
| static const bool kAllowAlternateTimeSourceHandling = true; |
| |
| } // namespace |
| |
| //------------------------------------------------------------------------------ |
| // DeathData tallies durations when a death takes place. |
| |
| DeathData::DeathData() { |
| Clear(); |
| } |
| |
| DeathData::DeathData(int count) { |
| Clear(); |
| count_ = count; |
| } |
| |
| // TODO(jar): I need to see if this macro to optimize branching is worth using. |
| // |
| // This macro has no branching, so it is surely fast, and is equivalent to: |
| // if (assign_it) |
| // target = source; |
| // We use a macro rather than a template to force this to inline. |
| // Related code for calculating max is discussed on the web. |
| #define CONDITIONAL_ASSIGN(assign_it, target, source) \ |
| ((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it)) |
| |
| void DeathData::RecordDeath(const int32 queue_duration, |
| const int32 run_duration, |
| int32 random_number) { |
| ++count_; |
| queue_duration_sum_ += queue_duration; |
| run_duration_sum_ += run_duration; |
| |
| if (queue_duration_max_ < queue_duration) |
| queue_duration_max_ = queue_duration; |
| if (run_duration_max_ < run_duration) |
| run_duration_max_ = run_duration; |
| |
| // Take a uniformly distributed sample over all durations ever supplied. |
| // The probability that we (instead) use this new sample is 1/count_. This |
| // results in a completely uniform selection of the sample (at least when we |
| // don't clamp count_... but that should be inconsequentially likely). |
| // We ignore the fact that we correlated our selection of a sample to the run |
| // and queue times (i.e., we used them to generate random_number). |
| if (count_ <= 0) { // Handle wrapping of count_, such as in bug 138961. |
| CHECK_GE(count_ - 1, 0); // Detect memory corruption. |
| // We'll just clamp at INT_MAX, but we should note this in the UI as such. |
| count_ = INT_MAX; |
| } |
| if (0 == (random_number % count_)) { |
| queue_duration_sample_ = queue_duration; |
| run_duration_sample_ = run_duration; |
| } |
| } |
| |
| int DeathData::count() const { return count_; } |
| |
| int32 DeathData::run_duration_sum() const { return run_duration_sum_; } |
| |
| int32 DeathData::run_duration_max() const { return run_duration_max_; } |
| |
| int32 DeathData::run_duration_sample() const { |
| return run_duration_sample_; |
| } |
| |
| int32 DeathData::queue_duration_sum() const { |
| return queue_duration_sum_; |
| } |
| |
| int32 DeathData::queue_duration_max() const { |
| return queue_duration_max_; |
| } |
| |
| int32 DeathData::queue_duration_sample() const { |
| return queue_duration_sample_; |
| } |
| |
| void DeathData::ResetMax() { |
| run_duration_max_ = 0; |
| queue_duration_max_ = 0; |
| } |
| |
| void DeathData::Clear() { |
| count_ = 0; |
| run_duration_sum_ = 0; |
| run_duration_max_ = 0; |
| run_duration_sample_ = 0; |
| queue_duration_sum_ = 0; |
| queue_duration_max_ = 0; |
| queue_duration_sample_ = 0; |
| } |
| |
| //------------------------------------------------------------------------------ |
| DeathDataSnapshot::DeathDataSnapshot() |
| : count(-1), |
| run_duration_sum(-1), |
| run_duration_max(-1), |
| run_duration_sample(-1), |
| queue_duration_sum(-1), |
| queue_duration_max(-1), |
| queue_duration_sample(-1) { |
| } |
| |
| DeathDataSnapshot::DeathDataSnapshot( |
| const tracked_objects::DeathData& death_data) |
| : count(death_data.count()), |
| run_duration_sum(death_data.run_duration_sum()), |
| run_duration_max(death_data.run_duration_max()), |
| run_duration_sample(death_data.run_duration_sample()), |
| queue_duration_sum(death_data.queue_duration_sum()), |
| queue_duration_max(death_data.queue_duration_max()), |
| queue_duration_sample(death_data.queue_duration_sample()) { |
| } |
| |
| DeathDataSnapshot::~DeathDataSnapshot() { |
| } |
| |
| //------------------------------------------------------------------------------ |
| BirthOnThread::BirthOnThread(const Location& location, |
| const ThreadData& current) |
| : location_(location), |
| birth_thread_(¤t) { |
| } |
| |
| //------------------------------------------------------------------------------ |
| BirthOnThreadSnapshot::BirthOnThreadSnapshot() { |
| } |
| |
| BirthOnThreadSnapshot::BirthOnThreadSnapshot( |
| const tracked_objects::BirthOnThread& birth) |
| : location(birth.location()), |
| thread_name(birth.birth_thread()->thread_name()) { |
| } |
| |
| BirthOnThreadSnapshot::~BirthOnThreadSnapshot() { |
| } |
| |
| //------------------------------------------------------------------------------ |
| Births::Births(const Location& location, const ThreadData& current) |
| : BirthOnThread(location, current), |
| birth_count_(1) { } |
| |
| int Births::birth_count() const { return birth_count_; } |
| |
| void Births::RecordBirth() { ++birth_count_; } |
| |
| void Births::ForgetBirth() { --birth_count_; } |
| |
| void Births::Clear() { birth_count_ = 0; } |
| |
| //------------------------------------------------------------------------------ |
| // ThreadData maintains the central data for all births and deaths on a single |
| // thread. |
| |
| // TODO(jar): We should pull all these static vars together, into a struct, and |
| // optimize layout so that we benefit from locality of reference during accesses |
| // to them. |
| |
| // static |
| NowFunction* ThreadData::now_function_ = NULL; |
| |
| // A TLS slot which points to the ThreadData instance for the current thread. We |
| // do a fake initialization here (zeroing out data), and then the real in-place |
| // construction happens when we call tls_index_.Initialize(). |
| // static |
| base::ThreadLocalStorage::StaticSlot ThreadData::tls_index_ = TLS_INITIALIZER; |
| |
| // static |
| int ThreadData::worker_thread_data_creation_count_ = 0; |
| |
| // static |
| int ThreadData::cleanup_count_ = 0; |
| |
| // static |
| int ThreadData::incarnation_counter_ = 0; |
| |
| // static |
| ThreadData* ThreadData::all_thread_data_list_head_ = NULL; |
| |
| // static |
| ThreadData* ThreadData::first_retired_worker_ = NULL; |
| |
| // static |
| base::LazyInstance<base::Lock>::Leaky |
| ThreadData::list_lock_ = LAZY_INSTANCE_INITIALIZER; |
| |
| // static |
| ThreadData::Status ThreadData::status_ = ThreadData::UNINITIALIZED; |
| |
| ThreadData::ThreadData(const std::string& suggested_name) |
| : next_(NULL), |
| next_retired_worker_(NULL), |
| worker_thread_number_(0), |
| incarnation_count_for_pool_(-1) { |
| DCHECK_GE(suggested_name.size(), 0u); |
| thread_name_ = suggested_name; |
| PushToHeadOfList(); // Which sets real incarnation_count_for_pool_. |
| } |
| |
| ThreadData::ThreadData(int thread_number) |
| : next_(NULL), |
| next_retired_worker_(NULL), |
| worker_thread_number_(thread_number), |
| incarnation_count_for_pool_(-1) { |
| CHECK_GT(thread_number, 0); |
| base::StringAppendF(&thread_name_, "WorkerThread-%d", thread_number); |
| PushToHeadOfList(); // Which sets real incarnation_count_for_pool_. |
| } |
| |
| ThreadData::~ThreadData() {} |
| |
| void ThreadData::PushToHeadOfList() { |
| // Toss in a hint of randomness (atop the uniniitalized value). |
| (void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_, |
| sizeof(random_number_)); |
| random_number_ += static_cast<int32>(this - static_cast<ThreadData*>(0)); |
| random_number_ ^= (Now() - TrackedTime()).InMilliseconds(); |
| |
| DCHECK(!next_); |
| base::AutoLock lock(*list_lock_.Pointer()); |
| incarnation_count_for_pool_ = incarnation_counter_; |
| next_ = all_thread_data_list_head_; |
| all_thread_data_list_head_ = this; |
| } |
| |
| // static |
| ThreadData* ThreadData::first() { |
| base::AutoLock lock(*list_lock_.Pointer()); |
| return all_thread_data_list_head_; |
| } |
| |
| ThreadData* ThreadData::next() const { return next_; } |
| |
| // static |
| void ThreadData::InitializeThreadContext(const std::string& suggested_name) { |
| if (!Initialize()) // Always initialize if needed. |
| return; |
| ThreadData* current_thread_data = |
| reinterpret_cast<ThreadData*>(tls_index_.Get()); |
| if (current_thread_data) |
| return; // Browser tests instigate this. |
| current_thread_data = new ThreadData(suggested_name); |
| tls_index_.Set(current_thread_data); |
| } |
| |
| // static |
| ThreadData* ThreadData::Get() { |
| if (!tls_index_.initialized()) |
| return NULL; // For unittests only. |
| ThreadData* registered = reinterpret_cast<ThreadData*>(tls_index_.Get()); |
| if (registered) |
| return registered; |
| |
| // We must be a worker thread, since we didn't pre-register. |
| ThreadData* worker_thread_data = NULL; |
| int worker_thread_number = 0; |
| { |
| base::AutoLock lock(*list_lock_.Pointer()); |
| if (first_retired_worker_) { |
| worker_thread_data = first_retired_worker_; |
| first_retired_worker_ = first_retired_worker_->next_retired_worker_; |
| worker_thread_data->next_retired_worker_ = NULL; |
| } else { |
| worker_thread_number = ++worker_thread_data_creation_count_; |
| } |
| } |
| |
| // If we can't find a previously used instance, then we have to create one. |
| if (!worker_thread_data) { |
| DCHECK_GT(worker_thread_number, 0); |
| worker_thread_data = new ThreadData(worker_thread_number); |
| } |
| DCHECK_GT(worker_thread_data->worker_thread_number_, 0); |
| |
| tls_index_.Set(worker_thread_data); |
| return worker_thread_data; |
| } |
| |
| // static |
| void ThreadData::OnThreadTermination(void* thread_data) { |
| DCHECK(thread_data); // TLS should *never* call us with a NULL. |
| // We must NOT do any allocations during this callback. There is a chance |
| // that the allocator is no longer active on this thread. |
| if (!kTrackAllTaskObjects) |
| return; // Not compiled in. |
| reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup(); |
| } |
| |
| void ThreadData::OnThreadTerminationCleanup() { |
| #if defined(__LB_SHELL__) || defined(OS_STARBOARD) |
| // The Chromium code avoids doing allocations here and puts ThreadDatas |
| // into a linked list for reuse. |
| // However, every call to InitializeThreadContext() will create |
| // a new ThreadData without any possibility of reuse. |
| // We prefer to delete the ThreadData to avoid leaking mutexes and memory. |
| delete this; |
| #else |
| // The list_lock_ was created when we registered the callback, so it won't be |
| // allocated here despite the lazy reference. |
| base::AutoLock lock(*list_lock_.Pointer()); |
| if (incarnation_counter_ != incarnation_count_for_pool_) |
| return; // ThreadData was constructed in an earlier unit test. |
| ++cleanup_count_; |
| // Only worker threads need to be retired and reused. |
| if (!worker_thread_number_) { |
| return; |
| } |
| // We must NOT do any allocations during this callback. |
| // Using the simple linked lists avoids all allocations. |
| DCHECK_EQ(this->next_retired_worker_, reinterpret_cast<ThreadData*>(NULL)); |
| this->next_retired_worker_ = first_retired_worker_; |
| first_retired_worker_ = this; |
| #endif |
| } |
| |
| // static |
| void ThreadData::Snapshot(bool reset_max, ProcessDataSnapshot* process_data) { |
| // Add births that have run to completion to |collected_data|. |
| // |birth_counts| tracks the total number of births recorded at each location |
| // for which we have not seen a death count. |
| BirthCountMap birth_counts; |
| ThreadData::SnapshotAllExecutedTasks(reset_max, process_data, &birth_counts); |
| |
| // Add births that are still active -- i.e. objects that have tallied a birth, |
| // but have not yet tallied a matching death, and hence must be either |
| // running, queued up, or being held in limbo for future posting. |
| for (BirthCountMap::const_iterator it = birth_counts.begin(); |
| it != birth_counts.end(); ++it) { |
| if (it->second > 0) { |
| process_data->tasks.push_back( |
| TaskSnapshot(*it->first, DeathData(it->second), "Still_Alive")); |
| } |
| } |
| } |
| |
| Births* ThreadData::TallyABirth(const Location& location) { |
| BirthMap::iterator it = birth_map_.find(location); |
| Births* child; |
| if (it != birth_map_.end()) { |
| child = it->second; |
| child->RecordBirth(); |
| } else { |
| child = new Births(location, *this); // Leak this. |
| // Lock since the map may get relocated now, and other threads sometimes |
| // snapshot it (but they lock before copying it). |
| base::AutoLock lock(map_lock_); |
| birth_map_[location] = child; |
| } |
| |
| if (kTrackParentChildLinks && status_ > PROFILING_ACTIVE && |
| !parent_stack_.empty()) { |
| const Births* parent = parent_stack_.top(); |
| ParentChildPair pair(parent, child); |
| if (parent_child_set_.find(pair) == parent_child_set_.end()) { |
| // Lock since the map may get relocated now, and other threads sometimes |
| // snapshot it (but they lock before copying it). |
| base::AutoLock lock(map_lock_); |
| parent_child_set_.insert(pair); |
| } |
| } |
| |
| return child; |
| } |
| |
| void ThreadData::TallyADeath(const Births& birth, |
| int32 queue_duration, |
| int32 run_duration) { |
| // Stir in some randomness, plus add constant in case durations are zero. |
| const int32 kSomePrimeNumber = 2147483647; |
| random_number_ += queue_duration + run_duration + kSomePrimeNumber; |
| // An address is going to have some randomness to it as well ;-). |
| random_number_ ^= static_cast<int32>(&birth - reinterpret_cast<Births*>(0)); |
| |
| // We don't have queue durations without OS timer. OS timer is automatically |
| // used for task-post-timing, so the use of an alternate timer implies all |
| // queue times are invalid. |
| if (kAllowAlternateTimeSourceHandling && now_function_) |
| queue_duration = 0; |
| |
| DeathMap::iterator it = death_map_.find(&birth); |
| DeathData* death_data; |
| if (it != death_map_.end()) { |
| death_data = &it->second; |
| } else { |
| base::AutoLock lock(map_lock_); // Lock as the map may get relocated now. |
| death_data = &death_map_[&birth]; |
| } // Release lock ASAP. |
| death_data->RecordDeath(queue_duration, run_duration, random_number_); |
| |
| if (!kTrackParentChildLinks) |
| return; |
| if (!parent_stack_.empty()) { // We might get turned off. |
| DCHECK_EQ(parent_stack_.top(), &birth); |
| parent_stack_.pop(); |
| } |
| } |
| |
| // static |
| Births* ThreadData::TallyABirthIfActive(const Location& location) { |
| if (!kTrackAllTaskObjects) |
| return NULL; // Not compiled in. |
| |
| if (!TrackingStatus()) |
| return NULL; |
| ThreadData* current_thread_data = Get(); |
| if (!current_thread_data) |
| return NULL; |
| return current_thread_data->TallyABirth(location); |
| } |
| |
| // static |
| void ThreadData::TallyRunOnNamedThreadIfTracking( |
| const base::TrackingInfo& completed_task, |
| const TrackedTime& start_of_run, |
| const TrackedTime& end_of_run) { |
| if (!kTrackAllTaskObjects) |
| return; // Not compiled in. |
| |
| // Even if we have been DEACTIVATED, we will process any pending births so |
| // that our data structures (which counted the outstanding births) remain |
| // consistent. |
| const Births* birth = completed_task.birth_tally; |
| if (!birth) |
| return; |
| ThreadData* current_thread_data = Get(); |
| if (!current_thread_data) |
| return; |
| |
| // To avoid conflating our stats with the delay duration in a PostDelayedTask, |
| // we identify such tasks, and replace their post_time with the time they |
| // were scheduled (requested?) to emerge from the delayed task queue. This |
| // means that queueing delay for such tasks will show how long they went |
| // unserviced, after they *could* be serviced. This is the same stat as we |
| // have for non-delayed tasks, and we consistently call it queueing delay. |
| TrackedTime effective_post_time = completed_task.delayed_run_time.is_null() |
| ? tracked_objects::TrackedTime(completed_task.time_posted) |
| : tracked_objects::TrackedTime(completed_task.delayed_run_time); |
| |
| // Watch out for a race where status_ is changing, and hence one or both |
| // of start_of_run or end_of_run is zero. In that case, we didn't bother to |
| // get a time value since we "weren't tracking" and we were trying to be |
| // efficient by not calling for a genuine time value. For simplicity, we'll |
| // use a default zero duration when we can't calculate a true value. |
| int32 queue_duration = 0; |
| int32 run_duration = 0; |
| if (!start_of_run.is_null()) { |
| queue_duration = (start_of_run - effective_post_time).InMilliseconds(); |
| if (!end_of_run.is_null()) |
| run_duration = (end_of_run - start_of_run).InMilliseconds(); |
| } |
| current_thread_data->TallyADeath(*birth, queue_duration, run_duration); |
| } |
| |
| // static |
| void ThreadData::TallyRunOnWorkerThreadIfTracking( |
| const Births* birth, |
| const TrackedTime& time_posted, |
| const TrackedTime& start_of_run, |
| const TrackedTime& end_of_run) { |
| if (!kTrackAllTaskObjects) |
| return; // Not compiled in. |
| |
| // Even if we have been DEACTIVATED, we will process any pending births so |
| // that our data structures (which counted the outstanding births) remain |
| // consistent. |
| if (!birth) |
| return; |
| |
| // TODO(jar): Support the option to coalesce all worker-thread activity under |
| // one ThreadData instance that uses locks to protect *all* access. This will |
| // reduce memory (making it provably bounded), but run incrementally slower |
| // (since we'll use locks on TallyBirth and TallyDeath). The good news is |
| // that the locks on TallyDeath will be *after* the worker thread has run, and |
| // hence nothing will be waiting for the completion (... besides some other |
| // thread that might like to run). Also, the worker threads tasks are |
| // generally longer, and hence the cost of the lock may perchance be amortized |
| // over the long task's lifetime. |
| ThreadData* current_thread_data = Get(); |
| if (!current_thread_data) |
| return; |
| |
| int32 queue_duration = 0; |
| int32 run_duration = 0; |
| if (!start_of_run.is_null()) { |
| queue_duration = (start_of_run - time_posted).InMilliseconds(); |
| if (!end_of_run.is_null()) |
| run_duration = (end_of_run - start_of_run).InMilliseconds(); |
| } |
| current_thread_data->TallyADeath(*birth, queue_duration, run_duration); |
| } |
| |
| // static |
| void ThreadData::TallyRunInAScopedRegionIfTracking( |
| const Births* birth, |
| const TrackedTime& start_of_run, |
| const TrackedTime& end_of_run) { |
| if (!kTrackAllTaskObjects) |
| return; // Not compiled in. |
| |
| // Even if we have been DEACTIVATED, we will process any pending births so |
| // that our data structures (which counted the outstanding births) remain |
| // consistent. |
| if (!birth) |
| return; |
| |
| ThreadData* current_thread_data = Get(); |
| if (!current_thread_data) |
| return; |
| |
| int32 queue_duration = 0; |
| int32 run_duration = 0; |
| if (!start_of_run.is_null() && !end_of_run.is_null()) |
| run_duration = (end_of_run - start_of_run).InMilliseconds(); |
| current_thread_data->TallyADeath(*birth, queue_duration, run_duration); |
| } |
| |
| // static |
| void ThreadData::SnapshotAllExecutedTasks(bool reset_max, |
| ProcessDataSnapshot* process_data, |
| BirthCountMap* birth_counts) { |
| if (!kTrackAllTaskObjects) |
| return; // Not compiled in. |
| |
| // Get an unchanging copy of a ThreadData list. |
| ThreadData* my_list = ThreadData::first(); |
| |
| // Gather data serially. |
| // This hackish approach *can* get some slighly corrupt tallies, as we are |
| // grabbing values without the protection of a lock, but it has the advantage |
| // of working even with threads that don't have message loops. If a user |
| // sees any strangeness, they can always just run their stats gathering a |
| // second time. |
| for (ThreadData* thread_data = my_list; |
| thread_data; |
| thread_data = thread_data->next()) { |
| thread_data->SnapshotExecutedTasks(reset_max, process_data, birth_counts); |
| } |
| } |
| |
| void ThreadData::SnapshotExecutedTasks(bool reset_max, |
| ProcessDataSnapshot* process_data, |
| BirthCountMap* birth_counts) { |
| // Get copy of data, so that the data will not change during the iterations |
| // and processing. |
| ThreadData::BirthMap birth_map; |
| ThreadData::DeathMap death_map; |
| ThreadData::ParentChildSet parent_child_set; |
| SnapshotMaps(reset_max, &birth_map, &death_map, &parent_child_set); |
| |
| for (ThreadData::DeathMap::const_iterator it = death_map.begin(); |
| it != death_map.end(); ++it) { |
| process_data->tasks.push_back( |
| TaskSnapshot(*it->first, it->second, thread_name())); |
| (*birth_counts)[it->first] -= it->first->birth_count(); |
| } |
| |
| for (ThreadData::BirthMap::const_iterator it = birth_map.begin(); |
| it != birth_map.end(); ++it) { |
| (*birth_counts)[it->second] += it->second->birth_count(); |
| } |
| |
| if (!kTrackParentChildLinks) |
| return; |
| |
| for (ThreadData::ParentChildSet::const_iterator it = parent_child_set.begin(); |
| it != parent_child_set.end(); ++it) { |
| process_data->descendants.push_back(ParentChildPairSnapshot(*it)); |
| } |
| } |
| |
| // This may be called from another thread. |
| void ThreadData::SnapshotMaps(bool reset_max, |
| BirthMap* birth_map, |
| DeathMap* death_map, |
| ParentChildSet* parent_child_set) { |
| base::AutoLock lock(map_lock_); |
| for (BirthMap::const_iterator it = birth_map_.begin(); |
| it != birth_map_.end(); ++it) |
| (*birth_map)[it->first] = it->second; |
| for (DeathMap::iterator it = death_map_.begin(); |
| it != death_map_.end(); ++it) { |
| (*death_map)[it->first] = it->second; |
| if (reset_max) |
| it->second.ResetMax(); |
| } |
| |
| if (!kTrackParentChildLinks) |
| return; |
| |
| for (ParentChildSet::iterator it = parent_child_set_.begin(); |
| it != parent_child_set_.end(); ++it) |
| parent_child_set->insert(*it); |
| } |
| |
| // static |
| void ThreadData::ResetAllThreadData() { |
| ThreadData* my_list = first(); |
| |
| for (ThreadData* thread_data = my_list; |
| thread_data; |
| thread_data = thread_data->next()) |
| thread_data->Reset(); |
| } |
| |
| void ThreadData::Reset() { |
| base::AutoLock lock(map_lock_); |
| for (DeathMap::iterator it = death_map_.begin(); |
| it != death_map_.end(); ++it) |
| it->second.Clear(); |
| for (BirthMap::iterator it = birth_map_.begin(); |
| it != birth_map_.end(); ++it) |
| it->second->Clear(); |
| } |
| |
| static void OptionallyInitializeAlternateTimer() { |
| NowFunction* alternate_time_source = GetAlternateTimeSource(); |
| if (alternate_time_source) |
| ThreadData::SetAlternateTimeSource(alternate_time_source); |
| } |
| |
| bool ThreadData::Initialize() { |
| if (!kTrackAllTaskObjects) |
| return false; // Not compiled in. |
| if (status_ >= DEACTIVATED) |
| return true; // Someone else did the initialization. |
| // Due to racy lazy initialization in tests, we'll need to recheck status_ |
| // after we acquire the lock. |
| |
| // Ensure that we don't double initialize tls. We are called when single |
| // threaded in the product, but some tests may be racy and lazy about our |
| // initialization. |
| base::AutoLock lock(*list_lock_.Pointer()); |
| if (status_ >= DEACTIVATED) |
| return true; // Someone raced in here and beat us. |
| |
| // Put an alternate timer in place if the environment calls for it, such as |
| // for tracking TCMalloc allocations. This insertion is idempotent, so we |
| // don't mind if there is a race, and we'd prefer not to be in a lock while |
| // doing this work. |
| if (kAllowAlternateTimeSourceHandling) |
| OptionallyInitializeAlternateTimer(); |
| |
| // Perform the "real" TLS initialization now, and leave it intact through |
| // process termination. |
| if (!tls_index_.initialized()) { // Testing may have initialized this. |
| DCHECK_EQ(status_, UNINITIALIZED); |
| tls_index_.Initialize(&ThreadData::OnThreadTermination); |
| if (!tls_index_.initialized()) |
| return false; |
| } else { |
| // TLS was initialzed for us earlier. |
| DCHECK_EQ(status_, DORMANT_DURING_TESTS); |
| } |
| |
| // Incarnation counter is only significant to testing, as it otherwise will |
| // never again change in this process. |
| ++incarnation_counter_; |
| |
| // The lock is not critical for setting status_, but it doesn't hurt. It also |
| // ensures that if we have a racy initialization, that we'll bail as soon as |
| // we get the lock earlier in this method. |
| status_ = kInitialStartupState; |
| if (!kTrackParentChildLinks && |
| kInitialStartupState == PROFILING_CHILDREN_ACTIVE) |
| status_ = PROFILING_ACTIVE; |
| DCHECK(status_ != UNINITIALIZED); |
| return true; |
| } |
| |
| // static |
| bool ThreadData::InitializeAndSetTrackingStatus(Status status) { |
| DCHECK_GE(status, DEACTIVATED); |
| DCHECK_LE(status, PROFILING_CHILDREN_ACTIVE); |
| |
| if (!Initialize()) // No-op if already initialized. |
| return false; // Not compiled in. |
| |
| if (!kTrackParentChildLinks && status > DEACTIVATED) |
| status = PROFILING_ACTIVE; |
| status_ = status; |
| return true; |
| } |
| |
| // static |
| ThreadData::Status ThreadData::status() { |
| return status_; |
| } |
| |
| // static |
| bool ThreadData::TrackingStatus() { |
| return status_ > DEACTIVATED; |
| } |
| |
| // static |
| bool ThreadData::TrackingParentChildStatus() { |
| return status_ >= PROFILING_CHILDREN_ACTIVE; |
| } |
| |
| // static |
| TrackedTime ThreadData::NowForStartOfRun(const Births* parent) { |
| if (kTrackParentChildLinks && parent && status_ > PROFILING_ACTIVE) { |
| ThreadData* current_thread_data = Get(); |
| if (current_thread_data) |
| current_thread_data->parent_stack_.push(parent); |
| } |
| return Now(); |
| } |
| |
| // static |
| TrackedTime ThreadData::NowForEndOfRun() { |
| return Now(); |
| } |
| |
| // static |
| void ThreadData::SetAlternateTimeSource(NowFunction* now_function) { |
| DCHECK(now_function); |
| if (kAllowAlternateTimeSourceHandling) |
| now_function_ = now_function; |
| } |
| |
| // static |
| TrackedTime ThreadData::Now() { |
| if (kAllowAlternateTimeSourceHandling && now_function_) |
| return TrackedTime::FromMilliseconds((*now_function_)()); |
| if (kTrackAllTaskObjects && TrackingStatus()) |
| return TrackedTime::Now(); |
| return TrackedTime(); // Super fast when disabled, or not compiled. |
| } |
| |
| // static |
| void ThreadData::EnsureCleanupWasCalled(int major_threads_shutdown_count) { |
| base::AutoLock lock(*list_lock_.Pointer()); |
| if (worker_thread_data_creation_count_ == 0) |
| return; // We haven't really run much, and couldn't have leaked. |
| // Verify that we've at least shutdown/cleanup the major namesd threads. The |
| // caller should tell us how many thread shutdowns should have taken place by |
| // now. |
| return; // TODO(jar): until this is working on XP, don't run the real test. |
| CHECK_GT(cleanup_count_, major_threads_shutdown_count); |
| } |
| |
| // static |
| void ThreadData::ShutdownSingleThreadedCleanup(bool leak) { |
| // This is only called from test code, where we need to cleanup so that |
| // additional tests can be run. |
| // We must be single threaded... but be careful anyway. |
| if (!InitializeAndSetTrackingStatus(DEACTIVATED)) |
| return; |
| ThreadData* thread_data_list; |
| { |
| base::AutoLock lock(*list_lock_.Pointer()); |
| thread_data_list = all_thread_data_list_head_; |
| all_thread_data_list_head_ = NULL; |
| ++incarnation_counter_; |
| // To be clean, break apart the retired worker list (though we leak them). |
| while (first_retired_worker_) { |
| ThreadData* worker = first_retired_worker_; |
| CHECK_GT(worker->worker_thread_number_, 0); |
| first_retired_worker_ = worker->next_retired_worker_; |
| worker->next_retired_worker_ = NULL; |
| } |
| } |
| |
| // Put most global static back in pristine shape. |
| worker_thread_data_creation_count_ = 0; |
| cleanup_count_ = 0; |
| tls_index_.Set(NULL); |
| status_ = DORMANT_DURING_TESTS; // Almost UNINITIALIZED. |
| |
| // To avoid any chance of racing in unit tests, which is the only place we |
| // call this function, we may sometimes leak all the data structures we |
| // recovered, as they may still be in use on threads from prior tests! |
| if (leak) |
| return; |
| |
| // When we want to cleanup (on a single thread), here is what we do. |
| |
| // Do actual recursive delete in all ThreadData instances. |
| while (thread_data_list) { |
| ThreadData* next_thread_data = thread_data_list; |
| thread_data_list = thread_data_list->next(); |
| |
| for (BirthMap::iterator it = next_thread_data->birth_map_.begin(); |
| next_thread_data->birth_map_.end() != it; ++it) |
| delete it->second; // Delete the Birth Records. |
| delete next_thread_data; // Includes all Death Records. |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| TaskSnapshot::TaskSnapshot() { |
| } |
| |
| TaskSnapshot::TaskSnapshot(const BirthOnThread& birth, |
| const DeathData& death_data, |
| const std::string& death_thread_name) |
| : birth(birth), |
| death_data(death_data), |
| death_thread_name(death_thread_name) { |
| } |
| |
| TaskSnapshot::~TaskSnapshot() { |
| } |
| |
| //------------------------------------------------------------------------------ |
| // ParentChildPairSnapshot |
| |
| ParentChildPairSnapshot::ParentChildPairSnapshot() { |
| } |
| |
| ParentChildPairSnapshot::ParentChildPairSnapshot( |
| const ThreadData::ParentChildPair& parent_child) |
| : parent(*parent_child.first), |
| child(*parent_child.second) { |
| } |
| |
| ParentChildPairSnapshot::~ParentChildPairSnapshot() { |
| } |
| |
| //------------------------------------------------------------------------------ |
| // ProcessDataSnapshot |
| |
| ProcessDataSnapshot::ProcessDataSnapshot() |
| #if !defined(OS_NACL) |
| : process_id(base::GetCurrentProcId()) { |
| #else |
| : process_id(0) { |
| #endif |
| } |
| |
| ProcessDataSnapshot::~ProcessDataSnapshot() { |
| } |
| |
| } // namespace tracked_objects |